JP3583815B2 - Light receiving element - Google Patents

Light receiving element Download PDF

Info

Publication number
JP3583815B2
JP3583815B2 JP26269694A JP26269694A JP3583815B2 JP 3583815 B2 JP3583815 B2 JP 3583815B2 JP 26269694 A JP26269694 A JP 26269694A JP 26269694 A JP26269694 A JP 26269694A JP 3583815 B2 JP3583815 B2 JP 3583815B2
Authority
JP
Japan
Prior art keywords
layer
electrode
semiconductor substrate
light receiving
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26269694A
Other languages
Japanese (ja)
Other versions
JPH08125213A (en
Inventor
晋 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tottori Sanyo Electric Co Ltd
Priority to JP26269694A priority Critical patent/JP3583815B2/en
Publication of JPH08125213A publication Critical patent/JPH08125213A/en
Application granted granted Critical
Publication of JP3583815B2 publication Critical patent/JP3583815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は光リモコンに好適な受光モジュールに用いられる受光素子に関する。
【0002】
【従来の技術】
近年、オーディオ装置、テレビジョン受信機など多くの室内機器に於て、赤外光が雑音に強くかつ多くの情報量を伝達できるので、発光ダイオードと受光素子を利用した光リモコンが使用されている。その光リモコンに用いられる受光モジュールは例えば、図3の様に特開平3−72730号公報に示されている。この図に於て、受光素子31と回路素子32が回路基板33上に載置され、シールドケース34に収納されている。そして受光素子31はフレーム35、裏面電極36、P層37、半導体基板38、N層39、絶縁層40、表面電極41により 構成されている。
【0003】
【発明が解決しようとする課題】
上述の受光モジュール42を例えばテレビジョン受信機に内蔵した場合、所定の入力光信号が受信機のフライバックトランスの雑音(16.6kHz)を拾い易い。そのためにシールドケース34にメッシュ構造43を設け、かつフィルタ44を設けているが、これらの部品により入力光信号が減衰しかつコスト高になる。この欠点を解消するために本発明者は、メッシュ構造43とフィルタ44を廃止し、表面電極41と離れた半導体基板38上にワイヤボンディング用の電極45(図示せず)を設け、それと接触して透明電極46を設け、電極45に接続された金属細線(図示すせず)を介して電圧を印加した。しかし実験の結果、この構造に於ても、テレビジョン受信機の雑音を拾い易い第1の欠点がある。また表面電極41と電極45を設け、更に透明電極46を設けるので、パターニングが2回必要となり、製造しにくい第2の欠点がある。
【0004】
更に、N層39と絶縁層40と透明電極46により平行平板コンデンサーを構成するので、入力光信号の1部がコンデンサーに流れるため、光信号の出力電流が小さくなる。そのため、受光できる到達距離が5〜6mと小さくなる第3の欠点がある。故に本発明はこの様な従来の欠点を考慮して、雑音を拾いにくい、かつコンデンサー容量の少ない、かつ製造し易い受光素子を提供するものである。
【0005】
【課題を解決するための手段】
本発明は上述の課題を解決するために、半導体基板と、半導体基板の略中央の表面内部に設けられ第1導電型の不純物を含む拡散層と、拡散層の周辺に位置し半導体基板の表面内部に設けられ第2導電型の不純物を含む高濃度層と、拡散層上と高濃度層上に各々位置する第1および第2透孔を有し半導体基板上に設けられた絶縁層と、第1および第2透孔を通じて拡散層と高濃度層に各々接触しかつ絶縁層上に互いに離れて設けられた第1および第2電極とを備え、第1電極を絶縁層上に略全体的に設け、第1電極を接続手段により半導体基板と電気的に接続するものである。
【0006】
本発明は更に望ましくは、第2電極を前記拡散層の上方を除いた範囲に於て絶縁層上に設けるものである。
【0007】
【作用】
上述の様に本発明では、半導体基板の略中央に設けられた第1導電型の拡散層と、半導体基板と、拡散層の周辺に設けられた第2導電型の高濃度層によりPINホトダイオードが形成される。そして、受光素子の略表面全体を第1電極で覆い、かつ受光素子の裏面となる半導体基板と第1電極を電気的に接続する事により、受光素子は略全体の表面が同一電位となる。故に、テレビジョン受信機のフライバックトランス等による電磁場内に置かれた受光素子は、この同一電位の保護表面により電磁シールドされる。また、絶縁層上に第1及び第2電極のみを設けるので、1回のパターニングで済み、かつ従来の裏面電極を設けないので、構造が簡単であり、製造し易い。
【0008】
そして望ましくは、拡散層の上方を除いた絶縁層上に第2電極を設けることにより、拡散層と絶縁層と第2電極により構成されるコンデンサー容量は小さくなる。
【0009】
【実施例】
以下に本発明の実施例を図1と図2に従い説明する。図1は本実施例に係る受光素子を用いた受光モジュールの断面図、図2は図1のAA断面図である。これらの図に於て、受光素子は例えばPINホトダイオードからなり、不純物濃度4×1012cm−3以下のP型不純物を含むシリコンからなる半導体基板2の略中央の表面内部に拡散層3が設けられている。拡散層3は第1導電型の不純物、例えばボロン等の濃度が約1×1020cm−3になる様に拡散され、その深さは1〜2μmであり、シート抵抗は10〜50Ω/□であり、約20Ω/□が望ましい。
【0010】
高濃度層4は拡散層3の周辺に位置し、半導体基板2の表面内部に設けられ第2導電型の不純物を含んでいる。高濃度層4は例えば不純物濃度が約1×1020cm−3、深さ1〜2μmの燐等が添加されたものである。
【0011】
阻止層5は高濃度層4の周辺に位置し、半導体基板2の表面内部に設けられ、例えば不純物濃度が約1×1020cm−3になる様にボロン等の第1導電型不純物が深さ2〜4μmに添加されたものである。この様にして平面から見れば、拡散層3は例えば、横2000μm、縦1000μmの略長方形に形成されている。そして、例えば幅が約20μmの高濃度層と阻止層5は略額縁状に形成されている。
【0012】
第1電極6は例えばアルミニウムからなり、拡散層3と接触する様に形成されている。第2電極7は例えばアルミニウムからなり、高濃度層4と接触し、かつ拡散層3の上方を除いた位置に形成されている。
【0013】
絶縁層8は、第1電極6と第2電極7を除いた半導体基板2の表面上に形成され、例えば二酸化シリコンからなる。この絶縁層8は半導体基板2の表面を保護し、かつ反射防止の役目を果たす。この様にして、第1および第2電極6、7は絶縁層8の第1および第2透孔6a、7aを通じて、拡散層3と高濃度層4に各々接触する様に、絶縁層8上に互いに離れて設けられている。
【0014】
そして、拡散層3と絶縁層8の境界を流れる漏れ電流は、高濃度層4の周辺に形成された阻止層5により阻止される。
【0015】
また、第1電極6は平面から見れば、拡散層3の上方を除いた範囲に於て、1部が欠けた略額縁状に絶縁層8上に略全体的に形成されている。この様に、阻止層5の上に位置する第1電極6の阻止により、入射光が阻止層5にあたらないので、阻止層5の周辺で電流が発生しない。故に、所定のダイオード特性(印加するバイアス電圧に対する出力電流)が得られる。
【0016】
そして、第2電極7は平面から見れば、第1電極6と離れて絶縁層8上に略長方形に形成されている。これらの部材により、受光素子1が構成されている。また、高濃度層4と絶縁層8と第1電極6によりコンデンサーを構成するが、その容量は従来に比べて極めて小さい。何故ならば、高濃度層4の平面面積をS1とし、拡散層3の平面面積をS2とすると、S1=20×(2000+2000+1000+1000)=120,000μm、S2=2000×1000=2,000,000μmとなる。故に、S1/S2=6%となり、コンデンサーと なる平板面積が従来の6%であり、コンデンサー容量も従来の6%となる。
【0017】
第1フレーム9は金属板からなり、導電性接着剤10を介して受光素子1が載置されている。接続手段11は例えば金等の金属細線からなり、第1電極6と第1フレーム9との間に配線されている。すなわち接続手段11により、第1電極6と半導体基板2は電気的に接続されている。
【0018】
回路素子12は、第1フレーム9上に導電性接着剤13を介して載置されている。回路素子12は裏面電極14と、P型半導体基板15と、複合層16と、表面電極17、18、19、20から構成されている。
【0019】
金属細線21は、回路素子12の表面電極17と受光素子1の第2電極7との間に配線されている。第2フレーム22と第3フレーム23は共に金属板からなり、それぞれ表面電極18、19に接続されている。
【0020】
樹脂24はエポキシ樹脂などからなり、受光素子1と回路素子12と第1、第2、第3フレーム9、22、23の周辺を覆う様に設けられている。樹脂24は受光素子1の感度特性に合せ、赤外光を透過するが可視光を減衰させるフィルタ染料が混入してある。また望ましくは、樹脂24の上面は凸レンズ状に形成されより多くの光量が拡散層3に集まる様に設けられている。これらの部材により、受光モジュール25が構成されている。
【0021】
次に、この受光モジュール25の動作を説明する。光リモコンの発光モジュール(図示せず)から送られ電気信号を変調され赤外光に重畳された入力光信号26が樹脂24を介して、受光素子1の拡散層3に入射する。この時、回路素子12内のABLC(オートバイアスロジックレベルコントローラ)により、受光素子1に一定の逆バイアス電圧が印加されている。入力光信号26の強度に従う光信号出力が金属細線21を介して回路素子12に入る。光信号出力は、回路素子12内の増幅器と検波回路と波形整形回路等により、検波された電気信号となり第2フレーム22から出力される。
【0022】
なお上述の説明では、PINホトダイオードを例にとったが、本発明はこれに限られるものでなく、一般のホトダイオード(受光素子)に適用でき、更に本実施例と逆極性の受光素子についても適用できる。
【0023】
【発明の効果】
上述の様に本発明では、半導体基板の略中央に設けられた第1導電型の拡散層と、半導体基板と、拡散層の周辺に設けられた第2導電型の高濃度層によりPINホトダイオードが形成される。そして、受光素子の略表面全体を第1電極で覆い、かつ受光素子の裏面となる半導体基板と第1電極を電気的に接続する事により、受光素子は略全体の表面が同一電位となる。故に、テレビジョン受信機のフライバックトランス等による電磁場内に置かれた受光素子は、この同一電位の保護表面により電磁シールドされる。また、絶縁層上に第1及び第2電極のみを設けるので、1回のパターニングで済み、かつ従来の裏面電極を設けないので、構造が簡単であり、製造し易い。
【0024】
そして望ましくは、拡散層の上方を除いた絶縁層上に第2電極を設けることにより、拡散層と絶縁層と第2電極により構成されるコンデンサー容量は小さくなる。その結果、コンデンサーを通る入力光信号の量が減るので、光信号の出力電流が大きくなり、受光モジュール等に組込んだ時、受光の到達距離が8〜9と長くなる。
【図面の簡単な説明】
【図1】本発明の実施例に係る受光素子を用いた受光モジュールの断面図である。
【図2】図1のAA断面図である。
【図3】従来の受光モジュールの断面図である。
【符号の説明】
2 半導体基板
3 拡散層
4 高濃度層
6 第1電極
7 第2電極
8 絶縁層
[0001]
[Industrial applications]
The present invention relates to a light receiving element used for a light receiving module suitable for an optical remote controller.
[0002]
[Prior art]
In recent years, in many indoor devices such as audio devices and television receivers, since infrared light is strong against noise and can transmit a large amount of information, an optical remote controller using a light emitting diode and a light receiving element has been used. . A light receiving module used in the optical remote controller is disclosed in, for example, Japanese Patent Laid-Open No. 3-72730 as shown in FIG. In this figure, a light receiving element 31 and a circuit element 32 are mounted on a circuit board 33 and housed in a shield case 34. The light receiving element 31 includes a frame 35, a back electrode 36, a P + layer 37, a semiconductor substrate 38, an N layer 39, an insulating layer 40, and a surface electrode 41.
[0003]
[Problems to be solved by the invention]
When the above-described light receiving module 42 is incorporated in, for example, a television receiver, a predetermined input optical signal easily picks up noise (16.6 kHz) of a flyback transformer of the receiver. For this purpose, the mesh structure 43 is provided in the shield case 34 and the filter 44 is provided. However, these components attenuate the input optical signal and increase the cost. In order to solve this drawback, the present inventor has eliminated the mesh structure 43 and the filter 44, provided an electrode 45 (not shown) for wire bonding on the semiconductor substrate 38 remote from the surface electrode 41, and brought into contact therewith. A transparent electrode 46 was provided, and a voltage was applied through a thin metal wire (not shown) connected to the electrode 45. However, as a result of experiments, this structure has the first disadvantage that the noise of the television receiver is easily picked up. Further, since the surface electrode 41 and the electrode 45 are provided, and the transparent electrode 46 is further provided, patterning is required twice, and there is a second disadvantage that it is difficult to manufacture.
[0004]
Further, since a parallel plate capacitor is formed by the N layer 39, the insulating layer 40, and the transparent electrode 46, a part of the input optical signal flows to the capacitor, so that the output current of the optical signal is reduced. Therefore, there is a third disadvantage that the reachable distance of light reception is as small as 5 to 6 m. Therefore, the present invention is intended to provide a light receiving element which is hard to pick up noise, has a small capacitor capacity, and is easy to manufacture in consideration of such a conventional drawback.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a semiconductor substrate, a diffusion layer provided inside a substantially central surface of the semiconductor substrate and containing a first conductivity type impurity, and a surface of the semiconductor substrate positioned around the diffusion layer. A high-concentration layer provided therein and containing a second conductivity type impurity; an insulating layer provided on the semiconductor substrate having first and second through holes located on the diffusion layer and the high-concentration layer, respectively; First and second electrodes provided in contact with the diffusion layer and the high-concentration layer through the first and second through holes, respectively, and separated from each other on the insulating layer, and the first electrode is substantially entirely formed on the insulating layer. And the first electrode is electrically connected to the semiconductor substrate by connection means.
[0006]
The present invention further desirably provides the second electrode on the insulating layer in a range other than above the diffusion layer.
[0007]
[Action]
As described above, in the present invention, the PIN photodiode is formed by the first conductivity type diffusion layer provided substantially at the center of the semiconductor substrate, the semiconductor substrate, and the second conductivity type high concentration layer provided around the diffusion layer. It is formed. Then, substantially the entire surface of the light receiving element is covered with the first electrode, and the semiconductor substrate serving as the back surface of the light receiving element is electrically connected to the first electrode, so that substantially the entire surface of the light receiving element has the same potential. Therefore, the light receiving element placed in the electromagnetic field by the flyback transformer or the like of the television receiver is electromagnetically shielded by the protection surface having the same potential. Also, since only the first and second electrodes are provided on the insulating layer, only one patterning is required, and since no conventional back electrode is provided, the structure is simple and easy to manufacture.
[0008]
Preferably, by providing the second electrode on the insulating layer other than above the diffusion layer, the capacitance of the capacitor constituted by the diffusion layer, the insulating layer and the second electrode is reduced.
[0009]
【Example】
An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view of a light-receiving module using the light-receiving element according to the present embodiment, and FIG. In these figures, the light receiving element is formed of, for example, a PIN photodiode, and a diffusion layer 3 is provided in a substantially central surface of a semiconductor substrate 2 made of silicon containing a P-type impurity having an impurity concentration of 4 × 10 12 cm −3 or less. Have been. The diffusion layer 3 is diffused such that the concentration of an impurity of the first conductivity type, for example, boron or the like becomes about 1 × 10 20 cm −3 , the depth is 1 to 2 μm, and the sheet resistance is 10 to 50 Ω / □. And about 20Ω / □ is desirable.
[0010]
The high-concentration layer 4 is located around the diffusion layer 3 and is provided inside the surface of the semiconductor substrate 2 and contains impurities of the second conductivity type. The high-concentration layer 4 is, for example, doped with phosphorus having an impurity concentration of about 1 × 10 20 cm −3 and a depth of 1 to 2 μm.
[0011]
The blocking layer 5 is located around the high-concentration layer 4 and is provided inside the surface of the semiconductor substrate 2. For example, the first conductivity type impurity such as boron is deeply doped so that the impurity concentration becomes about 1 × 10 20 cm −3. 2 to 4 μm. In this way, when viewed from a plane, the diffusion layer 3 is formed in, for example, a substantially rectangular shape having a width of 2000 μm and a length of 1000 μm. For example, the high-concentration layer having a width of about 20 μm and the blocking layer 5 are formed in a substantially frame shape.
[0012]
The first electrode 6 is made of, for example, aluminum and is formed so as to be in contact with the diffusion layer 3. The second electrode 7 is made of, for example, aluminum, and is formed at a position in contact with the high-concentration layer 4 and excluding above the diffusion layer 3.
[0013]
The insulating layer 8 is formed on the surface of the semiconductor substrate 2 excluding the first electrode 6 and the second electrode 7, and is made of, for example, silicon dioxide. The insulating layer 8 serves to protect the surface of the semiconductor substrate 2 and to prevent reflection. In this manner, the first and second electrodes 6 and 7 are formed on the insulating layer 8 through the first and second through holes 6a and 7a of the insulating layer 8 so as to be in contact with the diffusion layer 3 and the high concentration layer 4, respectively. Are provided apart from each other.
[0014]
The leakage current flowing at the boundary between the diffusion layer 3 and the insulating layer 8 is blocked by the blocking layer 5 formed around the high-concentration layer 4.
[0015]
The first electrode 6 is substantially entirely formed on the insulating layer 8 in a substantially frame-like shape with one part missing in a range excluding the upper part of the diffusion layer 3 when viewed from a plane. In this way, since the incident light does not hit the blocking layer 5 due to the blocking of the first electrode 6 located on the blocking layer 5, no current is generated around the blocking layer 5. Therefore, predetermined diode characteristics (output current with respect to applied bias voltage) can be obtained.
[0016]
The second electrode 7 is formed in a substantially rectangular shape on the insulating layer 8 apart from the first electrode 6 when viewed from a plane. These members constitute the light receiving element 1. A capacitor is formed by the high-concentration layer 4, the insulating layer 8, and the first electrode 6, but the capacity is extremely small as compared with the conventional case. If the plane area of the high concentration layer 4 is S1 and the plane area of the diffusion layer 3 is S2, S1 = 20 × (2000 + 2000 + 1000 + 1000) = 120,000 μm, S2 = 2000 × 1000 = 2,000,000 μm 2 It becomes. Therefore, S1 / S2 = 6%, the plate area serving as a capacitor is 6% of the conventional, and the capacitor capacity is also 6% of the conventional.
[0017]
The first frame 9 is made of a metal plate, on which the light receiving element 1 is mounted via a conductive adhesive 10. The connection means 11 is made of, for example, a thin metal wire such as gold, and is wired between the first electrode 6 and the first frame 9. That is, the first electrode 6 and the semiconductor substrate 2 are electrically connected by the connection means 11.
[0018]
The circuit element 12 is mounted on the first frame 9 via the conductive adhesive 13. The circuit element 12 includes a back electrode 14, a P-type semiconductor substrate 15, a composite layer 16, and front electrodes 17, 18, 19, and 20.
[0019]
The thin metal wire 21 is wired between the surface electrode 17 of the circuit element 12 and the second electrode 7 of the light receiving element 1. Both the second frame 22 and the third frame 23 are made of a metal plate, and are connected to the surface electrodes 18 and 19, respectively.
[0020]
The resin 24 is made of epoxy resin or the like, and is provided so as to cover the light receiving element 1, the circuit element 12, and the periphery of the first, second, and third frames 9, 22, and 23. The resin 24 contains a filter dye that transmits infrared light but attenuates visible light in accordance with the sensitivity characteristics of the light receiving element 1. Desirably, the upper surface of the resin 24 is formed in a convex lens shape so that a larger amount of light is collected on the diffusion layer 3. The light receiving module 25 is constituted by these members.
[0021]
Next, the operation of the light receiving module 25 will be described. An input optical signal 26 transmitted from a light emitting module (not shown) of the optical remote controller and modulated with an electric signal and superimposed on infrared light enters the diffusion layer 3 of the light receiving element 1 via the resin 24. At this time, a constant reverse bias voltage is applied to the light receiving element 1 by an ABLC (auto bias logic level controller) in the circuit element 12. An optical signal output according to the intensity of the input optical signal 26 enters the circuit element 12 via the thin metal wire 21. The optical signal output becomes an electric signal detected by an amplifier, a detection circuit, a waveform shaping circuit, and the like in the circuit element 12, and is output from the second frame 22.
[0022]
In the above description, the PIN photodiode is taken as an example. However, the present invention is not limited to this, and can be applied to a general photodiode (light receiving element), and further applied to a light receiving element having a polarity opposite to that of the present embodiment. it can.
[0023]
【The invention's effect】
As described above, in the present invention, the PIN photodiode is formed by the first conductivity type diffusion layer provided substantially at the center of the semiconductor substrate, the semiconductor substrate, and the second conductivity type high concentration layer provided around the diffusion layer. It is formed. Then, substantially the entire surface of the light receiving element is covered with the first electrode, and the semiconductor substrate serving as the back surface of the light receiving element is electrically connected to the first electrode, so that the entire surface of the light receiving element has the same potential. Therefore, the light receiving element placed in the electromagnetic field by the flyback transformer or the like of the television receiver is electromagnetically shielded by the protection surface having the same potential. Also, since only the first and second electrodes are provided on the insulating layer, only one patterning is required, and since no conventional back electrode is provided, the structure is simple and easy to manufacture.
[0024]
Preferably, by providing the second electrode on the insulating layer other than above the diffusion layer, the capacitance of the capacitor constituted by the diffusion layer, the insulating layer and the second electrode is reduced. As a result, the amount of the input optical signal passing through the condenser is reduced, so that the output current of the optical signal is increased, and when incorporated in a light receiving module or the like, the reach of light reception is increased to 8-9.
[Brief description of the drawings]
FIG. 1 is a sectional view of a light receiving module using a light receiving element according to an embodiment of the present invention.
FIG. 2 is a sectional view taken along the line AA of FIG.
FIG. 3 is a cross-sectional view of a conventional light receiving module.
[Explanation of symbols]
2 semiconductor substrate 3 diffusion layer 4 high concentration layer 6 first electrode 7 second electrode 8 insulating layer

Claims (1)

半導体基板と、その半導体基板の略中央の表面内部に設けられ第1導電型の不純物を含む拡散層と、その拡散層の周辺に位置し前記半導体基板の表面内部に設けられ第2導電型の不純物を含む高濃度層と、前記拡散層上と前記高濃度層上に各々位置する第1および第2透孔を有し前記半導体基板上に設けられた絶縁層と、前記第1および第2透孔を通じて前記拡散層と前記高濃度層に各々接触しかつ前記絶縁層上に互いに離れて設けられた第1および第2電極とを備え、前記第1電極は前記絶縁層上に前記拡散層の上方を除いて略全体的に設けられ、前記第1電極は接続手段により前記半導体基板と電気的に接続された事を特徴とする受光素子。A semiconductor substrate, a diffusion layer provided in a substantially central surface of the semiconductor substrate and containing an impurity of the first conductivity type, and a second conductivity type provided in the surface of the semiconductor substrate and located in the periphery of the diffusion layer. A high-concentration layer containing impurities, an insulating layer having first and second through-holes located on the diffusion layer and the high-concentration layer, and provided on the semiconductor substrate; and first and second electrodes provided apart from each other to each contact and the insulating layer on the high concentration layer and the diffusion layer through hole, the first electrode is the diffusion layer on the insulating layer A light receiving element provided substantially entirely except for a portion above the semiconductor substrate, wherein the first electrode is electrically connected to the semiconductor substrate by connection means.
JP26269694A 1994-10-26 1994-10-26 Light receiving element Expired - Fee Related JP3583815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26269694A JP3583815B2 (en) 1994-10-26 1994-10-26 Light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26269694A JP3583815B2 (en) 1994-10-26 1994-10-26 Light receiving element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004181472A Division JP4036850B2 (en) 2004-06-18 2004-06-18 Receiver module

Publications (2)

Publication Number Publication Date
JPH08125213A JPH08125213A (en) 1996-05-17
JP3583815B2 true JP3583815B2 (en) 2004-11-04

Family

ID=17379331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26269694A Expired - Fee Related JP3583815B2 (en) 1994-10-26 1994-10-26 Light receiving element

Country Status (1)

Country Link
JP (1) JP3583815B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449575C (en) * 2004-11-05 2009-01-07 游志锋 Shielding method for infrared remote control receiving amplifier and infrared remote control receiving amplifying device thereof
JP5100013B2 (en) * 2006-01-26 2012-12-19 新日本無線株式会社 Semiconductor optical sensor

Also Published As

Publication number Publication date
JPH08125213A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
JP5249994B2 (en) Semiconductor light detecting element and semiconductor device
US4318115A (en) Dual junction photoelectric semiconductor device
US4698658A (en) Amorphous semiconductor device
JP3583815B2 (en) Light receiving element
JP4036850B2 (en) Receiver module
JP3490959B2 (en) Light receiving element and light receiving module
JP3696177B2 (en) Light receiving module for optical remote control
JP3696094B2 (en) Light receiving module
JP3021952B2 (en) Light receiving element
JP3177287B2 (en) Light receiving module
JP3696178B2 (en) Light receiving module for optical remote control
JP3594418B6 (en) Light receiving element
JP3986267B2 (en) Light receiving element and light receiving device
JP3516342B2 (en) Light receiving module for optical remote control
JP3594418B2 (en) Light receiving element
JP3831639B2 (en) Light receiving element and light receiving module
JP3609544B6 (en) Receiver
JP3609544B2 (en) Receiver
JP2003332594A (en) Lead frame and light receiving module comprising it
JPH02137275A (en) Photo coupler
JP2003318420A (en) Light receiving module
JP2004055743A (en) Photodetector and photodetector module
JPS6222273B2 (en)
JPH07273723A (en) Light reception module
JP2576383Y2 (en) Optical semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees