JP3552033B2 - mechanical seal - Google Patents

mechanical seal Download PDF

Info

Publication number
JP3552033B2
JP3552033B2 JP36357099A JP36357099A JP3552033B2 JP 3552033 B2 JP3552033 B2 JP 3552033B2 JP 36357099 A JP36357099 A JP 36357099A JP 36357099 A JP36357099 A JP 36357099A JP 3552033 B2 JP3552033 B2 JP 3552033B2
Authority
JP
Japan
Prior art keywords
retainer
ring
sealing ring
sealing
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36357099A
Other languages
Japanese (ja)
Other versions
JP2001173800A (en
Inventor
寿夫 福井
繁行 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP36357099A priority Critical patent/JP3552033B2/en
Publication of JP2001173800A publication Critical patent/JP2001173800A/en
Application granted granted Critical
Publication of JP3552033B2 publication Critical patent/JP3552033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも一方を径方向に分割してある二つの密封環を相対回転摺接させることによりシール機能が発揮されるように構成されたメカニカルシールに関するものである。
【0002】
【従来の技術】
シールケースに設けた密封環と回転軸に設けた密封環とをこれらの対向端面である密封端面で相対回転摺接させることにより、その相対回転摺接部分の内外周側領域である機内領域と機外領域とをシールするように構成されたメカニカルシールにあって、密封端面の摩耗損傷等による密封環の交換,修理等のメンテナンス作業を容易ならしめべく、少なくとも一方の密封環を径方向に分割しておくように工夫されたものが提案されている。
【0003】
【発明が解決しようとする課題】
しかし、このように分割形の密封環を使用するメカニカルシールにあっては、機内領域の流体が凝固物質等のスラリ成分を含有するものである場合、スラリ成分が密封端面間に侵入して付着,堆積し、密封端面の適正な接触を妨げる虞れがあり、特に、密封環の分割面間にスラリ成分が付着,堆積したときには、シール機能が喪失して、大量漏れに繋がる。また、機内領域の圧力変動等により、当該密封環の分割面にズレが生じて、その密封端面に分割個所で段差や隙間が生じる虞れがあった。かかる密封端面に生じた段差や隙間は、それが極く僅かなものであっても、シール機能の大幅な低下を招来する。
【0004】
したがって、分割形の密封環を使用する従来のメカニカルシールは、機内領域の圧力変動や流体の性状等のシール条件によっては実用することができず、その用途が大幅に制限されているのが実情である。
【0005】
本発明は、このような実情に鑑みてなされたもので、少なくとも一方の密封環を分割形としておくことによる上記した問題を解決して、シールすべき流体の性状等のシール条件に拘わらず良好なシール機能を発揮することができ、例えば高粘度スラリ流体のシール等、広範な用途に供しうるメカニカルシールを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、回転軸に軸線方向移動可能に保持された環状の第一リテーナに第一密封環を嵌合保持させてあり、この第一密封環をスプリング部材により第一リテーナを介してシールケースに設けた第二リテーナに嵌合保持された第二密封環へと押圧接触させることによって、両密封環の対向端面である密封端面相対回転摺接部分において、その外周側領域である機内領域とその内周側領域である機外領域とをシールするように構成されており、少なくとも第一密封環が径方向に分割されている、スラリ成分や微粒固形成分を含有する流体をシールするためのメカニカルシールにおいて、密封端面が形成される第一密封環の端部を、その内外周面が当該密封端面との交角が鈍角となる円錐面をなす尖端形状として、当該密封端面の径方向幅を0.2〜1.0mmとなしておくことを提案するものである。シールすべき粒体が高粘度,凝固性流体や微粒固形成分を含有する流体である場合には、密封端面間に凝固性成分が侵入して凝固物が生成したり微粒固形成分が噛み込んだりして、密封端面間が開き良好なシール機能が発揮できなくなる虞れがあるが、かかる場合にも、上記した如く第一密封環の密封端面の径方向幅(密封端面幅)を微小としておくと、両密封端面の接触圧(面圧)が高くなることとも相俟って、密封端面間への高粘度,凝固性流体や微粒固形成分の侵入,噛み込みを防止し得て、両密封端面を適正な接触状態に保持し、良好なシール機能を発揮することができる。さらに、第一密封環が、その内周部又は外周部に軸線方向における全幅に亘る切欠溝を形成すると共にこの切欠溝に剪断力を作用させることによって、径方向に分割されたものであり、その分割面が微細な凹凸面をなしているものであることを提案する。このように分割面を微細な凹凸面をなすものとしておくことにより、分割面が上記した如く微小幅のものであっても、分割面同士のずれを効果的に防止することができる。また、第一リテーナは、先端部とこれより内径の小さな中間部とこれより内径の小さな基端部とからなり、第一密封環は、第一リテーナの先端部に内嵌保持されており、第一リテーナと回転軸との間は、第一リテーナの基端部と第一密封環の基端部との間に配して第一リテーナの中間部と回転軸との対向周面間に介装したOリングにより二次シールされ ており、第一リテーナの先端部と第一密封環の基端部との対向周面間に第一Oリングを配設すると共に第一リテーナの先端部と第一密封環の中間部との対向周面間に第二Oリングを配設して、第一及び第二Oリングにより、第一密封環を環状に緊縛すると共に第一密封環の第一リテーナに対する回転を阻止してあり、第一密封環の基端部と中間部との間に、第一Oリングを第一密封環に対するその密封端面方向への軸線方向移動のみを阻止すべく係止する第一係止部を設けると共に、第一リテーナの先端部と中間部との間に、第一Oリングを第一リテーナに対する上記と逆方向への軸線方向移動のみを阻止すべく係止する第二係止部を設けてあり、第二Oリングを、第一リテーナの内周部に形成した環状溝に係合保持させておくことを提案する。
また、第二密封環についても、第一密封環と同様の手法により同様の形態に分割しておくことができ、第一密封環と同様に、第一及び第二Oリングで緊縛しておくことができる。すなわち、第二密封環を、その内周部又は外周部に軸線方向における全幅に亘る切欠部を形成すると共にこの切欠部に剪断力を作用させることによって、径方向に分割されたものであって、その分割面が微細な凹凸面をなすものとしておく。また、第二リテーナの内周部と第二密封環の外周部との間に軸線方向に所定間隔を隔てて配設した第一及び第二Oリングにより、第二密封環を環状に緊縛すると共に第二密封環の第二リテーナに対する回転を阻止してあり、第二密封環に、第一Oリングを第二密封環に対するその密封端面方向への軸線方向移動のみを阻止すべく係止する第一係止部を設けると共に、第二リテーナに、第一Oリングを第二リテーナに対する上記と逆方向への軸線方向移動のみを阻止すべく係止する第二係止部を設けて、第一Oリングを軸線方向において両係止部間に挟圧させてあり、第二Oリングを、第二リテーナの内周部に形成した環状溝に係合保持させておく。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図4に基づいて説明する。なお、以下の説明において、軸線とは回転軸及び密封環の軸線並びにOリングの曲率中心を通過する軸線を、また前後とは図1における左右を意味するものとする。
【0008】
この実施の形態における本発明に係るメカニカルシールは、図1に示す如く、円形の内周部を有するシールケース1とこれを前後方向に同心状に洞貫する回転軸2との間に組み込まれた分割形のものであり、回転軸2に第一リテーナ3を介して保持された第一密封環4と、シールケース1の内周部に第二リテーナ5を介して第一密封環4と同心対向状に保持された第二密封環6とを具備して、スプリング部材8により第一密封環4を第二密封環6へと押圧接触させることによって、両密封環4,6の対向端面である密封端面4a,6aの相対回転摺接部分において、その外周側領域である機内領域Hとその内周側領域である機外領域(大気領域)Lとをシールするように構成されている。
【0009】
シールケース1は、図1に示す如く、回転機器のハウジングに取り付けられたケース本体1aと、その先端部(前端部)に取り付けられた端部壁1bとからなる。
【0010】
第一リテーナ3は、図1に示す如く、内周部を基端方向(後端方向)に順次縮径する階段状に形成した円環状体である。すなわち、第一リテーナ3の内径は、先端部(前端部)3aにおいて中間部3bより大きく、基端部(前端部)3cにおいて中間部3bより小さく設定されており、基端部3cの内径は、第一リテーナ3を回転軸2の外径よりやや大きく設定されている。而して、第一リテーナ3は、回転軸2と中間部3bとの対向周面間にOリング9を介装させることにより、回転軸2に、これと同心をなし且つOリング9により二次シールされた状態で、軸線方向つまり前後方向に移動可能に嵌合保持されている。また、第一リテーナ3は、その回転を回転軸2との間に設けた回転阻止手段により阻止されている。すなわち、回転阻止手段は、図1に示す如く、第一リテーナ3の基端部に対向して回転軸2に嵌合固定された環状体7aと、環状体7aを貫通して第一リテーナ3の基端部に固着されたドライブピン7bとからなり、リテーナ3及びドライブピン7bの頭部7cが環状体7aに衝合する範囲内において、第一リテーナ3の軸線方向移動を許容しつつ、その回転軸2に対する相対回転を阻止する。
【0011】
第二リテーナ5は、図1に示す如く、筒状の本体部5aとその基端部(前端部)に内方へと突出する環状鍔部5bとからなる円環状体であり、第一リテーナ3の先端部に対向し且つ回転軸2と同心をなす状態で、シールケース1の端部壁1bの内周部にOリング12を介して内嵌固定されている。
【0012】
第一密封環4は、図1及び図3に示す如く、基端部(後端部)4cの外径を先端部(前端部)4b及び中間部4dの外径より小さくした円環状体である。そして、第1密封環4は、次のようにして、径方向において一対の半円形状の密封環部分4f,4fに二分割されている。
【0013】
すなわち、第一密封環4の内周部又は外周部における径方向対向二箇所に、図4(a)又は同図(B)に示す如く、当該密封環4の軸線方向における全幅に亘って微細な切欠溝4iを形成した上、この切欠溝4iに径方向の剪断力を作用させて、切欠溝4iを起点として径方向への亀裂を進行させることにより、当該密封環4を二分割するようにしている(以下、この分割加工を「自然割」という)。このように分割された密封環部分4f,4fの衝合面つまり当該密封環4の分割面4g,4gは、図4に示す如く、微細且つ不規則な凹凸面となり、当該分割面4iに平行する方向(密封環4の軸線方向及び径方向)に相対スライドを生じない状態で凹凸係合するものとなっている。したがって、分割面4i,4iが離間せず衝合状態を維持する限り、分割面4i,4iの凹凸係合により密封環部分4f,4fの軸線方向及び径方向への相対変位(ズレ)が生じず、密封環4を適正な円環状体に保持させておくことができる。また、密封環部分4f,4fの衝合時の位置決めつまり分割面4g,4gの適正な衝合も容易に行うことができる。
【0014】
第二密封環6は、図1に示す如く、基端部(前端部)6bの外径を中間部6c及び先端部(後端部)6dの外径より小さくした円環状体であり、第一密封環4と同様にして径方向に二分割されている。すなわち、第二密封環6は、上記した自然割により、一対の半円形状の密封環部分6f,6fに二分割されており、密封環部分6f,6fの衝合面である分割面6g,6gは微細且つ不規則な凹凸面となっている。
【0015】
而して、各密封環4,6は、これとリテーナ3,5との対向周面部間に軸線方向に所定間隔を隔てて配設した第一及び第二Oリング10,11又は13,14により、環状に緊縛すると共にリテーナ3,5との相対回転を阻止された状態で、リテーナ3,5に嵌合保持されている。
【0016】
すなわち、第一密封環4は、図1に示す如く、回転軸2に同心状に遊嵌され且つ先端部4bを第一リテーナ3の先端面(前端面)から突出させた状態で、第一リテーナ3の先端部3aの内周部に内嵌保持されている。そして、第一リテーナ3の先端部3aの内周部とこれに対向する第一密封環4の中間部4d及び基端部4cの外周部との間には、第一及び第二Oリング10,11が充填されている。第一リテーナ3の先端部3aと第一密封環4の基端部4cとの対向周面部間に配設された第一Oリング10は、前後方向において、第一密封環4に設けられた第一係止部(中間部4dの外周部と基端部4cの外周部との連繋部分)4hと第一リテーナ3に設けられた第二係止部(先端部3aの内周部と中間部3bの内周部との連繋部分)3dとの対向端面間に挟圧されていて、第一密封環4に対する密封端面方向(前方)への相対移動を第一係止部4hにより阻止されると共に、第一リテーナ3に対する上記と逆方向(後方)への相対移動を第二係止部3dにより阻止されている。第一リテーナ3の先端部3aと第一密封環4の中間部4dとの対向周面部間に配設された第二Oリング11は、第一リテーナ3の先端部3aの内周部に形成した環状溝3に係合保持されている。なお、第一リテーナ3の先端部3aの内周部(環状溝3が形成されていない部分の内周部)と第一密封環4の基端部4cの外周部との径方向間隔(第一Oリング10の締代)及び第一リテーナ3の先端部3aの内周部(環状溝3の底面部)と第一密封環4の中間部4dの外周部との径方向間隔(第二Oリング11の締代)は、両Oリング10,11により、第一密封環4をその分離面4g,4gが適正に衝合する円環状体に保持するに充分な緊縛力と第一密封環4の第一リテーナ3に対する相対回転を阻止するに充分な摩擦係合力とが確保されることを条件として、適宜に設定される。
【0017】
また、第二密封環6は、図1に示す如く、回転軸2に同心状に遊嵌され且つ先端部6dを第二リテーナ5の先端面(後端面)から突出させた状態で、第二リテーナ5の本体部5aの内周部に内嵌保持されている。そして、第二リテーナ5の本体部5aの内周部とこれに対向する第二密封環6の基端部6b及び中間部6cの外周部との間には、第一及び第二Oリング13,14が適度に圧縮された状態で充填されている。第二リテーナ5の本体部5aと第二密封環6の基端部6bとの対向周面部間に配設された第一Oリング13は、前後方向において、第二密封環6に設けられた第一係止部(基端部6bの外周部と中間部6cの外周面との連繋部分)6hと第二リテーナ5に設けられた第二係止部(環状鍔部)5bとの対向端面間に挟圧されていて、第二密封環6に対する密封端面方向(後方向)への相対移動を第一係止部6hにより阻止されると共に、第二リテーナ5に対する上記と逆方向(前方向)への相対移動を第二係止部5bにより阻止されている。第二リテーナ5の本体部5aと第二密封環6の中間部6cとの対向周面部間に配設された第二Oリング14は、第二リテーナ5の本体部5aの内周部に形成した環状溝5cに係合保持されている。なお、第二リテーナ5の本体部5aの内周部(環状溝5cが形成されていない部分の内周部)と第二密封環6の基端部6bの外周部との径方向間隔(第一Oリング13の締代)及び第二リテーナ5の本体部5aの内周部(環状溝5cの底面部)と第二密封環6の中間部6cの外周部との径方向間隔(第二Oリング14の締代)は、上記したOリング10,11と同様に、両Oリング13,14により第二密封環6をその分離面6g,6gが適正に衝合する円環状体に保持するに充分な緊縛力と第二密封環6の第二リテーナ5に対する相対回転を阻止するに充分な摩擦係合力とが確保されることを条件として、適宜に設定される。
【0018】
ところで、この例では、第1密封環4を炭化珪素で、第2密封環6を超硬合金で構成してあり、第1及び第2リテーナ3,5はSUS304で構成してある。また、各密封環4,6の先端部4b,6dの外周には、密封環抜出用の環状凹部4j,6jが形成されている
そして、第一リテーナ3と環状体7aとの間には、回転軸2の周囲に等間隔を隔てて配置した複数個のスプリング部材(圧縮コイルスプリング)8が介装されていて、第一リテーナ3を第二密封環方向(前方向)に附勢することにより、第一密封環4を第二密封環6に押圧接触させ、それらの先端部4b,6dの対向端面である密封端面4a,6aを同心状態で相対回転摺接させるようになっている。
【0019】
このように相対回転摺接する両密封端面4a,6aは、軸線に直交する平滑な環状平面に形成されているが、第1密封環4の密封端面4aは、その径方向幅(以下「密封端面幅」という)Wを微小なものとして、密封端面4a,6aの接触面積を小さくすると共に密封端面4a,6aの接触圧(面圧)を高めるように工夫されている。すなわち、第1密封環4の先端部4bを、図2に示す如く、その内外周面4m,4nが当該密封端面4aとの交角α,βが鈍角(90°<α,β<180°)となる円錐面をなす尖端形状として、密封端面Wを0.2〜1.0mmとなしている。なお、内外周面4m,4nと密封端面4aとの交角α,βの一方を鋭角又は直角としても、上記した寸法の密封端面幅Wを得ることが可能であるが、このように鋭角又は直角とした場合には、密封環4の構成材が上記した炭化珪素のように一般に脆い硬質材で構成されることとも相俟って、上記した自然割により密封環4を分割したときにおいて密封端面4aの分割個所が欠ける虞れがある。したがって、上記交角α,βは、密封環4の材質に応じて鈍角の範囲で適宜に設定しておくことが必要であり、一般には、90°<α,β≦170°としておくことが好ましい。
【0020】
このように、第1密封環4の密封端面幅Wを微小としておくと、シールすべき流体(機内領域Hの流体)が凝固物質等のスラリ成分や微粒固形成分を含有するもの(高粘度,凝固性流体等)である場合にも、密封端面4a,6a間へのスラリ成分,微粒固形成分の侵入,噛み込みを効果的に防止し得て、密封端面4a,6aの接触不良を確実に防止することができる。すなわち、密封端面幅Wが微小であること及びそのために密封端面4a,6aの接触圧(面圧)が高くなることから、密封端面4a,6a間へのスラリ成分,微粒固形成分の侵入,噛み込みは防止される。したがって、密封端面4a,6a間が凝固物の生成や固形成分の噛み込みにより開いたりするようなことがなく、またスラリ成分等が密封環4,6の分割面4g,4g又は6g,6g間に侵入して、その間が開くようなこともなく、密封端面4a,6aを適正な接触状態に維持し得て、良好なシール機能を発揮することができる。さらに、密封端面幅Wを小さくして密封端面4a,6aの接触面積を小さくしておくことにより、密封端面4a,6aの摺動による発熱が少なく且つ放熱効果も大きくなり、密封端面4a,6aの相対回転摺接が円滑に行われ、シール機能が更に向上する。
【0021】
このような機能ないし効果は、密封端面幅Wを上記した0.2〜1.0mmの範囲で密封環材質やシール条件に応じて設定しておくことによって効果的に発揮される。すなわち、W>1.0mmであると、密封端面4a,6a間へのスラリ成分等の侵入,噛み込み防止機能が充分に発揮されないし、密封端面4a,6aの接触による発熱,摩耗を効果的に抑制できない。また、W<0.2mmであると、自然割を行う上での強度上の問題(密封端面4aの分割個所が欠ける等の問題)が生じる虞れがあり、密封端面4a,6aの接触圧が必要以上に高くなる。
【0022】
また、上記したメカニカルシールにあっては、密封環4,6が自然割によって分割されており、それらの分割面4g,4g又は6g,6gが不規則な凹凸面をなして係合されることから、機内領域Hの圧力変動等により密封環部分4f,4f又は6f,6fが軸線方向に齟齬して密封端面4a,6aに段差が生じるようなことがない。
【0023】
さらに、上記した如く、密封環4,6を軸線方向に所定間隔を隔てた二本のOリング10,11又は13,14で緊縛するようにしておくと、密封環4,6とリテーナ3,5との間にOリング10,11又は13,14による十分な摩擦係合力が生じて、ドライブピンのような物理的係合手段を使用せずとも、密封環4,6のリテーナ3,5に対する相対回転を確実に阻止することができる。しかも、一本のOリングにより緊縛した場合に比して、両密封環部分4f,4f又は6f,6fが強力に衝合一体化されることになる。したがって、密封端面4a,6aの分割部分が開くようなことがなく、密封端面4a,6aの相対回転も適正に行われる。
【0024】
また、密封環4,6には、スプリング部材8による附勢力(及び機内領域Hの流体圧による押圧力)によって軸線方向荷重が作用するが、上記したメカニカルシールでは、かかる軸線方向荷重を第一Oリング10,13を介してリテーナ3,5で受け止めるように工夫している。すなわち、軸線方向荷重は密封環側の第一係止部4h,6hから第一Oリング10,13に伝えられ、リテーナ側の第二係止部3d,5bで受け止められる。したがって、軸線方向荷重を受け止めるリテーナ側部分(第二係止部3d,5b)と密封端面4a,6aとの表面加工精度差や密封環4,6とリテーナ3,5との材質による熱膨張係数差が如何に大きくとも、これらによる密封端面4a,6aへの影響は第一Oリング10,13による弾性変形によって吸収されることになるから、分割面4g,4g又は6g,6gが上述した如く不規則な凹凸面をなして軸線方向に相対変位しない状態に凹凸係合していることとも相俟って、密封端面4a,6aの分割個所におけるズレが更に効果的に防止される。
【0025】
ところで、上記したメカニカルシールにあっては、密封環4,6のシールケース1又は回転軸2からの取り外しを容易に行うことができる。すなわち、ケース本体1aから端部壁1bを外して、第二リテーナ5及びこれに嵌合保持されている第二密封環6を前方向に移動させた上、第二密封環6を第二リテーナ5から後方向に抜き出すことにより、第二密封環6の取り外し及び分解を行うことができる。しかる後、第一密封環4を第一リテーナ3から前方向に抜き出すことにより、第一密封環4の取り外し及び分解を行うことができる。このとき、密封環4,6及びリテーナ3,5とOリング10,11,13,14との間に機内領域Hの流体に含まれているスラリ成分が侵入堆積することによって、密封環4,6やOリング10…のリテーナ3,5からの抜き出し,取り出しが困難となる場合があるが、かかる場合には、密封環4,6の外周部に形成した環状凹部4j,6jに引っ掛けた適宜の抜き出し工具により、当該抜き出し,取り出し作業を容易に行うことができる。
【0026】
なお、本発明は上記した実施の形態に限定されるものではなく、本発明の基本原理を逸脱しない範囲において、適宜に改良,変更することができる。例えば、上記した実施の形態にあっては、相対回転摺接する両密封環4,6を共に分割構造としたが、当該メカニカルシールの各構成部材の寸法や使用条件等によっては第1密封環4のみを分離構造としておいてもよい。また、必要に応じて、各Oリングとして、周方向の一箇所を切離したものを使用してもよい。さらに、密封環やOリング以外のメカニカルシール構成部材についても、必要に応じて、径方向に分割した構造となしておいてもよい。
【0027】
【発明の効果】
以上の説明から容易に理解されるように、本発明のメカニカルシールは、第1密封環の密封端面をナイフエッジ状に形成したから、凝固物質等のスラリ成分や微粒固形成分を含有する流体をシールする場合にも、スラリ成分等の侵入,凝固,噛み込みによる密封端面が接触不良となる等の問題が生じることがない。しかも、第1密封環又は両密封環を上記した自然割により分割することにより、その分割面が不規則な凹凸面となってズレや開きを生じ難い状態で衝合(凹凸係合)されることから、シールされるべき流体が圧力変動する等の条件下においても、分割された密封端面が段差等を生じない適正な平滑面形態に保持させておくことができる。
【0028】
したがって、本発明のメカニカルシールは、両密封環の少なくとも一方を分割構造となしていることに起因して適正なシール機能を発揮し得ないでいた条件下においても、良好なシール機能を発揮することができるものであり、高粘度,凝固性流体等を扱う化学工業分野等の広範な用途に供しうる極めて実用的価値大なるものである。
【図面の簡単な説明】
【図1】本発明に係るメカニカルシールの実施の形態を示す縦断側面図である。
【図2】図1の要部を拡大して示す詳細図である。
【図3】図1のIII −III 線に沿う縦断正面図である。
【図4】図3の要部を拡大して示す詳細図である。
【符号の説明】
1…シールケース、2…回転軸、3…第一リテーナ、3a…第一リテーナの先端部、3b…第一リテーナの中間部、3c…第一リテーナの基端部、3d,5b…第二係止部、3e,5c…環状溝、4…第一密封環、4a,6a…密封端面、4c…第一密封環の基端部、4d…第一密封環の中間部、4f,6f…密封環部分、4g,6g…分割面、4h,6h…第一係止部、4i…切欠溝、5…第二リテーナ、6…第二密封環、8…スプリング部材、9…Oリング、10,13…第一Oリング、11,14…第二Oリング、H…密封端面の相対回転摺接部分の外周側領域(機内領域)、L…密封端面の相対回転摺接部分の内周側領域(機外領域)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mechanical seal configured such that a sealing function is exerted by bringing two sealing rings, at least one of which is radially divided, into relative rotational sliding contact.
[0002]
[Prior art]
The sealing ring provided on the seal case and the sealing ring provided on the rotating shaft are brought into relative rotational sliding contact with each other at the sealing end face, which is the opposite end face, so that the in-machine area, which is the inner and outer peripheral side area of the relative rotating sliding contact portion, In a mechanical seal configured to seal with the outside area of the machine, at least one of the seal rings is arranged in a radial direction to facilitate maintenance work such as replacement and repair of the seal ring due to wear damage to the sealing end face. A device devised so as to be divided has been proposed.
[0003]
[Problems to be solved by the invention]
However, in such a mechanical seal using a split type sealing ring, when the fluid in the machine area contains a slurry component such as a solidified substance, the slurry component penetrates and adheres between the sealing end faces. There is a concern that proper contact of the sealing end face may be hindered. In particular, when a slurry component adheres and accumulates between the divided surfaces of the sealing ring, the sealing function is lost, leading to a large amount of leakage. In addition, there is a possibility that a deviation occurs in the divided surface of the sealing ring due to a pressure fluctuation or the like in the in-machine region, and a step or a gap is generated in the divided portion on the sealed end surface. Such a step or a gap generated on the sealing end face, even if it is extremely small, causes a significant reduction in the sealing function.
[0004]
Therefore, the conventional mechanical seal using the split type sealing ring cannot be put to practical use depending on the sealing conditions such as pressure fluctuation in the machine area and the properties of the fluid, and the actual use is greatly restricted. It is.
[0005]
The present invention has been made in view of such circumstances, and solves the above-described problem caused by forming at least one of the sealing rings into a divided shape, so that the sealing ring can be irrespective of sealing conditions such as properties of a fluid to be sealed. It is an object of the present invention to provide a mechanical seal that can exhibit various sealing functions and can be used in a wide range of applications such as sealing of a high viscosity slurry fluid.
[0006]
[Means for Solving the Problems]
According to the present invention, a first sealing ring is fitted and held in an annular first retainer held movably in an axial direction on a rotary shaft, and the first sealing ring is sealed by a spring member through the first retainer. Press contact with the second seal ring fitted and held by the second retainer provided in the inner seal area, which is the outer peripheral area of the outer peripheral side area in the relative rotation sliding contact portion of the sealed end faces which are the opposite end faces of the two seal rings . And an outer peripheral region that is an inner peripheral region thereof, and at least the first sealing ring is radially divided, to seal a fluid containing a slurry component or a fine solid component. In the mechanical seal of (1), the end of the first sealing ring on which the sealing end face is formed is formed into a pointed shape whose inner and outer peripheral faces form a conical surface where the intersection angle with the sealing end face is an obtuse angle, and the radial width of the sealing end face is 0 It is intended to propose that you without a 2~1.0mm. If the particles to be sealed are high-viscosity, solidifying fluids or fluids containing fine solid components, the solidification components may enter between the sealing end faces to form solidified products or fine solid components may be caught. As a result, there is a possibility that the sealing end faces may open and a good sealing function may not be exhibited. In such a case, however, the radial width (sealing end face width) of the sealing end face of the first sealing ring is made small as described above. In addition to the fact that the contact pressure (surface pressure) between both sealing end faces is increased, high viscosity, solidification fluid and fine solid components can be prevented from entering and biting between the sealing end faces, and both sealing ends can be prevented. The end face can be held in an appropriate contact state, and a good sealing function can be exhibited. Furthermore, the first sealing ring is radially divided by forming a notch groove over the entire width in the axial direction on the inner peripheral portion or the outer peripheral portion thereof and applying a shearing force to the notch groove, It is proposed that the divided surface has a fine uneven surface. In this way, by forming the divided surface as a fine uneven surface, even if the divided surface has a minute width as described above, the displacement between the divided surfaces can be effectively prevented. In addition, the first retainer includes a distal end portion, an intermediate portion having a smaller inner diameter than the intermediate portion, and a base end portion having a smaller inner diameter than the first retainer, and the first sealing ring is internally fitted and held at the distal end portion of the first retainer. Between the first retainer and the rotating shaft, between the proximal end of the first retainer and the proximal end of the first sealing ring, between the intermediate portion of the first retainer and the facing peripheral surface of the rotating shaft. A secondary seal is provided by an interposed O-ring, and a first O-ring is disposed between the peripheral surfaces of the distal end of the first retainer and the base end of the first sealing ring, and the distal end of the first retainer is provided. A second O-ring is disposed between the peripheral surfaces of the first and second sealing rings, and the first and second O-rings are used to tightly bind the first sealing ring in a ring shape and to prevent the first sealing ring from being closed. Yes to prevent rotation for one retainer, between the base end portion and the intermediate portion of the first seal ring, against the first O-ring to the first seal ring Provided with a first locking portion for locking so as to prevent only the axial movement of the to seal end faces direction, between the tip portion and the intermediate portion of the first retainer, the first O-ring against the first retainer and tare provided a second locking portion for locking so as to prevent only the axial movement in the opposite direction is, the second O-ring, is engaged with and held in an annular groove formed on the inner peripheral portion of the first retainer Propose to keep.
In addition, the second sealing ring can also be divided into the same form by the same method as the first sealing ring, and is bound by the first and second O-rings in the same manner as the first sealing ring. be able to. That is, the second sealing ring is radially divided by forming a notch over the entire width in the axial direction on the inner peripheral portion or the outer peripheral portion thereof and applying a shearing force to the notch portion. The divided surface forms a fine uneven surface. Further, the first and second O-rings arranged at predetermined intervals in the axial direction between the inner peripheral portion of the second retainer and the outer peripheral portion of the second sealing ring tightly bind the second sealing ring in an annular shape. And rotation of the second seal ring with respect to the second retainer is prevented, and the first seal ring is locked to the second seal ring so as to prevent only axial movement of the second seal ring with respect to the second seal ring in the direction of its sealing end face. A first locking portion is provided, and a second locking portion is provided on the second retainer to lock the first O-ring so as to prevent only the axial movement of the second O-ring with respect to the second retainer in the opposite direction. One O-ring is pressed between the two locking portions in the axial direction, and the second O-ring is engaged and held in an annular groove formed in the inner peripheral portion of the second retainer.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In the following description, the axis refers to the axis of the rotating shaft and the seal ring and the axis passing through the center of curvature of the O-ring, and the front and rear refer to the left and right in FIG.
[0008]
As shown in FIG. 1, a mechanical seal according to the present invention in this embodiment is incorporated between a seal case 1 having a circular inner peripheral portion and a rotary shaft 2 penetrating the seal case 1 concentrically in the front-rear direction. A first seal ring 4 held on a rotating shaft 2 via a first retainer 3, and a first seal ring 4 on an inner peripheral portion of the seal case 1 via a second retainer 5. A second sealing ring 6 held concentrically opposed to the first sealing ring 4 is pressed against the second sealing ring 6 by a spring member 8 so that the opposed end faces of the sealing rings 4 and 6 are opposed to each other. In the relative rotation sliding portion of the sealed end surfaces 4a, 6a, the inner region H, which is the outer peripheral region, and the outer region (atmospheric region) L, which is the inner peripheral region, are sealed. .
[0009]
As shown in FIG. 1, the seal case 1 includes a case main body 1a attached to a housing of a rotating device and an end wall 1b attached to a front end (front end) thereof.
[0010]
As shown in FIG. 1, the first retainer 3 is an annular body having an inner peripheral portion formed in a step-like shape whose diameter is gradually reduced in a base end direction (rear end direction). That is, the inner diameter of the first retainer 3 is set to be larger at the distal end (front end) 3a than at the intermediate portion 3b and smaller at the base end (front end) 3c than at the intermediate portion 3b. The first retainer 3 is set slightly larger than the outer diameter of the rotating shaft 2. Thus, the first retainer 3 has the O-ring 9 interposed between the opposing peripheral surfaces of the rotating shaft 2 and the intermediate portion 3b. Next, in the sealed state, it is fitted and held movably in the axial direction, that is, in the front-back direction. The rotation of the first retainer 3 is prevented by rotation preventing means provided between the first retainer 3 and the rotation shaft 2. That is, as shown in FIG. 1, the rotation preventing means includes an annular body 7a fitted to and fixed to the rotating shaft 2 opposed to the base end of the first retainer 3, and a first retainer 3 extending through the annular body 7a. And a drive pin 7b fixed to the base end of the first retainer 3. Within a range where the retainer 3 and the head 7c of the drive pin 7b abut against the annular body 7a, while allowing the axial movement of the first retainer 3, The relative rotation with respect to the rotation shaft 2 is prevented.
[0011]
As shown in FIG. 1, the second retainer 5 is an annular body including a cylindrical main body 5 a and an annular flange 5 b protruding inward from a base end (front end) thereof. 3 and is fixed to the inner peripheral portion of the end wall 1b of the seal case 1 via an O-ring 12 in a state of facing the distal end portion and being concentric with the rotating shaft 2.
[0012]
As shown in FIGS. 1 and 3, the first sealing ring 4 is an annular body in which the outer diameter of a base end (rear end) 4c is smaller than the outer diameters of a front end (front end) 4b and an intermediate part 4d. is there. The first seal ring 4 is divided into a pair of semicircular seal ring portions 4f, 4f in the radial direction as follows.
[0013]
That is, as shown in FIG. 4A or FIG. 4B, fine portions are formed at two radially opposed positions on the inner peripheral portion or the outer peripheral portion of the first sealing ring 4 over the entire width of the sealing ring 4 in the axial direction. After forming the notch groove 4i, a radial shear force is applied to the notch groove 4i to cause a crack in the radial direction from the notch groove 4i as a starting point, thereby dividing the sealing ring 4 into two parts. (Hereinafter, this division processing is referred to as “natural division”). The abutting surfaces of the sealing ring portions 4f, 4f thus divided, that is, the divided surfaces 4g, 4g of the sealing ring 4, become fine and irregular uneven surfaces as shown in FIG. 4, and are parallel to the dividing surface 4i. In the direction (axial direction and radial direction of the sealing ring 4) in which the relative sliding does not occur. Therefore, as long as the divided surfaces 4i, 4i do not separate from each other and maintain an abutting state, relative displacement (deviation) of the sealing ring portions 4f, 4f in the axial direction and the radial direction occurs due to the uneven engagement of the divided surfaces 4i, 4i. Instead, the sealing ring 4 can be held in an appropriate annular body. Further, positioning at the time of abutment of the sealing ring portions 4f, 4f, that is, proper abutment of the divided surfaces 4g, 4g can be easily performed.
[0014]
As shown in FIG. 1, the second sealing ring 6 is an annular body in which the outer diameter of a base end (front end) 6 b is smaller than the outer diameters of a middle part 6 c and a front end (rear end) 6 d. It is divided into two parts in the radial direction in the same manner as one sealing ring 4. In other words, the second sealing ring 6 is divided into a pair of semicircular sealing ring portions 6f, 6f by the above-described natural splitting, and the divided surfaces 6g, which are abutting surfaces of the sealing ring portions 6f, 6f. 6 g has a fine and irregular uneven surface.
[0015]
The first and second O-rings 10, 11 or 13, 14 are disposed at predetermined intervals in the axial direction between the peripheral surfaces of the sealing rings 4, 6 and the retainers 3, 5, respectively. As a result, they are fitted to and retained by the retainers 3 and 5 in a state where they are annularly restrained and their relative rotation with the retainers 3 and 5 is prevented.
[0016]
That is, as shown in FIG. 1, the first sealing ring 4 is loosely fitted concentrically to the rotating shaft 2 and the first end portion 4 b is made to protrude from the front end surface (front end surface) of the first retainer 3. The retainer 3 is internally fitted and held on the inner peripheral portion of the distal end portion 3a. The first and second O-rings 10 are provided between the inner peripheral portion of the distal end portion 3a of the first retainer 3 and the outer peripheral portions of the intermediate portion 4d and the proximal end portion 4c of the first sealing ring 4 opposed thereto. , 11 are filled. The first O-ring 10 disposed between the peripheral surfaces of the front end 3a of the first retainer 3 and the base end 4c of the first sealing ring 4 is provided on the first sealing ring 4 in the front-rear direction. The first locking portion (the linking portion between the outer peripheral portion of the intermediate portion 4d and the outer peripheral portion of the base end portion 4c) 4h and the second locking portion (the inner peripheral portion of the distal end portion 3a and the middle portion) provided on the first retainer 3 are provided. The portion 3b is sandwiched between the end faces facing the inner peripheral portion 3d) and 3d, and the relative movement of the first sealing ring 4 in the direction of the sealing end face (forward) is prevented by the first locking portion 4h. In addition, the relative movement of the first retainer 3 in the opposite direction (rearward) to the above is prevented by the second locking portion 3d. The second O-ring 11 disposed between the peripheral portion of the front end 3a of the first retainer 3 and the intermediate portion 4d of the first sealing ring 4 is formed on the inner peripheral portion of the front end 3a of the first retainer 3. It is engaged and held in the formed annular groove 3e . Note that a radial distance between an inner peripheral portion of the distal end portion 3a of the first retainer 3 (an inner peripheral portion of the portion where the annular groove 3e is not formed) and an outer peripheral portion of the proximal end portion 4c of the first sealing ring 4 ( (The interference of the first O-ring 10) and the radial distance between the inner peripheral portion of the distal end portion 3a of the first retainer 3 (the bottom surface of the annular groove 3e ) and the outer peripheral portion of the intermediate portion 4d of the first sealing ring 4. The tightening force of the second O-ring 11) is determined by the two O-rings 10 and 11 with a sufficient binding force and a sufficient force to hold the first sealing ring 4 in an annular body whose separation surfaces 4g and 4g properly abut. It is set appropriately on condition that a frictional engagement force sufficient to prevent relative rotation of the one sealing ring 4 with respect to the first retainer 3 is secured.
[0017]
As shown in FIG. 1, the second seal ring 6 is loosely fitted concentrically to the rotating shaft 2 and the second end portion 6 d is protruded from the front end surface (rear end surface) of the second retainer 5. The retainer 5 is internally fitted and held on the inner peripheral portion of the main body 5a. The first and second O-rings 13 are provided between the inner peripheral portion of the main body portion 5a of the second retainer 5 and the outer peripheral portions of the base end portion 6b and the intermediate portion 6c of the second sealing ring 6 opposed thereto. , 14 are filled in an appropriately compressed state. The first O-ring 13 provided between the peripheral portion of the main body 5a of the second retainer 5 and the base end 6b of the second sealing ring 6 is provided on the second sealing ring 6 in the front-rear direction. Opposite end face of the first locking portion (the connecting portion between the outer peripheral portion of the base end portion 6b and the outer peripheral surface of the intermediate portion 6c) 6h and the second locking portion (annular flange portion) 5b provided on the second retainer 5 The first retaining portion 6h prevents the relative movement of the second seal ring 6 in the direction of the sealing end face (rearward direction) with the first retaining portion 6h. ) Is prevented by the second locking portion 5b. The second O-ring 14 disposed between the peripheral portion of the main body 5a of the second retainer 5 and the intermediate portion 6c of the second sealing ring 6 is formed on the inner peripheral portion of the main body 5a of the second retainer 5. It is engaged and held in the formed annular groove 5c. In addition, a radial distance between the inner peripheral portion of the main body portion 5a of the second retainer 5 (the inner peripheral portion of the portion where the annular groove 5c is not formed) and the outer peripheral portion of the base end portion 6b of the second sealing ring 6 (the The radial distance between the inner peripheral portion of the main body 5a of the second retainer 5 (the bottom surface of the annular groove 5c) and the outer peripheral portion of the intermediate portion 6c of the second sealing ring 6 As with the O-rings 10 and 11, the second sealing ring 6 is held by the two O-rings 13 and 14 in an annular body whose separation surfaces 6g and 6g abut properly. It is set appropriately on condition that a sufficient binding force and a sufficient frictional engagement force to prevent the relative rotation of the second sealing ring 6 to the second retainer 5 are ensured.
[0018]
By the way, in this example, the first sealing ring 4 is made of silicon carbide, the second sealing ring 6 is made of a cemented carbide, and the first and second retainers 3 and 5 are made of SUS304. Further, annular recesses 4j, 6j for extracting the sealing rings are formed on the outer periphery of the tip portions 4b, 6d of the sealing rings 4, 6, and between the first retainer 3 and the annular body 7a. A plurality of spring members (compression coil springs) 8 arranged at equal intervals around the rotation shaft 2 are interposed to urge the first retainer 3 in the second sealing ring direction (forward direction). Thereby, the first sealing ring 4 is brought into press contact with the second sealing ring 6, and the sealing end faces 4a, 6a, which are the opposite end faces of the tip portions 4b, 6d, are brought into relative rotational sliding contact concentrically. .
[0019]
The two sealing end faces 4a and 6a that are in relative sliding contact with each other are formed in a smooth annular plane perpendicular to the axis, but the sealing end face 4a of the first sealing ring 4 has a radial width (hereinafter referred to as “sealing end face”). The width (referred to as "width") W is made small to reduce the contact area of the sealing end faces 4a and 6a and increase the contact pressure (surface pressure) of the sealing end faces 4a and 6a. That is, as shown in FIG. 2, the distal end portion 4b of the first sealing ring 4 is formed such that its inner and outer peripheral surfaces 4m, 4n have obtuse angles (90 ° <α, β <180 °) with the sealing end surface 4a. The sealing end face W has a shape of 0.2 to 1.0 mm as a pointed shape having a conical surface. It is possible to obtain the sealed end face width W having the above-mentioned dimensions by setting one of the intersection angles α and β between the inner and outer peripheral faces 4m and 4n and the sealed end face 4a to be an acute angle or a right angle. In the case where the sealing ring 4 is divided by the above-described natural splitting, the sealing end face is combined with the fact that the constituent material of the sealing ring 4 is generally made of a brittle hard material such as silicon carbide. There is a possibility that the divided portion of 4a is missing. Therefore, the intersection angles α and β need to be appropriately set within the range of the obtuse angle according to the material of the sealing ring 4, and it is generally preferable to set 90 ° <α, β ≦ 170 °. .
[0020]
As described above, if the sealing end face width W of the first sealing ring 4 is made minute, the fluid to be sealed (the fluid in the in-machine region H) contains a slurry component such as a solidified substance or a fine solid component (high viscosity, Even if it is a solidifying fluid, it is possible to effectively prevent a slurry component and a fine solid component from entering and biting between the sealing end faces 4a and 6a, and to reliably prevent poor contact between the sealing end faces 4a and 6a. Can be prevented. That is, since the sealing end face width W is very small and the contact pressure (surface pressure) of the sealing end faces 4a and 6a increases, penetration of the slurry component and fine solid component between the sealing end faces 4a and 6a, and biting. Jamming is prevented. Therefore, there is no possibility that the space between the sealing end faces 4a and 6a is opened due to the formation of solidified material or the bite of the solid component, and the slurry component and the like are not separated between the divided surfaces 4g, 4g or 6g, 6g of the sealing rings 4, 6. The sealing end faces 4a and 6a can be maintained in an appropriate contact state without invading into the gap and opening therebetween, and a good sealing function can be exhibited. Furthermore, by reducing the width W of the sealing end face and reducing the contact area of the sealing end faces 4a and 6a, heat generation due to sliding of the sealing end faces 4a and 6a is reduced and the heat radiation effect is increased, and the sealing end faces 4a and 6a are increased. Is performed smoothly, and the sealing function is further improved.
[0021]
Such functions and effects are effectively exhibited by setting the sealing end face width W within the above-mentioned range of 0.2 to 1.0 mm according to the sealing ring material and sealing conditions. That is, if W> 1.0 mm, the function of preventing the penetration of a slurry component or the like between the sealing end faces 4a and 6a and the function of preventing the bite from being caught are not sufficiently exhibited, and the heat generation and abrasion due to the contact of the sealing end faces 4a and 6a are effectively prevented. Can not be suppressed. Further, if W <0.2 mm, there is a possibility that a problem in strength (a problem such as lack of a divided portion of the sealing end face 4a) in performing the natural splitting may occur, and the contact pressure of the sealing end faces 4a, 6a may be increased. Is higher than necessary.
[0022]
Further, in the above mechanical seal, the sealing rings 4 and 6 are divided by natural splitting, and the divided surfaces 4g, 4g or 6g, 6g are engaged with each other to form an irregular uneven surface. Therefore, there is no possibility that the sealing ring portions 4f, 4f or 6f, 6f are inconsistent in the axial direction due to the pressure fluctuation in the in-machine area H or the like, so that a step is formed on the sealing end surfaces 4a, 6a.
[0023]
Furthermore, as described above, if the sealing rings 4 and 6 are tightened by two O-rings 10, 11 or 13, 14 spaced apart from each other in the axial direction by a predetermined distance, the sealing rings 4 and 6 and the retainer 3 5, a sufficient frictional engagement force is generated by the O-rings 10, 11 or 13, 14 so that the retainers 3, 5 of the sealing rings 4, 6 can be used without using a physical engagement means such as a drive pin. Can be reliably prevented from rotating relative to. In addition, the two sealing ring portions 4f, 4f or 6f, 6f are more strongly abutted and integrated than when they are tightly bound by one O-ring. Therefore, the divided portions of the sealing end faces 4a, 6a do not open, and the relative rotation of the sealing end faces 4a, 6a is properly performed.
[0024]
Further, an axial load is applied to the sealing rings 4 and 6 by the urging force of the spring member 8 (and the pressing force due to the fluid pressure in the in-machine region H). In the mechanical seal described above, the axial load is applied to the first ring. It is devised that the retainers 3 and 5 receive the O-rings 10 and 13 respectively. That is, the axial load is transmitted to the first O-rings 10 and 13 from the first locking portions 4h and 6h on the sealing ring side and received by the second locking portions 3d and 5b on the retainer side. Therefore, the difference in surface processing accuracy between the retainer side portions (second locking portions 3d, 5b) that receive the axial load and the sealing end surfaces 4a, 6a, and the thermal expansion coefficient due to the materials of the sealing rings 4, 6 and the retainers 3, 5 No matter how large the difference is, the influence on the sealing end faces 4a and 6a due to these will be absorbed by the elastic deformation by the first O-rings 10 and 13, so that the divided faces 4g and 4g or 6g and 6g are as described above. In combination with the irregular projections and depressions, which are irregularly engaged with each other in a state where they are not relatively displaced in the axial direction, displacement of the sealing end faces 4a and 6a at the divisions can be more effectively prevented.
[0025]
By the way, in the mechanical seal described above, the sealing rings 4 and 6 can be easily removed from the seal case 1 or the rotating shaft 2. That is, the end wall 1b is removed from the case body 1a, the second retainer 5 and the second sealing ring 6 fitted and held therein are moved forward, and then the second sealing ring 6 is moved to the second retainer. By withdrawing the second sealing ring 6 backward, the second sealing ring 6 can be removed and disassembled. Thereafter, the first sealing ring 4 can be removed and disassembled by pulling the first sealing ring 4 forward from the first retainer 3. At this time, the slurry components contained in the fluid in the in-machine region H penetrate and accumulate between the sealing rings 4, 6 and the retainers 3, 5 and the O-rings 10, 11, 13, 14. In some cases, it is difficult to pull out or take out the O-rings 6 and the O-rings 10 from the retainers 3 and 5. The extraction tool can easily perform the extraction and removal operations.
[0026]
It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention. For example, in the above-described embodiment, both the sealing rings 4 and 6 that are in relative rotational sliding contact have a divided structure, but the first sealing ring 4 may be used depending on the dimensions and use conditions of each component of the mechanical seal. Only the separation structure may be provided. If necessary, each O-ring may be one obtained by cutting one portion in the circumferential direction. Further, the mechanical seal constituent members other than the sealing ring and the O-ring may have a structure divided in the radial direction as necessary.
[0027]
【The invention's effect】
As can be easily understood from the above description, the mechanical seal of the present invention has the sealing end face of the first sealing ring formed into a knife-edge shape, so that a fluid containing a slurry component such as a solidified substance or a fine solid component can be used. Even in the case of sealing, problems such as poor contact of the sealed end face due to intrusion, solidification, and biting of slurry components do not occur. In addition, by dividing the first sealing ring or both sealing rings by the above-mentioned natural splitting, the divided surface becomes an irregular uneven surface and is abutted (unevenly engaged) in a state where displacement and opening hardly occur. Therefore, even under the condition that the pressure of the fluid to be sealed fluctuates, the divided sealed end face can be maintained in an appropriate smooth surface form without any step.
[0028]
Therefore, the mechanical seal of the present invention exerts a good sealing function even under the condition that the proper sealing function cannot be exerted due to the fact that at least one of the two sealing rings has a divided structure. It has a very high practical value and can be used in a wide range of applications such as the chemical industry where high viscosity, solidifying fluids and the like are handled.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional side view showing an embodiment of a mechanical seal according to the present invention.
FIG. 2 is an enlarged detail view showing a main part of FIG. 1;
FIG. 3 is a longitudinal sectional front view taken along line III-III of FIG. 1;
FIG. 4 is an enlarged detail view showing a main part of FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Seal case, 2 ... rotating shaft, 3 ... 1st retainer, 3a ... 1st retainer tip part, 3b ... 1st retainer middle part, 3c ... 1st retainer base end part, 3d, 5b ... 2nd Locking portion, 3e, 5c: annular groove, 4: first sealing ring, 4a, 6a: sealing end face, 4c: base end of first sealing ring, 4d: middle portion of first sealing ring, 4f, 6f ... Sealing ring part, 4g, 6g ... dividing surface, 4h, 6h ... first locking part, 4i ... notch groove, 5 ... second retainer, 6 ... second sealing ring, 8 ... spring member, 9 ... O-ring, 10 , 13: first O-ring, 11, 14: second O-ring , H: outer peripheral area (in-machine area) of the relative rotational sliding contact portion of the sealed end face, L: inner peripheral side of the relative rotational sliding contact part of the sealed end face Area (outboard area) .

Claims (2)

回転軸(2)に軸線方向移動可能に保持された環状の第一リテーナ(3)に第一密封環(4)を嵌合保持させてあり、この第一密封環(4)をスプリング部材(8)により第一リテーナ(3)を介してシールケース(1)に設けた第二リテーナ(5)に嵌合保持された第二密封環(6)へと押圧接触させることによって、両密封環(4,6)の対向端面である密封端面(4a,6a)の相対回転摺接部分において、その外周側領域である機内領域(H)とその内周側領域である機外領域(L)とをシールするように構成されており、少なくとも第一密封環(4)が径方向に分割されている、スラリ成分や微粒固形成分を含有する流体をシールするためのメカニカルシールにおいて、
第一密封環(4)が、その内周部又は外周部に軸線方向における全幅に亘る切欠溝部(4i)を形成すると共にこの切欠溝(4i)に剪断力を作用させることによって、径方向に分割されたものであって、その分割面(4g)が微細な凹凸面となすものであり、
密封端面(4a)が形成される第一密封環(4)の端部を、その内外周面が当該密封端面(4a)との交角が鈍角となる円錐面をなす尖端形状として、当該密封端面(4a)の径方向幅を0.2〜1.0mmとなしており、
第一リテーナ(3)は、先端部(3a)とこれより内径の小さな中間部(3b)とこれより内径の小さな基端部(3c)とからなり、
第一密封環(4)は、第一リテーナ(3)の先端部(3a)に内嵌保持されており、
第一リテーナ(3)と回転軸(2)との間は、第一リテーナ(3)の基端部(3c)と第一密封環(4)の基端部(4c)との間に配して第一リテーナ(3)の中間部(3b)と回転軸(2)との対向周面間に介装したOリング(9)により二次シールされており、
第一リテーナ(3)の先端部(3a)と第一密封環(4)の基端部(4c)との対向周面間に第一Oリング(10)を配設すると共に第一リテーナ(3)の先端部(3a)と第一密封環(4)の中間部(4d)との対向周面間に第二Oリング(11)を配設して、第一及び第二Oリング(10,11)により、第一密封環(4)を環状に緊縛すると共に第一密封環(4)の第一リテーナ(3)に対する回転を阻止してあり、
第一密封環(4)の基端部(4c)と中間部(4d)との間に、第一Oリング(10)を第一密封環(4)に対するその密封端面方向への軸線方向移動のみを阻止すべく係止する第一係止部(4h)を設けると共に、第一リテーナ(3)の先端部(3a)と中間部(3b)との間に、第一Oリング(10)を第一リテーナ(3)に対する上記と逆方向への軸線方向移動のみを阻止すべく係止する第二係止部(3d)を設けてあり、
第二Oリング(11)を、第一リテーナ(3)の内周部に形成した環状溝(3e)に係合保持させてあることを特徴とするメカニカルシール。
A first sealing ring (4) is fitted and held in an annular first retainer (3) held axially movably on the rotating shaft (2), and this first sealing ring (4) is attached to a spring member ( 8) through the first retainer (3) to press and contact the second seal ring (6) fitted and held in the second retainer (5) provided in the seal case (1). In the relative rotation sliding contact portion of the sealed end surfaces (4a, 6a) which are the opposed end surfaces of (4, 6) , the in-machine region (H) which is the outer peripheral region and the out-of-machine region (L) which is the inner peripheral region. DOO is configured to seal at least a first seal ring (4) is divided in the radial direction, the mechanical seal for sealing a fluid containing slurry component and particulate solid component,
The first sealing ring (4) forms a notch groove (4i) over the entire width in the axial direction on the inner peripheral portion or the outer peripheral portion thereof, and applies a shearing force to the notch groove (4i), thereby radially extending the notch groove (4i). The divided surface (4 g) is a fine uneven surface,
The end of the first sealing ring (4) on which the sealing end face (4a) is formed has a pointed shape whose inner and outer peripheral surfaces form a conical surface whose intersection angle with the sealing end face (4a) is obtuse. (4a) has a radial width of 0.2 to 1.0 mm,
The first retainer (3) includes a distal end (3a), an intermediate portion (3b) having a smaller inner diameter, and a base end (3c) having a smaller inner diameter.
The first sealing ring (4) is internally fitted and held at the tip (3a) of the first retainer (3),
The space between the first retainer (3) and the rotating shaft (2) is arranged between the base end (3c) of the first retainer (3) and the base end (4c) of the first sealing ring (4). And a secondary seal is provided by an O-ring (9) interposed between an intermediate portion (3b) of the first retainer (3) and a peripheral surface of the rotating shaft (2).
A first O-ring (10) is disposed between the peripheral surfaces of the distal end (3a) of the first retainer (3) and the proximal end (4c) of the first sealing ring (4), and the first retainer (3) is provided. A second O-ring (11) is disposed between the peripheral surfaces of the tip (3a) of (3) and the intermediate portion (4d) of the first sealing ring (4), and the first and second O-rings ( 10, 11) , the first sealing ring (4) is annularly restrained and rotation of the first sealing ring (4) with respect to the first retainer (3) is prevented.
An axial movement of the first O-ring (10 ) relative to the first sealing ring (4) in the direction of its sealing end face between the base end (4c) and the intermediate part (4d ) of the first sealing ring (4) . The first O-ring (10) is provided between the distal end (3a) and the intermediate portion (3b) of the first retainer (3) while providing a first engagement portion (4h) for preventing only the first O-ring (10). A second locking portion (3d) for locking only the axial movement of the first retainer (3) in the opposite direction to that described above, and
A mechanical seal characterized in that a second O-ring (11) is engaged and held in an annular groove (3e) formed in an inner peripheral portion of a first retainer (3) .
第二密封環(6)が、その内周部又は外周部に軸線方向における全幅に亘る切欠溝を形成すると共にこの切欠溝に剪断力を作用させることによって、径方向に分割されたものであって、その分割面(6g)が微細な凹凸面をなすものであり、
第二リテーナ(5)の内周部と第二密封環(6)の外周部との間に軸線方向に所定間隔を隔てて配設した第一及び第二Oリング(13,14)により、第二密封環(6)を環状に緊縛すると共に第二密封環(6)の第二リテーナ(5)に対する回転を阻止してあり、
第二密封環(6)に、第一Oリング(13)を第二密封環(6)に対するその密封端面方向への軸線方向移動のみを阻止すべく係止する第一係止部(6h)を設けると共に、第二リテーナ(5)に、第一Oリング(13)を第二リテーナ(5)に対する上記と逆方向への軸線方向移動のみを阻止すべく係止する第二係止部(5b)を設けて、第一Oリング(13)を軸線方向において両係止部(5b,6h)間に挟圧させてあり、
第二Oリング(14)を、第二リテーナ(5)の内周部に形成した環状溝(5c)に係合保持させてあることを特徴とする、請求項1に記載するメカニカルシール。
The second sealing ring (6) is radially divided by forming a notch groove over the entire width in the axial direction on the inner peripheral portion or the outer peripheral portion thereof and applying a shearing force to the notch groove. The divided surface (6 g) forms a fine uneven surface,
The first and second O-rings (13, 14) disposed at predetermined intervals in the axial direction between the inner peripheral portion of the second retainer (5) and the outer peripheral portion of the second sealing ring (6) , The second sealing ring (6) is annularly restrained and rotation of the second sealing ring (6) with respect to the second retainer (5) is prevented;
Second seal ring (6), the first locking portion for locking so as to prevent only the axial movement of the to seal end faces direction first O-ring (13) for the second seal ring (6) (6h) the provided with, a second retainer (5), the second locking portion for locking so as to prevent only the axial movement to said direction opposite the first O-ring (13) for the second retainer (5) ( 5b) is provided to press the first O-ring (13 ) between the locking portions (5b, 6h) in the axial direction,
The mechanical seal according to claim 1, wherein the second O-ring (14) is engaged and held in an annular groove (5c) formed in an inner peripheral portion of the second retainer (5) .
JP36357099A 1999-12-22 1999-12-22 mechanical seal Expired - Fee Related JP3552033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36357099A JP3552033B2 (en) 1999-12-22 1999-12-22 mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36357099A JP3552033B2 (en) 1999-12-22 1999-12-22 mechanical seal

Publications (2)

Publication Number Publication Date
JP2001173800A JP2001173800A (en) 2001-06-26
JP3552033B2 true JP3552033B2 (en) 2004-08-11

Family

ID=18479653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36357099A Expired - Fee Related JP3552033B2 (en) 1999-12-22 1999-12-22 mechanical seal

Country Status (1)

Country Link
JP (1) JP3552033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453838A1 (en) * 2017-09-12 2019-03-13 United Technologies Corporation Contacting dry face seal with tapered carbon nose

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728413B2 (en) * 2009-03-23 2011-07-20 日本ピラー工業株式会社 Method for dividing seal ring for mechanical seal
JP5912852B2 (en) * 2012-05-22 2016-04-27 日本ピラー工業株式会社 Split type mechanical seal
WO2014069098A1 (en) 2012-11-02 2014-05-08 イーグル工業株式会社 Mechanical seal device
CN111520479A (en) * 2020-06-03 2020-08-11 兰州理工大学 Ultrahigh-pressure zero-leakage mechanical seal end face structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453838A1 (en) * 2017-09-12 2019-03-13 United Technologies Corporation Contacting dry face seal with tapered carbon nose
US10619741B2 (en) 2017-09-12 2020-04-14 United Technologies Corporation Contacting dry face seal with tapered carbon nose

Also Published As

Publication number Publication date
JP2001173800A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
US4410188A (en) Slurry pump double mechanical split face seal
US4226454A (en) Lock follower, particularly a handle or pressure follower, and a method of manufacturing the same
JP2005155663A (en) Sealing device
JP3552033B2 (en) mechanical seal
JPS5914250B2 (en) Leakage prevention device for kneading machines, etc.
JPS6215562Y2 (en)
US20050275217A1 (en) Mechanical joint gripping gasket
JP4283265B2 (en) Mechanical seal for slurry fluid
GB1572575A (en) Composite roll
GB1582676A (en) Mechanical seal assembly
CA1124050A (en) Chuck assembly and collet
EP0719954A1 (en) Device and method for holding a component on a shaft and pusher seal assembly using same
JP3552032B2 (en) mechanical seal
JP2700779B2 (en) mechanical seal
JP6763755B2 (en) Split mechanical seal
JPH081259B2 (en) Non-contact sealing device
CA2325185C (en) Clutch adjusting ring
KR100713805B1 (en) Milling chuck
JP3351515B2 (en) mechanical seal
JPS6318874Y2 (en)
JPH079267B2 (en) mechanical seal
JPH0532691Y2 (en)
JP5774945B2 (en) mechanical seal
JPS6243187Y2 (en)
JP2504972Y2 (en) Shaft seal device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Ref document number: 3552033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees