JP3451339B2 - Method for producing single-walled carbon nanotube - Google Patents

Method for producing single-walled carbon nanotube

Info

Publication number
JP3451339B2
JP3451339B2 JP2001163190A JP2001163190A JP3451339B2 JP 3451339 B2 JP3451339 B2 JP 3451339B2 JP 2001163190 A JP2001163190 A JP 2001163190A JP 2001163190 A JP2001163190 A JP 2001163190A JP 3451339 B2 JP3451339 B2 JP 3451339B2
Authority
JP
Japan
Prior art keywords
metal
catalyst
substrate
alumina
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001163190A
Other languages
Japanese (ja)
Other versions
JP2002356776A (en
Inventor
文之 星
威文 石倉
守雄 湯村
哲 大嶋
修三 藤原
義紀 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Gas Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Tokyo Gas Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001163190A priority Critical patent/JP3451339B2/en
Publication of JP2002356776A publication Critical patent/JP2002356776A/en
Application granted granted Critical
Publication of JP3451339B2 publication Critical patent/JP3451339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CVD法(化学蒸
着法)により単層カーボンナノチューブを製造する方法
に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing single-walled carbon nanotubes by a CVD method (chemical vapor deposition method).

【0002】[0002]

【従来の技術】単層カーボンナノチューブの合成にはア
ーク放電法、レーザー照射法が主に用いられている。ア
ーク放電やレーザー照射法によるカーボンナノチューブ
の合成においては空排気装置や高電圧・大電流電源など
の高価かつ危険な装置を必要とし、また生成量も少な
く、多層カーボンナノチューブや黒鉛、アモルファスカ
ーボンが混在し、単層カーボンナノチューブの径や長さ
のばらつきが大きい等の問題がある。また、触媒金属を
含有させた活性基体上で、炭素源となる炭化水素を熱分
解させて、該基体上に直接カーボンナノチューブを生成
させるCVD法が知られている。このCVD法では通常
850〜1000℃程度の反応温度が必要とされてお
り、多量の熱エネルギーの使用を要するという問題があ
る。
2. Description of the Related Art Arc discharge method and laser irradiation method are mainly used for the synthesis of single-walled carbon nanotubes. Carbon nanotube synthesis by arc discharge or laser irradiation method requires expensive and dangerous equipment such as air exhaust equipment and high-voltage / high-current power supply. Also, the amount produced is small, and multi-walled carbon nanotubes, graphite, and amorphous carbon are mixed. However, there are problems such as large variations in diameter and length of single-walled carbon nanotubes. Further, a CVD method is known in which a hydrocarbon serving as a carbon source is thermally decomposed on an active substrate containing a catalytic metal to directly generate carbon nanotubes on the substrate. In this CVD method, a reaction temperature of about 850 to 1000 ° C. is usually required, and there is a problem that a large amount of heat energy needs to be used.

【0003】[0003]

【発明が解決しようとする課題】本発明は径や長さが比
較的揃った単層カーボンナノチューブを低温で合成する
ためのカーボンナノチューブの製造方法を提供すること
をその課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing carbon nanotubes for synthesizing single-wall carbon nanotubes having relatively uniform diameters and lengths at low temperatures.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を行った結果、本発明を完成する
に至った。即ち、本発明によれば、以下の発明が提供さ
れる。 (1)アルカリ金属、硫黄及びシリカからなる不純物の
含有量が0.05%以下の高純度アルミナにカーボンナ
ノチューブ生成反応に活性を有する触媒金属とその触媒
助剤金属としてモリブデンを含有させたものからなり、
該触媒金属の含有量が触媒金属として1〜20%で、該
触媒助剤としてのモリブデンの含有量が金属モリブデン
として0.1〜1.5%である活性基体上に、700〜
800℃の温度において、有機炭素原料の気体を流通さ
せることを特徴とする単層カーボンナノチューブの製造
方法。 (2)該触媒金属が、Fe、Co及びNiの中から選ば
れる少なくとも1種の金属を含有する前記(1)に記載
の方法。 (3)該炭素原料としてメタンを用いる前記(1)〜
(2)のいずれかに記載の方法。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, the following inventions are provided. (1) From a high-purity alumina having an alkali metal, sulfur, and silica content of 0.05% or less, which contains a catalytic metal having an activity in a carbon nanotube formation reaction and molybdenum as a catalytic auxiliary metal. Do Ri,
When the content of the catalyst metal is 1 to 20% as the catalyst metal,
The content of molybdenum as a catalyst aid is metallic molybdenum
As in the 0.1 to 1.5 percent der Ru activity on a substrate, 700
A method for producing single-walled carbon nanotubes, characterized in that a gas of an organic carbon raw material is circulated at a temperature of 800 ° C. (2) The method according to (1) above, wherein the catalyst metal contains at least one metal selected from Fe, Co and Ni. (3) The above (1) using methane as the carbon raw material
The method according to any one of (2).

【0005】[0005]

【発明の実施の形態】本発明のカーボンナノチューブの
製造方法においては、カーボンナノチューブを成長させ
る活性基体として、アルカリ金属(Na、K等)、硫黄
及びシリカからなる不純物の含有量が0.05%以下、
好ましくは0.01%以下の高純度アルミナに触媒金属
とその触媒助剤金属を含有させたものを用いる。この場
合の高純度アルミナは、例えば、高純度のアルミニウム
トリアルコキシドを原料とし、これを加水分解し、焼成
することにより製造することが出来る。アルミナの形態
は、粉末状、ペレット状、板体状などの各種の形状であ
ることが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing carbon nanotubes of the present invention, the content of impurities such as alkali metal (Na, K, etc.), sulfur and silica is 0.05% as an active substrate for growing carbon nanotubes. Less than,
Preferably, 0.01% or less of high-purity alumina containing a catalytic metal and its catalytic aid metal is used. The high-purity alumina in this case can be produced, for example, by using a high-purity aluminum trialkoxide as a raw material, hydrolyzing this, and firing it. The form of alumina can be various shapes such as powder, pellet, and plate.

【0006】本発明で用いる活性基体を製造するには、
前記高純度アルミナを触媒金属とその触媒助剤金属を溶
解状で含む溶液と接触させ、アルミナにその触媒金属と
触媒助剤金属を含有させる。この場合の触媒金属として
は、カーボンナノチューブの成長に活性を有する従来公
知の触媒金属、例えばFe、Co、Ni等の各種の遷移
金属を1種もしくは2種組み合わせて用いることが出来
る。触媒助剤金属としては、Moが用いられる。これら
の触媒金属及びその触媒助剤金属は可溶性塩、例えば、
硝酸塩という形態で用いられる。触媒金属及びその触媒
助剤金属を溶解状で含む溶液(金属溶液)は、触媒金属
及びその触媒助剤金属を可溶性塩の形態で、それを溶解
する溶媒、例えば、水、低級アルコール等の有機溶媒又
は水と水溶性有機溶媒との混合液、好ましくは水に溶解
させることによって調製することが出来る。この触媒金
属及びその触媒助剤金属を含む溶液において、その金属
濃度はその飽和溶解濃度以下であるが、通常は0.01
〜0.05%、好ましくは0.005〜0.01%であ
る。アルミナと金属溶液との接触法としては、浸漬法や
スプレー法等があるが、通常は浸漬法が用いられる。そ
の接触温度は室温〜80℃、好ましくは50〜60℃で
ある。前記アルミナと金属溶液との接触により、触媒溶
液はアルミナに含浸される。
To produce the active substrate used in the present invention,
The high-purity alumina is brought into contact with a solution containing a catalyst metal and its catalyst aid metal in a dissolved state, and the alumina contains the catalyst metal and the catalyst aid metal. As the catalyst metal in this case, conventionally known catalyst metals having an activity for growth of carbon nanotubes, for example, various transition metals such as Fe, Co and Ni can be used alone or in combination of two or more. Mo is used as the catalyst aid metal. These catalytic metals and their catalytic aid metals are soluble salts such as
It is used in the form of nitrate. The solution (metal solution) containing the catalyst metal and its catalyst auxiliary metal in a dissolved state is a solvent that dissolves the catalyst metal and its catalyst auxiliary metal in the form of a soluble salt, for example, an organic solvent such as water or lower alcohol. It can be prepared by dissolving in a solvent or a mixed solution of water and a water-soluble organic solvent, preferably water. In the solution containing the catalyst metal and the catalyst auxiliary metal, the metal concentration is not more than the saturated dissolution concentration, but usually 0.01
~ 0.05%, preferably 0.005-0.01%. As a method of contacting the alumina with the metal solution, there are an immersion method, a spray method and the like, and the immersion method is usually used. The contact temperature is room temperature to 80 ° C, preferably 50 to 60 ° C. The catalyst solution is impregnated into the alumina by the contact between the alumina and the metal solution.

【0007】この触媒金属及び触媒助剤金属を含有する
アルミナにおいて、その触媒金属の含有量は、触媒金属
として、1〜20%、好ましくは5〜10%である。そ
の触媒助剤金属としてのMoの含有量は、金属Moとし
て、0.1〜1.5%、好ましくは0.3〜0.8%で
ある。アルミナに含有されたそれら金属の形態は、カー
ボンナノチューブの生成を促進させる形態であればよ
く、金属形態の他、金属酸化物、金属水酸化物の形態で
あることができる。金属形態の場合、前記で得られた金
属含有アルミナは、これを水素還元すればよい。また、
金属酸化物形態の場合、前記で得られた金属含有アルミ
ナは、これを焼成すればよい。
In the alumina containing the catalyst metal and the catalyst auxiliary metal, the content of the catalyst metal is 1 to 20%, preferably 5 to 10% as the catalyst metal. The content of Mo as the catalyst aid metal is 0.1 to 1.5%, preferably 0.3 to 0.8% as the metal Mo. The form of those metals contained in alumina may be any form that promotes the production of carbon nanotubes, and may be a form of a metal oxide, a metal hydroxide, or the like, in addition to the form of a metal. In the case of a metal form, the metal-containing alumina obtained above may be hydrogen-reduced. Also,
In the case of a metal oxide form, the metal-containing alumina obtained above may be calcined.

【0008】本発明により触媒金属及び触媒助剤金属を
含有する活性基体を好ましく製造するには、先ずそれら
金属を含有する粉体状アルミナを作り、次に、このアル
ミナを所要形状に成形する方法と、Siや石英ガラス等
の基板に塗布する方法がある。この場合、粉体状アルミ
ナにおいては比表面積は100〜250cm2/g、好
ましくは200〜250cm2/gである。
In order to preferably produce an active substrate containing a catalyst metal and a catalyst auxiliary metal according to the present invention, first, a powdery alumina containing those metals is prepared, and then this alumina is formed into a desired shape. Then, there is a method of applying it to a substrate such as Si or quartz glass. In this case, the powdery alumina has a specific surface area of 100 to 250 cm 2 / g, preferably 200 to 250 cm 2 / g.

【0009】本発明によりカーボンナノチューブを製造
するには、前記触媒金属と触媒助剤金属を含有するアル
ミナからなる基体の存在下において、有機炭素原料を流
通させながら熱分解させる。この場合の反応温度(熱分
解温度)は700〜1000℃であればよく、特に制約
されないが、本発明の場合、特に700〜800℃とい
う低い温度においてカーボンナノチューブの製造が可能
であるという大きな利点がある。有機炭素原料の流通速
度は、ガス空間速度(GHSV)で2000〜2000
00hr-1、好ましくは、5000〜10000hr-1
である。
In order to produce the carbon nanotubes according to the present invention, the organic carbon raw material is pyrolyzed while flowing the organic carbon raw material in the presence of the substrate made of alumina containing the catalyst metal and the catalyst auxiliary metal. The reaction temperature (pyrolysis temperature) in this case is not particularly limited as long as it is 700 to 1000 ° C., but in the case of the present invention, a great advantage that carbon nanotubes can be produced especially at a low temperature of 700 to 800 ° C. There is. The flow rate of the organic carbon raw material is 2000 to 2000 in terms of gas hourly space velocity (GHSV).
00 hr -1 , preferably 5000 to 10000 hr -1
Is.

【0010】前記有機炭素原料としては、特に制約され
ず、高温で炭素化されるものであればよい。このような
ものとしては、メタン、エタン、プロパン、ブタン等の
飽和炭化水素;エチレン、プロピレン、ブテン、イソブ
テン等の不飽和炭化水素;アセチレン等のアセチレン系
化合物;ベンゼン、トルエン、キシレン、ナフタレン等
の芳香族炭化水素、これらの混合物(例えばナフサや軽
油等)等が包含される。前記有機炭素原料を熱分解する
場合、その気体中にはアルゴンガスや水素ガスをキャリ
アーとして混入することができる。また、有機炭素原料
には、硫化水素やメルカプタン等のイオウ化合物を適量
加えることができる。これにより、基体状に真っ直ぐな
カーボンナノチューブを得ることが出来る。本発明によ
り得られるカーボンナノチューブは、細径のもので、そ
の太さ(直径)は、通常0.5〜2nm程度の単層のも
のである。
The organic carbon raw material is not particularly limited as long as it can be carbonized at a high temperature. Examples thereof include saturated hydrocarbons such as methane, ethane, propane and butane; unsaturated hydrocarbons such as ethylene, propylene, butene and isobutene; acetylene compounds such as acetylene; benzene, toluene, xylene, naphthalene and the like. Aromatic hydrocarbons, mixtures thereof (for example, naphtha, light oil, etc.) and the like are included. When the organic carbon raw material is pyrolyzed, argon gas or hydrogen gas can be mixed into the gas as a carrier. Further, an appropriate amount of a sulfur compound such as hydrogen sulfide or mercaptan can be added to the organic carbon raw material. This makes it possible to obtain carbon nanotubes that are straight in the shape of a substrate. The carbon nanotube obtained by the present invention has a small diameter, and its thickness (diameter) is usually a single layer having a thickness of about 0.5 to 2 nm.

【0011】[0011]

【実施例】次に本発明を実施例により詳細に説明する。EXAMPLES The present invention will now be described in detail with reference to Examples.

【0012】実施例1 ナトリウム含有量が0.01%以下の純度が99.95
%以上である高純度γ−アルミナ粉末1.0gを、硝酸
鉄(Fe(NO3)2・9H2O)0.2gと酸化モリブデ
ンアセチルアセトナート((CH3COCHCOCH3)2
MoO2)0.01gをメタノール35mlに溶解させ
て得た溶液中に30分間浸し、3時間超音波処理により
分散させた。これをSi基板に塗布し、空気中で120
℃で1時間乾燥させた。次に、この基板をアルミナボー
トにのせ、電気炉に挿入し、アルゴン雰囲気下で700
℃まで昇温させた後、メタンを60cc/分、アルゴン
を240cc/分を5分間流通させた。その結果、基板
表面にはバンドルになったカーボンナノチューブが堆積
した。カーボンナノチューブの太さ(直径)は1nm程
度であった。
Example 1 Purity of 99.95 with a sodium content of 0.01% or less
% High purity γ- alumina powder 1.0g in the above, iron nitrate (Fe (NO 3) 2 · 9H 2 O) 0.2g and molybdenum acetylacetonate ((CH 3 COCHCOCH 3) 2
0.01 g of MoO 2 ) was dissolved in 35 ml of methanol and immersed in a solution for 30 minutes, followed by ultrasonic treatment for 3 hours to disperse the solution. This is applied to a Si substrate and 120
It was dried at ° C for 1 hour. Next, this substrate is placed on an alumina boat, inserted into an electric furnace, and 700
After the temperature was raised to 0 ° C., 60 cc / min of methane and 240 cc / min of argon were passed for 5 minutes. As a result, bundled carbon nanotubes were deposited on the surface of the substrate. The thickness (diameter) of the carbon nanotube was about 1 nm.

【0013】比較例1 ナトリウム含有量が0.01%以下の純度が99.95
%以上である高純度γ−アルミナ粉末1.0gを硝酸鉄
九水和物(Fe(NO3)2・9H2O)0.2gをメタノ
ール35mlに溶解させて得た溶液中に30分間浸し、
3時間超音波処理により分散させた。これをSi基板に
塗布し、空気中で120℃で1時間乾燥させた。次に、
この基板をアルミナボートにのせ、電気炉に挿入し、ア
ルゴン雰囲気下で700℃まで昇温させた後、メタンを
60cc/分、アルゴンを240cc/分を5分間流通
させた。その結果、基板表面にはバンドルになったカー
ボンナノチューブが極くわずか生成した。カーボンナノ
チューブの太さ(直径)は1nm程度であった。
Comparative Example 1 Purity of 99.95 with a sodium content of 0.01% or less
High purity γ- alumina powder 1.0g iron nitrate nonahydrate (Fe (NO 3) 2 · 9H 2 O) 0.2g immersed for 30 minutes in a solution obtained by dissolving in methanol 35ml which is more than% ,
Disperse by sonication for 3 hours. This was applied to a Si substrate and dried in air at 120 ° C. for 1 hour. next,
This substrate was placed on an alumina boat, inserted into an electric furnace, heated to 700 ° C. under an argon atmosphere, and then methane was flowed at 60 cc / min and argon was passed at 240 cc / min for 5 minutes. As a result, very few bundled carbon nanotubes were formed on the substrate surface. The thickness (diameter) of the carbon nanotube was about 1 nm.

【0014】比較例2 ナトリウム含有量が0.02%、鉄0.6%程度の不純
物を含むγ−アルミナ粉末1.0gを硝酸鉄九水和物
0.2gと酸化モリブデンアセチルアセトナート0.0
1gをメタノール35mlに溶解させて得た溶液中に3
0分間浸し、3時間超音波処理により分散させた。これ
をSi基板に塗布し、700℃で実施例1と同様に反応
させた。その結果、基板表面にはアモルファスカーボン
が堆積し、カーボンナノチューブは生成していなかっ
た。
Comparative Example 2 1.0 g of γ-alumina powder containing impurities with a sodium content of 0.02% and iron of about 0.6% was mixed with 0.2 g of iron nitrate nonahydrate and 0.2 g of molybdenum oxide acetylacetonate. 0
3 g in the solution obtained by dissolving 1 g in 35 ml of methanol
Soak for 0 minutes and sonicate for 3 hours to disperse. This was applied to a Si substrate and reacted at 700 ° C. in the same manner as in Example 1. As a result, amorphous carbon was deposited on the surface of the substrate and carbon nanotubes were not produced.

【0015】実施例2 ナトリウム含有量が0.01%以下の純度が99.95
%以上である高純度γ−アルミナ粉末1.0gを硝酸コ
バルト(Co(NO3)2)0.1gと酸化モリブデンア
セチルアセトナート0.01gをメタノールに溶解させ
て得た溶液中に30分間浸し、3時間超音波処理により
分散させた。これをSi基板に塗布し、800℃で実施
例1と同様に反応させた。基板表面に、バンドルになっ
たカーボンナノチューブが堆積した。その太さ(直径)
は1.2nm程度であった。
Example 2 Purity of 99.95 with a sodium content of 0.01% or less
% High purity γ-alumina powder (1.0 g) is immersed in a solution obtained by dissolving 0.1 g of cobalt nitrate (Co (NO 3 ) 2 ) and 0.01 g of molybdenum acetylacetonate in methanol for 30 minutes. Disperse by sonication for 3 hours. This was applied to a Si substrate and reacted at 800 ° C. in the same manner as in Example 1. Bundled carbon nanotubes were deposited on the surface of the substrate. Its thickness (diameter)
Was about 1.2 nm.

【0016】実施例3 99.999%のAl(OCH(CH3)2)34.0gを
イソプロパノール140mlに加え、還流により溶解さ
せた溶液中に、硝酸ニッケル(Ni(NO3)2)0.1g
と酸化モリブデンアセチルアセトナート0.01gをイ
ソプロパノール10mlに溶解させて得た溶液を混合し
た。これをSi基板に塗布し、800℃で実施例1と同
様に反応させた。基板表面に、バンドルになったカーボ
ンナノチューブが堆積した。カーボンナノチューブの太
さ(直径)は0.8nm程度であった。
Example 3 4.0 g of 99.999% Al (OCH (CH 3 ) 2 ) 3 was added to 140 ml of isopropanol, and the solution was dissolved by refluxing nickel nitrate (Ni (NO 3 ) 2 ) 0. .1 g
A solution obtained by dissolving 0.01 g of molybdenum oxide acetylacetonate in 10 ml of isopropanol was mixed. This was applied to a Si substrate and reacted at 800 ° C. in the same manner as in Example 1. Bundled carbon nanotubes were deposited on the surface of the substrate. The thickness (diameter) of the carbon nanotube was about 0.8 nm.

【0017】[0017]

【発明の効果】本発明によれば、700〜800℃とい
う比較的低い反応温度で、単層カーボンナノチューブを
製造することができる。従って、本発明は、省エネルギ
ーの点及び装置コストの点で非常に有利な方法である。
According to the present invention, single-walled carbon nanotubes can be produced at a relatively low reaction temperature of 700 to 800 ° C. Therefore, the present invention is a very advantageous method in terms of energy saving and equipment cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯村 守雄 茨城県つくば市東1−1−1 独立行政 法人 産業技術総合研究所 つくばセン ター内 (72)発明者 大嶋 哲 茨城県つくば市東1−1−1 独立行政 法人 産業技術総合研究所 つくばセン ター内 (72)発明者 藤原 修三 茨城県つくば市東1−1−1 独立行政 法人 産業技術総合研究所 つくばセン ター内 (72)発明者 古賀 義紀 茨城県つくば市東1−1−1 独立行政 法人 産業技術総合研究所 つくばセン ター内 (56)参考文献 特開2000−86217(JP,A) 特公 平3−77288(JP,B2) HONGJIE DAI,et a l,Large Scale CVD Synthesis of Singl e−Walled Carbon Na notubes,J.Phys.Che m.B,1999年,Vol.103,p. 6484−6492 W.E.ALVAREZ,Syner gism of Co and Mo in the catalytic p roduction of singl e−wall carbon nano tubes by decomposi tion,CARBON,2001年 4 月,Vol.39,p.547−558 (58)調査した分野(Int.Cl.7,DB名) C01B 31/02 C23C 16/26 INSPEC(DIALOG) JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Morio Yumura 1-1-1 East, Tsukuba City, Ibaraki Prefecture Independent administrative agency National Institute of Advanced Industrial Science and Technology Tsukuba Center (72) Inventor Satoshi Oshima 1-1, East Tsukuba City, Ibaraki Prefecture 1 Independent administrative agency National Institute of Advanced Industrial Science and Technology Tsukuba Center (72) Inventor Shuzo Fujiwara 1-1-1 East, Tsukuba City, Ibaraki Prefecture Independent administrative agency National Institute of Advanced Industrial Science and Technology (72) Inventor Yoshinori Koga Ibaraki Prefecture 1-1-1 Higashi Tsukuba City, Independent Administrative Institution, National Institute of Advanced Industrial Science and Technology, Tsukuba Center (56) Reference JP 2000-86217 (JP, A) JP-B 3-77288 (JP, B2) HONGJIE DAI, et a l, Large Scale CVD Synthesis of Single e-W lled Carbon Na notubes, J. Phys. Chem. B, 1999, Vol. 103, p. 6484-6492 W.I. E. ALVARZ, Syner gism of Co and Mo in the catalytic pro duction of single e-wall carbon nano tubes by decomposition, CARBON, V. 2001. 39, p. 547-558 (58) Fields surveyed (Int.Cl. 7 , DB name) C01B 31/02 C23C 16/26 INSPEC (DIALOG) JISST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルカリ金属、硫黄及びシリカからなる
不純物の含有量が0.05%以下の高純度アルミナにカ
ーボンナノチューブ生成反応に活性を有する触媒金属と
その触媒助剤金属としてモリブデンを含有させたものか
らなり、該触媒金属の含有量が触媒金属として1〜20
%で、該触媒助剤としてのモリブデンの含有量が金属モ
リブデンとして0.1〜1.5%である活性基体上に、
700〜800℃の温度において、有機炭素原料の気体
を流通させることを特徴とする単層カーボンナノチュー
ブの製造方法。
1. A high-purity alumina having an alkali metal, sulfur, and silica content of 0.05% or less is made to contain molybdenum as a catalyst metal having an activity in a carbon nanotube formation reaction and its catalyst aid metal. Ri Do from things, 20 content of the catalytic metal as a catalytic metal
%, The content of molybdenum as the catalyst aid is
To 0.1 to 1.5 percent der Ru activity on a substrate as Ribuden,
A method for producing a single-walled carbon nanotube, which comprises flowing a gas of an organic carbon raw material at a temperature of 700 to 800 ° C.
【請求項2】 該触媒金属が、Fe、Co及びNiの中
から選ばれる少なくとも1種の金属を含有する請求項1
に記載の方法。
2. The catalyst metal contains at least one metal selected from Fe, Co and Ni.
The method described in.
【請求項3】 該炭素原料としてメタンを用いる請求項
1〜2のいずれかに記載の方法。
3. The method according to claim 1, wherein methane is used as the carbon raw material.
JP2001163190A 2001-05-30 2001-05-30 Method for producing single-walled carbon nanotube Expired - Lifetime JP3451339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163190A JP3451339B2 (en) 2001-05-30 2001-05-30 Method for producing single-walled carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163190A JP3451339B2 (en) 2001-05-30 2001-05-30 Method for producing single-walled carbon nanotube

Publications (2)

Publication Number Publication Date
JP2002356776A JP2002356776A (en) 2002-12-13
JP3451339B2 true JP3451339B2 (en) 2003-09-29

Family

ID=19006207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163190A Expired - Lifetime JP3451339B2 (en) 2001-05-30 2001-05-30 Method for producing single-walled carbon nanotube

Country Status (1)

Country Link
JP (1) JP3451339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383104A (en) * 2018-03-27 2018-08-10 清华大学 A kind of generated in-situ carbon nanotube and the preparation method and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706058B2 (en) * 2005-01-04 2011-06-22 独立行政法人産業技術総合研究所 Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
US7871591B2 (en) * 2005-01-11 2011-01-18 Honda Motor Co., Ltd. Methods for growing long carbon single-walled nanotubes
WO2008048313A2 (en) * 2005-12-19 2008-04-24 Advanced Technology Materials, Inc. Production of carbon nanotubes
TW200801225A (en) 2006-03-13 2008-01-01 Nikon Corp Process for production of carbon nanotube aggregates, carbon nanotube aggregates, catalyst particle dispersion membrane, electron emitters, and field emission displays
US9174847B2 (en) * 2008-05-01 2015-11-03 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGJIE DAI,et al,Large Scale CVD Synthesis of Single−Walled Carbon Nanotubes,J.Phys.Chem.B,1999年,Vol.103,p.6484−6492
W.E.ALVAREZ,Synergism of Co and Mo in the catalytic production of single−wall carbon nanotubes by decomposition,CARBON,2001年 4月,Vol.39,p.547−558

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383104A (en) * 2018-03-27 2018-08-10 清华大学 A kind of generated in-situ carbon nanotube and the preparation method and application thereof
CN108383104B (en) * 2018-03-27 2019-11-22 清华大学 A kind of generated in-situ carbon nanotube and the preparation method and application thereof

Also Published As

Publication number Publication date
JP2002356776A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
Tessonnier et al. Recent progress on the growth mechanism of carbon nanotubes: a review
Prasek et al. Methods for carbon nanotubes synthesis
Rashid et al. Catalyst role in chemical vapor deposition (CVD) process: A review
Lamouroux et al. Catalytic routes towards single wall carbon nanotubes
JP3973662B2 (en) Carbon nanotube manufacturing method
US20060245996A1 (en) Method of synthesizing single walled carbon nanotubes
JP5106123B2 (en) Synthesis method of carbon nanohorn carrier and carbon nanotube
CN101164874B (en) Method for purifying multi-wall carbon nano pipe
Jeong et al. Narrow diameter distribution of singlewalled carbon nanotubes grown on Ni–MgO by thermal chemical vapor deposition
JP2004525853A5 (en)
JP5831966B2 (en) Method for producing a carbon nanotube aggregate in which single-walled carbon nanotubes and double-walled carbon nanotubes are mixed at an arbitrary ratio
JP2013502309A (en) Bilayer catalyst, process for its production and its use in the production of nanotubes
JP2015048263A (en) Carbon nanotube assembly containing single walled carbon nanotube and double walled carbon nanotube, and synthesis method thereof
Lv et al. Formation of carbon nanofibers/nanotubes by chemical vapor deposition using Al2O3/KOH
Wang et al. Effect of Mo addition on the microstructure and catalytic performance Fe-Mo catalyst
JP3451339B2 (en) Method for producing single-walled carbon nanotube
Toussi et al. Effect of synthesis condition on the growth of SWCNTs via catalytic chemical vapour deposition
Zhao et al. Carbon nanotube growth in the pores of expanded graphite by chemical vapor deposition
Allaedini et al. Yield optimization of nanocarbons prepared via chemical vapor decomposition of carbon dioxide using response surface methodology
JP2003206117A (en) Process for mass production of multiwalled carbon nanotubes
JP2001080913A (en) Carbonaceous nanotube, fiber assembly and production of carbonaceous nanotube
Aghaei et al. Designing a strategy for fabrication of single-walled carbon nanotube via CH4/N2 gas by the chemical vapor deposition method
WO2017010523A1 (en) Method for producing carbon nanotube-containing composition
Aghaei et al. Single-walled carbon nanotubes: synthesis and quantitative purification evaluation by acid/base treatment for high carbon impurity elimination
JP2004018309A (en) Method for manufacturing carbon nanotube

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3451339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term