JP3300077B2 - Ion conductor material - Google Patents

Ion conductor material

Info

Publication number
JP3300077B2
JP3300077B2 JP33318692A JP33318692A JP3300077B2 JP 3300077 B2 JP3300077 B2 JP 3300077B2 JP 33318692 A JP33318692 A JP 33318692A JP 33318692 A JP33318692 A JP 33318692A JP 3300077 B2 JP3300077 B2 JP 3300077B2
Authority
JP
Japan
Prior art keywords
powder
stabilized zirconia
solid solution
conductor material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33318692A
Other languages
Japanese (ja)
Other versions
JPH06183740A (en
Inventor
憲史 永田
仁 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP33318692A priority Critical patent/JP3300077B2/en
Publication of JPH06183740A publication Critical patent/JPH06183740A/en
Application granted granted Critical
Publication of JP3300077B2 publication Critical patent/JP3300077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸素センサー、固体電
解質型燃料電池、水蒸気分解装置等に使用されるイオン
導電体材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ionic conductor material used for an oxygen sensor, a solid oxide fuel cell, a steam cracker, and the like.

【0002】[0002]

【従来の技術】イオン導電体に一般に求められている物
性は、 イオン導電率が高く、電子伝導の寄与率が低い; 使用環境の影響を受けにくい などが挙げられるが、燃料電池や水蒸気分解装置などの
高温で使用される材料では、繰り返し昇降温にさらされ
るため、 熱に対して安定である; 熱衝撃に十分耐え得る などが更に要求される。
2. Description of the Related Art Physical properties generally required of ionic conductors include high ionic conductivity and low contribution rate of electron conduction; less susceptible to use environment. Materials that are used at high temperatures, such as those that are repeatedly exposed to temperature rise and fall, are stable against heat; further requirements are that they can sufficiently withstand thermal shock.

【0003】酸化ジルコニウムの立方晶を酸化イットリ
ウムで安定化させた安定化ジルコニアがこれらの条件を
比較的良く満足することは、広く知られている。しか
し、固体電解質燃料電池(SOFC)の実用化に向けて
は、更に高効率化を計ることが要求されており、薄膜化
を初めとした手法により、電解質板の抵抗値を下げるな
どの試みがなされている。
It is widely known that stabilized zirconia obtained by stabilizing a cubic crystal of zirconium oxide with yttrium oxide satisfies these conditions relatively well. However, for the practical use of solid oxide fuel cells (SOFC), it is required to further increase the efficiency. Attempts have been made to reduce the resistance of the electrolyte plate by thinning and other techniques. It has been done.

【0004】電解質板を薄膜化することにより、従来以
上に高効率に電力を発生することが可能となる一方、電
極材料であるペロブスカイト型化合物との高温での反応
や、昇降温の繰り返しによる素子の劣化等の影響を無視
し得なくなることが考えられ、これらの問題の解決が必
要となっている。
[0004] By making the electrolyte plate thinner, it is possible to generate electric power with higher efficiency than ever before, and on the other hand, the element is made to react with a perovskite type compound as an electrode material at a high temperature, or to repeatedly increase and decrease the temperature. It is conceivable that the influence of the deterioration of the material cannot be ignored, and it is necessary to solve these problems.

【0005】この問題の解決法として、燃料電池の作動
温度を下げ、電極材料との反応を防ぐため、電解質に陰
極での反応性の高い、酸化セリウムに酸化カルシウム等
を添加した材料を使用する研究も行われている(特開昭6
1−198569号公報)が、一般に酸化セリウムは電子伝導性
が高く、従って、高い陰極特性を示した場合でも、素子
全体の効率の向上はさほど見込めないという欠点があっ
た。
As a solution to this problem, in order to lower the operating temperature of the fuel cell and prevent a reaction with the electrode material, use is made of a material having high reactivity at the cathode at the electrolyte and a material obtained by adding cerium oxide to calcium oxide or the like. Research is also being conducted (Japanese
However, cerium oxide generally has a high electron conductivity, and thus has a drawback that the efficiency of the entire device cannot be significantly improved even if it exhibits high cathode characteristics.

【0006】更に、両者の利点を有効に活用する方法と
して、安定化ジルコニア電解質の陰極側に酸化セリウム
系電解質を取り付ける方法(特開昭61−198568号公報)、
陽極側の安定化ジルコニアから、陰極側に向かって徐々
に酸化セリウムの濃度を高めた複合酸化物を重ねていっ
た傾斜材料を使用する方法(特開昭62−40172号公報)な
どが考えられているが、これらの方法は電解質板の作
製、即ち素子の複合化のプロセスが複雑になる、あるい
は組成が均一でないために生じる熱膨張係数の差による
破壊の可能性などの問題を抱えていた。
Further, as a method of effectively utilizing the advantages of both, a method of attaching a cerium oxide-based electrolyte to the cathode side of a stabilized zirconia electrolyte (Japanese Patent Laid-Open No. 61-198568),
From the stabilized zirconia on the anode side, a method of using a gradient material in which a composite oxide having a gradually increased concentration of cerium oxide toward the cathode side is used (Japanese Patent Laid-Open No. 62-40172) is considered. However, these methods have problems such as the possibility of destruction due to the difference in thermal expansion coefficient caused by the production of the electrolyte plate, that is, the process of compounding the elements becomes complicated, or the composition is not uniform. .

【0007】[0007]

【発明が解決しようとする課題】本発明は、前述のよう
な技術的課題を解決するためのものであって、その目的
とするところは、前記主旨からも明らかな通り、従来よ
りも低温で燃料電池を高効率に作動させることができ、
更に熱に対して安定かつ耐熱衝撃性が高いイオン導電体
材料を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned technical problems, and the object thereof is, as apparent from the above-mentioned gist, at a lower temperature than the conventional one. Fuel cells can be operated with high efficiency,
Another object of the present invention is to provide an ionic conductor material that is stable against heat and has high thermal shock resistance.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記要求
を満足するイオン導電体材料の開発を目指し、種々研究
を重ねた結果、[(1-y){xCe(1−x)ZrO2}−y
SrO](ただし、0.5≦x≦0.9、0.02≦y≦0.
1)からなる組成の粉末と、安定化ジルコニア粉末とを
1:9ないし1:1の比率で混合した混合物を焼成して
得られた焼結体が、イオン導電性を損なうことなく電極
での高い反応性を示し、従来よりも低温で燃料電池を高
効率に作動させ得て、熱に対して安定かつ耐熱衝撃性が
高いことを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted various studies with the aim of developing an ionic conductor material that satisfies the above-mentioned requirements. As a result, [(1-y) {xCe (1-x) ZrO] 2 } -y
SrO] (provided that 0.5 ≦ x ≦ 0.9, 0.02 ≦ y ≦ 0.0.
A sintered body obtained by firing a mixture obtained by mixing a powder having a composition of 1) and a stabilized zirconia powder at a ratio of 1: 9 to 1: 1 can be used as an electrode without impairing ionic conductivity. The present inventors have found that they exhibit high reactivity, can operate the fuel cell more efficiently at a lower temperature than in the past, are stable against heat and have high thermal shock resistance, and have completed the present invention.

【0009】即ち、本発明に係るイオン導電体材料は、
[(1-y){xCe(1−x)ZrO2}−ySrO](ただ
し、0.5≦x≦0.9、0.02≦y≦0.1)からなる
組成の固溶体粉末と、安定化ジルコニア粉末とを重量比
で1:9ないし1:1の比率で混合した混合物の焼結体
よりなるものである。
That is, the ionic conductor material according to the present invention comprises:
A solid solution powder having a composition of [(1-y) {xCe (1-x) ZrO 2 } -ySrO] (provided that 0.5 ≦ x ≦ 0.9, 0.02 ≦ y ≦ 0.1); It consists of a sintered body of a mixture of stabilized zirconia powder and a weight ratio of 1: 9 to 1: 1.

【0010】[0010]

【作用】本発明において、[(1-y){xCe(1−x)Z
rO2}−ySrO](ただし、0.5≦x≦0.9、0.0
2≦y≦0.1)からなる組成の固溶体粉末のx及びyの
数値限定並びに固溶体粉末と、安定化ジルコニア粉末と
の混合比を限定した理由を以下に述べる。
In the present invention, [(1-y) {xCe (1-x) Z]
rO 2 } -ySrO] (provided that 0.5 ≦ x ≦ 0.9, 0.0
The reasons for limiting the numerical values of x and y of the solid solution powder having the composition of 2 ≦ y ≦ 0.1) and the mixing ratio of the solid solution powder to the stabilized zirconia powder are described below.

【0011】本発明のイオン導電体材料とは、高いイオ
ン導電率を示す安定化ジルコニア、及び耐熱衝撃性に優
れた酸化ジルコニウム−酸化セリウム固溶体に電子伝導
性を抑えるべく酸化ストロンチウムを添加した固溶体の
複合酸化物である点に特徴を有している。更に、そのそ
れぞれが電解質板中で独立して存在する点が大きな特徴
であり、これらが独立して存在し、個々の特性が発揮さ
れるため高いイオン導電率と、高い陰極特性とを同時に
達成できたのである。即ち、電解質板中では、酸化ジル
コニウム−酸化セリウム固溶体粒子と安定化ジルコニア
粒子とは独立して存在し、微視的には不均一な状態を成
し、更に電極界面では、酸化セリウムと電極材料とが直
接接する界面が存在するため、高い陰極特性を示す。一
方、電解質板全体を巨視的に見れば、各部位における見
掛け上の組成は一定となり、従って、熱膨張に異方性が
ないため、昇降温に伴う破壊の可能性も皆無となってい
る。
The ionic conductor material of the present invention refers to a stabilized zirconia having a high ionic conductivity and a solid solution obtained by adding strontium oxide to a zirconium oxide-cerium oxide solid solution having excellent thermal shock resistance to suppress electron conductivity. It is characterized by being a composite oxide. Furthermore, the major feature is that each of them is present independently in the electrolyte plate.These are present independently, and their individual characteristics are exhibited, achieving high ionic conductivity and high cathode characteristics simultaneously. It was done. That is, in the electrolyte plate, the zirconium oxide-cerium oxide solid solution particles and the stabilized zirconia particles exist independently and form a microscopically non-uniform state. And a high cathode characteristic because of the presence of an interface directly in contact with. On the other hand, when macroscopically viewing the entire electrolyte plate, the apparent composition at each portion is constant, and therefore, there is no anisotropy in thermal expansion, and there is no possibility of destruction due to temperature rise and fall.

【0012】更に、酸化ジルコニウム−酸化セリウム固
溶体相には、電子伝導の影響を防止すべく、酸化ストロ
ンチウムを適当量固溶させたために、酸化セリウム系材
料を使用した場合の欠点であるイオン導電率の低下を防
ぐことができるものである。
Further, in order to prevent the influence of electron conduction, a proper amount of strontium oxide is dissolved in the zirconium oxide-cerium oxide solid solution phase. Can be prevented from decreasing.

【0013】ここで、x<0.5のとき、酸化ジルコニ
ウム−酸化セリウム固溶体の性質は、安定化シルコニア
のそれに近く、CeO2系のもつ高い陰極特性を十分に
発揮し得ない。また、0.9<xのとき、立方晶CeO2
のもつ特性に近く、イオン導電性が極端に低いため好ま
しくない。また、0.1<yのとき、過剰に添加された
SrOが固溶体を生成できずに粒界等に析出し、電子伝
導ばかりでなく、イオン伝導までも阻害してしまう。逆
に、0.02>yの時は、SrOの添加による電子伝導
の阻害効果がほとんど見られず好ましくない。更に、
[(1−y){xCe(1−x)ZrO2}−ySrO]の固溶
体が安定化ジルコニアに対し、当重量比以上の場合、安
定化ジルコニウム相の高いイオン導電性を十分に発揮で
きず、むしろ電子伝導性が主となってしまう。一方、固
溶体1重量に対し、安定化ジルコニアが9重量を超える
時は、電極材料と、酸化セリウム相との接触面を十分に
確保できず、高い陰極特性を示さないために好ましくな
い。
Here, when x <0.5, the properties of the zirconium oxide-cerium oxide solid solution are close to those of stabilized zirconia, and the high cathode characteristics of CeO 2 cannot be sufficiently exhibited. When 0.9 <x, cubic CeO 2
And the ion conductivity is extremely low, which is not preferable. Also, when 0.1 <y, excessively added SrO cannot form a solid solution, but precipitates at grain boundaries and the like, and inhibits not only electron conduction but also ionic conduction. On the other hand, when 0.02> y, the effect of adding SrO on electron conduction is hardly observed, which is not preferable. Furthermore,
When the solid solution of [(1-y) {xCe (1-x) ZrO 2 } -ySrO] is equal to or more than the weight ratio with respect to the stabilized zirconia, the high ionic conductivity of the stabilized zirconium phase cannot be sufficiently exhibited. Rather, electronic conductivity is dominant. On the other hand, when the amount of the stabilized zirconia exceeds 9 weight per 1 weight of the solid solution, it is not preferable because a contact surface between the electrode material and the cerium oxide phase cannot be sufficiently secured and high cathode characteristics are not exhibited.

【0014】以下に本発明のイオン導電体材料の製造方
法の一例を詳しく述べるが、これによって本発明のイオ
ン導電体材料の製造方法が制限を受けるものではない。
まず、市販のCeO2粉末とZrO2粉末とをモル比で
1:1ないし9:1の割合で混合する。混合は、湿式混
合、乾式混合のいずれを用いても良く、ボールミルによ
る粉砕混合をはじめ、一般に行われている混合方法で行
うことができる。次に、この混合粉末に対してSrCO
3粉末を混合粉末:SrCO3=98:2ないし90:1
0となるように混合したのち、1500℃〜1680℃
の温度で1〜10時間焼成し、酸化ジルコニウム−酸化
セリウム固溶体[(1−y){xCe(1−x)ZrO2}−y
SrO]粉末を得る。ここで用いるSrCO3には市販の
高純度原料粉末を用いることができるが、不純物が0.
5%以下のものであることが好ましい。また、SrO源
としてはSrCO3に限らず、(CH3COO)2Sr、S
r(NO3)2などを用いることもできる。
Hereinafter, an example of the method for producing the ionic conductor material of the present invention will be described in detail, but this does not limit the method for producing the ionic conductor material of the present invention.
First, commercially available CeO 2 powder and ZrO 2 powder are mixed at a molar ratio of 1: 1 to 9: 1. Mixing may be either wet mixing or dry mixing, and can be performed by a commonly used mixing method such as pulverization and mixing by a ball mill. Next, SrCO
3 powder mixed powder: SrCO 3 = 98: 2 to 90: 1
After mixing so as to be 0, 1500 ° C. to 1680 ° C.
And calcined at a temperature of 1 to 10 hours, zirconium - cerium oxide solid solution [(1-y) {xCe (1-x) ZrO 2} -y
[SrO] powder is obtained. As SrCO 3 used here, a commercially available high-purity raw material powder can be used.
It is preferably at most 5%. Further, the SrO source is not limited to SrCO 3 , but may be (CH 3 COO) 2 Sr, Sr
r (NO 3 ) 2 or the like can also be used.

【0015】この酸化ジルコニウム−酸化セリウム固溶
体粉末に対して、市販の安定化ジルコニア粉末を重量比
で1:9ないし1:1の割合で混合し、原料粉末とす
る。安定化ジルコニア粉末としてはイットリア安定化ジ
ルコニア、カルシア安定化ジルコニアなどを用いること
ができるが、Y23を6モル%以上含むイットリア安定
化ジルコニア粉末が最も好ましい。混合方法は、湿式、
乾式のいずれでも良いが、混合時に粉砕を伴うような工
程は避けることが好ましい。
A commercially available stabilized zirconia powder is mixed with the zirconium oxide-cerium oxide solid solution powder at a weight ratio of 1: 9 to 1: 1 to obtain a raw material powder. As the stabilized zirconia powder, yttria-stabilized zirconia, calcia-stabilized zirconia, or the like can be used, but the yttria-stabilized zirconia powder containing 6 mol% or more of Y 2 O 3 is most preferable. The mixing method is wet,
Although any of dry methods may be used, it is preferable to avoid a step involving pulverization during mixing.

【0016】上記工程で得られた原料粉末を、1軸加
圧、等方加圧、ドクターブレード法など、一般的手法に
よって成形して成形体を作製し、1550℃ないし16
80℃で5時間以上焼成することによって、本発明のイ
オン導電体材料の焼結体を得ることができる。
The raw material powder obtained in the above step is molded by a general method such as uniaxial pressing, isostatic pressing, doctor blade method or the like to produce a molded body.
By baking at 80 ° C. for 5 hours or more, a sintered body of the ionic conductor material of the present invention can be obtained.

【0017】[0017]

【実施例】【Example】

実施例1 市販のZrO2粉末246gと市販のCeO2粉末137
6gとを用い、モル比で2:8にし、これをボールミル
を用いてエタノール中で湿式粉砕混合してZrO2−C
eO2混合粉末1622gを得た。この混合粉末に市販
のSrCO3粉末77.8gを加え、モル比を95:5と
し、再度エタノール中で湿式混合したのち、乾燥した混
合粉末を白金容器に入れ、電気炉中1600℃で3時間
焼成し、[0.95{0.2Zr0.8CeO2}−0.05SrO]固溶体粉末を
得た。この固溶体粉末と市販のイットリア8モル%安定
化ジルコニア粉末とを重量比で2:8となるように秤量
し、粉砕を受けないため樹脂コートしたボールを用い、
ボールミルにより混合して目的組成の粉末を得た。この
粉末を1軸加圧成形した後、電気炉中1650℃で5時
間焼結し、径12mm×厚さ1mmの焼結体を得た。得
られた焼結体は、X線回折の結果から、酸化ジルコニウ
ム−酸化セシウム固溶体相と安定化ジルコニア相とわず
かに生成したSrZrO3などの不純物相とからなって
おり、焼成によって固溶体相と安定化ジルコニア相とが
完全に固溶化した状態とはなっていなかった。この焼結
体を隔壁とし、水素ガスと酸素ガスとを隔てた燃料電池
に、図2の回路を接続し、900℃で抵抗値を5Ωから
10MΩまで変化させたときに発生した電流、電圧を記
録したところ、図1に示す電流−電圧曲線が得られた。
同寸法の安定化ジルコニア(0.08Y2O30.92ZrO2)を用いた
時と比較すると、高い電流を取り出しても、電圧降下が
生じることはなく、限界電流値は約100mVと、約
2.5倍であった。
Example 1 246 g of commercially available ZrO 2 powder and 137 of commercially available CeO 2 powder
6g and a molar ratio of 2: 8, which was wet-milled and mixed in ethanol using a ball mill to obtain ZrO 2 -C
1622 g of eO 2 mixed powder was obtained. 77.8 g of commercially available SrCO 3 powder was added to this mixed powder, the molar ratio was adjusted to 95: 5, and the mixture was wet-mixed again in ethanol. The dried mixed powder was placed in a platinum container and placed in an electric furnace at 1600 ° C. for 3 hours. It was calcined to obtain [0.95 {0.2Zr0.8CeO 2 } -0.05SrO] solid solution powder. This solid solution powder and a commercially available yttria 8 mol% stabilized zirconia powder were weighed to a weight ratio of 2: 8, and a resin-coated ball was used to prevent crushing.
The mixture was mixed by a ball mill to obtain a powder having a desired composition. This powder was uniaxially pressed and sintered in an electric furnace at 1650 ° C. for 5 hours to obtain a sintered body having a diameter of 12 mm and a thickness of 1 mm. The obtained sintered body was composed of a zirconium oxide-cesium oxide solid solution phase, a stabilized zirconia phase, and a small amount of an impurity phase such as SrZrO 3 based on the result of X-ray diffraction. The zirconia phase was not completely dissolved. The circuit shown in FIG. 2 was connected to a fuel cell in which this sintered body was used as a partition and hydrogen gas and oxygen gas were separated, and the current and voltage generated when the resistance value was changed from 5Ω to 10 MΩ at 900 ° C. Upon recording, the current-voltage curve shown in FIG. 1 was obtained.
Compared with the case where stabilized zirconia (0.08Y 2 O 3 0.92ZrO 2 ) of the same size is used, even if a high current is taken out, no voltage drop occurs and the limit current value is about 100 mV, which is about 2. It was 5 times.

【0018】実施例2 市販のZrO2粉末246gと市販のCeO2粉末137
6gとを用い、モル比で2:8にし、これをボールミル
を用いてエタノール中で湿式粉砕混合してZrO2−C
eO2混合粉末1622gを得た。この混合粉末に市販
のSrCO3粉末45.8gを加え、モル比を97:3と
し、再度エタノール中で湿式混合したのち、乾燥した混
合粉末を白金容器に入れ、電気炉中1600℃で3時間
焼成し、[0.97{0.2Zr0.8CeO2}−0.03SrO]固溶体粉末を
得た。この固溶体粉末と市販のイットリア8モル%安定
化ジルコニア粉末とを重量比で4:6となるように秤量
し、粉砕を受けないため樹脂コートしたボールを用い、
ボールミルにより混合して目的組成の粉末を得た。この
粉末を1軸加圧成形した後、電気炉中1650℃で5時
間焼結し、径12mm×厚さ1mmの焼結体を得た。得
られた焼結体は、X線回折の結果から酸化ジルコニウム
−酸化セリウム固溶体相と安定化ジルコニア相とわずか
に生成したSrZrO3などの不純物相からなってお
り、焼成によって固溶体相と安定化ジルコニア相とが完
全に固溶化した状態とはなっていなかった。この焼結体
を隔壁とし、水素ガスと酸素ガスとを隔てた燃料電池
に、図2の回路を接続し、900℃で抵抗値を5Ωから
10MΩまで変化させたときに発生した電流、電圧を記
録したところ、図1に示す電流−電圧曲線が得られた。
同寸法の安定化ジルコニア(0.08Y2O30.92ZrO2)を用いた
例と比較すると、高い電流を取り出しても、電圧降下が
生じることはなく、限界電流値は約70mVと、約1.
7倍であった。
Example 2 246 g of commercially available ZrO 2 powder and 137 of commercially available CeO 2 powder
6g and a molar ratio of 2: 8, which was wet-milled and mixed in ethanol using a ball mill to obtain ZrO 2 -C
1622 g of eO 2 mixed powder was obtained. 45.8 g of commercially available SrCO 3 powder was added to this mixed powder, the molar ratio was 97: 3, and the mixture was wet-mixed in ethanol again. Then, the dried mixed powder was placed in a platinum container and placed in an electric furnace at 1600 ° C. for 3 hours. It was calcined to obtain [0.97 {0.2Zr0.8CeO 2 } -0.03SrO] solid solution powder. This solid solution powder and a commercially available yttria 8 mol% stabilized zirconia powder were weighed so as to have a weight ratio of 4: 6.
The mixture was mixed by a ball mill to obtain a powder having a desired composition. This powder was uniaxially pressed and sintered in an electric furnace at 1650 ° C. for 5 hours to obtain a sintered body having a diameter of 12 mm and a thickness of 1 mm. The obtained sintered body is composed of a zirconium oxide-cerium oxide solid solution phase, a stabilized zirconia phase and a slightly formed impurity phase such as SrZrO 3 based on the result of X-ray diffraction. The phases were not completely dissolved. The circuit shown in FIG. 2 was connected to a fuel cell in which this sintered body was used as a partition and hydrogen gas and oxygen gas were separated, and the current and voltage generated when the resistance value was changed from 5Ω to 10 MΩ at 900 ° C. Upon recording, the current-voltage curve shown in FIG. 1 was obtained.
Compared with the example using stabilized zirconia (0.08Y 2 O 3 0.92ZrO 2 ) of the same size, even if a high current is taken out, no voltage drop occurs and the limit current value is about 70 mV, which is about 1.
It was 7 times.

【0019】比較例1 径12mm×厚さ1mmのイットリウム安定化ジルコニ
アの焼結体を隔壁とし、水素ガスと酸素ガスとを隔てた
燃料電池に、図2の回路を接続し、900℃で、抵抗値
を5Ωから10MΩまで変化させた時に発生した電流、
電圧を記録したところ、図1に示す電流−電圧曲線が得
られた。開回路の端子電圧はほぼ理論値と同じ(約90
0mV)であったが、出力電流が30mAを超えると急
激に電圧降下を起こし、限界電流値は約40mAであっ
た。
Comparative Example 1 The circuit shown in FIG. 2 was connected to a fuel cell in which a sintered body of yttrium-stabilized zirconia having a diameter of 12 mm and a thickness of 1 mm was used as a partition wall and hydrogen gas and oxygen gas were separated. The current generated when the resistance value was changed from 5Ω to 10MΩ,
When the voltage was recorded, the current-voltage curve shown in FIG. 1 was obtained. The terminal voltage of the open circuit is almost the same as the theoretical value (about 90
0 mV), but when the output current exceeded 30 mA, the voltage suddenly dropped, and the limit current value was about 40 mA.

【0020】比較例2 実施例2と同様の方法で作製した[0.97{0.2Zr0.8CeO2}
−0.03SrO]固溶体粉末を1軸加圧成形し、電気炉中16
50℃で5時間焼結し、径12mm×厚さ1mmの焼結
体を得た。この焼結体を隔壁とし、水素ガスと酸素ガス
とを隔てた燃料電池に、図2の回路を接続し、900℃
で、抵抗値を5Ωから10MΩまで変化させた時に発生
した電流、電圧を記録したところ、図1に示す電流−電
圧曲線が得られた。開回路の端子電圧は約100mVと
理論値の約10分の1と低く、可変抵抗の値に拘わら
ず、極めて低い電流値しか観測することができなかっ
た。
Comparative Example 2 [0.97 {0.2Zr0.8CeO 2 } prepared in the same manner as in Example 2 .
-0.03SrO] solid solution powder is uniaxially pressed and placed in an electric furnace.
Sintering was performed at 50 ° C. for 5 hours to obtain a sintered body having a diameter of 12 mm and a thickness of 1 mm. The circuit of FIG. 2 was connected to a fuel cell in which the sintered body was used as a partition and hydrogen gas and oxygen gas were separated from each other.
Then, when the current and voltage generated when the resistance value was changed from 5Ω to 10MΩ were recorded, a current-voltage curve shown in FIG. 1 was obtained. The terminal voltage of the open circuit was about 100 mV, which was as low as about one tenth of the theoretical value, and only an extremely low current value could be observed regardless of the value of the variable resistor.

【0021】[0021]

【発明の効果】本発明のイオン導電体材料は、従来のイ
オン導電体材料よりも低温で燃料電池を高効率に作動さ
せることができ、更に熱に対して安定かつ耐熱衝撃性が
高いものである。
The ionic conductor material of the present invention enables a fuel cell to operate more efficiently at a lower temperature than conventional ionic conductor materials, and is stable against heat and has high thermal shock resistance. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1及び2並びに比較例1及び2
の焼結体をそれぞれ隔壁とし、水素−酸素燃料電池を形
成し、900℃で作動させた場合の電流−電圧曲線であ
る。
FIG. 1 shows Examples 1 and 2 of the present invention and Comparative Examples 1 and 2.
7 is a current-voltage curve when a hydrogen-oxygen fuel cell was formed using the sintered bodies of No. 1 as partition walls and operated at 900 ° C.

【図2】電流−電圧曲線を測定するために用いた装置の
回路図である。
FIG. 2 is a circuit diagram of an apparatus used for measuring a current-voltage curve.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 8/12 G01N 27/58 A (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/50 REGISTRY(STN) CA(STN)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification code FI H01M 8/12 G01N 27/58 A (58) Investigated field (Int.Cl. 7 , DB name) C04B 35/42-35 / 50 REGISTRY (STN) CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 [(1-y){xCe(1−x)ZrO2}−y
SrO](ただし、0.5≦x≦0.9、0.02≦y≦0.
1)からなる組成の固溶体粉末と、安定化ジルコニア粉
末とを重量比で1:9ないし1:1の比率で混合した混
合物の焼結体よりなることを特徴とするイオン導電体材
料。
[1] [(1-y) {xCe (1-x) ZrO 2 } -y
SrO] (provided that 0.5 ≦ x ≦ 0.9, 0.02 ≦ y ≦ 0.0.
An ionic conductor material comprising a sintered body of a mixture obtained by mixing a solid solution powder having a composition of 1) and stabilized zirconia powder at a weight ratio of 1: 9 to 1: 1.
JP33318692A 1992-12-14 1992-12-14 Ion conductor material Expired - Fee Related JP3300077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33318692A JP3300077B2 (en) 1992-12-14 1992-12-14 Ion conductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33318692A JP3300077B2 (en) 1992-12-14 1992-12-14 Ion conductor material

Publications (2)

Publication Number Publication Date
JPH06183740A JPH06183740A (en) 1994-07-05
JP3300077B2 true JP3300077B2 (en) 2002-07-08

Family

ID=18263269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33318692A Expired - Fee Related JP3300077B2 (en) 1992-12-14 1992-12-14 Ion conductor material

Country Status (1)

Country Link
JP (1) JP3300077B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266930A1 (en) * 2007-12-10 2010-10-21 Hilmar Vidarsson Powder for electrolyte in fuel cells
JP5391664B2 (en) * 2008-11-21 2014-01-15 マツダ株式会社 Exhaust gas purification catalyst
KR101281468B1 (en) * 2012-03-20 2013-07-03 주식회사 비츠로셀 Method of forming litium ion transmitting membrane of litium-air battery using sintering bonding

Also Published As

Publication number Publication date
JPH06183740A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
JP2882104B2 (en) Proton conductor and method for producing the same
JP3733030B2 (en) Ionic conductor
Slater et al. Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells
Sammes et al. Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials
JP4608047B2 (en) Mixed ionic conductor and device using the same
JP4608506B2 (en) Mixed ionic conductor and device using the same
JP3453283B2 (en) Solid oxide fuel cell
US6517693B2 (en) Ion conductor
JPH06107462A (en) Oxygen ion conductor and solid fuel cell
JPH08208333A (en) Conductive material for oxygen ion and its production
JP2864928B2 (en) Mixed ionic conductor
WO2006098272A1 (en) Ion conductor
JPH07149522A (en) Zirconia electrolyte powder and its production
JP3300077B2 (en) Ion conductor material
JP3121982B2 (en) Conductive ceramics
JPH0855629A (en) Interconnector material
CA2516809C (en) Mixed ionic conductor
JP2003323906A (en) Solid electrolyte fuel cell
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
Kus̆c̆er et al. Defect structure and electrical properties of La1− ySryFe1− xAlxO3− δ
JP3607352B2 (en) BaCeO3-based ion conductive ceramics and method for producing the same
JP3877809B2 (en) Proton conductive ceramics
RU2779630C1 (en) Electrode material based on praseodymium nickelate for electrochemical devices
JP3091100B2 (en) Method for producing conductive ceramics
JPH05225820A (en) Ion conductor and solid fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees