JP3289632B2 - Manufacturing method and equipment for high silicon steel strip with excellent flatness - Google Patents
Manufacturing method and equipment for high silicon steel strip with excellent flatnessInfo
- Publication number
- JP3289632B2 JP3289632B2 JP03109397A JP3109397A JP3289632B2 JP 3289632 B2 JP3289632 B2 JP 3289632B2 JP 03109397 A JP03109397 A JP 03109397A JP 3109397 A JP3109397 A JP 3109397A JP 3289632 B2 JP3289632 B2 JP 3289632B2
- Authority
- JP
- Japan
- Prior art keywords
- steel strip
- gas
- siliconizing
- treatment
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】[0001]
【発明が属する技術分野】本発明は、気体浸珪法による
高珪素鋼帯の製造方法および設備、具体的には、連続浸
珪処理ラインにおいて連続通板する鋼帯の両面に塩化珪
素ガスを含む処理ガスを吹き付けることで鋼帯の浸珪処
理を行い、次いで鋼帯表層に浸透したSiを板厚方向に
拡散させる拡散熱処理を行うことにより高珪素鋼帯を連
続的に製造する方法およびその実施に好適な設備に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a high silicon steel strip by a gas silicification method, and more specifically, a method in which silicon chloride gas is applied to both sides of a steel strip continuously passing in a continuous siliconizing treatment line. A method for continuously producing a high silicon steel strip by performing a siliconizing treatment of a steel strip by spraying a processing gas containing the steel strip, and then performing a diffusion heat treatment for diffusing Si permeated into a surface layer of the steel strip in a thickness direction of the steel strip. It relates to equipment suitable for implementation.
【0002】[0002]
【従来の技術】高珪素鋼帯を工業的に製造する方法とし
て、所謂気体浸珪法による連続製造法が知られている。
この製造法は、連続ラインにおいてSi含有量が比較的
低い鋼帯を加熱した後、鋼帯両側に配されたガスノズル
から鋼帯の両面に塩化珪素ガス(通常、SiCl4)を
含む無酸化性ガスを吹き付けることにより鋼帯表面にS
iを浸透させ、次いでSiを板厚方向に拡散させる拡散
熱処理を施し、冷却後コイル状に巻取る一連のプロセス
を連続ライン化し、高珪素鋼帯を効率よく製造すること
ができる。2. Description of the Related Art As a method for industrially producing a high silicon steel strip, a continuous production method by a so-called gas siliconizing method is known.
This method comprises heating a steel strip having a relatively low Si content in a continuous line, and then using a gas nozzle disposed on both sides of the steel strip, containing a silicon chloride gas (usually SiCl 4 ) on both sides of the steel strip. By blowing gas, S
A diffusion heat treatment for infiltrating i and then diffusing Si in the thickness direction is performed, and a series of processes for cooling and coiling are formed into a continuous line, whereby a high silicon steel strip can be efficiently produced.
【0003】[0003]
【発明が解決しようとする課題】しかし、このような気
体浸珪法により製造される高珪素鋼帯は、所謂C反りと
呼ばれる長手方向での板反りを生じ易い欠点があり、こ
のような板反りが生じると剪断加工時のハンドリング性
に支障をきたすとともに、積層した鉄心が重量不足を生
じて鉄心性能の劣化を招いてしまう。したがって本発明
の目的は、このような鋼帯長手方向での板反りを生じる
ことなく気体浸珪法により高珪素鋼帯を連続して製造す
ることができる方法及びその実施に好適な設備を提供す
ることにある。However, the high silicon steel strip manufactured by such a gas-siliconization method has a drawback in that a so-called C warpage tends to cause warpage in the longitudinal direction. If warpage occurs, it will impair the handleability during shearing, and the laminated iron core will have a shortage of weight, leading to deterioration of the iron core performance. Accordingly, an object of the present invention is to provide a method capable of continuously producing a high silicon steel strip by a gas silicification method without causing such a warpage in the longitudinal direction of the steel strip, and a facility suitable for carrying out the method. Is to do.
【0004】[0004]
【課題を解決するための手段】本発明者らは上記の課題
に鑑み、気体浸珪法により製造される高珪素鋼帯にC反
りが生じる原因とその抑制方法について検討を重ねた。
その結果、C反りが鋼帯表裏面での浸珪量のアンバラン
スによるものであること、すなわち、鋼帯表裏面での浸
珪量がアンバランスになることにより鋼帯表裏面の格子
定数に差が生じ、その結果C反りを生じてしまうこと、
したがって、この鋼帯表裏面での浸珪量のアンバランス
を極力抑制することにより、C反りの発生を効果的に抑
制し得ることを見い出した。本発明はこのような知見に
基づきなされたもので、その特徴は以下の通りである。Means for Solving the Problems In view of the above problems, the present inventors have repeatedly studied the cause of the occurrence of C warpage in a high silicon steel strip manufactured by the gas siliconizing method and a method for suppressing it.
As a result, the C warpage is due to the imbalance in the amount of silicon carbide on the front and back surfaces of the steel strip. Difference, resulting in C warpage,
Therefore, it has been found that the occurrence of C warpage can be effectively suppressed by minimizing the imbalance of the amount of silicon carbide on the front and back surfaces of the steel strip. The present invention has been made based on such findings, and the features thereof are as follows.
【0005】(1) 連続通板する鋼帯の両面に塩化珪素ガ
スを含む処理ガスを吹き付けることで鋼帯の浸珪処理を
行い、次いで鋼帯表層に浸透したSiを板厚方向に拡散
させる拡散熱処理を行うことにより高珪素鋼帯を連続的
に製造する方法において、拡散熱処理後の鋼帯両面のS
i含有量をそれぞれ検出し、該両検出値の偏差が解消さ
れ若しくは許容値以下となるよう、浸珪処理において鋼
帯両面にそれぞれ吹き付けられる処理ガスの流量、温度
および塩化珪素ガス濃度のうちの少なくとも1つを制御
することを特徴とする、平坦度の優れた高珪素鋼帯の製
造方法。(1) The steel strip is subjected to a siliconizing treatment by spraying a processing gas containing a silicon chloride gas onto both surfaces of the steel strip that is continuously passed, and then Si that has penetrated into the surface layer of the steel strip is diffused in the thickness direction of the steel strip. In a method of continuously producing a high silicon steel strip by performing a diffusion heat treatment, the S
i content is detected, and the deviation between the two detected values is eliminated.
The flatness is characterized by controlling at least one of the flow rate, the temperature and the silicon chloride gas concentration of the processing gas sprayed on both sides of the steel strip in the siliconizing process so that the silicon dioxide concentration is equal to or less than the allowable value. Manufacturing method of high silicon steel strip.
【0006】[0006]
【0007】(2) 鋼帯パスラインの両側にガスノズルが
配置され、該ガスノズルから連続通板する鋼帯の両面に
塩化珪素ガスを含む処理ガスを吹き付けることで鋼帯の
浸珪処理を行う浸珪処理炉と、該浸珪処理炉において鋼
帯表層に浸透したSiを板厚方向に拡散させる拡散熱処
理を行う拡散均熱炉と、拡散熱処理された鋼帯を冷却す
る冷却炉を有する高珪素鋼帯の製造設備において、浸珪
処理炉内の鋼帯パスラインの両側にそれぞれ配置された
ガスノズルに供給される処理ガスの流量、温度および塩
化珪素ガス濃度のうちの少なくとも1つを調整可能とし
た調整機構と、前記冷却炉から出た鋼帯両面のSi含有
量を検出する検出装置と、該検出装置による鋼帯両面の
Si含有量の検出値の偏差が解消され若しくは許容値以
下となるよう前記調整機構を制御する制御装置とを有す
ることを特徴とする、平坦度の優れた高珪素鋼帯の製造
設備。 (2) Gas nozzles are arranged on both sides of the steel strip pass line, and the gas nozzle sprays a processing gas containing silicon chloride gas onto both sides of the steel strip which is continuously passed therethrough, thereby performing a silicon stripping treatment of the steel strip. High silicon having a silicon treatment furnace, a diffusion soaking furnace for performing diffusion heat treatment for diffusing Si permeated into a steel strip surface layer in the thickness direction in the silicon treatment furnace, and a cooling furnace for cooling the steel band subjected to diffusion heat treatment. In a steel strip manufacturing facility, it is possible to adjust at least one of a flow rate, a temperature, and a silicon chloride gas concentration of a processing gas supplied to gas nozzles arranged on both sides of a steel strip pass line in a siliconizing furnace. Adjusting mechanism, a detecting device for detecting the Si content on both surfaces of the steel strip coming out of the cooling furnace, and a deviation of the detected value of the Si content on both surfaces of the steel strip by the detecting device is eliminated or becomes equal to or less than an allowable value. Like the above And a control device for controlling a regulating mechanism.
【0008】[0008]
【発明の実施の形態】連続浸珪処理ラインで行われる浸
珪処理では、図1に示すように水平方向に通板する鋼帯
の両面にガスノズルA(図中、aはガスノズルのノズル
スリット)から原料ガスである塩化珪素ガス(通常、S
iCl4)を含む処理ガス(塩化珪素ガス+無酸化性ガ
ス)が吹き付けられ、原料ガスと鋼帯との以下のような
置換反応により鋼帯表面にSiが添加される。5Fe+
SiCl4→Fe3Si+2FeCl2 DESCRIPTION OF THE PREFERRED EMBODIMENTS In a siliconizing treatment performed in a continuous siliconizing treatment line, gas nozzles A (in the figure, a is a nozzle slit of the gas nozzle) are provided on both sides of a steel strip passing horizontally, as shown in FIG. From silicon chloride gas (usually S
A processing gas (silicon chloride gas + non-oxidizing gas) containing iCl 4 ) is blown, and Si is added to the steel strip surface by the following substitution reaction between the raw material gas and the steel strip. 5Fe +
SiCl 4 → Fe 3 Si + 2FeCl 2
【0009】また、上記の浸珪処理では鋼帯表層にSi
の高濃度層が形成されるため、このSiを鋼帯板厚方向
に拡散させ、板厚方向での濃度分布を無くし或いは小さ
くすることを目的として、浸珪処理に引き続き拡散熱処
理を行う。このような連続浸珪処理において、先に述べ
たような板反り(C反り)を生じるのは、浸珪処理時の
鋼帯両面へのSi添加量(浸珪量)に何らかの原因でア
ンバランスを生じ、このような浸珪量のアンバランスが
拡散熱処理後も引き続き残存するためである。In the above-mentioned siliconizing treatment, Si
In order to diffuse this Si in the thickness direction of the steel strip and eliminate or reduce the concentration distribution in the thickness direction, a diffusion heat treatment is performed after the siliconizing treatment. In such a continuous siliconizing treatment, the above-described sheet warpage (C warpage) is caused by an unbalanced amount of Si added to both surfaces of the steel strip (siliconized amount) during the siliconizing treatment for some reason. This is because such an imbalance in the amount of silicon oxide remains after the diffusion heat treatment.
【0010】従来行われている浸珪処理では、水平方向
に通板する鋼帯に対して上下のガスノズルからほぼ同じ
流量、温度および塩化珪素ガス濃度の処理ガスが吹き付
けられているが、このような浸珪処理において鋼帯両面
で浸珪量に差が生じるのは、鋼帯の両面で処理ガスと鋼
帯面との接触の態様や時間に差を生じるためであると考
えられる。また、その具体的な要因については種々考え
られるが、その一つには、水平に通板する鋼帯に対して
上下のガスノズルから処理ガスを吹き付けた場合、上部
ガスノズルから吹き付けられた処理ガスは或る程度鋼帯
表面に沿って流れるのに対し、下部ガスノズルから吹き
付けられた処理ガスは鋼帯表面から離れようとするた
め、鋼帯の上面と下面とで浸珪量に差を生じてしまうこ
とが考えられる。In the conventional siliconizing treatment, a processing gas having substantially the same flow rate, temperature and silicon chloride gas concentration is blown from upper and lower gas nozzles to a steel strip passing in the horizontal direction. It is considered that the difference in the amount of silicide on both sides of the steel strip in the simple siliconizing treatment is due to the difference in the contact mode and time between the processing gas and the steel strip surface on both sides of the steel strip. Various factors can be considered for the specific factor.One of the reasons is that when the processing gas is blown from the upper and lower gas nozzles to the steel strip passing horizontally, the processing gas blown from the upper gas nozzle is While the gas flows to some extent along the surface of the steel strip, the processing gas blown from the lower gas nozzle tends to move away from the surface of the steel strip, causing a difference in the amount of silicon carbide between the upper and lower surfaces of the steel strip. It is possible.
【0011】ここで、上記のように鋼帯両面で浸珪量に
差を生じても、浸珪処理後の拡散熱処理に十分な時間を
とることによって板厚方向でのSiの拡散を十分に行え
ば、板厚方向でのSi濃度を均一化でき、上述したよう
なC反りも解消できる。しかし、実際の連続浸珪処理ラ
インにおいて、鋼帯両面で浸珪量に差がある鋼帯を浸珪
量の差がなくなるまで拡散熱処理するには非常に長い処
理時間が必要であり、実操業でこれを行うことは生産性
や炉長等の制約から極めて困難である。[0011] Even if the silicon carbide amount is different on both sides of the steel strip as described above, the diffusion heat treatment after the siliconizing treatment takes a sufficient time to sufficiently diffuse Si in the thickness direction. If it is performed, the Si concentration in the thickness direction can be made uniform, and the C warpage as described above can be eliminated. However, in an actual continuous siliconizing treatment line, it takes a very long treatment time to perform diffusion heat treatment of a steel strip having a difference in the amount of silicide on both sides of the steel strip until the difference in the amount of silicide disappears. It is extremely difficult to do this because of constraints such as productivity and furnace length.
【0012】このため本発明では、浸珪処理において鋼
帯面へのSi添加量を左右する因子のうち、制御が比較
的容易な因子である処理ガスの流量、温度および塩化珪
素ガス濃度に着目し、鋼帯へのSi添加量が鋼帯両面で
均一になるよう、浸珪処理において鋼帯両面にそれぞれ
吹き付けられる処理ガスの流量、温度および塩化珪素ガ
ス濃度のうちの少なくとも1つを制御するようにしたも
のである。すなわち、浸珪処理では鋼帯面に吹き付けら
れる処理ガス流量が多いほど、また処理ガス温度が高い
ほど、さらに処理ガス中の塩化珪素ガス温度が高いほ
ど、それぞれ単位時間当りのSi添加量が多くなるた
め、鋼帯表裏面に供給される処理ガスについて、これら
の制御因子のうちの少なくとも1つを制御することによ
り鋼帯両面へのSi添加量を均一化することができる。For this reason, in the present invention, attention is paid to the flow rate, temperature and silicon chloride gas concentration of the processing gas, which are relatively easy to control, among the factors affecting the amount of Si added to the steel strip surface in the siliconizing treatment. Then, at least one of the flow rate, the temperature, and the silicon chloride gas concentration of the processing gas sprayed on both sides of the steel strip in the siliconizing treatment is controlled so that the amount of Si added to the steel strip is uniform on both sides of the steel strip. It is like that. That is, in the siliconizing treatment, the larger the flow rate of the processing gas blown to the steel strip surface, the higher the processing gas temperature, and the higher the temperature of the silicon chloride gas in the processing gas, the larger the amount of Si added per unit time. Therefore, the amount of Si added to both surfaces of the steel strip can be made uniform by controlling at least one of these control factors for the processing gas supplied to the front and back surfaces of the steel strip.
【0013】本発明では上記の制御因子のうちの少なく
とも1つを制御すればよいが、鋼帯両面でのSi添加量
のアンバランスの状態に応じて、2以上の制御因子を適
宜組み合わせて制御することもできる。また、上記制御
因子のなかでも処理ガスの流量が最も制御が容易であ
り、したがって処理ガス流量を主たる制御因子として本
発明を実施することもできる。一方、このような本発明
が対象とする制御因子以外にも、鋼帯へのSi添加量を
調整できる因子としては鋼帯と処理ガスとの反応温度や
反応時間があるが、連続浸珪処理において通板する鋼帯
の両面での反応温度や反応時間を個別に制御することは
事実上困難である。In the present invention, at least one of the above-mentioned control factors may be controlled. According to the state of imbalance of the Si addition amount on both sides of the steel strip, control is performed by appropriately combining two or more control factors. You can also. Further, among the above-mentioned control factors, the flow rate of the processing gas is the easiest to control, and therefore, the present invention can be implemented with the processing gas flow rate as the main control factor. On the other hand, in addition to the control factors targeted by the present invention, factors that can adjust the amount of Si added to the steel strip include the reaction temperature and reaction time between the steel strip and the processing gas. It is practically difficult to individually control the reaction temperature and the reaction time on both sides of the steel strip passing through the steel sheet.
【0014】[0014]
【0015】また、本発明の具体的な実施形態として
は、鋼帯両面でのSi添加量を逐時検出し、この検出値
に基づき上記制御因子の制御を行うことができる。この
場合には、拡散熱処理後の鋼帯両面のSi含有量を検出
し、この両検出値の偏差が解消され若しくは許容値以下
となるよう、鋼帯両面にそれぞれ吹き付けられる処理ガ
スの流量、温度および塩化珪素ガス濃度のうちの少なく
とも1つを制御する。このような制御のより具体的な態
様としては、例えば、鋼帯両面でのSi添加量の偏差の
許容値を定めておき、上記検出値の偏差がこの許容値を
超えたときに、この偏差が許容値以下となるよう下記
(イ)〜(ハ)のうちの少なくとも1つの制御を行う。
すなわち、鋼帯各面X,YのSi添加量の関係がX>Y
で且つその偏差が許容値を超えた場合、 (イ)鋼帯面に吹き付ける処理ガスの流量をX<Yとす
る。 (ロ)鋼帯面に吹き付ける処理ガスの温度をX<Yとす
る。 (ハ)鋼帯面に吹き付ける処理ガス中の塩化珪素ガス濃
度をX<Yとする。As a specific embodiment of the present invention,
Is the added amount of Si in the steel strip both surfaces逐時detection, it is possible to control the regulator based on the detection value. In this case, the Si content on both sides of the steel strip after the diffusion heat treatment is detected, and the flow rate and the temperature of the processing gas respectively blown on both sides of the steel strip so that the deviation between the two detected values is eliminated or becomes equal to or less than an allowable value. And at least one of silicon chloride gas concentrations. As a more specific mode of such control, for example, an allowable value of the deviation of the Si addition amount on both surfaces of the steel strip is determined, and when the deviation of the detected value exceeds the allowable value, the deviation is determined. At least one of the following (a) to (c) is performed so that is less than or equal to the allowable value.
That is, the relationship between the Si addition amounts of the steel strip surfaces X and Y is X> Y.
If the deviation exceeds an allowable value, (a) the flow rate of the processing gas blown to the steel strip surface is set to X <Y. (B) The temperature of the processing gas blown to the steel strip surface is set to X <Y. (C) The concentration of silicon chloride gas in the processing gas sprayed on the steel strip surface is defined as X <Y.
【0016】図2は、このような連続浸珪処理よる高珪
素鋼帯の製造方法および設備の一例を示すもので、1は
加熱炉、2は浸珪処理炉、3は拡散均熱炉、4は冷却
炉、5a,5bは浸珪処理炉内において鋼帯パスライン
の両側にそれぞれ複数配置されるガスノズル、6a,6
bはこれらガスノズル5a,5bに処理ガスを供給する
ための供給管、7は冷却炉の出側に配置されるSi含有
量の検出装置、8はガスノズルに供給される処理ガスの
流量、温度および塩化珪素ガス濃度のうちの少なくとも
1つを調整するための調整機構、11はこの調整機構8
を制御するための制御装置である。FIG. 2 shows an example of a method and equipment for producing a high silicon steel strip by such a continuous siliconizing treatment, wherein 1 is a heating furnace, 2 is a siliconizing treatment furnace, 3 is a diffusion soaking furnace, 4 is a cooling furnace, 5a and 5b are gas nozzles respectively arranged on both sides of the steel strip pass line in the siliconizing furnace, 6a and 6
b is a supply pipe for supplying a processing gas to these gas nozzles 5a and 5b, 7 is a device for detecting the Si content arranged on the outlet side of the cooling furnace, 8 is a flow rate, temperature and processing gas of the processing gas supplied to the gas nozzle. An adjusting mechanism 11 for adjusting at least one of the silicon chloride gas concentrations;
Is a control device for controlling the
【0017】前記検出装置はSi含有量をオンラインで
検出することができる適宜な装置により構成することが
でき、例えば、オンライン蛍光X線装置で構成すること
ができる。前記調整機構8は、供給管6a,6bにそれ
ぞれ供給すべき処理ガスの温度および/または塩化珪素
ガス濃度を調整する機能を有する処理ガス供給装置9
と、前記供給管6a,6bにそれぞれ設けられる流量制
御弁10a,10bとから構成され、前記制御装置11
は前記検出装置7によるSi含有量の検出量に基づき、
前記流量制御弁10a,10bの開度(ガス流量)、前
記処理ガス供給装置9から供給される処理ガスの温度、
同じく処理ガス中の塩化珪素ガス濃度のうちの少なくと
も1つを制御する。The detection device can be constituted by an appropriate device capable of detecting the Si content online, and can be constituted by, for example, an online fluorescent X-ray device. The adjusting mechanism 8 has a function of adjusting the temperature of the processing gas to be supplied to the supply pipes 6a and 6b and / or the concentration of the silicon chloride gas, respectively.
And flow control valves 10a and 10b provided in the supply pipes 6a and 6b, respectively.
Is based on the amount of Si content detected by the detection device 7,
The opening degree (gas flow rate) of the flow control valves 10a and 10b, the temperature of the processing gas supplied from the processing gas supply device 9,
Similarly, at least one of the silicon chloride gas concentrations in the processing gas is controlled.
【0018】このような高珪素鋼帯の連続製造設備で
は、連続通板する鋼帯Sは加熱炉1で浸珪処理温度(1
023〜1200℃)またはその近傍まで加熱された
後、浸珪処理炉2に導入される。この浸珪処理炉2では
鋼帯パスライン両側に配されたガスノズル5a,5bか
ら鋼帯両面に塩化珪素ガスを含む処理ガスが吹き付けら
れ、鋼帯表面にSiが浸透する。次いで、鋼帯Sは塩化
珪素ガスを含まない無酸化性ガス雰囲気の拡散均熱炉3
に導入され、Siを板厚方向に拡散させる拡散熱処理を
施された後、冷却炉4で冷却されて浸珪処理を終了す
る。In such a high-silicon steel strip continuous production facility, the steel strip S which is continuously passed through is subjected to the siliconizing treatment temperature (1
023 to 1200 ° C.) or its vicinity, and then introduced into the siliconizing furnace 2. In the siliconizing furnace 2, a processing gas containing silicon chloride gas is blown onto both surfaces of the steel strip from gas nozzles 5a and 5b disposed on both sides of the steel strip pass line, and Si permeates the steel strip surface. Next, the steel strip S is a non-oxidizing gas atmosphere containing no silicon chloride gas.
And subjected to a diffusion heat treatment for diffusing Si in the thickness direction, and then cooled in the cooling furnace 4 to complete the siliconizing treatment.
【0019】冷却炉4の出側では検出装置7により鋼帯
両面のSi含有量が検出され、この検出値が制御装置1
1に出力される。制御装置11では、前記検出値に基づ
き鋼帯両面のSi含有量の偏差が演算され、例えば、こ
の偏差が予め設定された許容値を超えたときに、この偏
差が解消されるよう若しくは許容値以下となるよう流量
制御弁10a,10bの開度(処理ガス流量)、処理ガ
ス供給装置9から供給管6a,6bに供給される処理ガ
スの塩化珪素ガス濃度、同じく処理ガス温度のうちの少
なくとも1つを上記(イ)〜(ハ)に従って制御する。
このような制御を逐時行うことにより、鋼帯両面での浸
珪量のアンバランスが解消され、この結果鋼帯のC反り
が適切に防止される。At the outlet side of the cooling furnace 4, the detection device 7 detects the Si content on both sides of the steel strip, and the detected value is used as the control device 1
1 is output. The control device 11 calculates a deviation of the Si content on both surfaces of the steel strip based on the detected value. For example, when the deviation exceeds a preset allowable value, the deviation is eliminated or the allowable value is set. The opening degree of the flow control valves 10a and 10b (processing gas flow rate), the silicon chloride gas concentration of the processing gas supplied from the processing gas supply device 9 to the supply pipes 6a and 6b, and the processing gas temperature One is controlled in accordance with the above (a) to (c).
By performing such control sequentially, the imbalance of the amount of silicon carbide on both sides of the steel strip is eliminated, and as a result, C warpage of the steel strip is appropriately prevented.
【0020】浸珪処理においてガスノズルから鋼帯面に
吹き付けられる処理ガスは、ボイド等のない適切な品質
の高珪素鋼帯を効率的に製造するために塩素珪素ガス濃
度を約5〜35mol%、温度を浸珪温度である102
3〜1200℃、ガス流量を整流の範囲とすることが好
ましく、したがって、本発明法においてもこれらの範囲
において処理ガスの流量、温度、塩化珪素ガス濃度の制
御を行うことが好ましい。また、製造される高珪素鋼帯
のSi含有量は任意であるが、一般にはSi:5〜10
wt%の高珪素鋼帯が製造される。In the siliconizing treatment, the treatment gas blown from the gas nozzle to the steel strip surface has a chlorine silicon gas concentration of about 5 to 35 mol% in order to efficiently produce a high silicon steel strip of appropriate quality without voids and the like. Temperature is siliconizing temperature 102
It is preferable that the gas flow rate is in the range of 3 to 1200 ° C. and the flow rate is rectified. Therefore, in the method of the present invention, it is preferable to control the flow rate of the processing gas, the temperature, and the silicon chloride gas concentration in these ranges. Further, the Si content of the manufactured high silicon steel strip is arbitrary, but generally, Si: 5 to 10
A wt% high silicon steel strip is produced.
【0021】[0021]
【発明の効果】以上述べた本発明によれば、鋼帯両面へ
のSi添加量のアンバランスによる板反りを適切に防止
することができ、連続浸珪処理ラインにおいて形状が良
好な高品質の高珪素鋼帯を安定して連続的に製造するこ
とができる。According to the present invention described above, sheet warpage due to imbalance in the amount of Si added to both sides of the steel strip can be properly prevented, and a high quality, good shape can be obtained in a continuous siliconizing line. High silicon steel strip can be manufactured stably and continuously.
【図1】連続浸珪処理ラインにおける浸珪処理の実施状
況を示す説明図BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the state of implementation of a siliconizing treatment in a continuous siliconizing treatment line.
【図2】本発明による高珪素鋼帯の製造方法および設備
の一例を示す説明図FIG. 2 is an explanatory view showing an example of a method and equipment for producing a high silicon steel strip according to the present invention.
1…加熱炉、2…浸珪処理炉、3…拡散均熱炉、4…冷
却炉、5a,5b…ガスノズル、6a,6b…供給管、
7…検出装置、8…調整機構、9…処理ガス供給装置、
10a,10b…流量制御弁、11…制御装置DESCRIPTION OF SYMBOLS 1 ... Heating furnace, 2 ... Silicon treatment furnace, 3 ... Diffusion soaking furnace, 4 ... Cooling furnace, 5a, 5b ... Gas nozzle, 6a, 6b ... Supply pipe,
7 detection device, 8 adjustment mechanism, 9 processing gas supply device,
10a, 10b: flow control valve, 11: control device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 和久 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 平谷 多津彦 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭62−227078(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 10/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhisa Okada 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (72) Inventor Tatsuhiko Hiratani 1-1-2 Marunouchi, Chiyoda-ku, Tokyo (56) References JP-A-62-227078 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 10/06
Claims (2)
を含む処理ガスを吹き付けることで鋼帯の浸珪処理を行
い、次いで鋼帯表層に浸透したSiを板厚方向に拡散さ
せる拡散熱処理を行うことにより高珪素鋼帯を連続的に
製造する方法において、拡散熱処理後の鋼帯両面のSi
含有量をそれぞれ検出し、該両検出値の偏差が解消され
若しくは許容値以下となるよう、浸珪処理において鋼帯
両面にそれぞれ吹き付けられる処理ガスの流量、温度お
よび塩化珪素ガス濃度のうちの少なくとも1つを制御す
ることを特徴とする、平坦度の優れた高珪素鋼帯の製造
方法。 A steel strip is subjected to a siliconizing treatment by spraying a processing gas containing silicon chloride gas on both sides of a steel strip continuously passing therethrough, and then diffusing Si penetrating into a steel strip surface layer in a thickness direction of the steel strip. a method of continuously producing high silicon steel strip by heat treatment, the steel strip surfaces of Si after diffusion heat treatment
Detecting the content respectively, the deviation between the two detection values is eliminated
Alternatively, in the siliconizing treatment, at least one of the flow rate, the temperature, and the silicon chloride gas concentration of the processing gas sprayed on both surfaces of the steel strip in the siliconizing treatment is controlled. Manufacturing method of high silicon steel strip.
置され、該ガスノズルから連続通板する鋼帯の両面に塩
化珪素ガスを含む処理ガスを吹き付けることで鋼帯の浸
珪処理を行う浸珪処理炉と、該浸珪処理炉において鋼帯
表層に浸透したSiを板厚方向に拡散させる拡散熱処理
を行う拡散均熱炉と、拡散熱処理された鋼帯を冷却する
冷却炉を有する高珪素鋼帯の製造設備において、浸珪処
理炉内の鋼帯パスラインの両側にそれぞれ配置されたガ
スノズルに供給される処理ガスの流量、温度および塩化
珪素ガス濃度のうちの少なくとも1つを調整可能とした
調整機構と、前記冷却炉から出た鋼帯両面のSi含有量
を検出する検出装置と、該検出装置による鋼帯両面のS
i含有量の検出値の偏差が解消され若しくは許容値以下
となるよう前記調整機構を制御する制御装置とを有する
ことを特徴とする、平坦度の優れた高珪素鋼帯の製造設
備。 Wherein both sides gas nozzle of the strip pass line is disposed, siliconizing performing siliconizing treatment of the steel strip by blowing a process gas containing both surfaces of silicon chloride gas of the steel strip to be continuously passed plates from said gas nozzle High silicon steel having a treatment furnace, a diffusion soaking furnace for performing diffusion heat treatment for diffusing Si permeated into the surface layer of the steel strip in the thickness direction in the siliconizing treatment furnace, and a cooling furnace for cooling the steel strip subjected to diffusion heat treatment In a strip manufacturing facility, at least one of a flow rate, a temperature, and a silicon chloride gas concentration of a processing gas supplied to gas nozzles disposed on both sides of a steel strip pass line in a siliconizing furnace is adjustable. An adjusting mechanism, a detecting device for detecting the Si content on both surfaces of the steel strip coming out of the cooling furnace, and an S for detecting both surfaces of the steel strip by the detecting device.
and a control device for controlling the adjusting mechanism so that the deviation of the detected value of the i content is eliminated or becomes equal to or less than an allowable value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03109397A JP3289632B2 (en) | 1997-01-30 | 1997-01-30 | Manufacturing method and equipment for high silicon steel strip with excellent flatness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03109397A JP3289632B2 (en) | 1997-01-30 | 1997-01-30 | Manufacturing method and equipment for high silicon steel strip with excellent flatness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10212566A JPH10212566A (en) | 1998-08-11 |
JP3289632B2 true JP3289632B2 (en) | 2002-06-10 |
Family
ID=12321795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03109397A Expired - Fee Related JP3289632B2 (en) | 1997-01-30 | 1997-01-30 | Manufacturing method and equipment for high silicon steel strip with excellent flatness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3289632B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3348665B1 (en) * | 2015-09-08 | 2020-05-06 | JFE Steel Corporation | Method for manufacturing high silicon steel strip by continuous siliconization |
-
1997
- 1997-01-30 JP JP03109397A patent/JP3289632B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10212566A (en) | 1998-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20080046241A (en) | Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping | |
EP3243924A1 (en) | Method of producing galvannealed steel sheet | |
US5089061A (en) | Method for producing high silicon steel strip in a continuously treating line | |
WO2017072989A1 (en) | Method for manufacturing hot-dip galvanized steel sheet | |
JP2020190017A (en) | Dew point control method for reduction atmospheric furnace, reduction atmospheric furnace, method for producing cold rolled steel sheet, and method for producing hot dip galvanized steel sheet | |
JP2530939B2 (en) | Method for manufacturing high-strength hot-dip galvanized steel sheet containing high Si | |
JP3289632B2 (en) | Manufacturing method and equipment for high silicon steel strip with excellent flatness | |
JP3871211B2 (en) | Endless metal belt manufacturing method and apparatus | |
JP5444729B2 (en) | Method for producing hot dip galvanized steel sheet and continuous hot dip galvanizing apparatus | |
JP2605511B2 (en) | Method for producing high silicon steel strip by continuous line | |
JP2006176806A (en) | Hot dip galvanizing method and hot dip galvanizing equipment | |
JPH0643608B2 (en) | Method for producing high silicon steel strip in continuous line | |
JPH0643607B2 (en) | Method for producing high silicon steel strip in continuous line | |
JPH0643610B2 (en) | Method for producing high silicon steel strip in continuous line | |
JP3211724B2 (en) | Method for producing high silicon steel sheet having uniform silicon concentration in sheet width direction | |
JP4470556B2 (en) | Manufacturing method of high silicon steel sheet by continuous line | |
JP3446051B2 (en) | Method for producing high silicon steel sheet with excellent surface properties | |
JP2001314912A (en) | Method and equipment for treating surface of hot rolled metallic strip or steel sheet | |
JP2528748B2 (en) | Method of manufacturing silicon steel sheet by continuous line | |
JP2954339B2 (en) | Continuous annealing furnace | |
JP2502405B2 (en) | Continuous annealing furnace | |
JPH0643611B2 (en) | Method for producing high silicon steel strip in continuous line | |
JPH05202425A (en) | Carburizing and nitriding treatment equipment in continuous annealing furnace | |
JP2704819B2 (en) | Method for producing high-Si hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP3228951B2 (en) | Continuous decarburization annealing equipment for grain-oriented electrical steel sheets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080322 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110322 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120322 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130322 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130322 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140322 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |