JP3007374B2 - Fuel injection device for internal combustion engine - Google Patents

Fuel injection device for internal combustion engine

Info

Publication number
JP3007374B2
JP3007374B2 JP2081091A JP8109190A JP3007374B2 JP 3007374 B2 JP3007374 B2 JP 3007374B2 JP 2081091 A JP2081091 A JP 2081091A JP 8109190 A JP8109190 A JP 8109190A JP 3007374 B2 JP3007374 B2 JP 3007374B2
Authority
JP
Japan
Prior art keywords
intake air
pressure
crank chamber
scavenging port
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2081091A
Other languages
Japanese (ja)
Other versions
JPH03281958A (en
Inventor
公裕 野中
行男 松下
Original Assignee
三信工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三信工業株式会社 filed Critical 三信工業株式会社
Priority to JP2081091A priority Critical patent/JP3007374B2/en
Publication of JPH03281958A publication Critical patent/JPH03281958A/en
Application granted granted Critical
Publication of JP3007374B2 publication Critical patent/JP3007374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、クランク室予圧式2サイクル内燃機関の燃
料噴射装置に関する。
The present invention relates to a fuel injection device for a crankcase preload type two-stroke internal combustion engine.

[従来の技術] 内燃機関に使用される燃料噴射装置では、吸入空気量
に応じて燃料噴射量を制御し、運転状態に対応した最適
な混合気濃度を得ることが必要である。
2. Description of the Related Art In a fuel injection device used for an internal combustion engine, it is necessary to control a fuel injection amount according to an intake air amount and obtain an optimum mixture concentration corresponding to an operation state.

然るに、従来の燃料噴射装置として、特開昭59−5875
号公報に記載のものが提案されている。この燃料噴射装
置は、クランク室予圧式2サイクル内燃機関において、
掃気口開口付近時のクランク室内圧P1と、掃気口閉口付
近時のクランク室内圧P2との差P1−P2に基づいて、吸入
空気量を求め、この吸入空気量を用いて燃料噴射量を決
定するものである。
However, as a conventional fuel injection device, Japanese Patent Application Laid-Open No. 59-5875
Japanese Patent Application Laid-Open Publication No. H10-202,279 has been proposed. This fuel injection device is used in a crankcase preload type two-cycle internal combustion engine.
The intake air amount is determined based on the difference P1−P2 between the crank chamber pressure P1 near the scavenging port opening and the crank chamber pressure P2 near the scavenging port closing, and the fuel injection amount is determined using the intake air amount. Is what you do.

即ち、吸入空気量は掃気行程開始時にクランク室内に
ある空気重量から、掃気行程終了時にクランク室内に残
っている空気重量を減じたものに等しい。そして、特開
昭59−5875号にあっては、掃気行程開始時にクランク室
内にある空気重量の代表値として上述のP1、掃気行程終
了時にクランク室内に残っている空気重量の代表値とし
て上述のP2を採用し、P1−P2により吸入空気量を求めた
ものである。
That is, the amount of intake air is equal to the weight of air remaining in the crank chamber at the end of the scavenging stroke subtracted from the weight of air in the crank chamber at the start of the scavenging stroke. In JP-A-59-5875, P1 is used as the representative value of the air weight in the crank chamber at the start of the scavenging stroke, and P1 is used as the representative value of the air weight remaining in the crank chamber at the end of the scavenging stroke. P2 is adopted, and the intake air amount is obtained from P1-P2.

[発明が解決しようとする課題] 然しながら、実際の内燃機関においては、吸入された
空気はポリトロープ変化するため、単にP1−P2から吸入
空気量を求める従来技術では吸入空気量の検出精度が低
い。このことは、燃料噴射量を実際の吸入空気量に応じ
て制御することの制御精度が低く、運転状態に対応した
混合気濃度の形成を困難にすることを意味する。
[Problems to be Solved by the Invention] However, in an actual internal combustion engine, the intake air changes in polytrope, and therefore, the detection accuracy of the intake air amount is low in the related art that simply calculates the intake air amount from P1-P2. This means that the control accuracy of controlling the fuel injection amount according to the actual intake air amount is low, and it is difficult to form a mixture concentration corresponding to the operating state.

本発明は、クランク室予圧式2サイクル内燃機関の燃
料噴射装置において、吸入空気量を高精度に検出し、結
果として燃料噴射量を実際の吸入空気量に応じて制御す
ることの制御精度を向上し、運転状態に対応した最適な
混合気濃度を形成することを目的とする。
The present invention improves the control accuracy of detecting the intake air amount with high accuracy in a fuel injection device of a crankcase preload type two-stroke internal combustion engine, and consequently controlling the fuel injection amount according to the actual intake air amount. It is another object of the present invention to form an optimum mixture concentration corresponding to an operation state.

[課題を解決するための手段] 本発明は、吸入空気をクランク室で予圧し、予圧した
吸入空気を掃気口から燃焼室へ供給するクランク室予圧
式2サイクル内燃機関において、クランク室内圧を検出
する圧力検出装置と、吸気温度を検出する吸気温度検出
装置と、圧力検出装置と吸気温度検出装置の検出信号を
得て、掃気口開口付近時のクランク室内圧P1、掃気口閉
口付近時のクランク室内圧P2、吸気温度T0を用いて、掃
気行程での掃気口の開時と閉時のクランク室内圧力差と
その間のポリトロープ指数より、下記の式或いは、下記
の式を簡素化した数式・数表に基づき吸入空気量Gを求
める空気量演算装置と、空気量演算装置の演算結果に基
づき燃料噴射量を決定する噴射制御装置とを有して構成
されるようにしたものである。
Means for Solving the Problems The present invention detects a crank chamber pressure in a crank chamber preload type two-cycle internal combustion engine in which intake air is pre-pressed in a crank chamber and the pre-pressed intake air is supplied from a scavenging port to a combustion chamber. Pressure detection device, an intake air temperature detection device that detects the intake air temperature, a detection signal of the pressure detection device and the intake air temperature detection device, and a crank chamber pressure P1 near the opening of the scavenging port and a crank near the closing of the scavenging port. Using the indoor pressure P2 and the intake air temperature T0, the following formula or a simplified formula of the following formula is obtained from the pressure difference between the crank chamber at the time of opening and closing the scavenging port in the scavenging stroke and the polytropic index therebetween. It is configured to include an air amount calculation device for obtaining the intake air amount G based on the table, and an injection control device for determining the fuel injection amount based on the calculation result of the air amount calculation device.

G=h[f(P1,P2),T0] 但し、f(P1,P2)=P2[(P1/P2)1/n−1] n:ポリトロープ指数 [作用] 吸入空気重量は掃気行程時にクランク室内から燃焼室
内へ流出した空気重量と等しい。換言すれば、掃気行程
開始時(掃気口開口付近時)クランク室内にある空気重
量から掃気行程終了時(掃気口閉口付近時)クランク室
内に残っている空気重量を減じたものが吸入空気重量で
ある。これを式で表わすと下記(1)式の如くである。
G = h [f (P1, P2), T0] where f (P1, P2) = P2 [(P1 / P2) 1 / n- 1] n: Polytropic index [Action] The intake air weight is the crank during the scavenging stroke. It is equal to the weight of the air flowing out of the room into the combustion chamber. In other words, the intake air weight is obtained by subtracting the weight of the air remaining in the crank chamber at the end of the scavenging stroke (when the scavenging port is closed) from the weight of the air in the crank chamber at the start of the scavenging stroke (when the scavenging port is open). is there. This is expressed by the following equation (1).

GAir=G1−G2 …(1) GAir:吸入空気重量 G1 :掃気行程開始時の空気重量 G2 :掃気行程終了時の空気重量 前述の特開昭59−5875号ではG1を示す値として掃気口
開口付近時のクランク室内圧P1、G2を示す値として掃気
口閉口付近時のクランク室内圧P2を利用した。このた
め、吸入空気重量を求めるためのパラメータとしてP1−
P2を用いたのである。
GAir = G1-G2 (1) GAir: intake air weight G1: air weight at the start of scavenging stroke G2: air weight at the end of scavenging stroke In the above-mentioned Japanese Patent Application Laid-Open No. 59-5875, the scavenging port opening is a value indicating G1. The crank chamber pressure P2 near the closing of the scavenging port was used as a value indicating the crank chamber pressures P1 and G2 in the vicinity. Therefore, P1−
P2 was used.

ところが、実際の内燃機関においては、吸入された空
気がポリトロープ変化するため、空気重量Gを示す値は
クランク室内圧Pとともにクランク室内温度Tが影響し
P/Tとなる。即ち、吸入空気重量を求めるためのパラメ
ータは下記(2)式の如くになる。
However, in an actual internal combustion engine, the value of the air weight G is affected not only by the crank chamber pressure P but also by the crank chamber temperature T because the intake air undergoes a polytropic change.
P / T. That is, parameters for obtaining the intake air weight are as shown in the following equation (2).

T1=T2であれば特開昭59−5875号で示したP1−P2をパ
ラメータとすれば良いのであるが実際の内燃機関ではT1
=T2とはならないためP1−P2をパラメータとして求めた
吸入空気重量の精度は低下するのである。
If T1 = T2, P1-P2 shown in JP-A-59-5875 may be used as a parameter.
= T2, the accuracy of the intake air weight obtained using P1-P2 as a parameter decreases.

従って、上記(2)式をパラメータとして吸入空気重
量を求めれば精度は向上する。
Therefore, if the intake air weight is obtained using the above equation (2) as a parameter, the accuracy is improved.

然しながら、クランク角度とともに刻々と変化するク
ランク室内温度を反応良く、又精度良く測定することは
困難である。
However, it is difficult to measure the temperature in the crank chamber, which changes momentarily with the crank angle, with good responsiveness and high accuracy.

そこで上記(2)式を次のように変形する。 Therefore, the above equation (2) is modified as follows.

ここで、内燃機関に吸入された空気はポリトロープ変
化するため、T1とT2の関係は下記(3)式の如くにな
る。
Here, since the air taken into the internal combustion engine undergoes a polytrope change, the relationship between T1 and T2 is expressed by the following equation (3).

又、T2は吸気温度T0とほぼ等しいことから前記(2)
式は下記(4)式の如くになる。
Also, since T2 is almost equal to the intake air temperature T0, the above (2)
The equation is as shown in the following equation (4).

これにより吸入空気重量Gは下記(5)式の如く、吸
気温度T0及びP1、P2の関数f(P1,P2)をパラメータと
した関数hで求められる。
As a result, the intake air weight G is obtained by the function h using the function f (P1, P2) of the intake air temperature T0 and P1, P2 as parameters as shown in the following equation (5).

G=h[f(P1,P2),T0] …(5) h:実験から求められる実験式 尚、本発明の実施において、上記Gは内燃機関の運転
制御に用いるため、処理速度を高める必要がある。この
ため、上述の関数f、hは複雑な指数を含まない簡素化
した式、例えば多項式に変換して用いたり、或いは広範
に変化する各種のT0、P1、P2に対応する各種のf(P1,P
2)、Gを予め数表、グラフ等にて用意したマップを用
いることもできる。
G = h [f (P1, P2), T0] (5) h: empirical formula obtained from experiment In the practice of the present invention, since G is used for controlling the operation of the internal combustion engine, it is necessary to increase the processing speed. For this reason, the functions f and h described above are used by converting them into simplified expressions that do not include complicated exponents, for example, polynomials, or various f (P1) corresponding to various T0, P1, and P2 that vary widely. , P
2) A map in which G is prepared in advance by using a numerical table, a graph, or the like can be used.

[実施例] 第1図は本発明の一実施例を示す制御系統図である。Embodiment FIG. 1 is a control system diagram showing one embodiment of the present invention.

第1図で符号10はクランク室予圧式2サイクル内燃機
関、12はシリンダ、12Aは燃焼室、14はピストン、16は
点火栓、18はクランクケース、20はクランク軸、又22は
コンロッドである。クランクケース18内にクランク室24
が形成される。
In FIG. 1, reference numeral 10 denotes a crankcase preload type two-stroke internal combustion engine, 12 denotes a cylinder, 12A denotes a combustion chamber, 14 denotes a piston, 16 denotes a spark plug, 18 denotes a crankcase, 20 denotes a crankshaft, and 22 denotes a connecting rod. . Crankcase 24 inside crankcase 18
Is formed.

26は吸気管であり、この吸気管26はリード弁28を介し
て吸気ポート30に接続されている。
Reference numeral 26 denotes an intake pipe, which is connected to an intake port 30 via a reed valve 28.

32は排気ポート、34は排気管である。尚、シリンダ12
には掃気ポート36が開口し、この掃気ポート36は掃気通
路38によりクランク室24へ連通している。
32 is an exhaust port and 34 is an exhaust pipe. The cylinder 12
The scavenging port 36 is open at the end, and the scavenging port 36 communicates with the crank chamber 24 through a scavenging passage 38.

40は燃料タンク、42は燃料中のごみを除去するための
ストレーナ、44は電磁式燃料ポンプである。46は電磁式
燃料噴射弁であり、この噴射弁46へは燃料ポンプ44より
圧送された燃料が供給されている。48は圧力調整器であ
って、燃料ポンプ44より噴射弁46へ圧送される燃料圧を
一定に保つ。即ち、燃料ポンプ44より噴射弁46へ供給さ
れる燃料圧が、所定の圧力以上になると圧力調整器48が
開き燃料の一部をパイプ50を介して前記燃料タンク40へ
還流させる。
40 is a fuel tank, 42 is a strainer for removing dust in the fuel, and 44 is an electromagnetic fuel pump. Reference numeral 46 denotes an electromagnetic fuel injection valve, to which fuel pumped from a fuel pump 44 is supplied. Reference numeral 48 denotes a pressure regulator, which keeps the fuel pressure fed from the fuel pump 44 to the injection valve 46 constant. That is, when the fuel pressure supplied from the fuel pump 44 to the injection valve 46 becomes equal to or higher than a predetermined pressure, the pressure regulator 48 opens and a part of the fuel is returned to the fuel tank 40 via the pipe 50.

52はクランクケース18に取付けられた圧力検出装置で
あり、クランク室内圧Pを検出する。
Reference numeral 52 denotes a pressure detection device attached to the crankcase 18, which detects the pressure P in the crank chamber.

54はクランク軸20に取付けられたクランク角度検出装
置であり、クランク軸20の回転角度θを検出する。この
クランク角度検出装置54は、本発明の実施において、掃
気ポート36の開口付近時タイミング(θP1)と閉口付近
時タイミング(θP2)を検出するタイミング検出手段と
して機能する。
Numeral 54 denotes a crank angle detection device attached to the crankshaft 20, which detects the rotation angle θ of the crankshaft 20. In the embodiment of the present invention, the crank angle detecting device 54 functions as timing detecting means for detecting the timing near the opening of the scavenging port 36 (θP1) and the timing near the closing (θP2).

56は吸気管26に取付けられた吸気温度検出装置であ
り、吸気温度Tを検出する。
Reference numeral 56 denotes an intake air temperature detection device attached to the intake pipe 26, and detects an intake air temperature T.

58は空気量演算装置である。空気量演算装置58は圧力
検出装置52とクランク角度検出装置54と吸気温度検出装
置56の検出信号を得て、掃気口開口付近時(θP1)のク
ランク室内圧P1、掃気口閉口付近時(θP2)のクランク
室内圧P2、吸気温度T0を用いて、前述の(5)式に基づ
き吸入空気量Gを求める。
58 is an air amount calculating device. The air amount calculating device 58 obtains the detection signals of the pressure detecting device 52, the crank angle detecting device 54, and the intake air temperature detecting device 56, and obtains the crank chamber pressure P1 near the opening of the scavenging port (θP1) and the closing pressure of the scavenging port (θP2). Using the crank chamber pressure P2 and the intake air temperature T0, the intake air amount G is obtained based on the above-mentioned equation (5).

60は噴射制御装置である。噴射制御装置60は、空気量
演算装置58の演算結果G、クランク軸20の回転角度θ、
その他吸気温度、機関温度、加減速等、運転状況を示す
種々の制御信号が入力される。噴射制御装置60は運転状
況に最適な燃料供給量を、噴射制御装置60内に予め記憶
された演算プログラムに従って算出し、噴射信号Iを前
記噴射弁46へ出力する。この噴射信号Iは、クランク軸
20の回転角度θに同期した間欠的に所定時間幅の電気信
号であり、噴射弁46内の電磁ソレノイドがこの噴射信号
Iによって作動し噴射弁46を開く。噴射制御装置60は、
この噴射信号Iの時間幅を運転状況に対応して最適とな
るように決定するものである。
60 is an injection control device. The injection control device 60 calculates the calculation result G of the air amount calculation device 58, the rotation angle θ of the crankshaft 20,
In addition, various control signals indicating operating conditions such as an intake air temperature, an engine temperature, and acceleration / deceleration are input. The injection control device 60 calculates the optimal fuel supply amount for the operating condition according to a calculation program stored in advance in the injection control device 60, and outputs an injection signal I to the injection valve 46. This injection signal I
This is an electric signal intermittently having a predetermined time width synchronized with the rotation angle θ of 20, and the electromagnetic solenoid in the injection valve 46 is operated by the injection signal I to open the injection valve 46. The injection control device 60
The time width of the injection signal I is determined so as to be optimal in accordance with the driving situation.

この噴射制御装置60はデイタル計算器で構成できるこ
とは勿論であるが、アナログ回路で構成しても良い。
The injection control device 60 can of course be constituted by a digital calculator, but may also be constituted by an analog circuit.

次に、この実施例の動作を説明する。 Next, the operation of this embodiment will be described.

ピストン14の上昇によりクランク室24内圧が降下し、
ピストン14が吸気ポート30を開くと、吸入空気がリード
弁28を介してクランク室24内へ流入する。
Due to the rise of the piston 14, the internal pressure of the crank chamber 24 decreases,
When the piston 14 opens the intake port 30, the intake air flows into the crank chamber 24 via the reed valve 28.

ピストン14が降下するとクランク室24内で吸入空気が
予圧され、掃気ポート36が開くとこの予圧された吸入空
気が掃気通路38を通って燃焼室12Aへ流入し既燃焼ガス
を排気ポート32へ押出す。
When the piston 14 descends, the intake air is pre-pressurized in the crank chamber 24, and when the scavenging port 36 is opened, the pre-compressed intake air flows into the combustion chamber 12A through the scavenging passage 38 and pushes the burned gas to the exhaust port 32. put out.

この間において、吸気量演算装置58は圧力検出装置52
とクランク角度検出装置54と吸気温度検出装置56の検出
信号を得て、前述の(5)式により、吸入空気量Gを求
める。そして、噴射制御装置60は、空気量演算装置58の
演算結果G、クランク軸20の回転角度θ、その他の種々
の制御信号に基づき、最適燃料供給量に見合った噴射信
号Iの時間幅を算出する。噴射弁46には圧力調整器48に
より一定圧に保たれた燃料が供給され、噴射信号Iが入
力されるとその時間幅だけこの噴射弁46が開いて適量の
燃料を燃焼室12A内へ噴射する。このため燃焼室12A内で
生成される混合気は最適な濃度となる。
During this time, the intake air amount calculating device 58 is connected to the pressure detecting device 52.
Then, the detection signals of the crank angle detection device 54 and the intake temperature detection device 56 are obtained, and the intake air amount G is obtained by the above equation (5). The injection control device 60 calculates the time width of the injection signal I corresponding to the optimum fuel supply amount based on the calculation result G of the air amount calculation device 58, the rotation angle θ of the crankshaft 20, and other various control signals. I do. The fuel maintained at a constant pressure by the pressure regulator 48 is supplied to the injection valve 46, and when the injection signal I is input, the injection valve 46 is opened for the time width to inject an appropriate amount of fuel into the combustion chamber 12A. I do. Therefore, the air-fuel mixture generated in the combustion chamber 12A has an optimum concentration.

上記実施例によれば、空気量演算装置58による吸入空
気量Gの演算に際し、吸入空気のポリトロープ変化を考
慮した前記(5)式或いは(5)式を簡素化した数式・
数表を用いることとしたから、吸入空気量を高精度に検
出し、結果として燃料噴射量を実際の吸入空気量に応じ
て制御することの制御精度を向上し、運転状態に対応し
た最適な混合気濃度を形成することができる。
According to the above-described embodiment, when calculating the intake air amount G by the air amount calculating device 58, the equation (5) or the equation (5) obtained by simplifying the equation (5) in consideration of the polytropic change of the intake air is used.
Since a numerical table is used, the intake air amount is detected with high accuracy, and as a result, the control accuracy of controlling the fuel injection amount according to the actual intake air amount is improved, and the optimum A mixture concentration can be formed.

尚、本発明の実施において、噴射弁は吸気管(26)に
取付けられ、燃料を吸気管内へ噴射し、クランク室では
混合気を予圧縮するものであっても良い。
In the embodiment of the present invention, the injection valve may be attached to the intake pipe (26) to inject fuel into the intake pipe and pre-compress the air-fuel mixture in the crank chamber.

又、本発明の実施において、掃気口開口付近時のクラ
ンク室内圧P1、及び掃気口閉口付近時のクランク室内圧
P2を検出するに際し、掃気口の開閉タイミングは必ずし
も上記実施例の如くのクランク角度検出装置の検出信号
に基づいて検出することを要さない。例えば特開昭59−
5875号公報に記載の如くの圧力検出装置の設置構造によ
り、掃気口の開口付近時及び閉口付近時のクランク室内
圧を検出することとしても良い。
Further, in the embodiment of the present invention, the crank chamber pressure P1 near the scavenging port opening and the crank chamber pressure near the scavenging port closing
When detecting P2, the opening / closing timing of the scavenging port does not necessarily need to be detected based on the detection signal of the crank angle detecting device as in the above embodiment. For example, JP-A-59-
With the installation structure of the pressure detecting device as described in Japanese Patent No. 5875, it is also possible to detect the pressure in the crank chamber near the opening and near the closing of the scavenging port.

[発明の効果] 以上のように本発明によれば、クランク室予圧式2サ
イクル内燃機関の燃料噴射装置において、吸入空気量を
高精度に検出し、結果として燃料噴射量を実際の吸入空
気量に応じて制御することの制御精度を向上し、運転状
態に対応した最適な混合気濃度を形成することができ
る。
[Effects of the Invention] As described above, according to the present invention, in a fuel injection device of a crankcase preload type two-stroke internal combustion engine, an intake air amount is detected with high accuracy, and as a result, a fuel injection amount is determined by an actual intake air amount. The control accuracy of controlling according to the air condition can be improved, and an optimum mixture concentration corresponding to the operating state can be formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す制御系統図である。 10……内燃機関、 12A……燃焼室、 24……クランク室、 36……掃気ポート、 52……圧力検出装置、 54……クランク角度検出装置、 56……吸気温度検出装置、 58……空気量演算装置、 60……噴射制御装置。 FIG. 1 is a control system diagram showing one embodiment of the present invention. 10 Internal combustion engine 12A Combustion chamber 24 Crank chamber 36 Scavenging port 52 Pressure detector 54 Crank angle detector 56 Inlet air temperature detector 58 Air amount calculation device, 60 …… Injection control device.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02D 41/02 F02D 45/00 F02D 41/18 F02B 33/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F02D 41/02 F02D 45/00 F02D 41/18 F02B 33/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸入空気をクランク室で予圧し、予圧した
吸入空気を掃気口から燃焼室へ供給するクランク室予圧
式2サイクル内燃機関において、クランク室内圧を検出
する圧力検出装置と、吸気温度を検出する吸気温度検出
装置と、圧力検出装置と吸気温度検出装置の検出信号を
得て、掃気口開口付近時のクランク室内圧P1、掃気口閉
口付近時のクランク室内圧P2、吸気温度T0を用いて、掃
気行程での掃気口の開時と閉時のクランク室内圧力差と
その間のポリトロープ指数より、下記の式に基づき吸入
空気量Gを求める空気量演算装置と、空気量演算装置の
演算結果に基づき燃料噴射量を決定する噴射制御装置と
を有して構成されることを特徴とする内燃機関の燃料噴
射装置。 G=h[f(P1,P2),T0] 但し、f(P1,P2)=P2[(P1/P2)1/n−1] n:ポリトロープ指数
1. A pressure detecting device for detecting a pressure in a crank chamber of a two-stroke internal combustion engine of a crank chamber pre-pressure type for pre-pressurizing intake air in a crank chamber and supplying the pre-pressurized intake air from a scavenging port to a combustion chamber; Temperature detection device, and the detection signals of the pressure detection device and the intake air temperature detection device, and obtains the crank chamber pressure P1 near the opening of the scavenging port, the crank chamber pressure P2 near the closing of the scavenging port, and the intake air temperature T0. The air amount calculating device for calculating the intake air amount G based on the following equation from the pressure difference between the crank chamber when the scavenging port is opened and closed and the polytrope index therebetween during the scavenging stroke, and the calculation of the air amount calculating device And a fuel injection control device for determining a fuel injection amount based on the result. G = h [f (P1, P2), T0] where f (P1, P2) = P2 [(P1 / P2) 1 / n- 1] n: polytropic index
JP2081091A 1990-03-30 1990-03-30 Fuel injection device for internal combustion engine Expired - Lifetime JP3007374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2081091A JP3007374B2 (en) 1990-03-30 1990-03-30 Fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2081091A JP3007374B2 (en) 1990-03-30 1990-03-30 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03281958A JPH03281958A (en) 1991-12-12
JP3007374B2 true JP3007374B2 (en) 2000-02-07

Family

ID=13736719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2081091A Expired - Lifetime JP3007374B2 (en) 1990-03-30 1990-03-30 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3007374B2 (en)

Also Published As

Publication number Publication date
JPH03281958A (en) 1991-12-12

Similar Documents

Publication Publication Date Title
EP0478120B1 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
CN101087939B (en) Method for operating an internal combustion engine
JPS6340257B2 (en)
JPS595875A (en) Fuel injection device for two-cycle internal-combustion engine
EP0476811B1 (en) Method and apparatus for controlling an internal combustion engine
EP0594114A3 (en) Fuel metering control system in internal combustion engine
FR2442968A1 (en) CONTROL SYSTEM FOR FUEL SUPPLY OF AN INTERNAL COMBUSTION ENGINE
US4957089A (en) Fuel injection control system for a two-cycle engine
JPH02163443A (en) Controller for engine equipped with supercharger
US5134984A (en) Fuel injection system of internal combustion engine
JP3133311B2 (en) Fuel injection two-stroke engine
US20050021215A1 (en) Method for determining an estimated value of a mass flow in the intake channel of an internal combustion engine
JP3007374B2 (en) Fuel injection device for internal combustion engine
US4981127A (en) Fuel injection control system for a two-cycle engine
US7231909B2 (en) Air intake apparatus and control apparatus for an internal combustion engine
JP2004316597A (en) Inlet system for internal combustion engine
JPH09317568A (en) Abnormality detecting device for diesel engine
JP2912382B2 (en) Port scavenging / fuel injection type 2-cycle engine
JP2971095B2 (en) Fuel injection two-stroke engine
JP2912420B2 (en) Port scavenging / fuel injection type 2-cycle engine
JP2930662B2 (en) Fuel injection two-stroke engine
JP2762142B2 (en) Fuel injection device for two-cycle engine
JP2813226B2 (en) Fuel injection device for two-cycle engine
US20060207572A1 (en) Control device of internal combustion engine
WO2003018978A2 (en) Method for measuring the airflow in an internal combustion engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081020

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091020

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees