JP2913022B2 - Soil moisture measurement method and probe for soil moisture measurement - Google Patents

Soil moisture measurement method and probe for soil moisture measurement

Info

Publication number
JP2913022B2
JP2913022B2 JP25215696A JP25215696A JP2913022B2 JP 2913022 B2 JP2913022 B2 JP 2913022B2 JP 25215696 A JP25215696 A JP 25215696A JP 25215696 A JP25215696 A JP 25215696A JP 2913022 B2 JP2913022 B2 JP 2913022B2
Authority
JP
Japan
Prior art keywords
soil
probe
soil moisture
air
relative permittivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25215696A
Other languages
Japanese (ja)
Other versions
JPH1062368A (en
Inventor
高秀 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORINSUISANSHO NOGYO KENKYU SENTAA SHOCHO
Original Assignee
NORINSUISANSHO NOGYO KENKYU SENTAA SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORINSUISANSHO NOGYO KENKYU SENTAA SHOCHO filed Critical NORINSUISANSHO NOGYO KENKYU SENTAA SHOCHO
Priority to JP25215696A priority Critical patent/JP2913022B2/en
Publication of JPH1062368A publication Critical patent/JPH1062368A/en
Application granted granted Critical
Publication of JP2913022B2 publication Critical patent/JP2913022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、営農対策上重要なフ
ァクターである圃場の表層に近い部位の土壌水分量が、
迅速且つ高精度に得られる土壌水分のプローブと計測方
法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for reducing the soil moisture content of a portion near the surface of a field, which is an important factor in farming measures.
The present invention relates to a soil moisture probe and a measurement method which can be obtained quickly and with high accuracy.

【0002】[0002]

【従来の技術と問題点】従来、圃場の土壌水分計測法
は、重量法や中性子が用いられてきたが、測定時間・安
全性の面で使用場面が限定されていた。一方近年、ケー
ブル障害発生(断線、ショート等)地点までの距離を瞬
時に測定する目的で多用されているTDRケーブルテス
タを応用した土壌水分計測法が出現している。この計測
法の原理は、土壌の水分が比誘電率に関連することを利
用し、土壌に垂直に埋め込んだまたは水平に埋め込んだ
金属プローブに沿って電磁波を送り、その反射時間か
ら、比誘電率を計測し、比誘電率から土壌水分量を算出
する方法である。
2. Description of the Related Art Conventionally, gravimetric methods and neutrons have been used for measuring soil moisture in a field, but their use is limited in terms of measurement time and safety. On the other hand, in recent years, a soil moisture measurement method using a TDR cable tester, which is widely used for the purpose of instantaneously measuring a distance to a point where a cable failure occurs (a disconnection, a short circuit, or the like), has appeared. The principle of this measurement method is to take advantage of the fact that soil moisture is related to the relative permittivity, send electromagnetic waves along a metal probe embedded vertically or horizontally in the soil, and from the reflection time, the relative permittivity Is measured and the soil moisture content is calculated from the relative permittivity.

【0003】この計測法は測定の迅速性に極めて富んで
おり、有力な計測方法であるが、プローブを土壌に垂直
に埋め込む構造では、土壌の表層に近い部位(〜10c
m)の計測ではプローブが短くなり、電磁波の反射時間
も短くなり、精度の低下を招き、また水平に埋め込む構
造では、多点数測定の場合移動が困難で、効率的な測定
を阻害する要因となっている。
[0003] This measurement method is extremely effective in the rapidity of measurement, and is a promising measurement method. However, in a structure in which a probe is vertically embedded in soil, a portion close to the surface layer of the soil (〜1010 c) is used.
In the measurement of m), the probe is shortened, the reflection time of the electromagnetic wave is shortened, and the accuracy is reduced. In the case of the horizontally embedded structure, it is difficult to move in the case of multipoint measurement, which is a factor that hinders efficient measurement. Has become.

【0004】[0004]

【発明の目的】本発明は、上述の従来の欠点を除去し圃
場の表層に近い部位の土壌水分量を迅速かつ高精度に得
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned conventional drawbacks and to quickly and accurately obtain the soil moisture content of a portion near the surface of a field.

【0005】[0005]

【問題点の解決手段】本発明の要旨とするところは、一
枚の金属プローブの半分を土壌中に埋設し、他の半分を
空気中に臨ませて全体の比誘電率を計測し、演算装置
で、式 ε=2ε−1(ε:土壌の比誘電率、ε:
空気と土壌の両方の影響を受けた比誘電率)で求めた土
壌の比誘電率から土壌水分量を算出することを特徴とす
る土壌水分計測方法であり、また、プローブ断面の下半
分が土壌中の比誘電率、上半分が空気中の比誘電率に感
応する機構を具備したTDR測定手法を用いた土壌水分
計測用プローブである。
[Summary of the Invention] The gist of the present invention is to bury one half of a metal probe in the soil and expose the other half to the air to measure the relative dielectric constant of the whole and calculate In the apparatus, the equation ε 2 = 2ε−1 (ε 2 : relative permittivity of soil, ε:
This is a soil moisture measurement method that calculates the soil moisture content from the relative permittivity of the soil determined by the relative permittivity affected by both air and soil. This is a probe for measuring soil moisture using a TDR measurement method equipped with a mechanism that responds to the relative dielectric constant in the middle and the upper half to the relative dielectric constant in the air.

【0006】本プローブを用いた計算式は、下記のとお
りである。土壌にプローブを垂直又は水平に埋め込んだ
場合の計算式は、プローブ周辺が同一の比誘電率の土壌
で覆われているので、 となる。
A calculation formula using the present probe is as follows. The formula for embedding the probe vertically or horizontally in the soil is that the area around the probe is covered with soil of the same dielectric constant, Becomes

【0007】この式より求めた比誘電率をもとに土壌水
分量を算出する。表面測定では、プローブ軸方向の下半
分が土壌で、上半分は空気である。従って比誘電率は、 となる。
[0007] The soil moisture content is calculated based on the relative permittivity obtained from this equation. In the surface measurement, the lower half in the probe axis direction is soil and the upper half is air. Therefore, the relative permittivity is Becomes

【0008】ここで空気の比誘電率(=1.00058
5)はほとんど1と見なしてよいために、上式は、 となり、
Here, the relative dielectric constant of air (= 1.00058)
Since 5) can be regarded as almost 1, the above equation becomes Becomes

【0009】よって求める土壌の比誘電率は、 となる。演算装置で、この式により求めた比誘電率をも
とに、土壌水分量を算出する。また、本発明に係るプロ
ーブは、このようにプローブ断面の下半分が土壌中の比
誘電率に感応し、上半分が空気中の比誘電率に感応する
構成となっている。具体的には、下半分は、一枚の板の
内土壌に埋設される部分であり、上半分とは、これに連
設され中空に位置する部分である。
The specific dielectric constant of the soil thus obtained is Becomes The arithmetic unit calculates the soil water content based on the relative dielectric constant obtained by this equation. Further, the probe according to the present invention is configured such that the lower half of the probe cross section is sensitive to the relative dielectric constant in the soil and the upper half is sensitive to the relative dielectric constant in the air. Specifically, the lower half is a portion buried in the inner soil of one board, and the upper half is a portion that is connected to this and located in the air.

【0010】この条件を満たす限りいかなる形状でもよ
いが、断面がT字型とするのが望ましい。すなわち、前
記金属プローブが、偏平部材と、この偏平部材の側面に
直角に植立されこの側面を2等分する仕切り部材とから
なり、仕切り部材で分割される偏平部材の一方が前記下
半分となり、他方が上半分となるようにする。測定のた
め土壌にセットするとき、仕切り部材は土壌表面に水平
に置かれ、偏平部材の一方が土壌中に埋められ、他方が
空中に位置する。このようなT字型の他、十字型にして
もよい。そして、給電線が一対のプローブ部材に接続さ
れ、比誘電率が測定される。
Although any shape may be used as long as this condition is satisfied, it is preferable that the cross section be T-shaped. That is, the metal probe comprises a flat member, and a partition member which is erected at right angles to the side surface of the flat member and bisects the side surface, and one of the flat members divided by the partition member is the lower half. So that the other is the upper half. When set on the soil for measurement, the partition member is placed horizontally on the soil surface, one of the flat members is buried in the soil, and the other is in the air. In addition to the T shape, a cross shape may be used. Then, the power supply line is connected to the pair of probe members, and the relative permittivity is measured.

【0011】[0011]

【実施例】本発明を図1に従って説明すると、1対のプ
ローブ1であり、このプローブ1は偏平部材2と仕切り
部材3とからなり、仕切り部材3は偏平部材2の片側中
央に直角に接続され、断面がT字型になっている。4は
測定対象となる土壌であり、偏平部材2の下半分5はこ
の土壌4に埋められ、上半分6は地上に位置する。仕切
り部材3は、土壌表面に接する。7は給電線であり、8
はプローブ1への給電点である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. 1 as a pair of probes 1. This probe 1 comprises a flat member 2 and a partition member 3, and the partition member 3 is connected to the center of one side of the flat member 2 at right angles. The cross section is T-shaped. Reference numeral 4 denotes soil to be measured. The lower half 5 of the flat member 2 is buried in the soil 4, and the upper half 6 is located on the ground. The partition member 3 contacts the soil surface. 7 is a power supply line, 8
Is a power supply point to the probe 1.

【0012】表1のデータは、図1の低水分土壌につい
て本発明のプローブと図2の従来型のプローブを使用し
て測定されたものである。
The data in Table 1 were measured on the low moisture soil of FIG. 1 using the probe of the present invention and the conventional probe of FIG.

【表1】 [Table 1]

【0013】表2のデータは、高水分土壌について、実
施例1と同じ測定を行った結果である。
The data in Table 2 are the results of performing the same measurements as in Example 1 on high moisture soil.

【表2】 [Table 2]

【0014】[0014]

【効果】以上のとおり、本発明法では、測定値のバラツ
キが低水分土壌でも高水分土壌でも極めて小さく、測定
値の精度が高いことが確認された。また、本発明におい
ては、半分だけプローブを土壌に埋め込むので、土壌の
表層に近い部位の計測でもプローブの長さが制約され
ず、電磁波の反射時間も長く、高精度である。さらに本
発明では半分だけ土壌に埋めるので、移動が簡単で効率
的な測定を行うことができる。プローブを横T字型また
は十字型にしておけば、一部を土壌内に埋め込めば仕切
り部材がストッパーとなって、土壌内の部分と空気中の
部分を均等に2分割する。
[Effects] As described above, according to the method of the present invention, it was confirmed that the dispersion of the measured values was extremely small in both low-moisture soil and high-moisture soil, and the accuracy of the measured values was high. Further, in the present invention, since only half of the probe is buried in the soil, the length of the probe is not restricted even when measuring a portion close to the surface layer of the soil, the reflection time of the electromagnetic wave is long, and the accuracy is high. Further, in the present invention, since only half of the soil is buried in the soil, the measurement can be performed easily and efficiently. If the probe is formed in a horizontal T-shape or a cross shape, if a part is embedded in the soil, the partition member functions as a stopper, and the part in the soil and the part in the air are equally divided into two parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプローブの使用状態を示す斜視図FIG. 1 is a perspective view showing a use state of a probe of the present invention.

【図2】従来のプローブの使用状態を示す斜視図FIG. 2 is a perspective view showing a use state of a conventional probe.

【符号の説明】 1−プローブ 2−偏平部材 3−仕切り部材 4−土壌 5−下半分 6−上半分 7−給電線 8−給電点[Description of Signs] 1-probe 2-flat member 3-partition member 4-soil 5-lower half 6-upper half 7-feeding line 8-feeding point

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一の金属プローブの半分を土壌中に埋設
し、他の半分を空気中に臨ませて全体の比誘電率を計測
し、演算装置で、 式 ε=2ε−1 (ε:土壌の比誘電率、ε:空気と土壌の両方の影響
を受けた比誘電率)で求めた土壌の比誘電率から土壌水
分量を算出することを特徴とする土壌水分計測方法
1. A half of a pair of metal probes embedded in the soil, and the other half to measure the dielectric constant of the whole so as to face into the air, an arithmetic unit, wherein ε 2 = 2ε-1 ( ( 2 ) calculating a soil moisture content from the relative permittivity of the soil obtained by ε 2 : relative permittivity of soil, ε: relative permittivity affected by both air and soil).
【請求項2】前記金属プローブが、偏平部材と、この偏
平部材の側面を2等分する位置に直角に植立された仕切
り部材とからなり、この仕切り部材によって2等分され
る偏平部材の一方を土壌に埋設し、他方を空気中に残
し、仕切り部材を土壌表面に平行に置いて比誘電率の測
定を行うことを特徴とする請求項の土壌水分計測方法
2. The flat metal member according to claim 1, wherein said metal probe comprises a flat member and a partition member which is erected at a right angle at a position bisecting the side surface of said flat member. 2. The method according to claim 1, wherein one of the two is buried in the soil, the other is left in the air, and the relative permittivity is measured by placing the partition member parallel to the surface of the soil.
【請求項3】金属プローブ断面の下半分が土壌中の比誘
電率、上半分が空気中の比誘電率に感応する機構を具備
したTDR測定手法を用いた土壌水分計測用プローブ
3. A probe for measuring soil moisture using a TDR measuring method having a mechanism in which a lower half of a metal probe cross section is sensitive to a relative dielectric constant in soil and an upper half is sensitive to a relative dielectric constant in air.
【請求項4】前記金属プローブが、偏平部材と、この偏
平部材の側面に直角に植立されこの側面を2等分する仕
切り部材とからなる請求項3の土壌水分計測用プローブ
4. The probe according to claim 3, wherein said metal probe comprises a flat member, and a partition member which is erected at right angles to a side surface of said flat member and bisects said side surface.
【請求項5】仕切り部材に給電線の給電点を設けたこと
を特徴とする請求項の土壌水分計測用プローブ
5. A soil moisture measuring probe according to claim 4 , wherein a feed point of a feed line is provided on the partition member.
JP25215696A 1996-08-19 1996-08-19 Soil moisture measurement method and probe for soil moisture measurement Expired - Lifetime JP2913022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25215696A JP2913022B2 (en) 1996-08-19 1996-08-19 Soil moisture measurement method and probe for soil moisture measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25215696A JP2913022B2 (en) 1996-08-19 1996-08-19 Soil moisture measurement method and probe for soil moisture measurement

Publications (2)

Publication Number Publication Date
JPH1062368A JPH1062368A (en) 1998-03-06
JP2913022B2 true JP2913022B2 (en) 1999-06-28

Family

ID=17233269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25215696A Expired - Lifetime JP2913022B2 (en) 1996-08-19 1996-08-19 Soil moisture measurement method and probe for soil moisture measurement

Country Status (1)

Country Link
JP (1) JP2913022B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191583A (en) * 2015-03-31 2016-11-10 公益財団法人鉄道総合技術研究所 Method for measuring moisture content ratio and moisture content percentage of soil
JP2016191582A (en) * 2015-03-31 2016-11-10 公益財団法人鉄道総合技術研究所 Method for measuring moisture content ratio and moisture content percentage of soil

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007022039B4 (en) 2007-05-08 2009-07-09 Hochschule Mannheim sensor arrangement
CN101799436B (en) * 2010-03-18 2012-07-25 中国农业大学 Instrument for measuring soil moisture and conductivity based on phase detection and measuring method thereof
JP5688731B2 (en) * 2010-12-10 2015-03-25 国立大学法人徳島大学 Capacitive moisture meter and water level meter
JP7133548B2 (en) * 2017-06-02 2022-09-08 ソニーグループ株式会社 Moisture measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191583A (en) * 2015-03-31 2016-11-10 公益財団法人鉄道総合技術研究所 Method for measuring moisture content ratio and moisture content percentage of soil
JP2016191582A (en) * 2015-03-31 2016-11-10 公益財団法人鉄道総合技術研究所 Method for measuring moisture content ratio and moisture content percentage of soil

Also Published As

Publication number Publication date
JPH1062368A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
CN104569888B (en) A kind of utilization micro-strip collimation method calibrates the system and method for near field probes modifying factor
US5748003A (en) Microwaves used for determining fatigue and surface crack features on metal surfaces
WO2004083845A1 (en) Two-dimensional eddy current probe and associated inspection method
BR0302058A (en) Electromagnetic seabed measuring device for obtaining underwater measurements of geological formations and method of performing electromagnetic measurements on a seabed
JP2913022B2 (en) Soil moisture measurement method and probe for soil moisture measurement
WO2003012828A3 (en) Systems and methods for measuring properties of conductive layers
CN108872386A (en) Concrete strength ultrasound wave angle surveys the bearing calibration of method detection
JPH01501419A (en) Method for detecting wall thickness changes in hollow bodies that conduct electricity
US7461463B1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
SE8201495L (en) KOORDINATMETNINGSSYSTEM
SE8201496L (en) KOORDINATMETNINGSSYSTEM
JP3507378B2 (en) High precision tide gauge by GPS
JPS6193973A (en) Position detecting method of buried pipe underground
EP2159534A1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
CN104777238B (en) A kind of low-voltage electrical apparatus electric contact Ultrasonic Nondestructive test block and scaling method
CN208206180U (en) The truing tool of integral type reinforced bar detection instrument
SU1022043A1 (en) Method of determination of crack depth in electroconductive articles
JPH0514230B2 (en)
CN111555187B (en) Communication construction cable buries device underground
JPH0315130B2 (en)
JPS6225724Y2 (en)
JP2024098860A (en) Underground corrosion monitoring equipment
JPS62206402A (en) Cable thickness meter
JPS59163586A (en) Detecting method of buried electric conductor
SU1486756A1 (en) Device for determining stressed-deformed condition inside object

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term