JP2903954B2 - Rechargeable battery charger - Google Patents

Rechargeable battery charger

Info

Publication number
JP2903954B2
JP2903954B2 JP15980993A JP15980993A JP2903954B2 JP 2903954 B2 JP2903954 B2 JP 2903954B2 JP 15980993 A JP15980993 A JP 15980993A JP 15980993 A JP15980993 A JP 15980993A JP 2903954 B2 JP2903954 B2 JP 2903954B2
Authority
JP
Japan
Prior art keywords
temperature
battery
charging
current
duty ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15980993A
Other languages
Japanese (ja)
Other versions
JPH0715884A (en
Inventor
健司 高橋
徹 菅原
憲一朗 水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP15980993A priority Critical patent/JP2903954B2/en
Publication of JPH0715884A publication Critical patent/JPH0715884A/en
Application granted granted Critical
Publication of JP2903954B2 publication Critical patent/JP2903954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
電池、ニッケル−水素電池等の密閉形二次電池の充電装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for a sealed secondary battery such as a nickel-cadmium battery and a nickel-hydrogen battery.

【0002】[0002]

【従来の技術】従来、二次電池の充電においては、定電
流または定電圧により0.1〜1.0C程度の充電を行
う定電流方式が一般的である。この充電方式では充電に
長時間を要することから、近年、1.0C以上の定電流
による急速充電が主流であり、また、5C充電を越える
充電電流を流すことは、電池内部圧力の上昇による電解
液漏れ、発熱による電極活物質の早い劣化をまねくとい
う欠点を有していた。
2. Description of the Related Art Conventionally, in charging a secondary battery, a constant current method in which charging is performed at about 0.1 to 1.0 C with a constant current or a constant voltage is generally performed. In this charging method, a long time is required for charging. Therefore, in recent years, rapid charging with a constant current of 1.0 C or more has become mainstream. There was a disadvantage that the electrode active material was quickly deteriorated due to liquid leakage and heat generation.

【0003】また、特開昭64−81628号公報のよ
うに、パルス波形となる定電流により充電を行い、充電
によるガス発生を少なくし、充電効率の向上させる充電
方法があった。
Further, as disclosed in Japanese Patent Application Laid-Open No. 64-81628, there is a charging method in which charging is performed with a constant current having a pulse waveform, gas generation due to charging is reduced, and charging efficiency is improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、周囲温
度が高い環境下で、二次電池を急速充電で充電を行う場
合には、充電速度を速くするため電池に大電流を供給す
るので電池の負荷が大きくなり、二次電池の温度上昇を
招き二次電池の温度が危険な温度まで達し、二次電池の
液漏れが発生する等の危険な状態になる。また、逆に周
囲温度が低い環境下では、二次電池の内部圧力が高くな
り、端子電圧が高くなる傾向がある。このような状態で
常温と同様の充電電流で充電を行うと、正常な充電が行
われず、電池の液漏れが発生したり、あるいは二次電池
の寿命を短くすることがある。
However, when a secondary battery is charged by rapid charging in an environment with a high ambient temperature, a large current is supplied to the battery in order to increase the charging speed. And the temperature of the secondary battery rises to a dangerous temperature, and a dangerous state occurs such as leakage of the secondary battery. Conversely, in an environment where the ambient temperature is low, the internal pressure of the secondary battery tends to increase, and the terminal voltage tends to increase. If charging is performed with a charging current similar to that at normal temperature in such a state, normal charging may not be performed and battery leakage may occur, or the life of the secondary battery may be shortened.

【0005】また、上記、特開昭64−81628号公
報に示されているパルス波形の充電では、周囲温度、二
次電池温度が考慮されておらず、特にニッケル水素電池
の場合、充電時の発熱量が非常に大きいため、電池が手
で持てない程に発熱する危険がある。従って、ニッケル
水素電池のように発熱量の大きい二次電池の場合には、
電池につけたサーミスタ等の温度検出素子により温度検
出情報を監視する必要がある。
In the charging of the pulse waveform disclosed in Japanese Patent Application Laid-Open No. 64-81628, the ambient temperature and the secondary battery temperature are not taken into consideration. Since the calorific value is very large, there is a risk that the battery may generate heat so that it cannot be held by hand. Therefore, in the case of a secondary battery that generates a large amount of heat, such as a nickel-metal hydride battery,
It is necessary to monitor temperature detection information with a temperature detecting element such as a thermistor attached to the battery.

【0006】本発明の目的は、周囲温度が高温の場合で
も、また低温の場合でも、危険な状態にしたり、あるい
は二次電池の寿命を短くしたりすることのない二次電池
の充電装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a charging device for a secondary battery which does not cause a dangerous state or shorten the life of the secondary battery even when the ambient temperature is high or low. To provide.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、充放電可能な二次電池をパルス波形をな
す電流により充電する充電装置において、二次電池の温
度を測定する手段をもち、この測定手段によって測定さ
れた電池温度に応じて、パルスのデューティー比、電流
値を変化させ充電を行うようにしたものであり、電池温
度に応じた充電電流、デューティー比で充電を行うこと
により、充電の際に電池を危険な状態にすることなく安
全に、また電池の状態にあった最適な充電が行える。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention relates to a charging device for charging a chargeable / dischargeable secondary battery with a current having a pulse waveform, which measures the temperature of the secondary battery. In accordance with the battery temperature measured by the measuring means, the charging is performed by changing the duty ratio and the current value of the pulse, and the charging is performed with the charging current and the duty ratio according to the battery temperature. Thus, the battery can be safely and optimally charged according to the state of the battery without putting the battery in a dangerous state during charging.

【0008】[0008]

【作用】上記方策によれば、周囲温度の変化、電池の状
態に関係なく、つねに最適な充電をすることができ、電
池内部圧力、電池温度の上昇をおさえる充電装置を提供
することができる。
According to the above-mentioned measures, it is possible to always provide optimal charging regardless of the change of the ambient temperature and the state of the battery, and to provide a charging device which can suppress the rise in the battery internal pressure and the battery temperature.

【0009】[0009]

【実施例】本発明の実施例を説明する。図1は本発明の
ブロック図である。同図において、1は直流電源装置、
2は充電される二次電池、3は電池温度の測定部、4は
定電流回路に直列に挿入したスイッチ手段、5は制御装
置である。温度測定部3はサーミスタ等の温度検出素子
であり、これにより二次電池の電池温度が測定される。
その検出にもとづいて制御装置5のマイクロコンピュー
タによりスイッチ手段4(例えばトランジスタ)をON
/OFF制御し、直流電源装置1を制御する。電池温度
(あるいは電池温度の変化)によるパルス幅の変化は、
マイクロコンピュータからトランジスタへのON/OF
F信号出力によって行う。また、電池温度変化(あるい
は電池温度)による電流値の変化は、例えば図2に示す
ようにマイクロコンピュータ7からのON/OFF信号
によりトランジスタを制御し抵抗値の変化により電流値
を変える。
An embodiment of the present invention will be described. FIG. 1 is a block diagram of the present invention. In the figure, 1 is a DC power supply,
2 is a secondary battery to be charged, 3 is a battery temperature measuring unit, 4 is a switch means inserted in series in a constant current circuit, and 5 is a control device. The temperature measuring unit 3 is a temperature detecting element such as a thermistor, and measures the battery temperature of the secondary battery.
Based on the detection, the microcomputer of the control device 5 turns on the switch means 4 (for example, a transistor).
/ OFF control to control the DC power supply 1. The change in pulse width due to battery temperature (or battery temperature change)
ON / OF from microcomputer to transistor
This is performed by outputting the F signal. The change in the current value due to the battery temperature change (or the battery temperature) changes the current value by controlling the transistor and changing the resistance value, for example, as shown in FIG.

【0010】図3はパルス波形電流を示す特性図であ
り、図示の通り正パルス波形をなし、所定時間間隔で充
電ON/OFFとを繰り返す。これら充電ONおよびO
FFの関係は、デューティー比Q=ton/(ton+t
off)で表され、0<Q<1であり、充電時間を短縮す
る目的からすると、できる限り1に近い値に設定するの
が好ましい。
FIG. 3 is a characteristic diagram showing a pulse waveform current, has a positive pulse waveform as shown in the figure, and repeats charging ON / OFF at predetermined time intervals. These charging ON and O
The relationship of the FF, the duty ratio Q = t on / (t on + t
off ), 0 <Q <1, and for the purpose of shortening the charging time, it is preferable to set the value as close to 1 as possible.

【0011】しかしながら、ニッケルカドミウム電池や
ニッケル水素電池を充電した場合、ガス発生、電池温度
の上昇がおこる。これらは充電効率を下げる。特に低温
では高温に比べて電池の内部圧力が高くなるため、充電
OFF時間を長くしてガスの吸収時間を設けてやること
が好ましく、図3に示すように低温では充電OFF時間
を長くしデューティー比Qを小さくしてやり、高温では
逆に充電OFF時間を短くしデューティー比Qを大きく
してやることがよい。しかし、デューティー比Qを大き
くしてやることは、充電OFFの時間が短くなるため温
度上昇が大きくなる。そのためデューティー比Qは充電
効率を考慮し電池に合わせて設定してやる必要がある。
図4は充電量を一定にしたときのデューティー比Qと放
電容量の関係であり、10℃以下の低温では0.65を
越えるとガスの拡散が不十分であり放電容量が低下す
る。また0.50以下で充電ONの時間より充電OFF
の時間が長くなり適当ではない。図5は40℃以上の高
温での充電量を一定にしたときの放電容量とデューティ
ー比Q、温度上昇の関係を示したものである。40℃以
上ではガス発生は低温に比べ少なくデューティー比Qの
値は1に近くすることができる。しかし0.95をこえ
ると満充電状態では電池温度が高くなりすぎるため0.
95以下にする必要があるが、温度上昇は少ないので
0.85以下にする必要がなく、40℃以上では0.8
5<Q≦0.95が適当である。電池温度が10〜40
℃の時デューティー比Qは0.65<Q≦0.85とな
る。また、デューティー比Qはこの範囲内で二次電池の
種類や履歴、充電電流などの条件によって増減が行われ
る。
However, when a nickel cadmium battery or a nickel hydride battery is charged, gas generation and a rise in battery temperature occur. These lower the charging efficiency. In particular, at low temperatures, the internal pressure of the battery becomes higher than at high temperatures. Therefore, it is preferable to provide a gas absorption time by extending the charge OFF time, and as shown in FIG. It is preferable to reduce the ratio Q and conversely, at high temperatures, shorten the charge OFF time and increase the duty ratio Q. However, increasing the duty ratio Q increases the temperature rise because charging OFF time is shortened. Therefore, the duty ratio Q needs to be set in accordance with the battery in consideration of charging efficiency.
FIG. 4 shows the relationship between the duty ratio Q and the discharge capacity when the charge amount is constant. When the temperature exceeds 0.65 at a low temperature of 10 ° C. or less, gas diffusion is insufficient and the discharge capacity decreases. Also, when the charge is ON at 0.50 or less, the charge is turned OFF
It is not appropriate because the time is long. FIG. 5 shows the relationship between the discharge capacity, the duty ratio Q, and the temperature rise when the charge amount at a high temperature of 40 ° C. or higher is kept constant. At 40 ° C. or higher, gas generation is smaller than at lower temperatures, and the value of the duty ratio Q can be close to 1. However, if it exceeds 0.95, the battery temperature becomes too high in the fully charged state, so that the battery temperature is not more than 0.15.
Although it is necessary to set the temperature to 95 or less, it is not necessary to set the temperature to 0.85 or less because the temperature rise is small.
5 <Q ≦ 0.95 is appropriate. Battery temperature is 10-40
At the time of ° C., the duty ratio Q is 0.65 <Q ≦ 0.85. The duty ratio Q is increased or decreased within this range depending on conditions such as the type and history of the secondary battery and the charging current.

【0012】また、二次電池を充電して行くと充電末期
に電池温度が上昇してくる。これは満充電近くになる
と、電池の陽極に酸素が発生し、その酸素が陰極で再結
合反応するために、反応熱が発生し電池の固有抵抗によ
る発熱に加算されて電池温度を急上昇させるためであ
る。そこで充電末期になるとこの温度変化に応じて充電
電流を減少してやる。図6は周囲温度20℃から充電し
たときの電池温度の上昇を示した図であり充電電流一定
で充電すると充電末期には電池温度の変化が40℃以上
上昇し電池が高温になり電池性能、寿命に問題が生じ
る。このため電池温度の上昇にともなって充電電流を減
らしてやる。図7は充電にともなって充電電流を減らし
た場合の温度上昇を示した図であり、電池温度の上昇が
10〜20℃の時は充電電流をを充電開始時の充電電流
を100%(1.0〜5.0CmA)としたときの90
%にすることにより、温度上昇を半分にすることができ
る。温度上昇が20℃を越えた場合は充電電流を50〜
90%にすることにより温度上昇を半分以下に抑えられ
る。これにより電池温度、電池内部圧力の急激な上昇を
抑えることができる。また、充電電流も二次電池の種類
や履歴、充電電流などの条件によってこの範囲内で増減
が行われる。
As the secondary battery is charged, the battery temperature rises at the end of charging. This is because when near full charge, oxygen is generated at the anode of the battery and the oxygen undergoes a recombination reaction at the cathode, generating reaction heat and adding to the heat generated by the specific resistance of the battery, causing the battery temperature to rise rapidly. It is. Therefore, at the end of charging, the charging current is reduced according to this temperature change. FIG. 6 is a diagram showing a rise in battery temperature when charged from an ambient temperature of 20 ° C. When charging is performed at a constant charge current, the battery temperature changes by 40 ° C. or more at the end of charging, and the battery becomes high temperature, A problem occurs with the life. Therefore, the charging current is reduced as the battery temperature rises. FIG. 7 is a diagram showing a temperature rise when the charging current is reduced along with charging. When the battery temperature rises from 10 to 20 ° C., the charging current is increased to 100% (1%). 0.0 to 5.0 CmA)
%, The temperature rise can be halved. If the temperature rise exceeds 20 ° C.
By setting it to 90%, the temperature rise can be suppressed to less than half. As a result, a sharp rise in the battery temperature and the battery internal pressure can be suppressed. The charging current also increases and decreases within this range depending on conditions such as the type and history of the secondary battery and the charging current.

【0013】図8は充電による温度上昇にともなって、
デューティー比Qを変化させたときの電池温度の上昇を
示した図である。電池温度の変化が10〜20℃の範囲
ではデューティー比Qを0.80にすることにより温度
上昇を1/2に抑えることができ、電池温度の変化が2
0〜40℃の範囲ではデューティー比Qを0.80以下
にすることにより温度上昇を2/3以下にすることがで
きる。また、電池温度の変化が40℃を越える場合デュ
ーティー比Qは0.40とし充電OFFの時間を長くし
てやることにより、電池温度の上昇を抑え充電が行え
る。
FIG. 8 shows that as the temperature rises due to charging,
FIG. 5 is a diagram illustrating a rise in battery temperature when a duty ratio Q is changed. When the change in the battery temperature is in the range of 10 to 20 ° C., the temperature rise can be suppressed to に よ り by setting the duty ratio Q to 0.80, and the change in the battery temperature becomes 2%.
In the range of 0 to 40 ° C., the temperature rise can be reduced to ℃ or less by setting the duty ratio Q to 0.80 or less. When the change in the battery temperature exceeds 40 ° C., the duty ratio Q is set to 0.40 and the charge OFF time is lengthened, so that the battery temperature can be suppressed from increasing and charging can be performed.

【0014】図9は充電にともなう電池温度を示した図
であり、充電末期には電池温度は急激に上昇する。特に
40℃の高温で充電がされた場合すぐに70℃を越えて
しまい電池の性能に影響が出る。そのため電池温度が5
0℃を越えた場合には充電電流を充電開始時を100%
(1〜5CmA)としたときの50%にすることによ
り、温度上昇を抑えつつ充電が行える。しかし70℃を
越えた場合には、電池性能の劣化を防ぐため、5%以下
の微少な電流で充電を行う。本発明による充電装置によ
り1100mAhのニッケル水素電池を周囲温度を変え
て充電を行った結果について説明する。
FIG. 9 is a diagram showing the battery temperature associated with charging. At the end of charging, the battery temperature rises sharply. In particular, when the battery is charged at a high temperature of 40 ° C., the temperature immediately exceeds 70 ° C., which affects the performance of the battery. Therefore, when the battery temperature is 5
When the temperature exceeds 0 ° C, the charging current is set to 100% at the start of charging.
By setting it to 50% of (1 to 5 CmA), charging can be performed while suppressing a temperature rise. However, when the temperature exceeds 70 ° C., charging is performed with a small current of 5% or less to prevent deterioration of battery performance. The result of charging a 1100 mAh nickel-metal hydride battery by changing the ambient temperature using the charging device according to the present invention will be described.

【0015】図10に本実施例における二次電池温度と
デューティー比を、図11に本実施例における二次電池
温度の変化と充電電流値を示す。二次電池温度に対する
デューティー比Qは図に示すように0〜80℃の間で
0.50≦Q≦0.95と変化させる。また、充電に伴
う二次電池の温度変化と電流値は、図に示すように温度
変化が10〜20℃では、充電電流を充電開始時の電流
を3.0CmA(100%)としたときの2.7CmA
(90%)に、電池温度の変化が20〜40℃の時は
2.25CmA(75%)に、電池温度の変化が40〜
50℃では1.5C mA(50%)に、50℃以上では
0%とした。充電開始時の二次電池温度が20℃であれ
ば、デューティー比0.70で充電を開始し、充電開始
後電池温度が10℃上昇し30℃になったとすると、充
電電流は充電開始時の90%、デューティー比Qは0.
80となる。
FIG. 10 shows the secondary battery temperature and the
FIG. 11 shows the duty ratio of the secondary battery according to the present embodiment.
It shows the change in temperature and the charging current value. For secondary battery temperature
The duty ratio Q is between 0 and 80 ° C as shown in the figure.
Change to 0.50 ≦ Q ≦ 0.95. Also, with charging
The temperature change and current value of the secondary battery
When the change is 10 to 20 ° C., the charging current is the current at the start of charging.
2.7 CmA when を is 3.0 CmA (100%)
(90%) when the battery temperature change is 20-40 ° C
2.25 CmA (75%), battery temperature change is 40 ~
1.5C at 50 ° C mA (50%) above 50 ° C
0%. If the temperature of the secondary battery at the start of charging is 20 ° C
For example, start charging at a duty ratio of 0.70 and start charging.
After that, if the battery temperature rises by 10 ° C to reach 30 ° C,
The electric current is 90% at the start of charging, and the duty ratio Q is 0.5.
80.

【0016】表1に1100mAhのニッケル水素電池
を周囲温度を変えて、本発明による充電装置により充電
したものと、定電流充電したものの電池温度、電池内部
圧力、放電容量の比較を示す。定電流充電したものは、
電池内部圧力が10kg/cm2 以上、電池温度が最高
47℃上昇しているのに対し、本充電方法によるものは
電池内部圧力が10kg/cm2 以下、電池温度の上昇
の最大が18℃であり、電池温度、電池内部圧力の上昇
が少なく、また、高温においても定電流充電では803
mAhと公称容量の73%であるのに対して1035m
Ahと公称容量に対し94%の放電容量がえられており
充電効率がよく、適正な充電が行えているといえる。
Table 1 shows a comparison of the battery temperature, battery internal pressure, and discharge capacity of a 1100 mAh nickel-metal hydride battery which was charged by the charging device according to the present invention while changing the ambient temperature, and which was charged at a constant current. After charging with constant current,
While the battery internal pressure is 10 kg / cm 2 or more and the battery temperature rises up to 47 ° C., the charging method according to this charging method has a battery internal pressure of 10 kg / cm 2 or less and a maximum battery temperature rise of 18 ° C. There is little increase in battery temperature and battery internal pressure, and 803 in constant current charging even at high temperatures.
mAh and 73% of nominal capacity versus 1035m
Ah and a discharge capacity of 94% of the nominal capacity are obtained, which means that charging efficiency is good and proper charging can be performed.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】上述したように、本発明に係る二次電池
の充電装置は、二次電池の温度あるいは温度変化により
デューティー比、充電電流を変化させ充電するようにし
たもので、二次電池の内部圧力、電池温度を上昇させず
二次電池を充電することができ、工業的価値はきわめて
大なるものである。
As described above, the secondary battery charging apparatus according to the present invention is configured to charge the secondary battery by changing the duty ratio and the charging current according to the temperature of the secondary battery or the temperature change. The secondary battery can be charged without increasing the internal pressure and battery temperature of the battery, and the industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のブロック図である。FIG. 1 is a block diagram of the present invention.

【図2】直流電源装置部の一回路図である。FIG. 2 is a circuit diagram of a DC power supply unit.

【図3】パルス波形電流を示す特性図である。FIG. 3 is a characteristic diagram showing a pulse waveform current.

【図4】充電量を一定にしたときのデューティー比と放
電容量の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a duty ratio and a discharge capacity when a charge amount is fixed.

【図5】高温での充電量を一定にしたときの放電容量と
デューティー比、温度上昇の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a discharge capacity, a duty ratio, and a temperature rise when a charge amount at a high temperature is fixed.

【図6】電池温度の上昇を示した図である。FIG. 6 is a diagram showing an increase in battery temperature.

【図7】充電にともなって充電電流を減らした場合の温
度上昇を示した図である。
FIG. 7 is a diagram showing a temperature rise when a charging current is reduced with charging.

【図8】充電による温度上昇にともなって、デューティ
ー比を変化させたときの電池温度の上昇を示した図であ
る。
FIG. 8 is a diagram showing a rise in battery temperature when the duty ratio is changed with a rise in temperature due to charging.

【図9】充電にともなう電池温度を示した図である。FIG. 9 is a diagram showing a battery temperature accompanying charging.

【図10】本発明に係わる実施例のデューティー比と電
池温度を示した図である。
FIG. 10 is a diagram illustrating a duty ratio and a battery temperature according to an embodiment of the present invention.

【図11】本発明に係わる実施例の充電電流と電池温度
を示した図である。
FIG. 11 is a diagram showing a charging current and a battery temperature in an example according to the present invention.

【符号の説明】[Explanation of symbols]

1は直流電源装置、2は二次電池、3は温度測定部、4
はスイッチ手段、5は制御装置、6は直流電源、7はマ
イクロコンピュータ。
1 is a DC power supply, 2 is a secondary battery, 3 is a temperature measuring unit,
Is a switch means, 5 is a control device, 6 is a DC power supply, and 7 is a microcomputer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二次電池をパルス波形をなす電流により充
電する充電装置において、二次電池の温度を測定する温
度測定手段をもち、この温度測定手段によって測定され
た電池温度が10℃以下の時はデューティー比Qを0.
50≦Q<0.65に、電池温度が10〜40℃の時は
0.65≦Q<0.85に、40℃以上の時は0.85
<Q≦0.95と変化させ、かつ前記温度測定手段によ
って測定された電池温度の変化が、10〜20℃の時
は、充電電流を充電開始時の電流を100%(1.0〜
5.0CmA)としたときの90%に、電池温度の変化
が20〜40℃の時は50〜90%に、電池温度の変化
が40℃以上の時は50%以下と変化することを特徴と
する二次電池の充電装置。
1. A charging device for charging a secondary battery with a current having a pulse waveform, comprising a temperature measuring means for measuring the temperature of the secondary battery, wherein the battery temperature measured by the temperature measuring means is 10 ° C. or less. At time, the duty ratio Q is set to 0.
50 ≦ Q <0.65, 0.65 ≦ Q <0.85 when the battery temperature is 10 to 40 ° C., and 0.85 when the battery temperature is 40 ° C. or higher.
<Q ≦ 0.95, and when the change in the battery temperature measured by the temperature measuring means is 10 to 20 ° C., the charging current is increased by 100% (1.0 to 1.0%).
5.0% when the battery temperature change is 20 to 40 ° C, and 50% or less when the battery temperature change is 40 ° C or higher. Charging device for a secondary battery.
【請求項2】前記温度測定手段によって測定された電池
温度の変化が、10℃〜20℃の時はデューティー比Q
を0.80に、電池温度の変化が20〜40℃の時は
0.80>Q>0.40に、電池温度の変化が40℃以
上の時は0.40に変化させ、かつ前記温度測定手段に
よって測定された電池温度が50〜70℃の時パルスの
電流値を、充電開始時の電流を100%(1.0〜5.
0CmA)としたときの50%に、70℃以上の時5%
以下に変化させることを特徴とする請求項1記載の二次
電池の充電装置。
2. When the change in battery temperature measured by the temperature measuring means is 10 ° C. to 20 ° C., the duty ratio Q
To 0.80, 0.80>Q> 0.40 when the battery temperature change is 20 to 40 ° C., to 0.40 when the battery temperature change is 40 ° C. or more, and When the battery temperature measured by the measuring means is 50 to 70 ° C., the current value of the pulse is set to 100% (1.0 to 5.
5% when the temperature is 70 ° C. or more.
The charging device for a secondary battery according to claim 1, wherein the charging device is changed as follows.
JP15980993A 1993-06-30 1993-06-30 Rechargeable battery charger Expired - Lifetime JP2903954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15980993A JP2903954B2 (en) 1993-06-30 1993-06-30 Rechargeable battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15980993A JP2903954B2 (en) 1993-06-30 1993-06-30 Rechargeable battery charger

Publications (2)

Publication Number Publication Date
JPH0715884A JPH0715884A (en) 1995-01-17
JP2903954B2 true JP2903954B2 (en) 1999-06-14

Family

ID=15701734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15980993A Expired - Lifetime JP2903954B2 (en) 1993-06-30 1993-06-30 Rechargeable battery charger

Country Status (1)

Country Link
JP (1) JP2903954B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065476A (en) 2003-07-25 2005-03-10 Sanyo Electric Co Ltd Method for charging battery
KR101042768B1 (en) 2008-06-03 2011-06-20 삼성에스디아이 주식회사 Battery pack and method of charge thereof

Also Published As

Publication number Publication date
JPH0715884A (en) 1995-01-17

Similar Documents

Publication Publication Date Title
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
JP4898308B2 (en) Charging circuit, charging system, and charging method
US6081097A (en) Method for charging lithium secondary battery
JP3725105B2 (en) Overdischarge prevention circuit for secondary battery and overdischarge prevention method for secondary battery
US6313605B1 (en) Battery charger and method of charging nickel based batteries
US20090184685A1 (en) Battery pack and method of charging the same
US7135839B2 (en) Battery pack and method of charging and discharging the same
JP4248854B2 (en) Battery management system and battery pack
JP2010009840A (en) Battery pack and battery system equipped with it
JP4221636B2 (en) Lithium ion secondary battery charging method and charging device
JP2903954B2 (en) Rechargeable battery charger
JP2950956B2 (en) Charging method
JP3508254B2 (en) Rechargeable battery charger
JP3107407B2 (en) How to charge the battery pack
JP3430439B2 (en) Secondary battery charging method and secondary battery charging device
JPH06284591A (en) Charging apparatus
JPH07296854A (en) Method and device for charging
JP2005039875A (en) Method for charging secondary battery and apparatus for charging using the same
JP2000150000A (en) Backup power supply control method
JP2905581B2 (en) Charging device
JPH11150882A (en) Method for charging battery
JP3216595B2 (en) Rechargeable battery charger
JPH11191932A (en) Quick charger for battery pack
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup
JP3271138B2 (en) Rechargeable battery charger and charging method