JP2528953B2 - Induction motor speed controller - Google Patents

Induction motor speed controller

Info

Publication number
JP2528953B2
JP2528953B2 JP63290019A JP29001988A JP2528953B2 JP 2528953 B2 JP2528953 B2 JP 2528953B2 JP 63290019 A JP63290019 A JP 63290019A JP 29001988 A JP29001988 A JP 29001988A JP 2528953 B2 JP2528953 B2 JP 2528953B2
Authority
JP
Japan
Prior art keywords
value
output
command
control
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63290019A
Other languages
Japanese (ja)
Other versions
JPH02142393A (en
Inventor
登 藤本
俊昭 奥山
敏雄 斎藤
光幸 本部
洋 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63290019A priority Critical patent/JP2528953B2/en
Publication of JPH02142393A publication Critical patent/JPH02142393A/en
Application granted granted Critical
Publication of JP2528953B2 publication Critical patent/JP2528953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、インバータによって可変速制御する誘導電
動機の速度制御装置に関する。
Description: TECHNICAL FIELD The present invention relates to a speed control device for an induction motor that performs variable speed control by an inverter.

〔従来の技術〕[Conventional technology]

第5図は例えば電気学会産業応用部門全国大会講演論
文「簡易速度センサレスベクトル制御方式」(1987/8、
No.128)に示され制御システムのブロツク図であり、図
において1は誘導電動機、2はパルス幅変調電圧形イン
バータ(PWMINV)、3は3相電圧指令vu*〜vw*の演算
器、4は積分器、5はトルク電流成分検出器、6は周波
数指令演算器、7は電圧指令演算器である。その基本動
作はインバータの出力電圧の指令信号vu*〜vw*の位相
基準信号θ*を基準として、誘導電動機1の1次電流か
らトルク電流成分I1qを検出し、フイードバツク信号のI
1qに基づいてすべり周波数ωs*を演算し、これと速度
指令ωr*の加算よりインバータ出力周波数指令ω1*を
演算し、さらに前記トルク電流成分検出値I1qと前記ω1
*及び前記誘導電動機の電動機定数に基づいて電圧ベク
トルV1*及びδ*(V1*:相電圧振幅値、δ*:電動機
内部相差角)の指令値を演算し、これらV1*,δ*,θ
*に基づいて演算する3相電圧指令vu*〜vw*よりPWM
制御インバータの周波数及び電圧を制御して電動機を速
度制御する。これは、従来のような速度検出器を用いず
に、電流検出器のみによつて電動機をベクトル制御する
方式であり、直流機と同等にトルクや速度を高性能に制
御するものである。
Figure 5 shows, for example, a paper entitled "Simple speed sensorless vector control method" (1987/8,
No.128) is a block diagram of the control system, in which 1 is an induction motor, 2 is a pulse width modulation voltage source inverter (PWMINV), and 3 is a calculator of three-phase voltage commands v u * to v w *. 4 is an integrator, 5 is a torque current component detector, 6 is a frequency command calculator, and 7 is a voltage command calculator. The basic operation is to detect the torque current component I 1q from the primary current of the induction motor 1 using the phase reference signal θ * of the inverter output voltage command signal v u * to v w * as a reference, and to feed the feedback signal I
Calculates the frequency omega s * slip based on 1q, which the speed command omega r * of calculating the inverter output frequency command omega 1 * than the addition, further the torque current component detection value I 1q and the omega 1
* And the command values of the voltage vectors V 1 * and δ * (V 1 *: phase voltage amplitude value, δ *: motor internal phase difference angle) are calculated based on the motor constant of the induction motor, and these V 1 *, δ are calculated. *, Θ
PWM from 3-phase voltage command v u * to v w * calculated based on *
The frequency and voltage of the control inverter are controlled to control the speed of the electric motor. This is a system in which the electric motor is vector-controlled only by the current detector without using a speed detector as in the prior art, and the torque and speed are controlled with high performance in the same manner as the DC machine.

また、上記と同様に速度検出器を用いないベクトル制
御の別方式としては、例えば特開昭62-25888号に記載の
ように電動機の1次電流及び1次電圧を検出し、それら
のフイードバツク信号に基づいて電動機の磁束及びすべ
りを演算してベクトル制御を行うものがある。
As another method of vector control which does not use a speed detector as in the above, for example, as disclosed in JP-A-62-25888, primary current and primary voltage of an electric motor are detected and their feedback signals are detected. There is one that performs vector control by calculating the magnetic flux and slip of the electric motor based on.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術の制御方式は近年マイコンの発達に伴な
いそれを使つたソフトウエアで実現される。その場合、
1次電流あるいは1次電圧はサンプリング時間毎に取込
まれ、そのフイードバツク信号に基づいて制御演算が行
われその結果による指令値で電動機が制御されるため、
第6図で示すように実際の1次電流i1(破線)に対して
サンプリング時間Tsで検出される検出値i1sは実線とな
り誤差を生じ、特にインバータ出力周波数が大きくなる
と追従しなくなり、速度制御精度や応答が劣化し、さら
には不安定現像が発生し、運転不可能になるといつた問
題があつた。
The control system of the above-mentioned conventional technology is realized by software using the microcomputer as the microcomputer develops in recent years. In that case,
The primary current or the primary voltage is taken in every sampling time, the control calculation is performed based on the feedback signal, and the electric motor is controlled by the command value resulting from the control calculation.
As shown in FIG. 6, the detected value i 1s detected at the sampling time T s with respect to the actual primary current i 1 (broken line) becomes a solid line and an error occurs, and it does not follow up especially when the inverter output frequency becomes large, There was a problem when the speed control accuracy and response deteriorated, unstable development occurred, and operation became impossible.

本発明の目的は、上記した問題を解消するためになさ
れたもので、広範囲に亘つて電動機の回転速度を安定に
制御する電動機の速度制御装置を提案することにある。
An object of the present invention is to solve the above problems, and it is an object of the present invention to propose a speed control device for an electric motor, which stably controls the rotation speed of the electric motor over a wide range.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、可変周波の交流電圧を出力して誘導電動
機を可変速制御するインバータと、該インバータの出力
である前記誘導電動機の1次電流の瞬時値をサンプル周
期毎に検出する電流検出手段と、該電流検出手段からの
電流検出値よりトルク電流成分I1qを検出するトルク電
流成分検出手段と、前記電動機の回転速度の指令値ωr
*を発生する手段と、該回転速度の指令値と前記トルク
電流成分検出値に基づいて前記インバータの出力周波数
指令値ω1*を演算する手段と、前記トルク電流成分検
出値と前記出力周波数指令値に基づいて前記インバータ
の出力電圧ベクトル指令値であるところの電圧の大きさ
V1*と内部相差角δ*の各指令値を演算する手段と、前
記出力周波数指令値ω1*と前記電圧の大きさV1*と内
部相差角δ*の各指令値に基づいて前記インバータの出
力を制御する手段とを備えた誘導電動機の速度制御装置
において、 前記インバータの出力周波数が所定値以上になると前
記トルク電流成分検出値と前記内部相差角を零にする手
段を備えることで達成される。
The above object is to provide an inverter that outputs a variable frequency AC voltage to control the induction motor at a variable speed, and a current detection unit that detects the instantaneous value of the primary current of the induction motor, which is the output of the inverter, at each sampling cycle. , A torque current component detection means for detecting a torque current component I 1q from the current detection value from the current detection means, and a command value ω r of the rotation speed of the electric motor.
Means for generating *, means for calculating the output frequency command value ω 1 * of the inverter based on the command value of the rotation speed and the torque current component detection value, the torque current component detection value and the output frequency command The magnitude of the voltage that is the output voltage vector command value of the inverter based on the value
A means for calculating each command value of V 1 * and the internal phase difference angle δ *, and a unit for calculating the output frequency command value ω 1 *, the voltage magnitude V 1 * and each command value of the internal phase difference angle δ * In an induction motor speed control device including means for controlling the output of the inverter, by providing a means for making the torque current component detection value and the internal phase difference angle zero when the output frequency of the inverter becomes a predetermined value or more. To be achieved.

〔作用〕[Action]

本発明による速度制御装置は、低周波領域ではサンプ
ル周期Ts毎に1次電流の瞬時値が取込まれ、これよりト
ルク電流成分が演算され、これに基づいてすべり周波数
や出力電圧が制御されて、電動機はベクトル制御され
る。また、サンプリング周期Tsに対して少なくともその
数倍以下の周期となる高周波領域になると、1次電流瞬
時値のフイードバツクループは切離され、速度指令信号
のみによるオープンループ制御でインバータの出力周波
数及び電圧が制御される、いわゆる電圧対周波数が一定
の制御(V/F制御)に切換わる。それにより低速ではベ
クトル制御により高トルク特性が得られ、高速ではオー
プンループ制御で安定な速度制御が行え、広範囲に亘り
速度制御できる。
In the speed control device according to the present invention, the instantaneous value of the primary current is taken in every sample period T s in the low frequency region, the torque current component is calculated from this, and the slip frequency and the output voltage are controlled based on this. The electric motor is vector-controlled. Further, in the high frequency region where the sampling cycle is at least several times less than the sampling cycle T s , the feedback loop of the primary current instantaneous value is cut off, and the inverter output is output by open loop control using only the speed command signal. The control switches to a so-called voltage-to-frequency constant control (V / F control) in which frequency and voltage are controlled. As a result, high torque characteristics can be obtained by vector control at low speeds, stable speed control can be performed by open loop control at high speeds, and speed control can be performed over a wide range.

〔実施例〕〔Example〕

以下、本発明の一実施例を前記第5図と同一部分に同
一符号を付した第1図により説明する。ここで、8及び
9は速度指令ωr*からの制御モード判別器10によつて
操作される積分要素81及び91を備えた切換回路であり、
ωr*が所定値ωl以上になると、該切換回路8によりト
ルク電流成分検出値I1qを零値に切換え、また、切換回
路9は電圧相差角指令δ*を零に切換える。また11,12,
13はサンプルホールド回路で、サンプリング時間Ts毎に
速度指令ωr*及び1次電流検出値i1を取込み、13はTs
時間毎に1次電圧指令v1*を保持する。
An embodiment of the present invention will be described below with reference to FIG. 1 in which the same parts as those in FIG. Here, 8 and 9 are switching circuits provided with integral elements 81 and 91 operated by the control mode discriminator 10 from the speed command ω r *,
When ω r * becomes equal to or larger than the predetermined value ω l , the switching circuit 8 switches the torque current component detection value I 1q to a zero value, and the switching circuit 9 switches the voltage phase difference angle command δ * to zero. Also 11, 12,
13 is a sample and hold circuit, which takes in the speed command ω r * and the primary current detection value i 1 at every sampling time T s , and 13 is T s
Holds the primary voltage command v 1 * every time.

次に動作を説明する、先ず制御モード判別器12によつ
て速度指令ωr*が所定値ωl以下であれば、第2図で示
す構成からなる切換回路8,9のスイツチはAにセツトさ
れ電流フイードバツクループを形成する。そしてサンプ
リング時間Ts毎に1次電流i1の瞬時値を検出し、これよ
りトルク電流成分I1qを演算し、そのI1qに基づいてイン
バータ出力周波数指令ω1*及び出力電圧ベクトル指令
(電圧の大きさV1*,相差差δ*)を演算し、さらに1
次電圧瞬時値指令v1*を演算しその値はサンプルホール
ド回路13でサンプリング時間Ts保持され、PWM制御演算
等に用いられる。この電流フイードバツクループ制御に
より、前記したように電動機の磁束が常に一定となるよ
うに1次電圧の大きさV1や位相δが制御され(ベクトル
制御)、さらに周波数制御によつてすべりが補償される
ため、低速域でも高トルクが発生し、回転速度も指令値
にほぼ一致して制御される。
Next, the operation will be described. First, if the speed command ω r * is less than or equal to the predetermined value ω l by the control mode discriminator 12, the switches of the switching circuits 8 and 9 configured as shown in FIG. And forms a current feedback loop. Then detecting the instantaneous value of the primary current i 1 every sampling time T s, which than calculates the torque current component I 1q, the inverter output frequency command omega 1 * and output voltage command vector (voltage based on the I 1q V 1 *, phase difference δ *)
The next voltage instantaneous value command v 1 * is calculated, and the value is held in the sample hold circuit 13 for the sampling time T s and used for PWM control calculation and the like. With this current feedback loop control, the magnitude V 1 of the primary voltage and the phase δ are controlled (vector control) so that the magnetic flux of the electric motor is always constant, as described above, and the frequency control causes slippage. Because of the compensation, high torque is generated even in the low speed range, and the rotation speed is controlled so as to substantially match the command value.

次に速度指令ωr*が所定値ωl以上になると切換回路
8,9のスイツチはBにセツトされ、周波数演算器6及び
電圧指令演算器7に用いられるI1qは零となり、また電
圧指令演算出力の相差角δも零となり、インバータの出
力電圧、及び周波数は速度指令ωr*のみによる第3図
に示すオープンループ制御となる。これは速度指令ωr
*をサンプリング時間Tsで取込み、該ωr*に係数器14
のゲインφ1を乗じることで電圧指令V1*を演算し、ま
たωr*を積分することで電圧位相θ*を得て、これらV
1*,θ*より1次電圧瞬時値v1*を演算し、その値v1
*はサンプルホールド回路13にTs時間保持されPWM制御
部へ出力される。この制御はいわゆる電圧対周波数が一
定の制御方式(V/f一定制御)であり、上記したように
電流フイードバツクによるすべり補償が無いために速度
制御精度が劣る反面、電流検出サンプリング時間の影響
を受けず、また制御演算処理時間が上記フイードバツク
制御に比べ短縮することから、瞬時電圧指令v1*のサン
プリング時間Tsを短かくでき、高速回転でも安定で高応
答な速度制御ができる。
Next, when the speed command ω r * exceeds the predetermined value ω l , the switching circuit
The switches 8 and 9 are set to B, I 1q used in the frequency calculator 6 and the voltage command calculator 7 becomes zero, the phase difference angle δ of the voltage command calculation output becomes zero, and the inverter output voltage and frequency Is the open loop control shown in FIG. 3 only by the speed command ω r *. This is the speed command ω r
* Capture at the sampling time T s, the coefficient to the omega r * 14
The voltage command V 1 * is calculated by multiplying by the gain φ 1 , and the voltage phase θ * is obtained by integrating ω r *.
The primary voltage instantaneous value v 1 * is calculated from 1 *, θ * and the calculated value v 1
* Is held in the sample hold circuit 13 for T s time and output to the PWM control unit. This control is a so-called constant voltage vs. frequency control method (constant V / f control). As described above, since there is no slip compensation due to the current feedback, speed control accuracy is poor, but it is affected by the current detection sampling time. In addition, since the control calculation processing time is shortened compared to the above feedback control, the sampling time T s of the instantaneous voltage command v 1 * can be shortened, and stable and highly responsive speed control can be performed even at high speed rotation.

次に上記した2つの制御モードを運転速度指令に応じ
て制御モード判別器10により切換える場合、瞬時的に切
換えると、電圧及び周波数の急峻な変化で過渡現象が発
生する。これには、切換回路8,9には時定数Tの1次遅
れ要素81,91を備えているため円滑な切換えが行える。
第4図は、制御方式が切換わる時のトルク電流検出信号
I1q及び電圧相差角指令δ*の時間変化を示す。図中実
線はフイードバツク制御を行うベクトル制御からオープ
ンループ制御を行うV/f制御へ切換わる場合で、切換回
路8,9のスイツチをAからBにすることでI1q及びδ*の
各信号は、積分要素81,92の時定数で零となる。一方図
中破線はV/f制御からベクトル制御へ切換わる場合で、
切換回路8,9のスイツチをBからAにすることで、I1q
びδ*は零から円滑に検出値/演算値まで変化する。こ
こで、両者の制御モードの切換える速度ωlは電流検出
値と実際値との追従性が確保できるサンプリング時間Ts
によつて決まり、Tsの逆数値が1次周波数の数倍〜10倍
以上あればフィードバック制御での不安定現象は生じな
いことがわかつているため、ωlはこの関係を満足する
値に選ばれる。
Next, when the above-mentioned two control modes are switched by the control mode discriminator 10 in accordance with the operating speed command, if they are switched instantaneously, a transient phenomenon occurs due to a sharp change in voltage and frequency. To this end, since the switching circuits 8 and 9 are provided with first-order delay elements 81 and 91 having a time constant T, smooth switching can be performed.
FIG. 4 shows a torque current detection signal when the control system is switched.
The time change of I 1q and voltage phase difference angle command δ * is shown. The solid line in the figure indicates the case of switching from vector control that performs feedback back control to V / f control that performs open loop control. By switching the switches of switching circuits 8 and 9 from A to B, I 1q and δ * signals are , The time constants of the integral elements 81 and 92 become zero. On the other hand, the broken line in the figure is the case of switching from V / f control to vector control.
By changing the switches of the switching circuits 8 and 9 from B to A, I 1q and δ * smoothly change from zero to the detected value / calculated value. Here, the speed ω l at which the control modes of both are switched is the sampling time T s at which the traceability between the detected current value and the actual value can be secured.
It is known that the instability phenomenon in feedback control does not occur if the reciprocal value of T s is several to 10 times the primary frequency. Therefore, ω l is set to a value that satisfies this relationship. To be elected.

なお、前述には高速域で第3図に示すオープンループ
制御としたが、第7図に示すように1次電流を整流器15
に入力し、その絶対値又は平均値をサンプルして、出力
周波数指令ω1*あるいは出力電圧指令v1*にフイード
バツクしてもよい。これらの検出値は直流量のためサン
プルタイムの影響を受けにくく、このフイードバツクに
より、過負荷制限やトルクブーストを行うことができ
る。
Although the open loop control shown in FIG. 3 is used in the high speed range as described above, the primary current is rectified by the rectifier 15 as shown in FIG.
Alternatively, the absolute value or the average value thereof may be sampled and fed back to the output frequency command ω 1 * or the output voltage command v 1 *. Since these detected values are DC amounts, they are not easily affected by the sample time, and by this feedback, overload limitation and torque boost can be performed.

また、図示しないが、特開昭62-25888号記載のように
電動機の1次電流と1次電圧の瞬時値をサンプルしてフ
イードバツク制御しベクトル制御を行うものについても
第1図の実施例と同様に、各フイードバツク信号に切換
回路を設け回転速度に応じてフイードバツク制御あるい
はオープンループ制御に切換えれば運転速度範囲を広げ
ることができる。
Although not shown in the drawing, as described in JP-A-62-25888, the one in which the instantaneous values of the primary current and the primary voltage of the motor are sampled and the feedback control is performed to perform the vector control are also different from those of the embodiment of FIG. Similarly, the operating speed range can be expanded by providing a switching circuit for each feedback signal and switching to feedback control or open loop control according to the rotation speed.

〔発明の効果〕〔The invention's effect〕

本発明によれば、回転速度に応じて制御モードを切換
えることで低速度領域ではトルク電流成分検出値のフイ
ードバツク制御によるベクトルに制御により高トルク特
性が得られ、高速度領域ではトルク電流成分検出値を用
いずオープンループ制御のV/f制御により安定な速度制
御ができ、このため、運転速度範囲の広い速度制御がで
きるという効果がある。
According to the present invention, by switching the control mode according to the rotation speed, high torque characteristics can be obtained by controlling the vector by the feedback back control of the torque current component detection value in the low speed region, and the torque current component detection value in the high speed region. It is possible to perform stable speed control by V / f control of open loop control without using, and therefore there is an effect that speed control with a wide operating speed range can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の制御構成ブロツク図、第2
図は第1図の切換回路の構成図、第3図,第4図,第7
図は本発明の動作を説明する図、第5図は従来の速度制
御ブロツク図、第6図は電流検出波形図を示す。 1……誘導電動機、2……PWM制御インバータ装置、5
……トルク電流成分検出器、6……周波数指令演算器、
7……電圧指令判別器、8,9……切換回路、10……制御
モード判別器、11,12,13……サンプルホールド回路。
FIG. 1 is a block diagram of a control configuration of one embodiment of the present invention, and FIG.
The figure is a block diagram of the switching circuit of FIG. 1, FIG. 3, FIG. 4, and FIG.
FIG. 5 is a diagram for explaining the operation of the present invention, FIG. 5 is a conventional speed control block diagram, and FIG. 6 is a current detection waveform diagram. 1 ... Induction motor, 2 ... PWM control inverter device, 5
...... Torque current component detector, 6 …… Frequency command calculator,
7 ... Voltage command discriminator, 8, 9 ... Switching circuit, 10 ... Control mode discriminator, 11, 12, 13 ... Sample and hold circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本部 光幸 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 藤井 洋 千葉県習志野市東習志野7丁目1番1号 株式会社日立製作所習志野工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mitsuyuki Headquarters 4026 Kujimachi, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Hiroshi Fujii 7-1 Higashi Narashino, Narashino City, Chiba Hitachi, Ltd. Narashino Factory

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可変周波の交流電圧を出力して誘導電動機
を可変速制御するインバータと、 該インバータの出力である前記誘導電動機の1次電流の
瞬時値をサンプル周期毎に検出する電流検出手段と、 該電流検出手段からの電流検出値よりトルク電流成分I
1qを検出するトルク電流成分検出手段と、 前記電動機の回転速度の指令値ωr*を発生する手段
と、 該回転速度の指令値と前記トルク電流成分検出値に基づ
いて前記インバータの出力周波数指令値ω1*を演算す
る手段と、 前記トルク電流成分検出値と前記出力周波数指令値に基
づいて前記インバータの出力電圧ベクトル指令値である
ところの電圧の大きさV1*と内部相差角δ*の各指令値
を演算する手段と、 前記出力周波数指令値ω1*と前記電圧の大きさV1*と
内部相差角δ*の各指令値に基づいて前記インバータの
出力を制御する手段とを備えた誘導電動機の速度制御装
置において、 前記インバータの出力周波数が所定値以上になると、前
記トルク電流成分検出値を遮断し、該検出値とは無関係
に前記インバータの出力指令値(出力周波数指令値及び
出力電圧指令値)を演算し、該出力指令値に基づいて前
記インバータの出力を制御する手段を備えたことを特徴
とする誘導電動機の速度制御装置。
1. An inverter for outputting a variable frequency AC voltage to control an induction motor at a variable speed, and a current detecting means for detecting an instantaneous value of a primary current of the induction motor, which is an output of the inverter, for each sampling period. And the torque current component I from the current detection value from the current detection means.
A torque current component detecting means for detecting 1q , a means for generating a command value ω r * of the rotation speed of the electric motor, and an output frequency command for the inverter based on the rotation speed command value and the torque current component detection value. A means for calculating the value ω 1 *, a voltage magnitude V 1 * which is an output voltage vector command value of the inverter based on the detected torque current component value and the output frequency command value, and an internal phase difference angle δ * And means for controlling the output of the inverter based on the command values of the output frequency command value ω 1 *, the voltage magnitude V 1 *, and the internal phase difference angle δ *. In a speed control device for an induction motor, the torque current component detection value is cut off when the output frequency of the inverter becomes equal to or higher than a predetermined value, and the output command value (output frequency of the inverter is irrespective of the detection value. A speed control device for an induction motor, comprising means for calculating a wave number command value and an output voltage command value, and controlling the output of the inverter based on the output command value.
JP63290019A 1988-11-18 1988-11-18 Induction motor speed controller Expired - Lifetime JP2528953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63290019A JP2528953B2 (en) 1988-11-18 1988-11-18 Induction motor speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63290019A JP2528953B2 (en) 1988-11-18 1988-11-18 Induction motor speed controller

Publications (2)

Publication Number Publication Date
JPH02142393A JPH02142393A (en) 1990-05-31
JP2528953B2 true JP2528953B2 (en) 1996-08-28

Family

ID=17750737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63290019A Expired - Lifetime JP2528953B2 (en) 1988-11-18 1988-11-18 Induction motor speed controller

Country Status (1)

Country Link
JP (1) JP2528953B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI110372B (en) 1999-02-15 2002-12-31 Abb Industry Oy Procedure for control of electric machine and converter

Also Published As

Publication number Publication date
JPH02142393A (en) 1990-05-31

Similar Documents

Publication Publication Date Title
US5387855A (en) Induction motor control system
US7671558B2 (en) Induction motor controller
US5828199A (en) Variable speed controller for an induction motor
US8350517B2 (en) Applying a control unit to an asynchronous machine which is operated without a rotary encoder
JP2002335699A (en) Controller of ac motor
JPH06343283A (en) Torque feedback device
JP2000175492A (en) Controller for induction motor
KR100563225B1 (en) Induction Motor Control System
US6242882B1 (en) Motor control apparatus
JP2528953B2 (en) Induction motor speed controller
US5467001A (en) Control method for an alternating current motor
JPH0691482A (en) Feed control device
JP3682543B2 (en) Control method of permanent magnet type synchronous motor
JPH06335277A (en) Ac motor controller
US7034510B2 (en) Method for coupling inverter to alternating voltage
JP3528108B2 (en) Adaptive slip frequency type vector control method and apparatus for induction motor
JP2856950B2 (en) Control device for synchronous motor
JPH1023800A (en) Induction motor speed control
EP0308974B1 (en) Induction motor control system
JPH04322191A (en) Controller for synchronous motor
JPH0866099A (en) Induction-motor control apparatus
EP0427571B1 (en) AC motor control
JP2804035B2 (en) Induction machine control device
JPH07250496A (en) Induction motor controller
JPH07108109B2 (en) Motor control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13