JP2515066B2 - Casting composite of silicon nitride and metal - Google Patents

Casting composite of silicon nitride and metal

Info

Publication number
JP2515066B2
JP2515066B2 JP3257791A JP25779191A JP2515066B2 JP 2515066 B2 JP2515066 B2 JP 2515066B2 JP 3257791 A JP3257791 A JP 3257791A JP 25779191 A JP25779191 A JP 25779191A JP 2515066 B2 JP2515066 B2 JP 2515066B2
Authority
JP
Japan
Prior art keywords
silicon nitride
metal
nitride member
cast
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3257791A
Other languages
Japanese (ja)
Other versions
JPH0596358A (en
Inventor
由紀夫 宮入
宇田  実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3257791A priority Critical patent/JP2515066B2/en
Publication of JPH0596358A publication Critical patent/JPH0596358A/en
Application granted granted Critical
Publication of JP2515066B2 publication Critical patent/JP2515066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化珪素と金属とが強
固に接合された窒化珪素と金属の複合体に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite of silicon nitride and metal in which silicon nitride and metal are firmly bonded.

【0002】[0002]

【従来の技術】窒化珪素は耐熱性に優れるため、高温に
さらされる容器や、燃焼器の耐熱性向上等の用途に向い
ている。しかし、金属に比較して脆性で、引張応力に対
する耐久性が低いという欠点を有する。このため、金属
との複合化によりその欠点を補つて使用することが不可
欠である。窒化珪素と金属との複合化を行なうに際して
は、窒化珪素の外周研削加工を必要としない、金属によ
る鋳ぐるみの方法が最も簡単で低コストである。ここで
金属の選定に際しては、窒化珪素と熱膨張係数ができる
限り近いことが、窒化珪素部材の応力低減の観点から好
ましく、Niを含む鉄系合金が比較的適している。しか
しながら、鉄系の合金は融点が約1500℃前後である
ため、窒化珪素を鋳ぐるむ際に、窒化珪素部材の形状に
よつては、窒化珪素部材内の過渡的な熱応力が過大にな
り、亀裂が発生することがあつた。
2. Description of the Related Art Since silicon nitride has excellent heat resistance, it is suitable for use in containers exposed to high temperatures and in improving the heat resistance of combustors. However, it has the drawbacks of being brittle and less durable to tensile stress than metals. For this reason, it is indispensable to use it by making a complex with a metal to make up for the drawback. When compounding silicon nitride and a metal, the method of forming a cast metal with a metal, which does not require grinding of the outer periphery of the silicon nitride, is the simplest and has the lowest cost. When selecting the metal, it is preferable that the coefficient of thermal expansion be as close as possible to that of silicon nitride from the viewpoint of reducing the stress of the silicon nitride member, and an iron-based alloy containing Ni is relatively suitable. However, since the iron-based alloy has a melting point of about 1500 ° C., when the silicon nitride is cast, the transient thermal stress in the silicon nitride member becomes excessive depending on the shape of the silicon nitride member. , Cracks may occur.

【0003】[0003]

【発明が解決しようとする課題】鋳造時の窒化珪素の亀
裂発生は、窒化珪素部材内の温度の不均一による熱応力
によるものである。従って本発明は、窒化珪素部材にお
いて高温の溶湯から流れ込む熱の流れの方向に沿う窒化
珪素の厚さを均一にすることにより窒化珪素部材内の温
度を均一にし、熱応力の発生を抑えた窒化珪素と金属の
鋳ぐるみ複合体を提供することを目的とするものであ
る。
The generation of cracks in silicon nitride during casting is due to thermal stress due to non-uniform temperature in the silicon nitride member. Therefore, according to the present invention, the temperature in the silicon nitride member is made uniform by making the thickness of the silicon nitride along the flow direction of the heat flowing from the high temperature molten metal in the silicon nitride member uniform, thereby suppressing the occurrence of thermal stress. It is an object of the present invention to provide a cast and cast composite of silicon and metal.

【0004】[0004]

【課題を解決するための手段】 即ち、本発明によれ
、上部にくぼみ部を有する窒化珪素部材の外側周面部
および下部底面部を金属で鋳ぐるんでなる窒化珪素と金
属の鋳ぐるみ複合体において、 1)金属は熱膨張係数が窒化珪素に近い鉄合金とし、 2)窒化珪素の1100℃における4点曲抗折強度が3
00MPa以上であり、 3)窒化珪素部材のくぼみ部内面上の任意の点Pと窒化
珪素部材底面および外側周面上の点Qを結ぶ線分で表
される窒化珪素部材の厚さPQの最大値と最値との差
が窒化珪素部材外径の10%以下とした窒化珪素と金属
の鋳ぐるみ複合体が提供される。
Means for Solving the Problems That is, according to the present invention, the upper portion to the recessed portion of silicon nitride and the metal of the insert casting composite comprising an outer peripheral surface and the lower bottom portion of the silicon nitride member Gurung cast a metal having a In the body, 1) the metal is an iron alloy having a thermal expansion coefficient close to that of silicon nitride, and 2) the 4-point bending strength of silicon nitride at 1100 ° C. is 3
And at 00MPa or more, the table in the line segment connecting the point Q on any point and P and the silicon nitride member bottom outer peripheral surface portion of the recessed portion the inner surface of 3) silicon nitride member
The difference between the maximum value and the minimum value of the thickness PQ silicon nitride member is the insert casting complex of silicon nitride and a metal which is more than 10% of the silicon nitride member outer diameter is provided.

【0005】[0005]

【作用】 本発明においては、金属として熱膨張係数が
窒化珪素に近い鉄合金を用い、窒化珪素部材の厚さPQ
の最大値PQmax と最小値PQmin との差が窒化珪素部
材外径Dの10%以下であることが、製作時の歩留りを
考えた上で許容される窒化珪素部材の破壊確率以下に破
壊確率(%)をおさえるために必要であり、5%以下で
あればより好ましい。
In the present invention, an iron alloy having a thermal expansion coefficient close to that of silicon nitride is used as the metal, and the thickness PQ of the silicon nitride member is used.
The difference between the maximum value PQmax and the minimum value PQmin of 10% or less of the outer diameter D of the silicon nitride member is less than or equal to the failure probability of the silicon nitride member which is allowed in consideration of the yield during manufacturing ( %), And 5% or less is more preferable.

【0006】本発明における窒化珪素と金属の鋳ぐるみ
複合体であるピストンの金属材料としては、室温〜40
0℃の熱膨張係数が4.5×10-6〜9.0×10-6
℃の範囲にある鉄系合金を用いることが好ましい。これ
が好ましい理由は、熱膨張係数が窒化珪素にできる限り
近いことが、使用時の窒化珪素と金属の間の隙間やがた
の発生防止の観点から好ましいためである。
The metal material for the piston, which is a composite of cast silicon and silicon nitride in the present invention, is from room temperature to 40.
The coefficient of thermal expansion at 0 ° C. is 4.5 × 10 −6 to 9.0 × 10 −6 /
It is preferable to use an iron-based alloy in the range of ° C. This is preferable because it is preferable that the coefficient of thermal expansion be as close as possible to that of silicon nitride from the viewpoint of preventing the generation of gaps and rattling between silicon nitride and metal during use.

【0007】本発明で用いる鉄系合金としては、例えば
重量比でC 0.3〜2.0%、Ni 25〜32%、
Co 12〜20%、Si 0.3〜2.0%、Nb
0.2〜0.8%、Mg又はCa 0.01〜0.2
%、Mn 1.0%以下、残部は不純物を含むFeとい
う組成を有し、室温〜400℃の熱膨張係数が4.5×
10-6〜5.5×10-6/℃である合金、あるいは、重
量比でC 0.8〜3.0%、Ni 30〜34%、C
o 4.0〜6.0%、Si 1.0〜3.0%、Mn
2.0%以下、硫黄 1.0%以下、りん 1.5%
以下、Mg 1.0%以下、残部は不純物を含むFeと
いう組成を有し、室温〜400℃の熱膨張係数が約9×
10-6/℃以下、室温〜200℃の熱膨張係数が約2×
10-6〜3×10-6/℃である合金が望ましい。
The iron-based alloy used in the present invention is, for example, C 0.3 to 2.0% by weight, Ni 25 to 32% by weight,
Co 12-20%, Si 0.3-2.0%, Nb
0.2-0.8%, Mg or Ca 0.01-0.2
%, Mn is 1.0% or less, and the balance is Fe containing impurities, and has a thermal expansion coefficient of 4.5 × from room temperature to 400 ° C.
Alloy of 10 −6 to 5.5 × 10 −6 / ° C., or C 0.8 to 3.0% by weight, Ni 30 to 34%, and C by weight ratio
o 4.0-6.0%, Si 1.0-3.0%, Mn
2.0% or less, sulfur 1.0% or less, phosphorus 1.5%
Hereinafter, it has a composition of Mg 1.0% or less and the balance Fe containing impurities, and has a thermal expansion coefficient of about 9 × from room temperature to 400 ° C.
10 -6 / ° C or less, room temperature to 200 ° C thermal expansion coefficient of about 2 ×
Alloys of 10 −6 to 3 × 10 −6 / ° C. are desirable.

【0008】上記の合金の使用が望ましい理由は、これ
らの合金では凝固時に黒鉛(密度約2g/cm3 )が液
体金属(密度約8g/cm3 )から析出して凝固収縮が
低減し、温度低下により常温に至るまでの全収縮がイン
バー合金やコバールなどの低膨張合金より小さいこと、
また、上記組成以外の鉄系金属では、通常の鉄系材料よ
り熱膨張が窒化珪素に近い鋳ぐるみ可能であるという上
記組成の合金のような好適な特性を有さないからであ
る。
[0008] Why the use of the alloy described above is desired, in these alloys graphite (density: about 2 g / cm 3) is reduced precipitated solidification shrinkage from a liquid metal (density: about 8 g / cm 3) at the time of solidification, the temperature The total shrinkage to room temperature due to the decrease is smaller than that of low expansion alloys such as Invar alloy and Kovar,
Further, the iron-based metal having a composition other than the above composition does not have a preferable property as an alloy of the above composition that the thermal expansion is closer to that of silicon nitride and can be cast as compared with the usual iron-based material.

【0009】[0009]

【実施例】以下、本発明の実施例について図面を参照し
て説明するが、本発明はこれらの実施例に限られるもの
ではない。図1は窒化珪素と金属の鋳ぐるみ複合体とし
て製作したピストン11の断面図を示し、図2は窒化珪
素部材の厚さPQの最大PQmax と最小PQmin の差の
窒化珪素部材外径Dに対する割合(%)と鋳ぐるみ時の
窒化珪素部材の破壊確率(%)との関係を示すグラフで
ある。
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to these embodiments. FIG. 1 shows a cross-sectional view of a piston 11 manufactured as a cast-roughened composite of silicon nitride and metal, and FIG. 2 shows the ratio of the difference between the maximum PQmax and the minimum PQmin of the thickness PQ of the silicon nitride member to the outer diameter D of the silicon nitride member. 3 is a graph showing the relationship between (%) and the probability of breakage (%) of a silicon nitride member during casting.

【0010】 本発明に係る窒化珪素と金属の鋳ぐるみ
複合体11は、下記の1)〜3)に示す材料および形状
を満足するもので、上部にくぼみ部4を有する窒化珪素
部材1の外側周面部2および下部底面部3を金属6で鋳
ぐるんでなるものである。 1)金属6は熱膨張係数が窒化珪素に近い鉄合金であ
り、 2)窒化珪素はその1100℃における4点曲抗折強度
が300MPa以上であり 、 3)窒化珪素部材1のくぼみ部4内面5上の任意の点P
と窒化珪素部材1底面3および外側周面上の点Qを結ぶ
線分PQで表される窒化珪素部材の厚さP の最大値P
Qmax と最値PQmin との差が窒化珪素部材外径Dの
10%以下である。
The cast-in-mold composite body 11 of silicon nitride and metal according to the present invention satisfies the materials and shapes shown in the following 1) to 3), and is outside the silicon nitride member 1 having the recessed portion 4 in the upper part. The peripheral surface portion 2 and the lower bottom surface portion 3 are made of metal 6 and cast. 1) Metal 6 is an iron alloy having a thermal expansion coefficient close to that of silicon nitride, 2) Silicon nitride has a four-point bending strength of 300 MPa or more at 1100 ° C., and 3) Inner surface of recess 4 of silicon nitride member 1. Arbitrary point P on 5
And the maximum value P of the thickness P Q of the silicon nitride member represented by the line segment PQ connecting the bottom surface 3 of the silicon nitride member 1 and the point Q on the outer peripheral surface.
Difference between Qmax and the minimum value PQmin is 10% or less of silicon nitride member outer diameter D.

【0011】図1は本発明に係る窒化珪素と金属の鋳ぐ
るみ複合体11をディーゼルエンジンのピストンに利用
した例である。上部にくぼみ部(燃焼室)4を有する窒
化珪素部材1を鋳型(図示せず)内にセットした後14
50℃の鉄系合金6を流し込み、冷却後、取り出して窒
化珪素部材1と金属6の鋳ぐるみ複合体であるピストン
11を製作し、その後、金属外側周面部7、ピストンピ
ン穴8、ピストン上面9およびリング用溝10を機械加
工してピストンを製作した。
FIG. 1 shows an example in which the cast-in-mold composite body 11 of silicon nitride and metal according to the present invention is used for a piston of a diesel engine. After setting the silicon nitride member 1 having the recessed portion (combustion chamber) 4 in the upper portion in a mold (not shown), 14
Iron-based alloy 6 at 50 ° C. is poured, cooled, and taken out to manufacture piston 11 which is a cast-gurg composite of silicon nitride member 1 and metal 6, and thereafter metal outer peripheral surface portion 7, piston pin hole 8, piston upper surface A piston was manufactured by machining 9 and the groove 10 for a ring.

【0012】得られたピストンにおける窒化珪素部材1
について、図2のグラフに示すように、窒化珪素部材1
の厚さPQの最大PQmax と最小PQmin の差の窒化珪
素部材外径Dに対する割合(%)を種々変化させた際
の、鋳ぐるみ時の窒化珪素破壊確率(%)をプロットし
たところ、破壊確率を約20%以下におさえようとした
場合、厚さの差は10%以下にする必要があることがわ
かった。なお、この結果は1100℃における4点曲抗
折強度300MPaの窒化珪素材料について得られたも
のである。
Silicon nitride member 1 in the obtained piston
As shown in the graph of FIG.
When the ratio (%) of the difference between the maximum PQmax and the minimum PQmin of the thickness PQ to the outside diameter D of the silicon nitride member was variously changed, the silicon nitride fracture probability (%) during casting was plotted. It was found that the thickness difference needs to be 10% or less when the thickness is controlled to be about 20% or less. The results were obtained for a silicon nitride material having a four-point bending strength of 300 MPa at 1100 ° C.

【0013】[0013]

【発明の効果】以上説明したように、本発明では、窒化
珪素部材において高温の溶湯から流れ込む熱の流れの方
向に沿う窒化珪素の厚さを均一にすることにより窒化珪
素部材内の温度を均一にし、熱応力の発生をおさえて製
作することができ、鉄系合金の熱膨張係数が窒化珪素に
近く、使用時の窒化珪素と金属の間の隙間やがたの発生
防止となり、高温での金属と窒化珪素とのゆるみの発生
がなく信頼性があり、ピストンの場合は、金属と窒化珪
素との間の燃焼ガスの漏れがないという優れた効果を奏
する。そして、窒化珪素の外周研削加工を必要とせず、
金属による鋳ぐるみの方法が簡単で低コストとなるなど
の効果がある。
As described above, according to the present invention, the temperature inside the silicon nitride member is made uniform by making the thickness of the silicon nitride along the flow direction of the heat flowing from the high temperature molten metal in the silicon nitride member uniform. The thermal expansion coefficient of the iron-based alloy is close to that of silicon nitride, which prevents the formation of gaps and rattles between the silicon nitride and the metal during use. There is no slack between the metal and silicon nitride and there is reliability. In the case of a piston, there is an excellent effect that there is no leakage of combustion gas between the metal and silicon nitride. And, it does not require the outer peripheral grinding of silicon nitride,
There is an effect that the method of forming cast metal by metal is simple and the cost is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】窒化珪素と金属の鋳ぐるみ複合体として製作し
たピストンの断面図である。
FIG. 1 is a sectional view of a piston manufactured as a cast-roughened composite body of silicon nitride and metal.

【図2】窒化珪素部材の厚さの最大と最小の差の窒化珪
素部材外径に対する割合と鋳ぐるみ時の窒化珪素破壊率
との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the ratio of the difference between the maximum thickness and the minimum thickness of a silicon nitride member to the outer diameter of the silicon nitride member and the silicon nitride breakdown rate during casting.

【符号の説明】[Explanation of symbols]

1 窒化珪素部材 2 窒化珪素部材の外側周面部 3 窒化珪素部材の下部底面部 4 窒化珪素部材のくぼみ部(燃焼室) 5 窒化珪素部材のくぼみ部内面 6 金属(鉄系合金) 7 金属(ピストン)の外側周面部 8 ピストンピン穴 9 ピストンの上面 10 リング用溝 11 複合体(ピストン) D 窒化珪素部材の外径 1 Silicon Nitride Member 2 Outer Circumferential Surface Part of Silicon Nitride Member 3 Lower Bottom Part of Silicon Nitride Member 4 Recessed Part of Silicon Nitride Member (Combustion Chamber) 5 Inner Recessed Part of Silicon Nitride Member 6 Metal (Ferrous Alloy) 7 Metal (Piston) ) Outer peripheral surface portion 8 piston pin hole 9 upper surface of piston 10 ring groove 11 complex (piston) D outer diameter of silicon nitride member

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上部にくぼみ部を有する窒化珪素部材の
外側周面部および下部底面部を金属で鋳ぐるんでなる窒
化珪素と金属の鋳ぐるみ複合体において、 1)金属は熱膨張係数が窒化珪素に近い鉄合金とし、 2)窒化珪素の1100℃における4点曲抗折強度が3
00MPa以上であり、 3)窒化珪素部材のくぼみ部内面上の任意の点Pと窒化
珪素部材底面および外側周面部上の点Qを結ぶ線分で表
される窒化珪素部材の厚さPQの最大値と最値との差
が窒化珪素部材外径の10%以下である、 ことを特徴とする窒化珪素と金属の鋳ぐるみ複合体。
1. A cast-iron composite of silicon nitride and a metal, wherein the outer peripheral surface portion and the bottom surface portion of a silicon nitride member having a recessed portion in the upper portion are cast with metal, and 1) the metal has a thermal expansion coefficient of silicon nitride. 2) The 4-point bending strength of silicon nitride at 1100 ° C is 3).
00 MPa or more, and 3) represented by a line segment connecting an arbitrary point P on the inner surface of the hollow portion of the silicon nitride member and a point Q on the bottom surface of the silicon nitride member and the outer peripheral surface portion.
Maximum value and the minimum difference between the small value is 10% or less of silicon nitride member outer diameter, insert casting complex of silicon nitride and a metal, wherein a thickness PQ silicon nitride member to be.
JP3257791A 1991-10-04 1991-10-04 Casting composite of silicon nitride and metal Expired - Lifetime JP2515066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3257791A JP2515066B2 (en) 1991-10-04 1991-10-04 Casting composite of silicon nitride and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3257791A JP2515066B2 (en) 1991-10-04 1991-10-04 Casting composite of silicon nitride and metal

Publications (2)

Publication Number Publication Date
JPH0596358A JPH0596358A (en) 1993-04-20
JP2515066B2 true JP2515066B2 (en) 1996-07-10

Family

ID=17311161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3257791A Expired - Lifetime JP2515066B2 (en) 1991-10-04 1991-10-04 Casting composite of silicon nitride and metal

Country Status (1)

Country Link
JP (1) JP2515066B2 (en)

Also Published As

Publication number Publication date
JPH0596358A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
JP5669392B2 (en) Steel material with high silicon content for the production of piston rings and cylinder liners
JP6461954B2 (en) Method for manufacturing aluminum piston
JP2515066B2 (en) Casting composite of silicon nitride and metal
JP4768919B2 (en) Ring shape parts for gas turbine blade rings and seal ring retaining rings made of high strength low thermal expansion cast steel and high strength low thermal expansion cast steel
JPH08291306A (en) Sinter bonding method and sintered composite member using this method
JPH02125837A (en) Low thermal expansion cast iron
JP2920004B2 (en) Cast-in composite of ceramics and metal
JPH0610321B2 (en) Abrasion resistant sintered alloy
JP2591872B2 (en) Silicon nitride cast-in piston
JPH02298236A (en) Low thermal expansion alloy
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
JPS62191607A (en) Valve seat insert and cylinder head using said insert
JPS59213939A (en) Piston made of aluminum alloy of direct injection diesel engine
JPH05106506A (en) Cylinder head for internal combustion engine
JPH0873972A (en) Composite material excellent in strength, wear resistance, and thermal conductivity and its production
JP3487137B2 (en) Manufacturing method of cylinder liner made of metal matrix composite material
JPH05345683A (en) Composite material of ceramic and metal
JP3778713B2 (en) Heat-resistant cast iron material and cylinder head using the cast iron material
JPH0693379A (en) Erosion-corrosion resistant material against aluminum
WO2017111720A1 (en) Cast iron alloy provided with improved mechanical and thermal properties
KR20100007090A (en) Ferritic nodular cast iron
JP2581857B2 (en) Ceramic metal composite piston and method of manufacturing the same
JPS616248A (en) Rotor provided with hub and its manufacture
JPH02115303A (en) Manufacture of aluminum rapid solidified alloy sintered body
JP3737040B2 (en) High carbon spheroidal graphite cast iron and heat-resistant cast iron casting comprising the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960319