JP2023161018A - Method for diagnosing and evaluating structure based on always fine movement of structure - Google Patents

Method for diagnosing and evaluating structure based on always fine movement of structure Download PDF

Info

Publication number
JP2023161018A
JP2023161018A JP2023149639A JP2023149639A JP2023161018A JP 2023161018 A JP2023161018 A JP 2023161018A JP 2023149639 A JP2023149639 A JP 2023149639A JP 2023149639 A JP2023149639 A JP 2023149639A JP 2023161018 A JP2023161018 A JP 2023161018A
Authority
JP
Japan
Prior art keywords
layer
value
index
acceleration
microtremor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023149639A
Other languages
Japanese (ja)
Inventor
俊一 五十嵐
Shunichi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Structural Quality Assurance Inc
Original Assignee
Structural Quality Assurance Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Structural Quality Assurance Inc filed Critical Structural Quality Assurance Inc
Publication of JP2023161018A publication Critical patent/JP2023161018A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

To provide a method for diagnosing and evaluating a structure based on the always fine movement of the structure, which is different from a conventional method in which soundness and safety of the structure is achieved by directly applying an external force or the like to an object, and earthquake resistance and soundness of the structure and the effect of a countermeasure work and a reinforcing work can be inexpensively and quickly diagnosed and evaluated.SOLUTION: Disclosed is a method for evaluating performance of a structure by the always fine observation, which includes the steps of: constantly observing a fine observation history at the same time at a plurality of observation points in the structure; calculating an estimated value of an index used for an earthquake resistant design of the structure using the root mean square (RMS) of these time histories; and performing evaluation of the earthquake resisting performance based on the observation of the structure using a ratio to a value of the index used at a point of time when this value is designed.SELECTED DRAWING: Figure 4

Description

特許法第30条第2項適用申請有り 2018年7月20日 「一般社団法人 日本建築学会」発行 DVD「学術講演梗概集」に発表Application for Article 30, Paragraph 2 of the Patent Act filed July 20, 2018 Published by the Architectural Institute of Japan (General Incorporated Association) Published in the DVD “Academic Lecture Abstracts”

本発明は、構造物の常時微動に基づいて構造物の耐震性や健全性及び対策工・補強工の効果を診断評価する構造物の診断評価方法に関する技術である。 The present invention relates to a method for diagnosing and evaluating structures, which diagnoses and evaluates the seismic resistance and soundness of a structure and the effectiveness of countermeasures and reinforcement works based on constant microtremors of the structure.

人体、機械、建物などから、崖、地盤、樹木まで、我々の周囲にある様々な物に対して、性能を診断評価することは、安全で快適な生活を送る上での基本であり、多くの機器、技術が既に実用化されている。この中で、建物、インフラ施設などの構造物の耐震性、健全性の診断評価には、次のような困難さがある:長期に渡り、様々な自然環境条件にさらされる。一つ一つがそれぞれ異なる形状、材質を持っている。破壊試験ができない。大きさが人のスケールを超える。移動が困難である。完全に文書やデータで記述することができない。構造物は、地盤に支持されており、地盤の性状は地上に見える人造物よりも複雑である。地震等の突発的な外力の発生時期、規模、振動特性などについては不確定性が高い。 Diagnosing and evaluating the performance of various things around us, from the human body, machines, buildings, etc. to cliffs, the ground, and trees, is fundamental to living a safe and comfortable life, and it is essential for many things. equipment and technology have already been put into practical use. Among these, there are the following difficulties in diagnostic evaluation of the seismic resistance and soundness of structures such as buildings and infrastructure facilities: They are exposed to various natural environmental conditions over a long period of time. Each one has a different shape and material. Destructive testing is not possible. The size exceeds human scale. Difficult to move. It cannot be completely described in documents or data. Structures are supported by the ground, and the properties of the ground are more complex than those of man-made structures visible on the ground. There is a high degree of uncertainty regarding the timing, scale, vibration characteristics, etc. of sudden external forces such as earthquakes.

また、既存建築物の耐震性評価には、構造耐震指標(Is値)を計算する方法が従来から行われているが、図面等の情報を専門家が判断してコンピュータプログラムに入力して複雑な計算を行うため、多額の費用と時間がかかった。さらに、計算法が一意的でなく、分岐や判断に基づく入力があったので、結果的には主観的な要素が入り易いとされ、第三者機関による判定会が制度化されるに至っている。つまり、上記従来手法は、多額の費用と労力、時間を要するものであった。 In addition, to evaluate the seismic resistance of existing buildings, the method of calculating the structural seismic resistance index (Is value) has traditionally been used, but this method requires experts to judge information such as drawings and input it into a computer program. It took a lot of money and time to do the calculations. Furthermore, since the calculation method was not unique and there were inputs based on branching and judgment, it was said that the results were likely to be subject to subjective elements, and a third-party judgment committee was institutionalized. . In other words, the conventional method described above requires a large amount of cost, effort, and time.

これまでに実用化されている構造物全体を対象とする診断評価法には、a)図面や計算書との整合性をチェックするもの、b)構造計算をやり直すもの、c)別の計算法で計算しなおすもの、d)起振機などで振動を与えて揺れ方を計測するもの、e)チェックシート形式で評点をつけ集計するもの、f)微動観測に基づくものがある。新築時の検査は、a)あるいはb)に、耐震診断は、c)の範疇に属する。しかし、a)~c)に掲げた計算を用いる方法は、その根拠である数値を図面等から拾い出すので、実際の構造物および支持条件がその通りであるかどうかについては、仮定することになる。また、構造物内部について、詳細な計算をして100%正確な判定ができたとしても、基礎と周辺地盤の条件によって計算結果は殆ど左右される結果となる。また、d)に掲げた起振機などを使う方法も、起振機のエネルギーは構造物および周辺地盤の位置エネルギーに比べて小さすぎ、構造計算を行う場合と同様に、精度の高い判定とは言いがたい。 Diagnostic evaluation methods that target the entire structure that have been put into practical use so far include a) those that check consistency with drawings and calculation documents, b) those that redo structural calculations, and c) other calculation methods. d) measures the shaking by applying vibrations using an exciter, e) scores are calculated using a check sheet, and f) measures are based on microtremor observations. Inspections for new construction fall under a) or b), and seismic diagnosis falls under c). However, in the methods using the calculations listed in a) to c), the numerical values that are the basis for the calculations are extracted from drawings, etc., so it is necessary to make assumptions as to whether the actual structure and supporting conditions are as they are. Become. Furthermore, even if a 100% accurate determination of the inside of a structure is made through detailed calculations, the results of the calculation will be largely influenced by the conditions of the foundation and surrounding ground. In addition, the method of using an exciter, etc. listed in d) also has the effect that the energy of the exciter is too small compared to the potential energy of the structure and the surrounding ground, and as with structural calculations, it is not possible to make a highly accurate judgment. It's hard to say.

常時微動は、上記の方法が依拠している情報に比べ、はるかに総合的、詳細かつ大量の、構造物および周辺地盤の情報を含んでいる。常時微動は、振幅こそ、数ミクロン程度と小さいが、構造物及び周辺地盤の巨大な質量が常時振動しているので、大きなエネルギーを持っている。空間的にも、構造物と周辺地盤の全ての箇所で振動するもので、情報量は、設計図書や起振機の情報とは全く比較になら無い程多い。特に、大地震に対する危険性を評価する上で、地震と同様に入力源を地盤とした実振動が測定できることは重要である。 Microtremors contain much more comprehensive, detailed, and large amounts of information about structures and surrounding ground than the information on which the above methods rely. Although the amplitude of microtremors is small, on the order of a few microns, they have a large amount of energy because the huge mass of the structure and surrounding ground is constantly vibrating. Spatially, vibrations occur in all parts of the structure and the surrounding ground, and the amount of information is so large that it cannot be compared with the information in design documents or exciters. In particular, in assessing the risk of large earthquakes, it is important to be able to measure actual vibrations with the input source as the ground, similar to earthquakes.

従来も、常時微動を利用する構造物の診断法は、例えば特許文献1の開示技術などのように幾つか試行されている。 In the past, several methods of diagnosing structures that utilize constant microtremors have been tried, such as the technique disclosed in Patent Document 1, for example.

特許第3876247号公報Patent No. 3876247

しかし、従来技術は、卓越していると思われる周期をフーリエスペクトルから目視で判定し、その変化を論ずる等の方法であり、常時微動の持つ豊富な情報量のごく一部を取り出すものに過ぎなかった。従って、診断結果は、精度、内容ともに不十分であり、構造物の診断法としての地位を築くことは出来なかった。また、特許文献1を含む従来技術は、算出した指標が現行の設計基準あるいは耐震診断基準で用いる指標ではなかったため、現行基準の枠組みでの評価や診断に適用することができなかった。さらに、現行基準の設計指標には、構造物の使用継続性を直接評価するものがない。ただし、現行の構造物の耐震設計基準及び耐震診断基準を総称して、本明細書では現行基準とする。また、耐震診断基準を単に診断基準、耐震設計基準を単に設計基準と称する。 However, the conventional technology involves visually determining the period that is considered to be dominant from the Fourier spectrum and discussing its changes, and is only able to extract a small portion of the rich amount of information contained in microtremors. There wasn't. Therefore, the diagnostic results were insufficient in both accuracy and content, and the method could not be established as a diagnostic method for structures. Further, in the conventional technology including Patent Document 1, the calculated index was not an index used in the current design standards or seismic diagnosis standards, so it could not be applied to evaluation or diagnosis within the framework of the current standards. Furthermore, the design indicators in the current standards do not directly assess the continued use of structures. However, the current seismic design standards and seismic diagnosis standards for structures are collectively referred to as current standards in this specification. Furthermore, the seismic diagnostic standards are simply referred to as diagnostic standards, and the seismic design standards are simply referred to as design standards.

また、現行の耐震設計で用いている層せん断力高さ方向の分布係数、保有水平耐力、及び耐震診断で用いている累積強度指標と形状指標の積などは、これを実測する方法がなかった。現行基準では、想定地震動を具体的に示しておらず、さらに、現行の計算法は、一意的でなく分岐や判断に基づく入力があるという問題もあった。 Additionally, there was no way to actually measure the distribution coefficient of story shear force in the height direction used in current seismic design, the retained horizontal capacity, and the product of the cumulative strength index and shape index used in seismic diagnosis. . The current standards do not specifically indicate expected seismic motions, and the current calculation method also has the problem of not being unique and requiring input based on branching and judgment.

本発明は、上記特許文献1を含む従来技術にみられた上記課題に鑑み、常時微動のもつ情報を、現行の既存構造物の診断・耐震改修設計に用いている累積強度指標、構造耐震指標の期待値や、現行の新築の設計に用いている層せん断力の高さ方向の分布係数の期待値や、構造物の使用継続性を直接評価するための損傷度に関連付けて前記指標や損傷度の推定値をそれぞれ微動の測定値から直接取得することで、実在の構造物・周辺地盤系の情報を抽出しこれを構造物の設計、診断評価に用いる新たな方法を提供することを目的とする。本発明の方法を微動診断(MTD:Micro Tremor Diagnosis)と称する。 In view of the above-mentioned problems encountered in the prior art including Patent Document 1, the present invention provides a cumulative strength index and a structural seismic resistance index that use information from continuous microtremors in the diagnosis and seismic retrofit design of existing structures. The expected value of the distribution coefficient in the height direction of the story shear force used in the design of current new construction, and the above-mentioned index and damage in relation to the degree of damage to directly evaluate the continued use of the structure. The purpose of this project is to provide a new method for extracting information about actual structures and surrounding ground systems and using this information for the design and diagnostic evaluation of structures by directly obtaining estimated values of microtremors from measured values of microtremors. shall be. The method of the present invention is referred to as Micro Tremor Diagnosis (MTD).

本発明は、上記課題を解決すべくなされたものであり、その構成上の特徴は、常時微動観測により、構造物の性能を評価する方法において、前記構造物内の複数の観測点で同時に常時微動時刻歴を観測し、これらの時刻歴の二乗平均値平方根(RMS)を用いて、前記構造物の耐震設計に用いる指標の推定値を算出し、この値の設計時点で用いられる前記指標の値に対する比率を用いて、前記構造物の前記観測に基づく耐震性能の評価を行うことにある。 The present invention has been made to solve the above-mentioned problems, and its structural feature is that, in a method of evaluating the performance of a structure by constantly observing microtremors, a plurality of observation points within the structure can be used simultaneously at all times. The microtremor time history is observed, and the root mean square (RMS) of these time histories is used to calculate the estimated value of the index used in the seismic design of the structure, and the estimated value of the index used at the time of design of this value is calculated. The objective is to evaluate the seismic performance of the structure based on the observation using the ratio to the value.

また、連続して計測した前記常時微動時刻歴を分割し、複数の部分時刻歴を抽出し、各部分時刻歴に関して前記指標の期待値を計算し、そのサンプル平均を前記指標の推定値とすることができる。この場合における前記部分時刻歴の継続時間は、1~2分間とするのが望ましい。 Further, the continuous microtremor time history measured continuously is divided, a plurality of partial time histories are extracted, the expected value of the index is calculated for each partial time history, and the sample average is set as the estimated value of the index. be able to. In this case, the duration of the partial time history is preferably 1 to 2 minutes.

本発明においては、前記観測を、構造物の新築後、改修工事前後、また、定期的な診断時に行い、各観測時点の前記推定値を相互比較することにより、構造物の耐震性能と大地震時の倒壊危険性と使用継続性の経時変化と改修工事前後の変化とのうちの少なくともいずれかを診断評価するものであってもよい。 In the present invention, the above-mentioned observation is performed after the structure is newly built, before and after renovation work, and during periodic diagnosis, and the estimated values at each observation point are compared with each other to determine the seismic performance of the structure and the large-scale earthquake. It may also be a method for diagnosing and evaluating at least one of the following: changes in the risk of collapse over time, changes in continuity of use over time, and changes before and after renovation work.

本発明において前記指標は、現行基準に規定された層せん断力の高さ方向の分布係数や、現行基準に規定された保有水平耐力とすることができる。 In the present invention, the index may be the distribution coefficient of the layer shear force in the height direction specified by the current standards, or the possessed horizontal yield strength specified by the current standards.

また、本発明において前記指標は、現行基準に規定されたベースシア係数や現行基準に
規定された加速度応答倍率とすることもできる。
Further, in the present invention, the index may be a base shear coefficient defined by current standards or an acceleration response magnification defined by current standards.

さらに、本発明において前記指標は、現行基準に規定された累積強度指標と形状指標との積や、新たに本発明で定義する損傷度や転倒危険度としてもよい。 Further, in the present invention, the index may be the product of the cumulative strength index and the shape index defined in the current standards, or the degree of damage or fall risk newly defined in the present invention.

本発明によれば、現行の既存構造物の診断・耐震改修設計に用いている累積強度指標、構造耐震指標の期待値や、現行の新築の設計に用いている層せん断力の高さ方向の分布係数の期待値や、構造物の使用継続性を直接評価するために新たに定義した損傷度の推定値をそれぞれ微動の測定値から直接取得することで、構造物の各部分に鉛直アレーを設けた観測により、各フロアーの部分(ゾーン)の振動性情、強度、損傷度等を測定することができる結果、従来法より、はるかに詳細かつ迅速、安価に耐震性、健全性、あるいは改修設計の効果を評価できることとなった。 According to the present invention, the expected value of the cumulative strength index and structural seismic resistance index currently used in the diagnosis and seismic retrofit design of existing structures, and the height direction of the story shear force used in the design of current new construction. By directly obtaining the expected value of the distribution coefficient and the newly defined estimated value of the degree of damage to directly evaluate the continued use of the structure from the measured values of microtremors, a vertical array can be installed in each part of the structure. As a result, it is possible to measure the vibration properties, strength, degree of damage, etc. of each floor section (zone) through the observation provided, and as a result, it is possible to determine seismic resistance, soundness, or renovation design in much more detail, quickly, and at a lower cost than with conventional methods. It was now possible to evaluate the effects of

つまり、本発明によれば、以上の指標を用いることで、新築後、改修工事後、また、定期的な診断時に、現行の診断評価、あるいは検査方法よりはるかに安価かつ迅速に診断評価、あるいは検査を行うことができるので、合理的な耐震補強設計、新設構造物の耐震設計を行うことができることになる。 In other words, according to the present invention, by using the above indicators, diagnostic evaluation or evaluation can be performed much more cheaply and quickly than current diagnostic evaluation or inspection methods after new construction, after renovation work, or during periodic diagnosis. Since inspections can be performed, rational seismic reinforcement designs and seismic designs for new structures can be carried out.

本発明方法が適用される診断システムの構成例を示す説明図。FIG. 1 is an explanatory diagram showing a configuration example of a diagnostic system to which the method of the present invention is applied. 微動計と分析器との間で行われる基本的な処理手順を示すフローチャート図。FIG. 3 is a flowchart showing the basic processing procedure performed between the microtremometer and the analyzer. 本発明方法において構造耐震指標、保有水平耐力及び損傷度を計算するために必要な要因を示す説明図。FIG. 3 is an explanatory diagram showing factors necessary for calculating a structural seismic resistance index, horizontal bearing capacity, and degree of damage in the method of the present invention. 本発明方法の全体処理の手順を示すフローチャート図。FIG. 2 is a flowchart showing the overall processing procedure of the method of the present invention. 分析器内で行われる処理内容のをルーチン別に示す説明図。FIG. 3 is an explanatory diagram showing the processing contents performed in the analyzer by routine. 実際の地震の作用と地震力を示す模式図であり、そのうちの(a)は実際の作用を、(b)はバネ・質点系を、(c)は地震力を示す。These are schematic diagrams showing the action and seismic force of an actual earthquake, of which (a) shows the actual action, (b) shows the spring/mass system, and (c) shows the seismic force. 図6(b)で黒点と線で描いた複数の質点とバネを一つにしたモデル(一質点系)図。A model (single mass point system) diagram in which multiple mass points and springs drawn by black dots and lines in FIG. 6(b) are combined into one. バイリニア型の累積強度指標・層間変形角関係を示すグラフ図。A graph diagram showing a bilinear type cumulative strength index/interlayer deformation angle relationship. 摩擦型層間せん断力・支持部分加速度関係を示すグラフ図。A graph diagram showing the relationship between friction type interlayer shear force and support part acceleration. 摩擦型層間せん断力・層間速度関係を示すグラフ図。A graph diagram showing the relationship between friction type interlayer shear force and interlayer velocity. 摩擦型層間せん断力・層間変位関係を示すグラフ図。A graph diagram showing the relationship between friction type interlayer shear force and interlayer displacement. 4階建ての病院を例に1階における4種類の微動計の配置図。A layout diagram of four types of microtremors on the first floor of a four-story hospital as an example. 同4階建ての病院を例に2階における4種類の微動計の配置図。A layout diagram of four types of microtremors on the second floor of a four-story hospital. 同4階建ての病院を例に3階における4種類の微動計の配置図。A layout diagram of four types of microtremometers on the third floor of a four-story hospital. 同4階建ての病院を例に4階における4種類の微動計の配置図。A layout diagram of four types of microtremometers on the fourth floor of a four-story hospital. Y病院1階柱壁2階床梁伏図。Y Hospital 1st floor column wall and 2nd floor floor beam floor plan. Y病院2階柱壁3階床梁伏図。Y Hospital 2nd floor column wall and 3rd floor floor beam floor plan. Y病院X方向1通軸組図。Y hospital X direction single axis assembly diagram. Y病院X方向2通軸組図。Y Hospital X-direction 2-way shaft assembly diagram. Y病院X方向4通軸組図。Y Hospital X-direction 4-shaft assembly diagram. Y病院Y方向A通軸組図。Y hospital Y direction A axis assembly diagram. Y病院Y方向B通軸組図。Y hospital Y direction B axis assembly diagram. 実施例2についての建物全景図。A panoramic view of the building regarding Example 2. 図23における一階A2計測器の設置状況を図25との対応のもの。The installation situation of the A2 measuring instruments on the first floor in FIG. 23 corresponds to FIG. 25. 図24との対応のもとで計測器配置と補強位置とを示す説明図。FIG. 25 is an explanatory diagram showing the arrangement of measuring instruments and reinforcement positions in correspondence with FIG. 24; 各階の微動変位軌跡図。Microtremor displacement trajectory diagram for each floor. 補強前の計測による11階建てSRC建物の屋上の振動のアニメーション。Animation of vibrations on the roof of an 11-story SRC building measured before reinforcement. 補強後の計測による11階建てSRC建物の屋上の振動のアニメーション。補強後の屋上面の運動につき屋上面3箇所に設置した微動計による変位データ(XYZ3成分)を構造解析結果可視化ソフトウェアに入力して、可視化(アニメーション化)したものの一瞬を示す図。Animation of vibrations on the roof of an 11-story SRC building measured after reinforcement. This is a diagram showing a moment of visualization (animation) of displacement data (XYZ 3 components) from microtremometers installed at three locations on the roof surface that was input into structural analysis results visualization software regarding the movement of the roof surface after reinforcement. ブロック塀、基礎および地盤と微動計との配置関係を示す模式図。A schematic diagram showing the arrangement relationship between a block wall, a foundation, the ground, and a microtremor. ブロック塀の全景を(a)~(c)として状況別に示す説明図。Explanatory diagrams (a) to (c) showing a panoramic view of a block wall according to the situation. ブロック塀上と基準点の微動計配置図。Microtremor meter placement diagram on the block wall and at the reference point.

構造物の周辺地盤は、常に微小な振動を生じている。振動エネルギーの供給源は、潮汐、交通振動等である。振幅は、数ミクロン[10=-6m]程度である。構造物のある点で観測される常時微動(以下、単に「微動」ともいう。)は、周辺地盤の微動が、基礎から構造物内に入り、構造物内部を伝播する間に増幅、あるいは減衰した結果である。 The ground surrounding a structure is constantly experiencing minute vibrations. Sources of vibration energy include tides, traffic vibrations, etc. The amplitude is on the order of a few microns [10= -6 m]. Continuous microtremors observed at a certain point in a structure (hereinafter also simply referred to as "microtremors") are caused by microtremors in the surrounding ground that enter the structure from the foundation and are amplified or attenuated while propagating inside the structure. This is the result.

常時微動は、構造物内に設置した微動計(加速度計)で観測される。これは、構造物内の特定の点の絶対加速度であり、通常は鉛直成分、水平2方向の直交3成分に分けてそれぞれ計測される。振幅が微小であり、継続時間も短いので、構造物は定常線形システムであり、常時微動は、定常確率過程(Stationaly Stochastic Process )の一部分であるとして数学的に扱うことができる。 Continuous microtremors are observed using microtremors (accelerometers) installed inside the structure. This is the absolute acceleration of a specific point within a structure, and is usually measured separately into three orthogonal components, a vertical component and two horizontal directions. Since the amplitude is small and the duration is short, the structure is a stationary linear system, and the microtremors can be treated mathematically as part of a stationary stochastic process.

以下、図面に基づいて本発明の実施の形態例を説明する。図1は、本発明方法が適用される診断システムの構成例を示す説明図である。同図によれば、診断システムの全体は、構造物10の各層の層境界面10a,10b,10cに配置される微動計1と、該微動計1が記録したデータに基づき各種の振動特性指標、及び現行基準で用いている各種の耐震性評価指標と新たな評価指標とを算出する分析器(例えばパーソナルコンピュータ)2とで構成されている。 Embodiments of the present invention will be described below based on the drawings. FIG. 1 is an explanatory diagram showing an example of the configuration of a diagnostic system to which the method of the present invention is applied. According to the figure, the entire diagnostic system includes a microtremor 1 placed at the layer boundary surfaces 10a, 10b, and 10c of each layer of the structure 10, and various vibration characteristic indicators based on the data recorded by the microtremor 1. , and an analyzer (for example, a personal computer) 2 that calculates various earthquake resistance evaluation indices used in the current standards and new evaluation indices.

これらのうち、微動計(例えば白山工業製の微動計JU410)1は、加速度センサー、メモリ、GPSを内蔵している。また、分析器2には、微動診断ソフトが搭載されており、微動計1が記録したデータをUSBあるいはLAN、インターネットを介して受け取り、以下に詳説する本発明方法の計算を行い、各種の振動特性指標、及び現行基準で用いている各種の耐震性評価指標と新たな評価指標を計算する。また、分析器2は、ある層に例えば3箇所設置した微動計1が取得した微動変位データは、分析器2に搭載されている可視化ソフトに送られ、面の動きを3次元でアニメーション化した上で、分析器2が備える図示しない表示手段(ディスプレイ)に表示して構造物10がどのように震動しているか、その震動モードを表示して一目瞭然に目視確認できるようにして可視化されている。 Among these, the micro-motion meter (for example, the micro-motion meter JU410 manufactured by Hakusan Kogyo) 1 has a built-in acceleration sensor, memory, and GPS. In addition, the analyzer 2 is equipped with microtremor diagnostic software, which receives the data recorded by the microtremor 1 via USB, LAN, or the Internet, performs calculations using the method of the present invention described in detail below, and calculates various vibrations. Calculate characteristic indicators, various seismic resistance evaluation indicators used in the current standards, and new evaluation indicators. In addition, the analyzer 2 sends the microtremor displacement data acquired by the microtremor 1 installed at three locations on a certain layer to the visualization software installed in the analyzer 2, and animates the movement of the surface in three dimensions. Above, how the structure 10 is vibrating is displayed on a display means (not shown) provided in the analyzer 2, and the vibration mode is displayed so that it can be visually confirmed at a glance. .

以下、本発明方法の概要を図2~図5に基づいて説明する。図2は、微動計1と分析器2との間で行われる基本的な処理手順を示すフローチャート図である。同図によれば、振動計1は、常時微動(層境界上の観測点及び基準点の加速度時刻歴)を測定して記録する。分析器2は、受け取った測定記録データを周波数領域でフィルタ処理し、しかる後に対象構造物の固有振動数付近の周波数帯の加速度時刻歴を取得する。該加速度時刻歴を取得した後は、時間領域で、2分間程度のパートに分割され、それぞれについて、注目時刻歴、エネルギー伝達率、及び、各種の指標を計算する。計算後は、パート毎の振動特性指標、耐震性能指標及び収震性能指標の平均値と標準偏差とを計算し、前記平均値を各指標の推定値とする処理が行われる。 The outline of the method of the present invention will be explained below based on FIGS. 2 to 5. FIG. 2 is a flowchart showing the basic processing procedure performed between the microtremometer 1 and the analyzer 2. According to the figure, the vibration meter 1 constantly measures and records microtremors (acceleration time history of observation points and reference points on layer boundaries). The analyzer 2 filters the received measurement record data in the frequency domain, and then obtains an acceleration time history in a frequency band around the natural frequency of the target structure. After acquiring the acceleration time history, it is divided into parts of about 2 minutes in the time domain, and the attention time history, energy transfer rate, and various indicators are calculated for each part. After the calculation, a process is performed in which the average value and standard deviation of the vibration characteristic index, seismic performance index, and seismic absorption performance index for each part are calculated, and the average value is used as the estimated value of each index.

また、図3によれば、本発明方法における想定地震動の大きさは、最大加速度、最大速
度、最大変位、強震継続時間で表すこととしている。また、微動計は、対象構造物の各層及び基準面に鉛直アレー状に設置する。さらに、対象構造物の対象層の性能は、必要保有水平耐力、靱性指標、経年指標、限界繰り返し回数で表すこととしている。そして、微動計の設置を終えた後は、図2に示す処理手順に従い、微動計1を用いた微動計測と分析器2を用いた計測結果の分析を行い、振動特性指標(中心周期、層せん断力の高さ方向の分布を示す係数)及び耐震性能評価指標(保有水平耐力、終局時累積強度指標と形状指標との積)及び収震性評価指標(履歴吸収エネルギー、損傷度)を計算する。以上を処理した後は、構造耐震指標、保有水平耐力比、及び損傷度を計算して処理を終えることになる。
Moreover, according to FIG. 3, the magnitude of the assumed seismic motion in the method of the present invention is expressed by maximum acceleration, maximum velocity, maximum displacement, and strong motion duration. In addition, micromotion meters are installed in a vertical array on each layer and reference plane of the target structure. Furthermore, the performance of the target layer of the target structure is expressed by the required horizontal bearing capacity, toughness index, aging index, and limit number of repetitions. After the microtremor has been installed, the microtremor is measured using the microtremor 1 and the measurement results are analyzed using the analyzer 2 according to the processing procedure shown in Figure 2. Calculate the coefficient that indicates the distribution of shear force in the height direction), the seismic performance evaluation index (horizontal bearing capacity, the product of the ultimate cumulative strength index and the shape index), and the seismic absorption evaluation index (historical absorbed energy, degree of damage) do. After processing the above, the structural seismic resistance index, possessing horizontal strength ratio, and degree of damage are calculated and the processing is completed.

図4は、本発明方法の全体処理の手順を示すフローチャート図である。同図によれば、まず、対象構造物の事前調査を行う。具体的には、設計図面、計算書、増改築履歴、被災履歴、既往の耐震診断等の文献資料を収集するとともに、現地踏査により、微動計の設置可能位置を決定する。次いで、微動測定計画として測定時間帯、測定時間、微動計(計器)の配置、基準面を決定する。微動測定計画を策定した後は、微動計測実施として計器絶対時刻合わせ、微動計測、データ記録が行われ、分析実施として注目時刻歴計算、振動特性指標、性能指標計算が行われる。以上を終えた後は、診断実施が行われる。この場合、現行基準に即した診断には、構造耐震指標あるいは保有水平耐力比が用いられ、収震性能評価には、損傷度が用いられる。 FIG. 4 is a flowchart showing the overall processing procedure of the method of the present invention. According to the figure, first, a preliminary investigation of the target structure is performed. Specifically, we will collect documents such as design drawings, calculation sheets, history of additions and renovations, history of disaster damage, and past seismic diagnosis, as well as conduct field surveys to determine possible locations for installing microtremors. Next, the measurement time period, measurement time, placement of the microtremor meter (instrument), and reference plane are determined as a microtremor measurement plan. After formulating the microtremor measurement plan, the microtremor measurement is performed by setting the instrument's absolute time, microtremor measurement, and data recording, and the analysis is performed by calculating the time history of interest, vibration characteristic index, and performance index. After completing the above steps, diagnosis is performed. In this case, the structural seismic resistance index or horizontal capacity ratio is used for diagnosis in accordance with current standards, and the degree of damage is used for seismic performance evaluation.

図5は、分析器2内で行われる処理内容をルーチン別に示す説明図である。同図によれば、入力データとしては、想定地震動諸元としての各データのほか、観測微動時刻歴、観測時間、観測周波数帯域、分析時間、分析周波数帯域があり、観測点属性としての各データ、構造物諸元としての各データが入力される。 FIG. 5 is an explanatory diagram showing the processing contents performed within the analyzer 2 by routine. According to the figure, the input data includes each data as expected seismic motion specifications, observation time history, observation time, observation frequency band, analysis time, and analysis frequency band, and each data as observation point attribute. , each data as structure specifications is input.

計算ルーチンにおいては、注目微動時刻歴の計算、パート分割、振動特性指標の計算、性能指標の計算が行われる。予備計算ルーチンについては、FFT、フィルター、ゼロ点補正、二乗平均値の計算、中心振動数計算、バンド幅指数計算が行われる。 In the calculation routine, calculation of the time history of the microtremor of interest, division into parts, calculation of the vibration characteristic index, and calculation of the performance index are performed. Regarding the preliminary calculation routine, FFT, filter, zero point correction, root mean square value calculation, center frequency calculation, and bandwidth index calculation are performed.

表示ルーチンにおいては、入力データ表示、観測時刻歴、スペクトル、中心振動数、バンド幅指数表示、振動特性指標表示、性能指標表示が行われるほか、時刻歴表示、パワースペクトル表示、軌跡表示、面の運動アニメーション表示も行われる。出力・転送ルーチンにおいては、紙、ハードデバイス、USB、LAN等や電波等を介して行われる。 In the display routine, input data display, observation time history, spectrum, central frequency, bandwidth index display, vibration characteristic index display, and performance index display are performed, as well as time history display, power spectrum display, trajectory display, and surface area display. Exercise animations are also displayed. The output/transfer routine is performed via paper, hard device, USB, LAN, etc., radio waves, etc.

以上、図1~5に基づいて本発明方法の概要を説明したが、以下に、本発明方法をより詳細に説明する。本発明方法(MTD:Micro Tremor Diagnosis)では、微動の継続時間、変位、速度、加速度時刻歴に関する二乗平均値平方根(RMS)、ピークファクター、ゼロクロス周期、中心周期、バンド幅指数、また、基準点の微動変位、速度、加速度時刻歴と注目微動時刻歴の間のエネルギー伝達率を用いて微動と構造物の振動特性を定量的に分析する。これは、2次モーメントを用いた確率過程の特徴把握と入出力間の相関分析である。 The outline of the method of the present invention has been explained above based on FIGS. 1 to 5, and the method of the present invention will be explained in more detail below. In the method of the present invention (MTD: Micro Tremor Diagnosis), the root mean square (RMS), peak factor, zero-crossing period, center period, bandwidth index, and reference point regarding the duration, displacement, velocity, and acceleration time history of microtremors are The microtremor and vibration characteristics of the structure are quantitatively analyzed using the energy transfer rate between the microtremor displacement, velocity, and acceleration time history and the microtremor time history of interest. This involves understanding the characteristics of a stochastic process using second-order moments and analyzing the correlation between input and output.

なお、微動計測では、一つの微動計配置に関して連続して計測した継続時間の中から、数セットの時刻歴を抽出し、各セットに関して下記の各量を計算して、サンプル平均と標準偏差を求める。耐震性評価には、各量のサンプル平均を、各量の期待値の推定値として用いる。 In addition, in microtremor measurement, several sets of time histories are extracted from the continuous measurement duration for one microtremor arrangement, the following quantities are calculated for each set, and the sample average and standard deviation are calculated. demand. For earthquake resistance evaluation, the sample average of each quantity is used as an estimate of the expected value of each quantity.

図6は、実際の地震の作用と地震力を示す模式図であり、そのうちの(a)は実際の作用を、(b)はバネ・質点計を、(c)は地震力を示す。微動診断は、構造物地盤系を図6(a)~(c)に示すように、周辺地盤21を剛床、構造物10を質点とバネにモデル化して計算を行う。これは、現行の耐震基準と同様である。 FIG. 6 is a schematic diagram showing the action and seismic force of an actual earthquake, of which (a) shows the actual action, (b) shows the spring/mass point meter, and (c) shows the seismic force. The microtremor diagnosis is performed by modeling the structure's ground system as shown in FIGS. 6(a) to 6(c), with the surrounding ground 21 as a rigid floor and the structure 10 as a mass point and a spring. This is similar to the current seismic standards.

地盤は、潮汐、交通振動等を受けて常に数ミクロン[10-6m]程度の微小な振幅で振動を生じている。これは常時微動(Micro Tremor)と呼ばれている。図6(a)に実線の長方形で表した構造物10の周辺地盤21も同様である。微動は基礎から構造物10内に入り、構造物10内部を伝播するので構造物10も常時微動を生じている。ランダムな入力を十分長期間に渡り受けているので、周辺地盤21も構造物10も固有の振動モードで振動していると考えられる。 The ground constantly vibrates with minute amplitudes of several microns [10 -6 m] due to the effects of tides, traffic vibrations, etc. This is called microtremor. The same applies to the surrounding ground 21 of the structure 10, which is represented by a solid rectangle in FIG. 6(a). Since the microtremors enter the structure 10 from the foundation and propagate inside the structure 10, the structure 10 also constantly experiences microtremors. Since the random input has been received for a sufficiently long period of time, it is considered that both the surrounding ground 21 and the structure 10 are vibrating in a unique vibration mode.

構造物10内に複数の微動計(加速度計)1を図1に示すように設置することで、微動の時刻歴を観測することができる。例えば、図6(b)のように構造物10の各層を質点とバネでモデル化することに対応するように、各層の代表点に一台ずつ鉛直アレー状に設置する。微動の振幅は微小であるので、有限な継続時間の中では構造物10は定常線形システムであり、常時微動は、定常確率過程(Stationary Stochastic Process)の一部分であるとして数学的に扱うことができる。 By installing a plurality of microtremors (accelerometers) 1 in the structure 10 as shown in FIG. 1, the time history of microtremors can be observed. For example, in order to correspond to modeling each layer of the structure 10 using mass points and springs as shown in FIG. 6(b), one unit is installed in a vertical array at the representative point of each layer. Since the amplitude of the microtremor is minute, the structure 10 is a stationary linear system within a finite duration, and the continuous microtremor can be treated mathematically as part of a stationary stochastic process. .

地震動は、震源域での岩盤・地盤の破壊による変位が波動となって構造物周辺の地盤に達してこれを振動させる現象であるので常時微動とは振動エネルギーの源泉は異なるが振幅の小さい範囲では周辺地盤も構造物も固有モードで振動すると考えられるので常時微動と同じ振動をすると考えられる。
以上から、微動観測によって、次のような指標を計算し、構造物の動的性質、及び地震時の挙動を予測計算し、現行の耐震性能評価指標及び新たな評価指標を計算する。
Earthquake motion is a phenomenon in which the displacement caused by the destruction of rock and ground in the epicenter area turns into waves that reach the ground around structures and cause them to vibrate, so the source of the vibration energy is different from regular tremors, but it is a small amplitude range. Since the surrounding ground and structures are thought to vibrate in their natural mode, it is thought that they vibrate in the same way as constant microtremors.
Based on the above, we will use microtremor observations to calculate the following indicators, predict the dynamic properties of structures and their behavior during earthquakes, and calculate current seismic performance evaluation indicators and new evaluation indicators.

1.中心周期(振動特性指標 その1)
構造物内のある点のある方向の微動変位の中心周期T[sec]は次のように計算する。
1. Center period (vibration characteristic index part 1)
The central period T c [sec] of micro-tremor displacement at a certain point in a structure in a certain direction is calculated as follows.

Figure 2023161018000002
Figure 2023161018000002

Figure 2023161018000003
Figure 2023161018000003

ただし、ωcy[rad/sec] は、任意の微動時刻歴を微分した時刻歴のRMSを
自身のRMSで除して計算される中心振動数(ここでいう「中心」は、英語「central frequency」を和訳したときに「central」に充てたものであり、具体的に何らかの中心にあるという意味ではなく、ゼロクロス振動数の期待値であり、不規則振動論で時刻歴の振動数特性を論ずる上で中心的な役割を演ずる振動数を意味する。)であり、a(表1のa欄参照)、及びb(表1のb欄参照)は、 それぞれ、変位時刻
歴と速度時刻歴のRMSである。
However, ω cy [rad/sec] is the central frequency calculated by dividing the RMS of the time history obtained by differentiating an arbitrary microtremor time history by its own RMS (the ``center'' here is the English term ``central frequency''). " is used as "central" when translated into Japanese, and it does not specifically mean that it is at the center of something, but it is the expected value of the zero-crossing frequency, and it is used to discuss the frequency characteristics of time history in the theory of irregular vibrations. ), and a (see column a of Table 1) and b (see column b of Table 1) are the frequencies of the displacement time history and velocity time history, respectively. It is RMS.

Figure 2023161018000004
Figure 2023161018000004

Figure 2023161018000005
Figure 2023161018000005

ここで、[0,t] は、微動時刻歴の継続時間である。速度、加速度、また、回転角
等についても同様に中心周期を定義できる。
構造物内のある部分に設置した複数の微動計で得られた時刻歴の中心周期をそれぞれ計算し、互いに比較することでその部分が固有の振動モードで振動しているかどうかを判断することができる。
Here, [0, t 0 ] is the duration of the microtremor time history. The center period can be similarly defined for speed, acceleration, rotation angle, etc.
By calculating the central period of the time history obtained from multiple microtremors installed in a certain part of a structure and comparing them with each other, it is possible to determine whether that part is vibrating in a unique vibration mode. can.

2.層せん断力の高さ方向の分布を表す係数の期待値(振動特性指標 その2)
現行の建築物の耐震基準及び耐震診断基準では、図6(b)に示す力学モデルを背景に
、建物の第j層に作用する地震力(P)を震度(k)とその層の重量(w)の積として表している。
2. Expected value of coefficient representing the distribution of layer shear force in the height direction (vibration characteristic index part 2)
In the current seismic resistance standards and seismic diagnosis standards for buildings, based on the mechanical model shown in Figure 6(b), the seismic force (P j ) acting on the j-th layer of the building is expressed as the seismic intensity (k j ) and the seismic intensity (k j ) of that layer. It is expressed as a product of weight (w j ).

Figure 2023161018000006
Figure 2023161018000006

上記の関係から、n層からなる建築物が地震の作用を受けて振動した場合に第i層に生ずる最大せん断力を層せん断力a(表2のa欄参照)と称して、その層が支持する重量b(表2のb欄参照)と地震層せん断力係数(C)の積として与えている。 From the above relationship, when a building consisting of n layers vibrates under the action of an earthquake, the maximum shear force that occurs in the i-th layer is called the layer shear force a (see column a in Table 2). It is given as the product of the supported weight b (see column b of Table 2) and the seismic layer shear force coefficient (C i ).

Figure 2023161018000007
Figure 2023161018000007

Figure 2023161018000008
Figure 2023161018000008

さらに、地震層せん断力係数(C)を、地域係数(Z)、振動特性係数(R)、標準せん断力係数(C)及び層せん断力の高さ方向の分布を表す係数(A)の積として規定している。なお、中小地震を想定した一次設計でC =0.2、大地震に対する2
次設計では、C =1.0 を用いると定められている。
Furthermore, the seismic layer shear force coefficient (C i ) is divided into a regional coefficient (Z), a vibration characteristic coefficient (R t ), a standard shear force coefficient (C 0 ), and a coefficient (A i ). In addition, in the primary design assuming small to medium earthquakes, C 0 = 0.2, and 2 for large earthquakes.
In the next design, it is determined that C 0 =1.0 is used.

Figure 2023161018000009
Figure 2023161018000009

なお、第1層については、 Regarding the first layer,

Figure 2023161018000010
Figure 2023161018000010

以上から、A は、層せん断力を第1層のせん断力a(表3のa欄参照)で基準化し
た値b(表3のb欄参照)と、その層から上の重量を第1層から上の合計重量(全重量)Wで基準化した量とαの比であることが導かれる。
From the above, A i is the value b (see column b of Table 3), which is the layer shear force normalized by the shear force a of the first layer (see column a of Table 3), and the weight above that layer. It is derived that it is the ratio of the amount standardized by the total weight (total weight) W of the first layer and above and α i .

Figure 2023161018000011
Figure 2023161018000011

Figure 2023161018000012
Figure 2023161018000012

上式の関係を用いて、微動診断で得られた第i層k方向の絶対加速度エネルギー伝達率a(表4のa欄参照)が地震動入力による弾性応当時にも保存されると仮定して、これと、基準点の最大加速度を乗じて絶対加速度の最大値の期待値b(表4のb欄参照)を計算し、これと構造物の各層の質量mから、最大層せん断力の期待値c(表4のc欄参照)を求め、第i層k方向の層せん断力の高さ方向の分布を表す係数の期待値E[Aik] を
得ることができる(数9)。ただし、前記基準点の最大加速度は、数式9の最右辺の分母子に来るので約されるので表示していない。また、絶対加速度エネルギー伝達率a(表4のa欄参照)とは、本明細書の段落「0067」に定義したエネルギー伝達率において、注目する微動時刻歴を絶対加速度時刻歴としたもの、即ち、第i層k方向の絶対加速度時刻歴のRMSの第1層k方向の絶対加速度時刻歴のRMSに対する比である。また、数9の右から2番目の等号は、図6(b)の構造物の力学モデルについての運動方程式(段落「0032」~「0034」参照)から導かれる。また、数9の最後の等号は、段落「0021」に述べた仮定、即ち、常時微動観測で得られた各層(第i層)の絶対加速度時刻歴は定常確率過程の一部分であるとして数学的に扱うことができるという仮定の基で、ある継続時間内の最大値の期待値はRMSにピークファクターを乗じて計算することができるという知見に基づいて、各層の絶対加速度時刻歴のピークファクターが互いに等しいと置いている。以上に示したように、本発明の方法は、地震時に構造物内に作用する力の最大値を用いて定義されている現行基準の設計指標を、以上の仮定に基づいて、微動観測によって得られた各層の絶対加速度時刻歴のRMSを用いて推定するものである。この方法は、実際に測定した最大値を用いる方法に比べて、ばらつきの小さな(安定した)最大値の推定値、即ち、設計指標の推定値を得るものである。
Using the relationship in the above equation, assuming that the absolute acceleration energy transfer rate a (see column a of Table 4) in the k direction of the i-th layer obtained from the microtremor diagnosis is preserved even during the elastic response due to seismic motion input, Multiply this by the maximum acceleration of the reference point to calculate the expected maximum value b of the absolute acceleration (see column b in Table 4), and from this and the mass m j of each layer of the structure, the expected maximum layer shear force By calculating the value c (see column c of Table 4), it is possible to obtain the expected value E[A ik ] of the coefficient representing the distribution of the layer shear force in the k direction of the i-th layer in the height direction (Equation 9). However, the maximum acceleration at the reference point is not displayed because it is reduced because it is in the denominator and digit on the right-most side of Equation 9. In addition, the absolute acceleration energy transfer rate a (see column a of Table 4) is the energy transfer rate defined in paragraph "0067" of this specification, where the microtremor time history of interest is made the absolute acceleration time history. , is the ratio of the RMS of the absolute acceleration time history in the k direction of the i-th layer to the RMS of the absolute acceleration time history in the k direction of the first layer. Further, the second equal sign from the right in Equation 9 is derived from the equation of motion (see paragraphs "0032" to "0034") for the mechanical model of the structure in FIG. 6(b). In addition, the equal sign at the end of Equation 9 is based on the assumption stated in paragraph "0021", that is, the absolute acceleration time history of each layer (i-th layer) obtained by continuous microtremor observation is assumed to be a part of a stationary stochastic process. Based on the assumption that the maximum expected value within a certain duration can be calculated by multiplying the RMS by the peak factor, the peak factor of the absolute acceleration time history of each layer is are assumed to be equal to each other. As shown above, the method of the present invention obtains the design index of the current standard, which is defined using the maximum value of the force acting within a structure during an earthquake, through microtremor observation based on the above assumptions. This is estimated using the RMS of the absolute acceleration time history of each layer. This method obtains an estimated value of the maximum value with less variation (stable), that is, an estimated value of the design index, than a method that uses the actually measured maximum value.

Figure 2023161018000013
Figure 2023161018000013

Figure 2023161018000014
Figure 2023161018000014

因みに、耐震基準では、各種の解析・検討から、以下のように、上2式に登場するα(基準化重量)、及び建物の一次固有周期TをパラメータとしてAを規定している。 Incidentally, in the seismic standards, based on various analyzes and studies, A i is defined using α i (normalized weight) appearing in the above two equations and the primary natural period T of the building as parameters, as shown below.

Figure 2023161018000015
Figure 2023161018000015

Figure 2023161018000016
Figure 2023161018000016

ただし、T[sec]は、λを建築物のうち柱及び梁の大部分が木造または鉄骨造である
階(地階を除く)の高さの合計h[m] に対する比として、以下の式で計算することとさ
れている。
However, T[sec] is calculated using the following formula, where λ is the ratio of the total height h[m] of the floors (excluding basements) in which most of the columns and beams are wooden or steel-framed. It is supposed to be calculated.

Figure 2023161018000017
Figure 2023161018000017

上記の規定は、塔状の構造物である建築物に対して低層から超高層までの各層の最大応答せん断力分布を1つの式で表すように工夫されたものであるとのことである。なお、耐震基準では上記の算式でAを計算することに代えて、個々の建物に関して直接、図6(b)のモデルを作成して時刻歴応答解析等の方法で層せん断力の最大値を計算してAを求めることも許されている。 The above regulations are said to have been devised to express the maximum response shear force distribution of each floor from low to super high-rise buildings using one equation for buildings that are tower-like structures. In addition, in the seismic standards, instead of calculating A i using the above formula, the model shown in Figure 6(b) is created directly for each building, and the maximum value of the story shear force is calculated using methods such as time history response analysis. It is also permissible to obtain A i by calculating .

3.平均伝達率と応答倍率の期待値(振動特性指標 その3)
図6(b)のモデルで、第i層に対する地震の作用を考える場合に、その層が支持する部分b(第i層から第n層まで)の平均加速度、平均速度等のRMSあるいは最大値を与える次のような指標を用いると便利である。
3. Expected values of average transmissibility and response magnification (vibration characteristic index part 3)
In the model of Figure 6(b), when considering the action of an earthquake on the i-th layer, the RMS or maximum value of the average acceleration, average velocity, etc. of the part b (from the i-th layer to the n-th layer) supported by that layer It is convenient to use the following index that gives

Figure 2023161018000018
Figure 2023161018000018

Figure 2023161018000019
Figure 2023161018000019

ここで、mjは、第j層の質量、a(表5のa欄参照)、及びb(表5のb欄参照)はそれぞれ、第j層k方向の加速度及び速度のエネルギー伝達率であり、Baikを平均加速度エネルギー伝達率、Bvikを平均速度エネルギー伝達率と称する。ただし、エネルギー伝達率とは、注目する微動時刻歴と基準点の微動時刻歴のRMSの比であり、微動診断では、これが地震動入力による弾性最大応答時に保存されるとし、ピークファクタを適
宜仮定して、注目時刻歴の最大応答を基準点の最大入力値にエネルギー伝達率を乗じて計算する。
Here, mj is the mass of the j-th layer, a (see column a of Table 5), and b (see column b of Table 5) are the acceleration and velocity energy transfer rates in the k-direction of the j-th layer, respectively. , B aik is called the average acceleration energy transfer rate, and B vik is called the average velocity energy transfer rate. However, the energy transfer rate is the RMS ratio of the microtremor time history of interest to the microtremor time history of the reference point, and in microtremor diagnosis, this is assumed to be stored at the time of the maximum elastic response due to seismic motion input, and the peak factor is assumed as appropriate. Then, the maximum response of the time history of interest is calculated by multiplying the maximum input value of the reference point by the energy transfer rate.

Figure 2023161018000020
Figure 2023161018000020

例えば、上記の平均加速度エネルギー伝達率を用いて、構造物内のある層iが支持する部分bの各点(質量dM )の絶対加速度時刻歴a(t)の空間平均値のk方向成分A
(t)のRMSの期待値E[σAk] を、基準点の加速度時刻歴のa(表6参照 )に応じて以下のように計算できる。
For example, using the above average acceleration energy transfer rate, the k-direction component of the spatial average value of the absolute acceleration time history a k (t) at each point (mass dM) of part b supported by a certain layer i in the structure A
The RMS expected value E[σ Ak ] of k (t) can be calculated as follows according to a (see Table 6) of the acceleration time history of the reference point.

Figure 2023161018000021
Figure 2023161018000021

Figure 2023161018000022
Figure 2023161018000022

Figure 2023161018000023
Figure 2023161018000023

数式9の層せん断力の高さ方向の分布を表す係数の期待値Aimkと数式13で定義し
た平均加速度エネルギー伝達率Baikの間には次のような関係がある。
There is the following relationship between the expected value A imk of the coefficient representing the distribution of layer shear force in the height direction in Equation 9 and the average acceleration energy transfer rate B aik defined in Equation 13.

Figure 2023161018000024
Figure 2023161018000024

即ち、Aimk は、注目部分iが支持する部分の平均加速度と第1層が支持する部分
(構造全体)の平均加速度の比であると言える。
数式13で、j=1とした平均加速度伝達率Baikは、構造物の平均絶対加速度のa(表7のa欄参照)と基準点の絶対加速度のb(表7のb欄参照)の比、即ち、構造物全体を、図7のように1自由度系に縮約した場合の加速度応答倍率Ramkの期待値である。
That is, A imk can be said to be the ratio of the average acceleration of the portion supported by the portion of interest i to the average acceleration of the portion (the entire structure) supported by the first layer.
In Equation 13, the average acceleration transmissibility B aik with j = 1 is the sum of a of the average absolute acceleration of the structure (see column a of Table 7) and b of the absolute acceleration of the reference point (see column b of Table 7). This is the expected value of the acceleration response magnification Ramk when the entire structure is reduced to a one-degree-of-freedom system as shown in FIG.

Figure 2023161018000025
Figure 2023161018000025

Figure 2023161018000026
Figure 2023161018000026

同様に、数式14でj=1としたBv1kは、構造物全体を1自由度系に縮約した場合の速度応答倍率の期待値であると言える。 Similarly, B v1k with j=1 in Equation 14 can be said to be the expected value of the velocity response magnification when the entire structure is reduced to a one-degree-of-freedom system.

Figure 2023161018000027
Figure 2023161018000027

現行基準が、数式6の標準せん断力係数を、中小地震を想定した一次設計でC =0
.2 、大地震に対する2次設計では、C =1.0 を用いるとしたのは、想定する地
震動の最大加速度を、中小地震で、0.07G~0,08G、大地震で0.33~0.4Gとし、短周期建築物の加速度応答倍率を2.5~3と考えたからであるとのことである。
The current standard sets the standard shear force coefficient of Equation 6 to C 0 = 0 in the primary design assuming small to medium earthquakes.
.. 2. In the secondary design for large earthquakes, C 0 = 1.0 is used because the expected maximum acceleration of seismic motion is 0.07G to 0.08G for small to medium earthquakes and 0.33 to 0.33 for large earthquakes. This is because the acceleration response magnification of short-period buildings was considered to be 2.5 to 3.

4.保有水平耐力の期待値(耐震性能指標 その1)
耐震基準では、建築物の構造モデルの各層にA分布するせん断力を漸増させて載荷し、第i層が降伏する時に第i層に作用している層せん断力a(表8のa欄参照)を、保有水平耐力b(表8のb欄参照)であると定義している。
地盤の微動によって構造物に生ずる層せん断力と基準点の加速度の関係は、本明細書の段落「0064」~「0080」にて定義した平均加速度伝達率(Baik )によって
表せる。また、層間変位と基準点の加速度の関係は本明細書の段落「0067」にて定義した伝達率を用いて表現することができる。これらを用いて、構造物が線形に応答した場合に第i層の層間変位の最大値が降伏変位に達するときの、層せん断力の期待値が計算できる。これを、第i層以外は降伏しないと仮定した場合の保有水平耐力の期待値c(表8のc欄参照)であると考えることができる。
基準点のk方向の加速度d(表8のd欄参照 )に対する第i層k方向の層間変位(e
ik(t))のエネルギー伝達率e(表8のe欄参照)を、それぞれのRMSの比として次のように定義する。
4. Expected value of horizontal bearing capacity (seismic performance index 1)
In the seismic standards, each layer of a structural model of a building is loaded with a shear force distributed by Ai , and the layer shear force a acting on the i-th layer when the i-th layer yields (column a in Table 8). ) is defined as the possessed horizontal bearing capacity b (see column b in Table 8).
The relationship between the layer shear force generated in the structure due to ground microtremors and the acceleration at the reference point can be expressed by the average acceleration transmissibility (B aik ) defined in paragraphs "0064" to "0080" of this specification. Further, the relationship between the interlayer displacement and the acceleration of the reference point can be expressed using the transmissibility defined in paragraph "0067" of this specification. Using these, it is possible to calculate the expected value of the layer shear force when the maximum value of the interlayer displacement of the i-th layer reaches the yield displacement when the structure responds linearly. This can be considered to be the expected value c of the horizontal yield strength (see column c in Table 8) assuming that layers other than the i-th layer do not yield.
The interlayer displacement in the k direction of the i-th layer (e
The energy transfer rate e (see column e of Table 8) of ik (t)) is defined as the ratio of each RMS as follows.

Figure 2023161018000028
Figure 2023161018000028

Figure 2023161018000029
Figure 2023161018000029

層間変位の最大値eikmax が降伏変位eikY に達するときの基準点の加速度の最大値をaikY とおけば、 If the maximum value of the acceleration at the reference point when the maximum value of interlayer displacement e ikmax reaches the yield displacement e ikY is a ikY , then

Figure 2023161018000030
Figure 2023161018000030

この時の層せん断力の最大値の期待値a(表9のa欄参照)は、第i層が支持する部分bの質量b(表9のb欄参照)にこの部分の平均加速度の最大値の期待値Abkmax
を乗じて計算できる。
The expected value a (see column a of Table 9) of the maximum value of the layer shear force at this time is the maximum of the average acceleration of this part Expected value of value A bkmax
It can be calculated by multiplying.

Figure 2023161018000031
Figure 2023161018000031

Figure 2023161018000032
Figure 2023161018000032

基準点の最大加速度と上記の部分bの平均加速度の最大値の期待値は、平均加速度エネルギー伝達率Baik を用いて関係づけられている。 The maximum acceleration of the reference point and the expected maximum value of the average acceleration of the above portion b are related using the average acceleration energy transfer rate B aik .

Figure 2023161018000033
Figure 2023161018000033

以上から、 From the above,

Figure 2023161018000034
Figure 2023161018000034

数式21と数式24とから、 From formula 21 and formula 24,

Figure 2023161018000035
Figure 2023161018000035

保有水平耐力に達するときの層せん断力係数の期待値Cuikm は、数式5の関係を
用いて、上式をその層が支持する重量で除して得られる。
The expected value C uikm of the layer shear force coefficient when the horizontal bearing capacity is reached is obtained by dividing the above equation by the weight supported by the layer using the relationship in Equation 5.

Figure 2023161018000036
Figure 2023161018000036

ただし、第i層のk方向の階高をH0ik[m]、降伏変形角をRYik[rad] 、g[m/sec] は重力加速度とする。また、保有水平耐力に達するときの第一層の層せん断力係数の期待値、即ち、ベースシア係数の期待値Cui1km は、数式8の関係から、上式をAで除すことで求められる。これは、数式9、数式17及び数式19を用いて、加速度応答倍率Ramkと基準点の加速度に対する層間変位のエネルギー伝達率a(表10参照)で表せることが分かる。 However, it is assumed that the floor height of the i-th floor in the k direction is H 0ik [m], the yield deformation angle is R Yik [rad], and g [m/sec 2 ] is the gravitational acceleration. In addition, the expected value of the layer shear force coefficient of the first layer when the horizontal bearing capacity is reached, that is, the expected value of the base shear coefficient C ui1km , can be obtained by dividing the above formula by A i from the relationship of Equation 8. . It can be seen that this can be expressed by the acceleration response magnification Ramk and the interlayer displacement energy transfer rate a (see Table 10) with respect to the acceleration of the reference point using Equations 9, 17, and 19.

Figure 2023161018000037
Figure 2023161018000037

Figure 2023161018000038
Figure 2023161018000038

保有水平耐力比は、上記で得られた保有水平耐力の期待値を耐震基準が規定する必要保有水平耐力で除して計算する。 The horizontal capacity ratio is calculated by dividing the expected value of the horizontal capacity obtained above by the required horizontal capacity specified by the seismic standards.

5.終局時累積強度指標と形状指標の積の期待値と構造耐震指標(耐震性能指標 その2)
耐震診断基準では、中低層RC系建築物の各階(各層)の梁間および桁行き方向(水平2方向)それぞれについて、構造耐震指標Iを、保有性能基本指標Eと形状指標S
、および経年指標Tの積として表している。
5. Expected value of the product of final cumulative strength index and shape index and structural seismic resistance index (seismic performance index No. 2)
In the seismic diagnosis standards, the structural seismic resistance index I s , the basic performance index E 0 , and the shape index S D are used for each floor (each floor) of medium- and low-rise RC buildings.
, and the aging index T.

Figure 2023161018000039
Figure 2023161018000039

上式の保有性能基本指標Eに関して、各層の個々の柱・壁・梁の各方向の強度指標(C)と靭性指標(F)の積を集計して算定する詳細な算式が規定されている。ただし、原理的には、保有性能基本指標Eは、その層の強度指標と靭性指標の積である(E
C×F)と解説されている。層の靭性指標とは、その層が終局限界に達する層間変形各に相当する靭性指標であるので、これをFと表し、これに応じて、層が終局限界に達する層間変形角におけるベースシア係数と同等の係数(終局時累積強度指標)をCTUと表す。
Regarding the basic performance index E0 in the above formula, a detailed formula has been specified to calculate the product of the strength index (C) and toughness index (F) in each direction of each column, wall, and beam in each layer. There is. However, in principle, the basic performance index E 0 is the product of the strength index and toughness index of that layer (E 0 =
C×F). The toughness index of a layer is the toughness index corresponding to each interlayer deformation where the layer reaches its ultimate limit, so it is expressed as FU , and accordingly, the base shear coefficient at the interlayer deformation angle where the layer reaches its ultimate limit. The coefficient equivalent to (final cumulative strength index) is expressed as CTU .

Figure 2023161018000040
Figure 2023161018000040

以上の関係から、 From the above relationship,

Figure 2023161018000041
Figure 2023161018000041

数式29は、層せん断力a(表11のa欄参照)が層間変位eに対して図8に描いた線分OYUようにバイリニア型であると仮定して導かれている。この場合、降伏点Yと終局点Uの層せん断力(累積強度指標)は等しく(CTY=CTU)、降伏相関変位(e
)に対する累積強度指標になる。ただし、図8は、層せん断力a(表11のa欄参照)をその層が支持する重量Σwと層せん断力の高さ方向の分布係数Aで除して累積強度指標Cとし、層間変位eを階高Hで除して層間変形角Rとして描いている。なお、添え字iは省略している。
Equation 29 is derived on the assumption that the layer shear force a (see column a of Table 11) is bilinear with respect to the interlayer displacement e, as shown by the line segment OYU drawn in FIG. In this case, the layer shear force (cumulative strength index) at the yield point Y and the ultimate point U are equal (C TY = C TU ), and the yield correlation displacement (e Y
) is the cumulative strength index. However, in FIG. 8, the cumulative strength index C T is obtained by dividing the layer shear force a (see column a of Table 11) by the weight Σw supported by the layer and the distribution coefficient A i of the layer shear force in the height direction. The interstory displacement e is divided by the story height H 0 and is drawn as the interstory deformation angle R. Note that the subscript i is omitted.

Figure 2023161018000042
Figure 2023161018000042

微動診断で得られた層間変位・層せん断力関係は、図8の関係の原点近傍ではあるものの、同図の関係を表していると仮定する。耐震診断基準では、経年指標T及び靭性指標Fを1.0としたとき、同基準が想定する地震動(基準地震動:G0)に対して、その層が終局に達する場合に、その層のI値が0.6となるように規定している。そこで、微動診断で得られた相関変位エネルギー伝達率hegi に基準地震動(G0 )に対応する基準点変位を乗じて、相関変位の期待値(E[eG0] )を計算した場合に、これが丁度
、降伏変位(e=R)であれば、 値が0.6であると言える。そこで、数式3
0でF=1,T=1とすれば、
It is assumed that the interstory displacement/story shear force relationship obtained through the microtremor diagnosis represents the relationship shown in FIG. 8, although it is near the origin of the relationship. In the seismic diagnosis standards, when the aging index T and the toughness index FU are set to 1.0, the I of the layer is The S value is specified to be 0.6. Therefore, when the expected value of correlated displacement (E[e G0 ]) is calculated by multiplying the correlated displacement energy transfer rate h egi obtained by microtremor diagnosis by the reference point displacement corresponding to the standard earthquake ground motion (G0 ), this If it is exactly the yield displacement (e Y =R Y H 0 ), it can be said that the value is 0.6. Therefore, formula 3
0 and F U =1, T=1,

Figure 2023161018000043
Figure 2023161018000043

累積強度指標と層間変形角(層間変位)は比例すると仮定しているので、第i層のk方向の終局時累積強度指標に形状指標を乗じた量((CTUik )の期待値は、微
動診断で得られた相関変位エネルギー伝達率hegik に基準地震動(G0)に対応す
る基準点変位xG0[1978] を乗じて、相関変位(eG0ik )を計算し、これで降伏変位(eYik)を除した値に0.6を乗じた値となる。
Since it is assumed that the cumulative strength index and the interstory deformation angle (interstory displacement) are proportional, the expected amount ((C TU SD ) ik ) of the final cumulative strength index in the k direction of the i-th layer multiplied by the shape index The value is calculated by multiplying the correlated displacement energy transfer rate h egik obtained from the microtremor diagnosis by the reference point displacement x G0 [1978] corresponding to the standard earthquake ground motion (G0), and calculates the correlated displacement (e G0ik ). The value obtained by dividing the displacement (e Yik ) is multiplied by 0.6.

Figure 2023161018000044
Figure 2023161018000044

さて、耐震診断基準によれば、I=0.6という数値は、1968年十勝沖地震、1978年宮城県沖地震による中破以上の被害を受けた建物群のI値分布の推定値と地震被害未経験の建物群についてのI値分布の比較から、その妥当性が検証されたとのことである。この他、1978年伊豆大島近海地震、及び1987年千葉県東方沖地震による検討、2011年東日本大震災による検討等が掲載されているが、1978年宮城県沖地震までの観測地震動と、2011年東日本大震災に代表される21世紀の観測地震動では最大加速度・速度、継続時間等が桁違いであるので、診断基準が想定する地震動としては、同基準が初めて制定された1978年当時までの地震動であると考えたい。 Now, according to the seismic diagnosis standards, the value I s = 0.6 is the estimated value of the I s value distribution of a group of buildings that sustained moderate or higher damage due to the 1968 Tokachi-Oki Earthquake and the 1978 Miyagi-ken Oki Earthquake. Its validity was verified by comparing the distribution of Is values for a group of buildings with no experience of earthquake damage. In addition, studies on the 1978 Izu Oshima Earthquake, the 1987 Chiba Prefecture Toho-Oki Earthquake, and the 2011 Great East Japan Earthquake are published. Since the maximum acceleration, velocity, duration, etc. of observed earthquake motions in the 21st century, such as major earthquakes, are on a different order of magnitude, the earthquake motions assumed by the diagnostic standards are earthquake motions up to 1978, when the standards were first established. I want to think that.

我が国で1978年までに観測された強震記録は、米国大気***(NOAA)がデータベース化して公表している。これを統計的に分析した結果等から、概ね、当時の地震動の最大変位の期待値としては、水平2方向とも、2.5cm程度が妥当であると考えて、数式32に代入する。また、同式の第i層のk方向の降伏変位e[m] を階高H[m]
と降伏変形角R[rad]とで表して、エネルギー伝達率から終局時累積強度指標と形状指標の積の期待値を計算する式を得る。
The records of strong motions observed in Japan up to 1978 are compiled into a database and published by the National Atmospheric and Oceanic Administration (NOAA). Based on the results of statistical analysis of this, it is generally assumed that the expected value of the maximum displacement of the earthquake motion at that time is approximately 2.5 cm in both horizontal directions, and is substituted into Equation 32. In addition, the yield displacement e Y [m] of the i-th layer in the k direction in the same equation is expressed as the floor height H 0 [m]
and the yield deformation angle R Y [rad] to obtain a formula for calculating the expected value of the product of the final cumulative strength index and the shape index from the energy transfer rate.

Figure 2023161018000045
Figure 2023161018000045

数式30と上式より、構造耐震指標Iを微動診断から計算することができる。 From Equation 30 and the above equation, the structural seismic resistance index Is can be calculated from the microtremor diagnosis.

Figure 2023161018000046
Figure 2023161018000046

ただし、Ismは微動診断から求めた構造耐震指標、F、及びTは、終局靭性指標及び経年指標である。 However, I sm is a structural seismic resistance index obtained from microtremor diagnosis, and F U and T are ultimate toughness index and aging index.

6.履歴吸収エネルギー(収震性能指標 その1)
非線形応答計算、即ち、構造物のある層が降伏強度に達した以降、即ち、応力に関して非線形性を呈した以降、構造物が地震の作用を受けてどのように変形し運動するかを設計図書に記載された情報あるいは記載する予定である情報から、計算で求めることは、地震動を特定し、構造物と地盤を図6(b)あるいは図7のように単純化したとしても容易ではない。
6. Historical absorbed energy (seismic absorption performance index part 1)
Nonlinear response calculation, that is, a design document that describes how a structure deforms and moves under the action of an earthquake after a certain layer of the structure reaches its yield strength, that is, exhibits nonlinearity in terms of stress. It is not easy to calculate from the information written or planned to be written in the table, even if the seismic motion is specified and the structure and ground are simplified as shown in Figure 6(b) or Figure 7.

降伏後に構造物の各層の間に作用する応力とひずみに関するモデル(構成則)は多種多様に考えられている。コンクリート、土は、ごく小さいひずみでも非線形性を呈する。また、非線形性を説明する変数としては、図8に示したような層間変位だけでなく、その相対速度、絶対加速度、さらに、軸方向力などの他の方向の応力度、ひずみなどが考えられている。層を構成する部材、それを構成する材料、それぞれの部材の接続状況は多様であり、それを単一の構成則に還元する方法も多様である。どれが正解とは言えない。 A wide variety of models (constitutive laws) regarding the stress and strain that act between each layer of a structure after yielding have been considered. Concrete and soil exhibit nonlinearity even under extremely small strains. In addition, variables that explain nonlinearity include not only the interlayer displacement shown in Figure 8, but also their relative velocity, absolute acceleration, stress in other directions such as axial force, strain, etc. ing. The members constituting the layers, the materials constituting them, and the connection conditions of each member are diverse, and the methods for reducing them to a single constitutive law are also diverse. I can't say which is the correct answer.

耐震設計においては、代表的な非線形モデルがいくつか存在し、部材レベル、あるいは実大模型で実験結果の解析等に用いられているが、実験装置の加力方法と変位等の計測方法では適合したとしても、3次元空間での実際の地震の作用における有効性を検証することはできない。 In seismic design, there are several representative nonlinear models that are used to analyze experimental results at the component level or on full-scale models, but they are not compatible with the method of applying experimental equipment and the method of measuring displacement, etc. Even so, it is not possible to verify the effectiveness in the action of an actual earthquake in three-dimensional space.

図9は、摩擦型層間せん断力・支持部分加速度関係を、図10は、摩擦型層間せん断力・層間速度関係を、図11は、摩擦型層間せん断力・層間変位関係をそれぞれ示す。微動
診断によって、実構造の各層の代表点の振動を計測し、図6(b)の構造モデルに対する各層の応答特性を数値化することができる。その結果から、図9~図11に示したような摩擦型モデルを用いた履歴吸収エネルギーの期待値が計算できる。
FIG. 9 shows the relationship between frictional interlaminar shear force and support part acceleration, FIG. 10 shows the relationship between frictional interlaminar shear force and interlaminar velocity, and FIG. 11 shows the relationship between frictional interlaminar shear force and interlaminar displacement. By microtremor diagnosis, it is possible to measure vibrations at representative points of each layer of the actual structure and quantify the response characteristics of each layer with respect to the structural model shown in FIG. 6(b). From the results, it is possible to calculate the expected value of the hysteresis absorbed energy using the friction model shown in FIGS. 9 to 11.

このモデルは、石が重ねてあるような構造の応力のモデルであり、図9及び図10に示すように、層を支持する部分の絶対加速度が限界加速度を超えて、層間に相対速度が生ずると、その速度と逆向きに一定のせん断力が作用する。 This model is a stress model of a structure where stones are stacked one on top of the other, and as shown in Figures 9 and 10, the absolute acceleration of the part that supports the layers exceeds the critical acceleration, creating a relative velocity between the layers. Then, a constant shear force acts in the opposite direction to that speed.

層間変位ゼロからスタートして一定の向きに層間変位が増加して、ある大きさになったところで、層間変位が減少し続けるように構造物が変形し、ある大きさまで減少したとことで、今度は増加するように構造物が変形した場合の層間変位との関係を描くと図11のようになる。図8に示したバイリニア型のせん断力・層間変位関係においても、層間せん断力と支持部分加速度関係を描くと、図9になる。そこで、バイリニア型のせん断力・層間変位関係の内、せん断力が一定の部分(図8の線分YU)に関して、上記の摩擦型モデルを当てはめることができる。 Starting from zero interstory displacement, the interstory displacement increases in a certain direction, and when it reaches a certain size, the structure deforms so that the interstory displacement continues to decrease until it reaches a certain size. FIG. 11 shows the relationship between the interlayer displacement when the structure is deformed so that the Even in the bilinear type shear force/interlayer displacement relationship shown in FIG. 8, if the relationship between interlayer shear force and support part acceleration is drawn, it becomes FIG. 9. Therefore, the above-described friction model can be applied to the portion where the shear force is constant (line segment YU in FIG. 8) in the bilinear shear force/layer displacement relationship.

k方向成分から計算した第i層の履歴吸収エネルギーWikは、下式に示すように、構造物の第i層の上面が下面に対して相対運動(層間変位eik)を起こすことに対して、復元力(層せん断力)a(表12のa欄参照)がする仕事Wikであり、増分(表12のb欄参照)を、振動の継続時間tについて積分して得られる。 The hysteresis absorption energy W ik of the i -th layer calculated from the k-direction component is calculated by is the work done by the restoring force (layer shear force) a (see column a in Table 12), which is obtained by integrating the increment (see column b in Table 12) over the vibration duration t0 .

Figure 2023161018000047
Figure 2023161018000047

Figure 2023161018000048
Figure 2023161018000048

第i層が支持する部分のk方向の空間平均絶対加速度と質量とを、それぞれ、Aik(t)、(Σm)とすれば、注目部分が支持する部分のk方向の運動方程式は、以下のようになる。 If the spatial average absolute acceleration in the k direction and the mass of the part supported by the i-th layer are A ik (t) and (Σm), respectively, then the equation of motion in the k direction of the part supported by the part of interest is as follows: become that way.

Figure 2023161018000049
Figure 2023161018000049

復元力は、降伏限界強度a(表13参照)を持つと仮定しているので、数式36より、Aik(t)も限界値を持つことが分かり、これを限界加速度Acikとする。 Since the restoring force is assumed to have a yield limit strength a (see Table 13), it is found from Equation 36 that A ik (t) also has a limit value, and this is set as the limit acceleration A cik .

Figure 2023161018000050
Figure 2023161018000050

Figure 2023161018000051
Figure 2023161018000051

微動観測からは、構造物が弾性応答する場合、即ち、復元力が限界値を持たない場合の第i層が支持する部分の空間平均加速度が予測できるので、これをa(表14参照)とする。 From the microtremor observation, it is possible to predict the spatial average acceleration of the part supported by the i-th layer when the structure responds elastically, that is, when the restoring force does not have a limit value, so this can be expressed as a (see Table 14). do.

Figure 2023161018000052
Figure 2023161018000052

復元力が摩擦型で、層下面が加速度a(表14参照)で振動した場合で、a(表14参照)が継続時間sの定常ガウス過程の一部であるとした場合の単位質量あたりの履歴吸収エネルギーWikの期待値を、a(表14参照)のパワースペクトル密度関数から得られた各パラメータと限界加速度Aciとで表す理論式が不規則振動論より得られている。 per unit mass when the restoring force is of the friction type and the bottom surface of the layer vibrates with acceleration a (see Table 14), and a (see Table 14) is part of a steady Gaussian process with duration s 0 . A theoretical formula expressing the expected value of the hysteresis absorbed energy W ik in terms of each parameter obtained from the power spectral density function of a (see Table 14) and the critical acceleration A ci has been obtained from random vibration theory.

Figure 2023161018000053
Figure 2023161018000053

ここで、
E[*]:*の期待値 [演算子]
here,
E[*]: Expected value of * [operator]

また、第i層のk方向について
a(表15参照):復元力 [N]
ik(t):上面と下面の相対変位 [m]
cik:限界加速度 [m/sec
Σw:支持する重量 [N]
Also, regarding the k direction of the i-th layer a (see Table 15): Restoration force [N]
e ik (t): Relative displacement between the top and bottom surfaces [m]
A cik : Critical acceleration [m/sec 2 ]
Σw: Weight to support [N]

Figure 2023161018000054
Figure 2023161018000054

また、地震時の第i層が支持する部分の空間平均弾性応答加速度時刻歴a(表14参照)、及びこれを積分した速度時刻歴のk方向成分について:
:強震継続時間 [sec]
vik:速度時刻歴の中心周期 [sec]
σaik:加速度時刻歴のRMS [m/sec
αvik:速度時刻歴のバンド幅指数 [無次元]
σvik:速度時刻歴のRMS [m/sec]
Also, regarding the spatially averaged elastic response acceleration time history a (see Table 14) of the part supported by the i-th layer during an earthquake, and the k-direction component of the velocity time history integrated this:
s 0 : Strong earthquake duration [sec]
T vik : Center period of velocity time history [sec]
σ aik : RMS of acceleration time history [m/sec 2 ]
α vik : Bandwidth index of velocity time history [dimensionless]
σ vik : RMS of speed time history [m/sec]

ただし、強震継続時間sとは、地震動のように非定常性をもつ継続時間tの時刻歴(x(t))を、同じパワースペクトル密度関数をもつ定常ガウス過程(G(t))の継続時間sの部分として扱うための継続時間であり、x(t)の最大値が、G(t)の継続時間sの間に、最大値として平均1回現れるようにするものである。 However, the strong motion duration s 0 means that the time history (x(t)) of the duration t 0 , which is unsteady like an earthquake, is a stationary Gaussian process (G(t)) with the same power spectral density function. It is a duration to be treated as part of the duration s 0 of G(t), and it is intended to ensure that the maximum value of x(t) appears once on average as the maximum value during the duration s 0 of G(t). be.

上記Tvik以下のパラメータは、微動観測で得られた時刻歴とエネルギー伝達率及び想定する地震による基準点の振動時刻歴の最大値の予測値から計算する。まず、構造物は地震時でも、弾性応答時には、微動観測で得られた振動モードで振動すると仮定して、a(表16のa欄参照)の振動周期Tvik、バンド幅指数αvikは、第i層が支持する部分の下面、即ち、第i層上面の微動加速度時刻歴b(表16のb欄参照)を用いて計算する。さらに、c(表16のc欄参照)のRMSσvikとこの速度時刻歴のRMSσvikに関しては、各層(j=i…n)の平均伝達率(本明細書の段落「0059」~「0075」参照)と地震時の基準点のRMSを用いて計算する。 The parameters below T vik are calculated from the time history and energy transfer rate obtained through microtremor observation, and the predicted value of the maximum value of the vibration time history of the reference point due to the assumed earthquake. First, assuming that the structure vibrates in the vibration mode obtained from microtremor observation during an earthquake and during elastic response, the vibration period T vik and bandwidth index α vik of a (see column a of Table 16) are as follows: Calculation is performed using the micromotion acceleration time history b (see column b of Table 16) of the lower surface of the portion supported by the i-th layer, that is, the upper surface of the i-th layer. Furthermore, regarding the RMSσ vik of c (see column c of Table 16) and the RMSσ vik of this velocity time history, the average transmissivity of each layer (j=i...n) (paragraphs "0059" to "0075" of this specification) (see reference) and the RMS of the reference point at the time of the earthquake.

Figure 2023161018000055
Figure 2023161018000055

Figure 2023161018000056
Figure 2023161018000056

Figure 2023161018000057
Figure 2023161018000057

基準点の地震時の加速度と速度のRMSは、ピークファクターを用いて、基準点の地震時の最大速度の期待値Vmaxk及び最大加速度の期待値Amaxkとの関係に書き直すことができる。 The RMS of the acceleration and velocity at the reference point during an earthquake can be rewritten into a relationship with the expected value V maxk of the maximum velocity and the expected value A maxk of the maximum acceleration at the reference point during the earthquake, using the peak factor.

Figure 2023161018000058
Figure 2023161018000058

Figure 2023161018000059
Figure 2023161018000059

さらに、第i層k方向の限界加速度は、本明細書の段落「0081」~「0100」で求めた保有水平耐力a(表17のa欄参照)が降伏層せん断力(a(表17のb欄参照))に等しいことを用いて計算する。数式37及び数式25より、 Furthermore, the critical acceleration in the k direction of the i-th layer is determined by the horizontal yield strength a (see column a of Table 17) obtained in paragraphs "0081" to "0100" of this specification, and the yield layer shear force (a (see column a of Table 17). Calculate using the equation (see column b)). From formula 37 and formula 25,

Figure 2023161018000060
Figure 2023161018000060

Figure 2023161018000061
Figure 2023161018000061

以上より、k方向成分から計算した大地震による第i層の履歴吸収エネルギーの期待値Wmik[Nm]は、次のように計算できる。 From the above, the expected value W mik [Nm] of the historical absorption energy of the i-th layer due to a large earthquake calculated from the k-direction component can be calculated as follows.

Figure 2023161018000062
Figure 2023161018000062

ただし、降伏変位eikYを降伏変形角と階高との積で現している。また、第i層k方
向に関して、
Yik:降伏変形角 [無次元]
0ik:標準階高 [m]
a(表18参照):基準点加速度に対する層間変位エネルギー伝達率[無次元]
However, the yield displacement e ikY is expressed as the product of the yield deformation angle and the floor height. Also, regarding the i-th layer k direction,
R Yik : Yield deformation angle [dimensionless]
H 0ik : Standard floor height [m]
a (see Table 18): Interstory displacement energy transfer rate to reference point acceleration [dimensionless]

Figure 2023161018000063
Figure 2023161018000063

また、注目部分上面の微動時刻歴のk方向成分に関して、
vik:微動速度時刻歴の中心周期 [sec]
αvik:微動速度時刻歴のバンド幅指数 [無次元]
ただし、バンド幅指数は、その時刻歴の中心振動数を微分時刻歴の中心振動数で除したものであり、微動速度時刻歴のバンド幅指数は、微動速度時刻歴の中心振動数と微動加速度時刻歴の中心振動数の比である。
Also, regarding the k-direction component of the microtremor time history on the top surface of the part of interest,
T vik : Center period of microtremor velocity time history [sec]
α vik : Bandwidth index of microtremor velocity time history [dimensionless]
However, the bandwidth index is the center frequency of the time history divided by the center frequency of the differential time history, and the bandwidth index of the microtremor velocity time history is the center frequency of the microtremor velocity time history and the microtremor acceleration. It is the ratio of the central frequency of the time history.

また、層が支持する部分に関して、
Σm:質量 [kg]
aik:平均加速度伝達率(数式13参照) [無次元]
vik:平均速度伝達率(数式14参照) [無次元]
Also, regarding the part supported by the layer,
Σm: Mass [kg]
B aik : Average acceleration transmissibility (see Formula 13) [Dimensionless]
B vik : Average velocity transmission rate (see Formula 14) [Dimensionless]

さらに、基準点の大地震動のk方向成分に関して、以下のパラメータが入力の大きさと性質を決めるものとして、設計者の判断、あるいは、基準によって与えられる。
:強震継続時間 [sec]
maxk:最大速度 [m/sec]
maxk:最大加速度 [m/sec
γ:速度時刻歴のピークファクター [無次元]
γ:加速度時刻歴のピークファクター [無次元]
Furthermore, regarding the k-direction component of the large earthquake motion at the reference point, the following parameters determine the magnitude and nature of the input and are given by the designer's judgment or standards.
s 0 : Strong earthquake duration [sec]
V maxk : Maximum speed [m/sec]
A maxk : Maximum acceleration [m/sec 2 ]
γ v : Peak factor of velocity time history [dimensionless]
γ a : Peak factor of acceleration time history [dimensionless]

なお、上式の両辺をΣm/2で除して、支持する単位質量当たりの履歴吸収エネルギーの期待値の速度換算値Vmik[m/sec]を得る。 Note that both sides of the above equation are divided by Σm/2 to obtain a speed-converted value V mik [m/sec] of the expected value of history absorbed energy per supported unit mass.

Figure 2023161018000064
Figure 2023161018000064

7.損傷度(収震性能指標 その2)
構造物のある層の地震の作用による損傷の度合いは、履歴吸収エネルギーに比例すると仮定して、その限界値との比を損傷度(I)と称して設計指標とすることができる。
7. Damage level (earthquake performance index part 2)
Assuming that the degree of damage caused by the action of an earthquake on a certain layer of a structure is proportional to the historical absorbed energy, the ratio to the limit value can be referred to as the degree of damage (I d ) and can be used as a design index.

Figure 2023161018000065
Figure 2023161018000065

ここで、 第i層のk方向について:
dik:損傷度[無次元]
mik:履歴吸収エネルギーの期待値 [Nm/sec
lik:履歴吸収エネルギーの限界値[Nm/sec
Here, regarding the k direction of the i-th layer:
I dik : Damage degree [dimensionless]
W mik : Expected value of history absorbed energy [Nm 2 /sec 2 ]
W lik : Limit value of history absorbed energy [Nm 2 /sec 2 ]

履歴吸収エネルギーの限界値Wlikは、個々の部材あるいは部材グループの復元力を図8に示すようなバイリニア型であると仮定し、それぞれの限界値を累加して計算することができる。 The limit value W lik of the hysteresis absorbed energy can be calculated by summing the respective limit values, assuming that the restoring force of each individual member or a group of members is bilinear as shown in FIG.

Figure 2023161018000066
Figure 2023161018000066

ただし、限界値は、図8で線分OYUの横軸への射影の面積を2倍したものが一回の繰り返しで吸収するエネルギーであるとし、このnkj倍であるとして計算している。ここで、第i層のk方向の個々の部材j、あるいは部材グループjに関して:
kj:限界繰り返し回数 [無次元]
kj:強度 [N]
jk:靱性指標 [無次元]
Yj:降伏変位 [m]
Yik:降伏変形角 [rad]
0ik:階高 [m]
However, the limit value is calculated by assuming that the area of the projection of the line segment OYU onto the horizontal axis in FIG. 8 is doubled, which is the energy absorbed in one repetition, and is n kj times this. Here, regarding the individual member j or member group j of the i-th layer in the k direction:
n kj : Limit number of repetitions [dimensionless]
q kj : Strength [N]
F jk : Toughness index [dimensionless]
e Yj : Yield displacement [m]
R Yik : Yield deformation angle [rad]
H 0ik : Floor height [m]

第i層k方向の降伏層せん断力(保有水平耐力)の期待値は、本明細書の段落「0081」~「0100」で算出されているので、層の靭性指標と限界繰り返し回数を与えれば
、履歴吸収エネルギーの限界値を計算することができる。数式47で層全体を1グループとして、数式25を用いて、
The expected value of the yield layer shear force (horizontal yield strength) in the k direction of the i-th layer is calculated in paragraphs "0081" to "0100" of this specification, so if the toughness index of the layer and the limit number of repetitions are given, , the limit value of the historical absorbed energy can be calculated. With formula 47, the entire layer is considered as one group, and using formula 25,

Figure 2023161018000067
Figure 2023161018000067

ただし、第i層k方向について
ik:限界繰り返し回数[無次元]
a(表17のa欄参照):降伏層せん断力(保有水平耐力)の期待値[N]
uik:靭性指標[無次元]
Σm:支持する部分の質量[kg]
However, for the i-th layer k direction, N ik : limit number of repetitions [dimensionless]
a (see column a of Table 17): Expected value of yield layer shear strength (horizontal yield strength) [N]
F uik : toughness index [dimensionless]
Σm: Mass of supporting part [kg]

数式44の履歴吸収エネルギーの期待値と数式48の限界値の商として、損傷度を次のように計算する。 The degree of damage is calculated as the quotient of the expected value of history absorbed energy in Equation 44 and the limit value in Equation 48 as follows.

Figure 2023161018000068
Figure 2023161018000068

損傷度Idikは、第i層k方向に関して、構造物周辺地盤系の微動観測から得た振動特性をこれが支持する部分の平均加速度伝達率Baik、平均速度伝達率Tvik、及び基準点加速度に対する第i層k方向の層間変位エネルギー伝達率a(表20参照)、速度時刻歴の中心周期Tvik、及びバンド幅指数αvikで表し、入力地震動の特性を強震継続時間s、最大速度Vmaxk及び最大加速度Amaxkとそれぞれのピークファクターγ、γで表している。また、構造緒元として、第i層k方向の降伏変形角RYik、及び標準階高H0ikを用いており、復元性能は、靭性指標Fuikと限界繰り返し回数Nikで表している。 The degree of damage I dik is determined by the average acceleration transmissibility B aik , the average velocity transmissibility T vik , and the reference point acceleration of the part that supports the vibration characteristics obtained from microtremor observation of the ground system around the structure with respect to the k direction of the i-th layer. The characteristics of the input ground motion are expressed by the interstory displacement energy transfer rate a (see Table 20) in the k direction of the i-th layer, the center period T vik of the velocity time history, and the bandwidth index α vik , and the characteristics of the input ground motion are expressed as the strong motion duration s 0 and the maximum velocity. It is expressed by V maxk and maximum acceleration A maxk and their respective peak factors γ v and γ a . Furthermore, the yield deformation angle R Yik in the k direction of the i-th layer and the standard floor height H 0ik are used as the structural specifications, and the restoring performance is expressed by the toughness index F uik and the limit number of repetitions N ik .

8.耐震診断基準、現行基準、最近の地震環境に即した地震動レベルについて
微動診断(MTD2017)では、観測した微動時刻歴から、構造物の振動増幅特性をエネルギー伝達率のサンプル平均として定量化する。また、振動モードを可視化し、固有周期とバンド幅を計測する。耐震性評価に当たっては、構造物の1階、地下階等に設けた基準点の大地震による振動を入力として、エネルギー伝達率から、弾性最大応答を推定し、構造耐震指標の期待値を計算する。また、注目層あるいは部分が支持する部分の平均加速度、速度の予測値から履歴吸収エネルギーを推定し、損傷度を計算する。以上に必要な地震動レベルの設定は、各設計者の判断によるが、現行基準等の想定レベルを微動診断入力値に換算して表示することは有効である。
8. Seismic diagnosis standards, current standards, and seismic motion levels in line with recent seismic environments In microtremor diagnosis (MTD2017), the vibration amplification characteristics of a structure are quantified as a sample average of energy transfer rate from the observed microtremor time history. It also visualizes vibration modes and measures the natural period and bandwidth. For earthquake resistance evaluation, the vibrations caused by a large earthquake are input at reference points set on the first floor, basement floor, etc. of a structure, and the maximum elastic response is estimated from the energy transfer rate, and the expected value of the structural seismic resistance index is calculated. . In addition, the historical absorbed energy is estimated from the predicted values of the average acceleration and velocity of the part supported by the layer or part of interest, and the degree of damage is calculated. The setting of the seismic motion level required above is at the discretion of each designer, but it is effective to convert the assumed level such as the current standard into a microtremor diagnosis input value and display it.

表19には、診断基準、現行基準が想定していると考えられる標準的な地震動レベル(最大加速度、速度、変位の期待値 (Amax、Vmax、Dmax)及び強震継続時間
の期待値(S0)を掲げている。また、最下段には、最近の観測地震動から見た地震動レベルを参考として示した。診断基準に関しては、先述のとおり1978年までに我が国で観測された地震動から推定したものである。また、現行基準に関しては、基準制定の関係者の話と告示スペクトル(全国官報販売協同組合刊行の2015年版建築物の構造関係技術基準解説書pp488~490)の形状から推定している。最近の観測地震動については、2011年東北地方太平洋沖地震、2016年熊本地震の強震観測記録から推定しているが、統計処理等は行っていない。
なお、最近の地震環境の地震動レベルは、現行基準のレベルを一桁上回っており、弾性最大応答を基本とする現行基準の枠組み及び微動診断の枠組みの入力地震動として用いても意味がない。このレベルの地震動に対する耐震設計は現行法とは根本的に違う方法で行う必要がある。
Table 19 lists the standard earthquake motion levels assumed by the diagnostic criteria and current standards (expected values of maximum acceleration, velocity, and displacement (Amax, Vmax, Dmax), and expected values of strong motion duration (S0)). In addition, the bottom row shows the seismic motion levels based on recent observed seismic motions for reference.As mentioned earlier, the diagnostic criteria are estimated from the seismic motions observed in Japan up to 1978. In addition, the current standards are estimated based on the information from people involved in establishing the standards and the shape of the notification spectrum (2015 Explanation of Structural Technical Standards for Buildings, published by the National Official Gazette Sales Cooperative Association, pp. 488-490). Recent observed seismic motions are estimated from strong motion observation records from the 2011 Tohoku Pacific Coast Earthquake and the 2016 Kumamoto Earthquake, but no statistical processing has been performed.
In addition, the seismic motion level in the recent seismic environment is one order of magnitude higher than the current standard level, and it is meaningless to use it as input seismic motion for the current standard framework and microtremor diagnosis framework based on maximum elastic response. Seismic design for this level of seismic motion requires a fundamentally different method from the current method.

Figure 2023161018000069
Figure 2023161018000069

微動診断の位置づけ
合理的耐震設計において、微動診断は以下の役割を担う。
Position of microtremor diagnosis In rational seismic design, microtremor diagnosis plays the following roles.

(1)竣工後の確認診断と追加対策工
構造物が竣工した後に微動診断を実施し、振動モード、振動周期(T)、層せん断力分布係数(Aim)、応答倍率(Ramk、Rvmk)、累積強度指標a(表20参照)、損傷度(Idm)を計測し、設計計算と比較して、計算・工事の妥当性を確認するとともに、必要に応じて、対策工を追加する。なお、上記各指標は、構造物全体で計算するとともに、部分に設置した鉛直アレー計測で、その部分の振動特性も把握する。
(1) Post-completion confirmation diagnosis and additional countermeasures After the structure is completed, microtremor diagnosis is carried out, and vibration mode, vibration period (T c ), layer shear force distribution coefficient (A im ), response magnification (R amk , R vmk ), cumulative strength index a (see Table 20), and degree of damage (I dm ) are measured and compared with design calculations to confirm the validity of calculations and construction work, and to take countermeasures as necessary. to add. In addition, each of the above indicators is calculated for the entire structure, and the vibration characteristics of that part are also determined by measuring with a vertical array installed in that part.

Figure 2023161018000070
Figure 2023161018000070

(2)定期的な健全性診断と補修
定期的に微動診断を実施し、前項の各指標を計測し、構造物の劣化等が認められた場合には補修を行う。また、補修後に再度微動診断を実施して補修効果を確認する。
(2) Periodic health diagnosis and repair We will conduct periodic microtremor diagnosis, measure each of the indicators listed in the previous section, and carry out repairs if deterioration of the structure is observed. In addition, after the repair, the microtremor diagnosis will be performed again to confirm the effectiveness of the repair.

(3)既設構造物の診断と耐震補強
現行基準あるいは旧耐震基準で建設された既設構造物に対して微動診断を実施し、必要に応じて、対策工を設計・施工する。また、補強前後に計測・診断を行い、補強効果を定量的に確認する。
(3) Diagnosis and seismic reinforcement of existing structures Microtremor diagnosis will be carried out on existing structures built according to current or old seismic standards, and countermeasures will be designed and constructed as necessary. In addition, measurement and diagnosis will be performed before and after reinforcement to quantitatively confirm the reinforcement effect.

(4)地震被害と地盤・構造物の振動特性の関係の分析
微動診断を実施した建物が地震に被災した場合を実施例として、被災度と診断指標の関係を分析し、今後の設計法、診断法、各指標の基準値等の改定に繋げる。
(4) Analysis of the relationship between earthquake damage and vibration characteristics of the ground and structures Using a case where a building that underwent microtremor diagnosis was damaged by an earthquake as an example, we analyzed the relationship between the degree of damage and the diagnostic index, and analyzed future design methods. This will lead to revisions of diagnostic methods and standard values for each index.

1)対象施設及び計測方法
昭和47年(1972年)竣工の地下1階、地上4階、述床面積838m(X方向1スパン、Y方向3スパン)のRC造病院建物(4階はS造、仮称Y病院)11における1階12から4階15は、図12~図15に示すとおりであり、このRC造病院建物11に対して、微動診断を実施した結果を紹介する。平成26年4月に耐震診断が実施されており、値が0.6を超える補強計画も立案されたが、病院を稼動しながらの工事は実施不可能と判断し、倒壊を防止する目的で、SRF工法(ポリエステル繊維ベルトによる巻きたて工法:本明細書の段落「0194」参照)で主要な柱を補強する「軸耐力補強」が施工されている。
1) Target facility and measurement method An RC hospital building completed in 1972 with 1 floor underground, 4 floors above ground, and a floor area of 838m2 ( 1 span in the X direction, 3 spans in the Y direction) (the 4th floor is an S The first floor 12 to the fourth floor 15 in the RC hospital building 11 (tentative name Y Hospital) 11 are as shown in FIGS. An earthquake resistance diagnosis was carried out in April 2014, and a reinforcement plan was drawn up with a value exceeding 0.6, but it was determined that it would be impossible to carry out the construction while the hospital was in operation, and the plan was designed to prevent collapse. , "axial strength reinforcement" is being implemented to reinforce the main pillars using the SRF construction method (a construction method using polyester fiber belts: see paragraph "0194" of this specification).

微動観測は、4台の微動計21を、図12~図15に示すような4種類の配置で実施した。1回目(計測1)及び2回目(計測2)では、1階床から4階床までの各層のA2通り、及びA4通に、それぞれ各1箇所づつ、鉛直アレー状に設置している。計測3では、1階のA4通りの点と2階のA2、A4、B1の各点に設置した。計測4では、1階のA4通りの点と3階のA2、A4、B1の各点に設置した。 Microtremor observation was carried out using four microtremor meters 21 in four different arrangements as shown in FIGS. 12 to 15. In the first measurement (Measurement 1) and the second measurement (Measurement 2), one location each was installed in a vertical array on A2 streets and A4 streets on each floor from the 1st floor to the 4th floor. In measurement 3, they were installed at points A4 on the first floor and points A2, A4, and B1 on the second floor. In measurement 4, they were installed at point A4 on the first floor and points A2, A4, and B1 on the third floor.

計測は、約2時間程度で、計器設置、5分間連続計測、計器の配置替えと順次実施し、4種類の計器配置による計測及び撤収を行っている。補強工事実施前は、平成29年8月8日15時~18時までの間、病院が稼働中実施している。補強後は、平成29年9月22日の14時~16時までである。補強工事の工期は、平成29年7月20日から9月30日までであるが、8月8日の時点では、事前準備のみで施工は行われていない。また、9月22日の時点では、躯体工事は完了し若干の仕上げを残すのみであった。 The measurement took approximately 2 hours, and consisted of instrument installation, continuous measurement for 5 minutes, rearrangement of instruments, and measurement and removal using four different instrument arrangements. Prior to the reinforcement work, the work was carried out while the hospital was in operation from 3:00 PM to 6:00 PM on August 8, 2017. After reinforcement, it will be from 14:00 to 16:00 on September 22, 2017. The construction period for the reinforcement work is from July 20, 2017 to September 30, 2017, but as of August 8, only preliminary preparations have been made and no construction has taken place. Furthermore, as of September 22nd, the structural work had been completed and only a few finishing touches remained.

微動診断は、各点で観測された全記録長5分間の時刻歴を、それぞれ、約1分間づつの互いに重複を許した5~7個の部分に分け、それぞれの部分についての各指標を計算して、計測毎に平均値と標準偏差を計算した。表21以降に後掲する各表ではこの平均値を示している。上記の計測を、それぞれ、SRF工法の補強工事実施前(補強前)と実施後(補強後)に行って、補強効果の影響を見た。 Microtremor diagnosis divides the time history of the total record length of 5 minutes observed at each point into 5 to 7 parts of about 1 minute each, allowing overlap, and calculates each index for each part. The average value and standard deviation were calculated for each measurement. This average value is shown in each table listed below from Table 21 onwards. The above measurements were performed before (before reinforcement) and after (after reinforcement) the reinforcement work using the SRF method was implemented to examine the influence of the reinforcement effect.

微動計では、加速度時刻歴を観測し、10Hzのハイカットフィルター、0.2Hzのローカットフィルター(4次バターワース)を用いた後に、速度、変位は線形加速度法による数値積分で求めた。図16~図22には、対象建物の伏図と軸組図を示す。なお、4’通りには、エキスパンションジョイントが設置されている。耐震診断は、1~4’通りまでと、これ以外に分けて行われている。本明細書で引用する診断結果は、1~4’通りまでを対象とした結果である。 With the microtremometer, the acceleration time history was observed, and after using a 10 Hz high-cut filter and a 0.2 Hz low-cut filter (4th-order Butterworth), the velocity and displacement were determined by numerical integration using the linear acceleration method. Figures 16 to 22 show the floor plan and frame diagram of the target building. Furthermore, an expansion joint has been installed on 4' Street. Earthquake resistance diagnosis is divided into 1 to 4' types and other types. The diagnostic results cited in this specification are results for 1 to 4' cases.

2)性能指標
表21には、数式32に示した累積強度指標の期待値(Cmikの補強前後の値を耐震診断計算から得られたCTUと比較して示す。計測1とは、A2通の鉛直アレー、計測2とはA4通の鉛直アレーを示す。また、表22には補強前後の変化率と計算値との比較を示している。表23及び表24には、基準化入力エネルギーについて、補強前後の微動診断で得られた値WKomikと計算で得られた値WKoikと補強前後の変化率及び計算との比較を示す。また、表25及び表26には、損傷度の期待値(Id0m)の補強前後の値と計算値(I)及び補強前後、計算との比較を示す。なお、表21中
の括弧内は、第二種構造要素を考慮した値である。また、損傷度の計算とは、履歴吸収エネルギーの限界値を耐震診断の計算で求めた部材グループの強度と靱性から、数式47で計算し、履歴吸収エネルギーを略算式で計算したものである(本明細書の段落「0199」参照)。さらに、本例の計算では、履歴吸収エネルギーの計算に用いる限界加速度を求めるにあたり(本明細書の段落「0149」参照)、保有水平耐力ではなく、累積強度指標と形状指標の積(数式32参照)を用いている。
2) Performance index Table 21 shows the expected value (C T S D ) mik of the cumulative strength index shown in Equation 32 before and after reinforcement in comparison with C T S D obtained from the seismic diagnostic calculation. Measurement 1 refers to a 2-A vertical array, and measurement 2 refers to a 4-A vertical array. Furthermore, Table 22 shows a comparison between the rate of change before and after reinforcement and the calculated value. Tables 23 and 24 show a comparison of the normalized input energy between the value W Komik obtained by microtremor diagnosis before and after reinforcement, the value W Koik obtained by calculation, the rate of change before and after reinforcement, and the calculation. Furthermore, Tables 25 and 26 show a comparison between the expected value (I d0m ) of the degree of damage before and after reinforcement, the calculated value (I d ), and the calculation before and after reinforcement. Note that the values in parentheses in Table 21 are values taking into account the second type structural element. In addition, the degree of damage is calculated by calculating the limit value of historical absorbed energy using Equation 47 from the strength and toughness of the member group determined by seismic diagnosis calculations, and calculating the historical absorbed energy using a rough formula ( (See paragraph "0199" herein). Furthermore, in the calculation of this example, when determining the critical acceleration used to calculate the hysteresis absorbed energy (see paragraph "0149" of this specification), the product of the cumulative strength index and the shape index (see formula 32) is used instead of the possessed horizontal bearing capacity. ) is used.

Figure 2023161018000071
Figure 2023161018000071

Figure 2023161018000072
Figure 2023161018000072

Figure 2023161018000073
Figure 2023161018000073

Figure 2023161018000074
Figure 2023161018000074

Figure 2023161018000075
Figure 2023161018000075

Figure 2023161018000076
Figure 2023161018000076

補強工事は、1階から3階までの各階の主要な柱にポリエステル繊維製の高延性材(ベルト)を巻きたてることでせん断強度と軸耐力を確保する方法(SRF工法)で行われた。補強設計は、全ての柱の検定比が1.0を上回るようにしている。なお、各階の地震時軸力の検定比の最大値を倒壊危険度値(I値)と称して、倒壊防止目的の補強の設計指標としている。表25右2列に補強前後のI 値を掲げた。計算において柱の軸耐力は大変形(F>3.0)時の残存軸耐力としているので、RC柱では補強前はゼロとなり、
倒壊危険度値Iは、無限大となっている。
Reinforcement work was carried out using a method (SRF construction method) that ensured shear strength and axial bearing capacity by wrapping high ductility materials (belts) made of polyester fiber around the main pillars of each floor from the 1st to the 3rd floor. . The reinforcement design is such that the verification ratio of all columns exceeds 1.0. The maximum value of the verification ratio of the axial force during an earthquake on each floor is called the collapse risk value ( If value) and is used as a design index for reinforcement for the purpose of preventing collapse. The If values before and after reinforcement are listed in the two right columns of Table 25. In the calculation, the axial strength of the column is assumed to be the residual axial strength at the time of large deformation (F>3.0), so for RC columns, it is zero before reinforcement,
The collapse risk value If is infinite.

表21右側の診断計算の補強前後を見ると、補強工事によって、一階のX方向を除いて累積強度指標CTUが低下しているが、これは、柱型付き壁、あるいは袖壁付き柱にスリットを切って柱を巻きたてた為である。ただし、補強後のCTUは、補強前の診
断結果に補強した部材の強度・靭性の増減を反映し、再度グルーピングを行って集計した略算値である。なお、スリットを切ったことによる形状指標Sの変化は考慮していない。補強工事による強度指標の低下は、本補強設計では、Y方向の強度には余裕があると見て、強度を多少減らしても軸耐力を確保し倒壊を防止することを目標とした結果である。また、表25及び表26に示すように補強により、損傷度Iは、補強前に2~3割程度にまで大きく減少し、補強後は、全ての階と方向で基準値1.0を下回っており、補強工事によって損傷も許容限界内に収まったことを示している。
Looking at the diagnostic calculations on the right side of Table 21 before and after the reinforcement, the cumulative strength index CTUSD has decreased except for the X direction on the first floor due to the reinforcement work, but this is due to the fact that the cumulative strength index C This is because slits were cut in the pillars and the pillars were wrapped around them. However, the CTUSD after reinforcement is an approximate value calculated by reflecting the increase or decrease in strength and toughness of the reinforced members in the diagnosis results before reinforcement, and performing grouping again. Note that changes in the shape index SD due to cutting the slits are not taken into account. The decrease in the strength index due to reinforcement work is the result of this reinforcement design considering that there is some margin for strength in the Y direction, and aiming to ensure axial strength and prevent collapse even if the strength is reduced somewhat. . Furthermore, as shown in Tables 25 and 26, by reinforcement, the damage degree I d significantly decreased to about 20 to 30% before reinforcement, and after reinforcement, it reached the standard value of 1.0 on all floors and directions. This indicates that the reinforcement work has brought the damage within acceptable limits.

表21及び表22に示した診断計算による累積強度指標CTUと微動診断で得られた累積強度指標の期待値(Cmikの補強前の値を比較してみよう。計測2については、3階で微動診断値が4割程度低いものの、他の階と方向は、ほぼ同様の値であることが分かる。一方、計測1では、1階はほぼ同様であるが、2階と3階で微動診断結果が診断計算の2割程度と大幅に小さな値となっている。これは、以下のような、計測位置周辺の構造的な特徴を反映しているものと考えられる。図17の軸組図に示すように、計測1(2通)X方向は、ほぼ壁の無いフレームである。また、隣接する1通りの壁の開口は大きく、3通りには壁がない。一方、計測2(4通)X方向は、ほぼ壁のフレームであり、隣接する4’フレームも同様である。計測1(2通、A通)Y方向は、壁が無いか、開口が大きい。一方、計測2(4通、A通)Y方向は、開口があるものの壁がついている。これは、耐震診断の形状指標にも反映されている。即ち、表21右側に示した形状指標Sは、X方向2階と3階で0.63と小さな値を示している。X方向の壁の偏在の結果、2通付近では、XY両方向の層間変位が大きくなっている。 Let's compare the cumulative strength index C TU SD calculated by the diagnostic calculation shown in Tables 21 and 22 with the expected value of the cumulative strength index ( CT SD ) mik obtained by the microtremor diagnosis before reinforcement. Regarding measurement 2, it can be seen that although the microtremor diagnostic value is about 40% lower on the third floor, the values are almost the same on other floors and directions. On the other hand, in measurement 1, the results on the first floor are almost the same, but the microtremor diagnosis results on the second and third floors are about 20% of the diagnostic calculations, which is a significantly smaller value. This is considered to reflect the structural features around the measurement position, as described below. As shown in the frame diagram of FIG. 17, measurement 1 (two measurements) in the X direction is a frame with almost no walls. Also, the opening in the wall of one adjacent street is large, and the opening in the third street has no wall. On the other hand, measurement 2 (four copies) in the X direction is almost a wall frame, and the same is true for the adjacent 4' frame. Measurement 1 (2 copies, A copy) In the Y direction, there is no wall or a large opening. On the other hand, measurement 2 (4 copies, A batch) in the Y direction has an opening but a wall. This is also reflected in the shape index for seismic diagnosis. That is, the shape index SD shown on the right side of Table 21 shows a small value of 0.63 on the second and third floors in the X direction. As a result of the uneven distribution of the walls in the X direction, the interlayer displacement in both the X and Y directions is large near the two passages.

表22の補強前後の変化率を見ると、計測1(2通付近)では、(Cmikがほぼ一様に2割程度向上している。これは、図16~図22に示したSRF工法の柱補強によって、柱中心の1~3通りのX方向フレーム及び、2通り付近のY方向のAフレームの振動特性が改善され、基準地震動に対する層間変位が減少した効果であると言える。一方、計測2では、補強前後の変化はほぼ見られないか、(Cmikが減少している。しかし、表21の絶対値を見れば、計測2では、補強後は、X、Y両方向ともに1、2階が0.5~0.6程度、3階が0.2程度とそろった値となっている。計測1でも、同様に、1階が0.6程度、2、3階が0.2程度とそろっている。以上は、SRF工法で主要な柱を補強した結果、震動特性が安定した結果であると考えている。 Looking at the rate of change before and after reinforcement in Table 22, in measurement 1 (around 2 letters), (C T S D ) mik almost uniformly improved by about 20%. This is because column reinforcement using the SRF construction method shown in Figures 16 to 22 improves the vibration characteristics of the 1st to 3rd X-direction frames at the center of the column and the Y-direction A-frame near 2nd way, and is able to withstand standard earthquake ground motion. This can be said to be an effect of reducing interlayer displacement. On the other hand, in measurement 2, almost no change was observed before and after reinforcement, or ( CTSD ) mik decreased. However, looking at the absolute values in Table 21, in Measurement 2, after reinforcement, the values were around 0.5 to 0.6 for the 1st and 2nd floors in both the X and Y directions, and around 0.2 for the 3rd floor. It has become. Similarly, in measurement 1, the values are around 0.6 for the first floor and around 0.2 for the second and third floors. We believe that the above is the result of stabilizing the seismic characteristics as a result of reinforcing the main pillars using the SRF construction method.

表22に示した診断計算と微動計測で得られた値の大きさの比較を見ると、偏心の少ない一階では、計測1、2ともほぼ計算と計測が同じ値となっている。これは、微動診断法及び耐震診断が想定している地震動の地表面変位最大値の期待値の設定(本明細書の段落「0113」~「0114」参照)がこの例では妥当であったことを示すといえる。また、偏心のある2階、3階においては、計測1と2で大きく違った値が計測されており、鉛直アレー観測によって、構造の詳細な特性が把握できることを示す例となっている。 Comparing the magnitudes of the values obtained by the diagnostic calculation and the microtremor measurement shown in Table 22, on the first floor with less eccentricity, the calculation and measurement values are almost the same for both measurements 1 and 2. This means that the setting of the expected value of the maximum value of ground surface displacement due to seismic motion assumed by the microtremor diagnosis method and seismic diagnosis (see paragraphs "0113" to "0114" of this specification) was appropriate in this example. It can be said that it shows. Furthermore, on the second and third floors, where there is eccentricity, values were measured that were significantly different between measurements 1 and 2, which is an example of how vertical array observation can be used to understand the detailed characteristics of a structure.

表23に示した基準化入力エネルギーWK0ikと許容限界値Wl0ikをみると、構造品質保証研究所刊行:2015年版 SRF工法設計施工指針と解説P112に示した基準化した履歴吸収エネルギー(以下、基準化入力エネルギーという。)Wの略算式では、入力エネルギーに対する地震動と構造物の影響は一律の係数m=5.0として与えることとしているので、補強前後で入力エネルギーは変化しない計算となっている。一方、本明細書では数式49に示したように、構造物の強度、応答倍率、振動のバンド幅の影響を反映する算式となっているので、補強前後で変化している。ただし、表23では、緑本のWにAを乗じて、支持する質量だけで基準化した値として表示している。 Looking at the normalized input energy W K0ik and allowable limit value W l0ik shown in Table 23, we can see that the normalized historical absorbed energy (hereinafter referred to as (referred to as normalized input energy) In the approximate formula for W E , the effects of seismic motion and structures on input energy are given as a uniform coefficient m E = 5.0, so it is calculated that the input energy does not change before and after reinforcement. It has become. On the other hand, in this specification, as shown in Equation 49, the formula reflects the influence of the strength of the structure, response magnification, and vibration bandwidth, so it changes before and after reinforcement. However, in Table 23, W E of the green book is multiplied by A i and the value is displayed as a value standardized only by the supporting mass.

基準化入力エネルギーの絶対値としては、偏心の影響を大きく受ける補強前の計測1のX方向で、計測が計算の4倍から7倍程度と大きな値となっているが、その他はほぼ同様
の値であると言える。従って、この例は、微動診断法及び表19に示した現行規準相当の地震動レベルの設定値が損傷度に関しても妥当であることを示すと言える。
As for the absolute value of the normalized input energy, in the X direction of measurement 1 before reinforcement, which is greatly affected by eccentricity, the measurement is about 4 to 7 times the calculation, which is a large value, but other things are almost the same. It can be said that it is a value. Therefore, this example can be said to show that the microtremor diagnosis method and the set value of the seismic motion level corresponding to the current standard shown in Table 19 are appropriate with regard to the degree of damage.

表23及び表24に示した基準化入力エネルギーの補強前後の変化率を見ると、偏心の影響の大きい計測1については一様に、6割程度に減少している。一方、計測2では、X方向の1、2階で大きく減少しているが、3階では両方向ともに増加している。特に計測2のY方向の増加率が約7倍と大きい。これらは、直接的には、表22に現れている補強前後の強度(Cmikの変化を反映したものである。即ち、本例は、基準化入力エネルギーの限界加速度の計算において、累積強度指標を用いているので、この強度の増減が反映された結果となっている。ただし、Y方向での増加率は大きいが、絶対値自体は許容値と比べて大きくない。 Looking at the rate of change in the standardized input energy before and after reinforcement shown in Tables 23 and 24, it is uniformly reduced to about 60% for measurement 1 where the influence of eccentricity is large. On the other hand, in measurement 2, there is a large decrease on the first and second floors in the X direction, but there is an increase on the third floor in both directions. In particular, the increase rate in the Y direction for measurement 2 is as large as about 7 times. These directly reflect the changes in the strength ( CTSD ) mik before and after reinforcement shown in Table 22. That is, in this example, since the cumulative intensity index is used in calculating the critical acceleration of the standardized input energy, the increase or decrease in this intensity is reflected in the result. However, although the rate of increase in the Y direction is large, the absolute value itself is not large compared to the allowable value.

表44及び表45に示した損傷度を見てみることとする。計算では、補強前は、X方向で基準値1.0を上回るが、補強後はXY両方向ともに下回る(損傷が許容値以下になる)結果となっている。微動診断によれば、偏心の影響を受ける計測1のX方向を除いて、基準値を下回っている。計測2の3階Y方向は、1.16であるが、ほぼ基準値であると考えてよい。 Let's take a look at the damage levels shown in Tables 44 and 45. The calculation shows that before reinforcement, the standard value exceeds 1.0 in the X direction, but after reinforcement, it falls below in both the X and Y directions (damage is below the allowable value). According to the microtremor diagnosis, the values are below the reference value except for the X direction of measurement 1, which is affected by eccentricity. The third floor Y direction of measurement 2 is 1.16, which can be considered to be approximately the reference value.

以上から、本建物は、現行基準の想定する大地震に遭遇した場合には、2通り付近では、X方向の振動で許容限界を超える損傷を受ける可能性はあるが、その他の部分では損傷は許容限界内に収まる可能性が高いといえる。なお、微動診断では判定できないが、表44に示した倒壊危険度値Iが補強後で規準値1.0以下であることから、現行規準を大幅に超える地震動を受けた場合でも倒壊は免れると考えられる。 From the above, if this building were to encounter a major earthquake as expected under the current standards, there is a possibility that the building would suffer damage exceeding the allowable limit due to vibrations in the X direction in two areas, but there would be no damage in other parts. It can be said that there is a high possibility that it will fall within the permissible limits. Although it cannot be determined by microtremor diagnosis, the collapse risk value I f shown in Table 44 is below the standard value of 1.0 after reinforcement, so collapse will be avoided even if the building is subjected to seismic motion that significantly exceeds the current standard. it is conceivable that.

3)層せん断力の高さ方向の分布を表す係数A
表27には、層せん断力の高さ方向の分布を表す係数Aの期待値(Aimk)の補強前後の値を、数式9によって、微動観測によって得られた絶対加速度エネルギー伝達率a(表4参照)と構造物の各層の質量mから計算したものを、現行基準の計算式(数式10)から得られた値と比較して示し、表29には補強前後の変化率及び計算と実測の比を示している。
3) Coefficient A i representing the distribution of layer shear force in the height direction
Table 27 shows the values before and after reinforcement of the expected value (A imk ) of the coefficient A i , which represents the distribution of layer shear force in the height direction, using Equation 9 to calculate the absolute acceleration energy transfer rate a( (see Table 4) and the mass m j of each layer of the structure are compared with the values obtained from the current standard calculation formula (Formula 10). Table 29 shows the change rate before and after reinforcement and the calculated value. and the ratio of actual measurements is shown.

Figure 2023161018000077
Figure 2023161018000077

Figure 2023161018000078
Figure 2023161018000078

Figure 2023161018000079
Figure 2023161018000079

実測値の補強前後の値を見てみることとする。計測1では、各階、各方向ともに最大でも2%程度しか変化していない。計測2では、3階で10%~20%増加しているが、2階では変化は5%以下である。計算と実測の比を見ると、2階では、計測点、補強の有無に関らずほぼ一致している。一方、3階では、補強前は、計測1.2とも、計算よりも実測が10%程度小さく、補強後は、計測2では、実測と計算が一致するか、Y方向では10%程度大きくなっている。 Let's take a look at the actual measured values before and after reinforcement. In measurement 1, there was only a maximum change of about 2% on each floor and in each direction. Measurement 2 shows an increase of 10% to 20% on the 3rd floor, but a change of less than 5% on the 2nd floor. Looking at the ratio between calculations and actual measurements, on the second floor, they are almost the same regardless of the measurement point and whether or not reinforcement is used. On the other hand, on the 3rd floor, before reinforcement, both measurement 1 and 2, the actual measurement is about 10% smaller than the calculation, and after reinforcement, measurement 2 is about 10% larger than the calculation, or the actual measurement and calculation match. ing.

上記各数値の絶対値を見れば、実測と計算はほぼ一致している。これは、層せん断力の高さ方向の分布を表す係数の微動計測による測定法により、現行基準で低層建築物の最大応答層せん断力分布であると考えられている震度一様分布が実測されたことを示している。また、3階の補強前後の変化、計算との比較は、補強工事によって、3階の強度が特に大きかったものを、スリットを切ることで2階以下に近づける方向に修正した効果が現れていると考えられる。 Looking at the absolute values of each of the above numerical values, the actual measurements and calculations are almost in agreement. This is because the uniform distribution of seismic intensity, which is considered to be the maximum response floor shear force distribution of low-rise buildings under current standards, was actually measured using a measurement method based on microtremor measurement of the coefficient representing the distribution of story shear force in the height direction. It shows that Additionally, comparing the changes before and after the reinforcement of the third floor with calculations shows that the strength of the third floor, which was particularly strong, was modified by cutting slits to make it closer to the second floor or lower due to the reinforcement work. it is conceivable that.

計測2の3階Y方向については、実測のA(Aimk)が、計算よりもかなり大きくなっていることは、スリットを切ったことにより、この部分の振動を大きくする構造となったことを示している。これが、表21に示した強度指標の実測値(Cmikの低下(0.60→0.20)、表23に示した基準化入力エネルギーWK0ikの増加(5.4→37.9)、及び表25に示した損傷度Id0ikの増加(0.80→1.16)に表れている。ただし、スリットを切った後にSRF工法で柱を巻き立てたことにより、同表で、倒壊危険度は、各階で1.0を下回っている。また、同表で、微動観測により、計測2の付近に関しては損傷度も各階でほぼ規準値(1.0)以下となったことが確認できる。また、計測1付近では、Y方向に関しては、1.0を下回っている。計測1のX方向の損傷がある程度予測されることに関しては、1通りの壁にSRF工法で耐震被覆を
行って振動エネルギーの吸収を図ることが有効である。今回の補強は、倒壊防止目的で行ったものであり、損傷制御する立場からは、今後の工事で上記の対策を実施したい。
Regarding the 3rd floor Y direction in Measurement 2, the actual measured A i (A imk ) is much larger than the calculated value, which is due to the fact that cutting the slit created a structure that increases the vibration in this part. It shows. This is due to the decrease (0.60 → 0.20) in the measured value of the intensity index (C T S D ) mik shown in Table 21 and the increase in the normalized input energy W K0ik shown in Table 23 (5.4 → 37 .9) and an increase in the damage degree I d0ik shown in Table 25 (0.80 → 1.16). However, because the columns were erected using the SRF construction method after cutting the slits, the collapse risk level is below 1.0 on each floor, as shown in the same table. In addition, in the same table, it can be confirmed that the degree of damage in the vicinity of Measurement 2 was approximately below the standard value (1.0) on each floor due to microtremor observation. Further, near measurement 1, it is less than 1.0 in the Y direction. Regarding the fact that damage in the X direction in Measurement 1 is predicted to some extent, it is effective to apply seismic coating to one type of wall using the SRF construction method to absorb vibration energy. This reinforcement was done to prevent collapse, and from the standpoint of damage control, we would like to implement the above measures in future construction work.

4)平均加速度、平均速度伝達率Baik、Bvik
微動観測結果から、数式13及び数式14によって平均加速度、平均速度伝達率を計算し、補強前後の値を比較して表30及び表31に示している。これらは、構造物の第i層が支持する部分の空間平均加速度、あるいは速度と規準点の加速度、あるいは速度との比である。従って、一階の値は、構造全体の平均応答倍率となる。また、Aは、平均加速度エネルギー伝達率Baikの各階の値を一階の値で規準化した値である(数式17参照)。
4) Average acceleration, average velocity transmission rate B aik , B vik
From the microtremor observation results, the average acceleration and average velocity transmission rate were calculated using Equations 13 and 14, and the values before and after reinforcement were compared and shown in Tables 30 and 31. These are the ratio of the spatially averaged acceleration or velocity of the part supported by the i-th layer of the structure to the acceleration or velocity of the reference point. Therefore, the first-order value is the average response magnification of the entire structure. Further, A i is a value obtained by normalizing the value of each floor of the average acceleration energy transfer rate B aik by the value of the first floor (see Equation 17).

Figure 2023161018000080
Figure 2023161018000080

Figure 2023161018000081
Figure 2023161018000081

本建物は、第2種地盤に立地しており、地盤の固有周期T=0.6sec、建物高さh=14.3m、この内鉄骨部分の高さ2.95m、鉄骨造である階(地階を除く)の高さh[m]に対する比λ=0.206、従って、現行基準の算式(数式12参照)では、建物固有周期は、T=h(0.02+0.01λ)=0.32secと算定される。従って、T<Tより、振動特性係数R=1.0と計算され、加速度応答倍率は、現行基準制定時の標準的な値である2.5~3.0であると結論される。 This building is located on type 2 ground, the natural period of the ground T c = 0.6 sec, the building height h = 14.3 m, of which the height of the steel frame portion is 2.95 m, and the steel frame floor (excluding the basement) to the height h [m] λ = 0.206. Therefore, according to the current standard formula (see formula 12), the natural period of the building is T = h (0.02 + 0.01λ) = 0 It is calculated to be .32 seconds. Therefore, since T<T c , it is calculated that the vibration characteristic coefficient R t =1.0, and it is concluded that the acceleration response magnification is 2.5 to 3.0, which is the standard value at the time the current standard was established. .

以上を前提に、1階の値である実測の応答倍率を見てみよう。加速度、速度ともほぼ同様の値であり、計測1では、補強前で、2.5~4.0、補強後で、2.0~3.7、また、計測2では、補強前で、2.0~2.4、補強後で、1.6~2.2である。絶対値は、現行基準の想定である2.5~3.0と概ね等しい。これは、微動診断法の妥当性を示している。 Based on the above assumptions, let's take a look at the actually measured response magnification, which is the first-order value. The acceleration and velocity are almost the same values; in measurement 1, before reinforcement, 2.5 to 4.0, after reinforcement, 2.0 to 3.7, and in measurement 2, before reinforcement, 2. .0 to 2.4, and 1.6 to 2.2 after reinforcement. The absolute value is approximately equal to 2.5 to 3.0, which is the assumption of the current standard. This shows the validity of the micromotion diagnostic method.

次に、補強前後の変化率を見てみることとする。表31に示すように、各階が支持する部分の加速度応答倍率については、補強後の計測2のY方向だけが若干(7%)増加しているものの、他の計測点では各方向ともに7割~9割程度に減少している。また、速度応答倍率に関しては、計測2のY方向で若干増加しているが、他は減少している。これらの数値は、補強工事によって、構造系が地震の影響を受けにくいように変化したことを定量的に表している。これらの値は、損傷度の計算に用いられており、前項までに述べた各指標値に、上記の特長が表れている。 Next, let's look at the rate of change before and after reinforcement. As shown in Table 31, regarding the acceleration response magnification of the part supported by each floor, only the Y direction of measurement 2 after reinforcement increased slightly (7%), but at other measurement points it increased by 70% in each direction. It has decreased to about 90%. Also, regarding the speed response magnification, it increases slightly in the Y direction in measurement 2, but decreases in other areas. These numbers quantitatively represent that the reinforcement work has made the structural system less susceptible to earthquakes. These values are used to calculate the degree of damage, and the above-mentioned features appear in each of the index values described up to the previous section.

5)微動特性
表32には、補強前後の微動加速度のRMS、及びエネルギー伝達率と補強前後の変化率を示す。表52には、補強前後の微動加速度の中心周期とバンド幅指数を示す。同様に
表34~表37には、微動速度、変位に関して特性を掲載している。加速度計により、微動加速度を計測し速度、変位はこれを10Hzのハイカット及び0.2Hzのローカットフィルタ処理した後に線形加速度法で積分して求めている。各表中で、階とは、その階の床面である。
5) Microtremor characteristics Table 32 shows the RMS of microtremor acceleration before and after reinforcement, and the energy transfer rate and rate of change before and after reinforcement. Table 52 shows the center period and bandwidth index of the microtremor acceleration before and after reinforcement. Similarly, Tables 34 to 37 list characteristics regarding micro-motion speed and displacement. Micro-motion acceleration is measured by an accelerometer, and the velocity and displacement are obtained by integrating it using a linear acceleration method after processing it with a 10 Hz high-cut filter and a 0.2 Hz low-cut filter. In each table, a floor is the floor surface of that floor.

Figure 2023161018000082
Figure 2023161018000082

Figure 2023161018000083
Figure 2023161018000083

Figure 2023161018000084
Figure 2023161018000084

Figure 2023161018000085
Figure 2023161018000085

Figure 2023161018000086
Figure 2023161018000086

Figure 2023161018000087
Figure 2023161018000087

エネルギー伝達率は、本明細書の段落「0067」に定義した基準点のRMSと各階のRMSの比で、即ち、振動の増幅率であり、前項までに示した各診断指標を計算する素となっている。 The energy transfer rate is the ratio of the RMS of the reference point defined in paragraph "0067" of this specification to the RMS of each floor, that is, the vibration amplification factor, and is the basis for calculating each diagnostic index shown up to the previous section. It has become.

中心周期は、数式1で、バンド幅指数は、本明細書の段落「0156」に記載した方法で計算したものである。中心周期は、定常ガウス過程であればゼロクロス周期の期待値であり、バンド幅指数は、正弦波で1.0、ホワイトノイズで0となる。バンド幅が大きいほどゼロに近づく。補強前後の変化を見ると、加速度については、前後でほぼ等しいか若干大きくなっている。また、速度については、中心周期が計測1では若干大きくなり、計測2では若干減少している。バンド幅指数は、両観測点ともに増加している。即ち、バンド幅が狭くなっている。微動変位について見ると、補強後は明らかに中心周期が減少し、バンド幅が増大している。これは、補強によって、振動が正弦波に近づいて、かつ、構造系の剛性が向上したことを表している。 The central period is calculated using Formula 1, and the bandwidth index is calculated using the method described in paragraph "0156" of this specification. The center period is the expected value of the zero-crossing period if it is a stationary Gaussian process, and the bandwidth index is 1.0 for a sine wave and 0 for white noise. The larger the bandwidth, the closer it is to zero. Looking at the changes before and after reinforcement, the acceleration is almost the same or slightly larger before and after reinforcement. Regarding the speed, the center period becomes slightly larger in measurement 1 and decreases slightly in measurement 2. The bandwidth index is increasing at both stations. That is, the bandwidth is narrower. Looking at the microtremor displacement, the center period clearly decreases and the band width increases after reinforcement. This indicates that the reinforcement has brought the vibration closer to a sine wave and improved the rigidity of the structural system.

表38~表40には、微動加速度、速度、変位に中心周期測定値と現行基準の1次固
有周期の計算値を比較して示している。微動あるいは、地震動を受ける構造物は不規則振動をするので、変位、速度、加速度の中心周期はバンド幅に応じて増大する(本明細書の段落「0156」参照)。本例では、現行基準の算式で計算した1次固有周期の値の周りに、加速度、速度、変位の中心周期がある。なお、加速度、速度、変位、それぞれについては、各点、各階、各方向ともにほぼ同じ中心周期の値が得られていることから、建物全体が固有のモードで振動していると考えられる。
Tables 38 to 40 show a comparison between the measured central period and the calculated value of the primary natural period of the current standard for micro-motion acceleration, velocity, and displacement. Since a structure subjected to microtremors or seismic motion vibrates irregularly, the center period of displacement, velocity, and acceleration increases according to the bandwidth (see paragraph "0156" of this specification). In this example, the central periods of acceleration, velocity, and displacement are around the value of the primary natural period calculated using the current standard formula. Regarding acceleration, velocity, and displacement, values with approximately the same center period were obtained for each point, each floor, and each direction, so it is thought that the entire building is vibrating in a unique mode.

Figure 2023161018000088
Figure 2023161018000088

Figure 2023161018000089
Figure 2023161018000089

Figure 2023161018000090
Figure 2023161018000090

1)対象施設及び計測方法
計測対象は、1994年竣工の地上11階SRC造(X方向2スパン、Y方向1スパン、一階部分が駐車場のピロティ集合住宅建物(図24参照)である。ただし、X方向には階段室等がある。平成29年8月末から9月に掛けて、一階の独立柱2本(A2、A3)をSRF工法(本明細所の段落「0194」の1行目から3行目参照)で巻きたてた。2階~11階までは、住戸であり、2階~10階の2通が耐震壁である。
計測は、各階のB2及びB3柱付近にそれぞれ計器を設置しての鉛直アレー2列と、一階及び屋上のB1、A2(図25参照)、B3付近にそれぞれ3台ずつの計器を配置しての3点平面観測である。補強前は、平成29年8月25日に4台の計器で補強後は、同年12月19日に12台で実施した。なお、B2付近では2階に立ち入れなかった。図26の一階平面図に補強した柱位置と計器配置を示す。
1) Target facility and measurement method The measurement target is an 11-story SRC building (2 spans in the X direction, 1 span in the Y direction, and a piloti apartment building with a parking lot on the first floor) that was completed in 1994 (see Figure 24). However, there are stairs, etc. in the X direction.From the end of August to September 2017, two independent columns (A2, A3) on the first floor were constructed using the SRF construction method (see paragraph 0194 of this specification). (See lines 3 to 3).The 2nd to 11th floors are residential units, and the 2nd to 10th floors are earthquake-resistant walls.
Measurement was carried out using two vertical arrays with instruments installed near pillars B2 and B3 on each floor, and three instruments each near B1, A2 (see Figure 25), and B3 on the first floor and rooftop. This is a three-point plane observation. Before reinforcement, 4 instruments were used on August 25, 2017, and after reinforcement, 12 instruments were used on December 19 of the same year. Furthermore, it was not possible to enter the second floor near B2. The first floor plan of Figure 26 shows the reinforced column positions and instrument arrangement.

2)計測結果
図27は、補強後のB3鉛直アレーの微動変位の水平2方向の軌跡を各階毎に6分間の計測を2分ずつ3つのパートに分けて表示している。一階から上層階に向けて増幅していること、各点がほぼ円運動していることが読み取れる。
2) Measurement Results FIG. 27 shows the trajectory of the micro-tremor displacement of the B3 vertical array after reinforcement in two horizontal directions, with measurements taken for 6 minutes for each floor divided into three parts of 2 minutes each. It can be seen that the signal is amplified from the first floor to the upper floors, and that each point moves in an almost circular motion.

表41はB2鉛直アレー及び屋上面の、表42にはB3鉛直アレーのエネルギー伝達率(一階とその階の微動変位RMSの比)と補強前後の変化率を示す。なお、表41で面と記載した欄は、屋上面の座標軸周りの回転に関するエネルギー伝達率である。補強後に、X軸周りは、1/10程度、Y軸周りは1/30程度にまで減少している。表41と表42のRF以下の欄は、併進運動のエネルギー伝達率と補強前後の比であるが、B2、B3
ともに、上層階ほど大きく減少している。これらは、SRF工法で、一階ピロティ部分の独立柱2本(A2、A3)、特に下階壁抜け柱A2を巻きたてたことで、振動モードが安定した効果を表している。
Table 41 shows the energy transfer coefficient (ratio of microtremor displacement RMS of the first floor and that floor) and the rate of change before and after reinforcement of the B2 vertical array and the roof surface, and Table 42 shows the B3 vertical array. Note that the column labeled "Surface" in Table 41 is the energy transfer rate regarding the rotation of the rooftop surface around the coordinate axis. After reinforcement, the area around the X axis is reduced to about 1/10, and the area around the Y axis is reduced to about 1/30. The columns below RF in Tables 41 and 42 are the energy transfer rate of translational motion and the ratio before and after reinforcement, but B2, B3
In both cases, the higher the upper floors, the greater the decrease. These demonstrate the effect of stabilizing the vibration mode by winding the two independent columns (A2, A3) in the piloti section of the first floor, especially the pillar A2 that extends through the lower floor wall, using the SRF construction method.

また、図27は、補強前、図28は、補強後の屋上面の運動を屋上面3箇所に設置した微動計による変位データ(XYZ3成分)を構造解析結果可視化ソフトウェアAVSに入力して、可視化(アニメーション化)したものの一瞬を描いたものである。該アニメーションを見ると、補強前は、屋上面が上下左右に大きく振動しているが、補強後は、略水平面内で円を描くように振動していることが分かる。これは、表1.3.9.1に面と表示したX軸、Y軸周りのエネルギー伝達率が、それぞれ、補強前後で11%と3%に減少していることを一目瞭然に示すものである。 In addition, displacement data (XYZ 3 components) obtained by microtremors installed at three locations on the roof surface are input into the structural analysis result visualization software AVS to visualize the movement of the roof surface before reinforcement (Figure 27) and after reinforcement (Figure 28). It depicts a moment in time (animated). Looking at the animation, it can be seen that before the reinforcement, the roof surface vibrates greatly in the vertical and horizontal directions, but after the reinforcement, it vibrates in a circular manner in a substantially horizontal plane. This clearly shows that the energy transfer rates around the X-axis and Y-axis, which are indicated as planes in Table 1.3.9.1, decreased to 11% and 3% before and after reinforcement, respectively. be.

Figure 2023161018000091
Figure 2023161018000091

Figure 2023161018000092
Figure 2023161018000092

表43及び表44は、補強後の層せん断力分布係数(Ai)、及び微動変位の中心周期(Tc)の実測値と一次固有周期(T)耐震基準による計算値(本明細書の段落「0038」~「0058」記載内容)である。Aの実測値は、5階前後まではほぼ一致しているが、上層階では計算値より明らかに小さく地震動の増幅が少ないこと、即ち、ピロティ構造特有の振動モードであることを示している。中心周期は、下層階と屋上では若干ばらついているが、上層階ではB2、B3ともほぼ一定で、計算値に近い。 Tables 43 and 44 show the actually measured values of the layer shear force distribution coefficient (Ai) and the central period of microtremor displacement (Tc) after reinforcement, and the calculated values of the primary natural period (T) based on the seismic standard (paragraph "0038" to "0058" description content). The measured values of A1 are almost the same up to around the 5th floor, but on the upper floors they are clearly smaller than the calculated values and the amplification of the earthquake motion is less, indicating that this is a vibration mode unique to the piloti structure. . The central period varies slightly on the lower floors and on the rooftop, but on the upper floors, it is almost constant for both B2 and B3, and is close to the calculated value.

Figure 2023161018000093
Figure 2023161018000093

Figure 2023161018000094
Figure 2023161018000094

表45は、B3付近の保有水平耐力に達するときの第一層の層せん断力係数(Cui1km )の実測値である(数式27)。2階から10階について、X方向に比べY方向の
値が大きいのは2通りの2階から10階の戸境壁が耐震壁であることを反映している。また、4階、5階では他の階に比べて低い。本建物は、4階、5階のコンクリート打設工事を行っていたときに豪雨にあい、工事が中断し、一旦撤収して1週間程度してから再開されたとのことである。この豪雨と中断によってコンクリートの品質が低下し保有水平耐力(強度)の低下を招いたと考えられる。
Table 45 shows the measured values of the layer shear force coefficient (C ui1km ) of the first layer when the horizontal bearing capacity near B3 is reached (Equation 27). Regarding the 2nd to 10th floors, the fact that the values in the Y direction are larger than in the X direction reflects the fact that the two types of partition walls between the 2nd and 10th floors are earthquake-resistant walls. Also, the 4th and 5th floors are lower than other floors. The building was hit by heavy rain when concrete was being poured on the 4th and 5th floors, and the construction work was interrupted, and the building was evacuated and restarted about a week later. It is thought that the heavy rain and interruptions caused the quality of the concrete to deteriorate, leading to a decline in its horizontal bearing capacity (strength).

Figure 2023161018000095
Figure 2023161018000095

表46及び表47には、本明細書の段落「0119」~「0172」記載内容、及び該内容で導いた履歴吸収エネルギーの期待値の速度換算値(Vmik)と損傷度(Idik)を示す。なお、入力地震動の性質は、現行の耐震基準の想定数値として、強震継続時間s=7sec、最大速度Vmax=0.8m/sect、最大加速度Vmax=4.0m/secとしている。また、新耐震基準建物であることを考慮して、各階、各方向とも靭性指標Fuik=3.0としている。なお、限界繰り返し回数については、2階以上は、鉄骨鉄筋コンクリートの柱であることを考慮してNik=15とし、一階はSRF工法による巻きたて補強の効果を確認した実験からNik=45とした。 Tables 46 and 47 include the contents described in paragraphs "0119" to "0172" of this specification, and the velocity conversion value (V mik ) and damage degree (I dik ) of the expected value of historical absorbed energy derived from the contents. shows. The characteristics of the input seismic motion are assumed to be based on the current seismic standards, such as strong earthquake duration s 0 =7 sec, maximum velocity V max =0.8 m/sec, and maximum acceleration V max =4.0 m/ sec2 . In addition, considering that the building is a building based on new earthquake resistance standards, the toughness index F uik is set to 3.0 for each floor and in each direction. Regarding the limit number of repetitions, for the second floor and above, N ik = 15, considering that the columns are made of steel-framed reinforced concrete, and for the first floor, N ik = 15, based on an experiment that confirmed the effect of rolling reinforcement using the SRF method. It was set at 45.

表46及び表47には、入力地震動を、最近の地震環境を代表する数値として、強震継続時間s=sec、最大速度Vmax=1.2m/sec、最大加速度Amax=10m/secとしている(表19参照)。靱性指標と限界繰り返し回数については上記のとおりとした。 Tables 46 and 47 show the input seismic motion as values representative of recent earthquake environments: strong motion duration s 0 = sec, maximum velocity V max = 1.2 m/sec, maximum acceleration A max = 10 m/sec 2 (See Table 19). The toughness index and limit number of repetitions were as described above.

表46の履歴吸収エネルギーの計算結果を見れば、現行基準の想定する地震動に対しては、Y方向についてはほとんど吸収しない(降伏変位に達しない)結果となった。しかし
、X方向に関しては、コンクリートの施工不良が疑われる4階、5階と最上階では降伏するとの結果である。また、表48の最近の地震環境を代表する地震動に対しては、B3付近のY方向の中間階を除いて、大きな吸収エネルギーが出るとの結果である。
Looking at the calculation results of historical absorbed energy in Table 46, it is found that the seismic motion assumed by the current standards is hardly absorbed in the Y direction (yield displacement is not reached). However, in the X direction, the fourth and fifth floors and the top floor, where poor concrete construction is suspected, will yield. Furthermore, the results show that a large amount of absorbed energy is produced for earthquake motions representative of the recent seismic environment shown in Table 48, except for the intermediate floor in the Y direction near B3.

表47及び表49の損傷度は、各層が吸収するエネルギーが損傷限界に収まるかを示すものだが、現行基準の想定する地震動に対しては、B2、B3付近とも、XY両方向について限界値(1.0)を下回るとの結果である。この意味で、現行基準(新耐震基準)に適合していると言える。ただし、コンクリートの施工不良が疑われる4,5階と最上階ではほぼ限界に近いとの結果である。一方、表49の最近の地震環境を代表する地震動に対しては、B3付近のY方向では、4,5階を除き、限界内に収まるが、X方向では大きな損傷が出る結果である。なお、本建物は、ピロティ構造であり、表48で、1階で大きな履歴球種エネルギーが発生すると計算されているが、それでも、SRF工法で柱を巻きたて補強した1階とその直上の2階については、ほぼ限界値内に収まる結果となった。他の階についても、巻きたて工法等で対策を講ずることで損傷を低減することを考慮すべき結果である。 The damage degrees in Tables 47 and 49 indicate whether the energy absorbed by each layer falls within the damage limit, but for the earthquake motion assumed by the current standards, the limit value (1 .0). In this sense, it can be said that it complies with the current standards (new earthquake resistance standards). However, the fourth and fifth floors and the top floor, where poor concrete construction is suspected, are close to reaching their limits. On the other hand, with respect to the seismic motion representative of the recent seismic environment shown in Table 49, the results are within limits in the Y direction near B3, except for the 4th and 5th floors, but large damage occurs in the X direction. This building has a piloti structure, and Table 48 shows that it is calculated that a large amount of hysteresis energy is generated on the first floor. Regarding the second floor, the results were almost within the limit values. This result suggests that measures should be taken to reduce damage on other floors by taking measures such as rolling construction methods.

上記の例では仮に定めたが、各部材の限界繰り返し回数と靭性指標は、同種の部材に対する繰り返し載荷実験から得られた荷重変位履歴と損傷の程度の観察から決定することができる。また、地震動の最大加速度、速度、変位、強震継続時間は、地震動観測結果を総合して決めることができる。 Although temporarily determined in the above example, the limit number of repetitions and toughness index for each member can be determined from observation of the load displacement history and degree of damage obtained from repeated loading experiments on the same type of member. Furthermore, the maximum acceleration, velocity, displacement, and duration of strong motion can be determined by comprehensively examining the seismic motion observation results.

Figure 2023161018000096
Figure 2023161018000096

Figure 2023161018000097
Figure 2023161018000097

Figure 2023161018000098
Figure 2023161018000098

Figure 2023161018000099
Figure 2023161018000099

以上に示すように、本発明の損傷度は地震動のレベルに応じた構造物の損傷の程度とこれに対する対策の効果を、構造物の微動観測により実測された各種の伝達率と、限界繰り返し回数と靭性指標を用いて定量的に示すことができる。耐震設計の合理化に資するものである。 As shown above, the degree of damage of the present invention is based on the degree of damage to a structure according to the level of seismic motion and the effect of countermeasures against it, based on various transmissibility actually measured by microtremor observation of the structure, and the limit number of repetitions. This can be shown quantitatively using a toughness index. This will contribute to the rationalization of seismic design.

以下、本発明方法のブロック塀への適用例について説明する。 An example of application of the method of the present invention to a block wall will be described below.

1.設置
図29は、ブロック塀、基礎および地盤と微動計との配置関係を示す模式図であり、微動計1をブロック塀16の頂部17、基礎18あるいは、基礎18付近の地盤面20に水平に設置する。微動計1をブロック塀16の頂部17に設置する場合は、微動計1の足1aがブロック塀16の頂部17の中心線上にくるようにする。頂部17および周辺地盤21上に設置するとき、および、基礎18上のフリクが大きい場合には、鉄板を用いる。
1. Installation FIG. 29 is a schematic diagram showing the arrangement relationship between the microtremor and the block wall, the foundation, and the ground. Install. When the micromotion meter 1 is installed on the top 17 of the block wall 16, the foot 1a of the micromotion meter 1 is placed on the center line of the top 17 of the block wall 16. When installing on the top 17 and surrounding ground 21, and when there is a large amount of flick on the foundation 18, a steel plate is used.

2.計測
頂部17および基礎18上での6分間程度同時計測をする。データは、建物診断と同様に、フリーキックと微動診断用エクセルを用いて分析する。このとき、階高は、ブロック塀16の高さ(頂部17の微動計1と基礎18あるいは周辺地盤21の微動計1のz座標の差)Hとし、層の支える重量はゼロとする。
計算は、それぞれの時刻歴の速度、変位の計算、RMS、中心周期、および伝達率とする。層間変位あるいは、頂部の絶対変位を注目時刻歴d(t)とし、基礎17あるいは周辺地盤21の計測点(図29中のNo.1参照)を基準点とし、これとの伝達率(hdk)を計算する。
2. Measurement Simultaneous measurements are taken on the top 17 and the base 18 for about 6 minutes. The data will be analyzed using Excel for free kick and micromotion diagnosis, similar to building diagnosis. At this time, the floor height is the height of the block wall 16 (difference between the z-coordinates of the microtremor 1 on the top 17 and the microtremor 1 on the foundation 18 or the surrounding ground 21), and the weight supported by the layer is zero.
The calculations are velocity, displacement calculation, RMS, central period, and transmissibility for each time history. Let the interstory displacement or the absolute displacement of the top be the time history of interest d(t), use the measurement point of the foundation 17 or the surrounding ground 21 (see No. 1 in Fig. 29) as the reference point, and calculate the transmissibility (h dk) with this point. ).

3.診断
診断基準が想定する大地震に対する基準点変位xGkmaxを2.5cmとしたときの頂部23の相対変位、あるいは絶対変位を下式(黄色本 式1.4.8)で予測する。
3. Diagnosis Predict the relative displacement or absolute displacement of the top 23 when the reference point displacement x Gkmax for a large earthquake assumed by the diagnostic criteria is 2.5 cm using the formula below (yellow book formula 1.4.8).

Figure 2023161018000100
Figure 2023161018000100

ただし、上式で、d(t)=y(t)-y(t)、hdk=RMS[d(t)]/RMS[y(t)]とすれば、相対変位が予測される。 However, in the above equation, if d(t) = y 2 (t) - y 1 (t) and h dk = RMS[d(t)]/RMS[y 1 (t)], the relative displacement is predicted. be done.

また、d(t)=y(t)、hdk=RMS[d(t)]/RMS[y(t)]とすれば、絶対変位が予測される。 Further, if d(t)=y 2 (t) and h dk =RMS[d(t)]/RMS[y 1 (t)], then the absolute displacement can be predicted.

ここで、d(t)、y(t)、y(t)は、それぞれ、頂部23と基準点の相対変位、頂部23の絶対変位、基準点の絶対変位のy方向(ブロック塀22直交方向)成分である。 Here, d(t), y 2 (t), and y 1 (t) are the relative displacement between the top 23 and the reference point, the absolute displacement of the top 23, and the absolute displacement of the reference point in the y direction (block wall 22 orthogonal direction) component.

数式50で計算した地震時の頂部16と基礎17との相対変位、あるいは頂部16の絶対変位の期待値から、ブロック塀15の転倒危険度(Itbw)を計算する。 The overturning risk (I tbw ) of the block wall 15 is calculated from the relative displacement between the top 16 and the foundation 17 during an earthquake calculated using Equation 50, or from the expected value of the absolute displacement of the top 16.

転倒限界傾斜の平均値をD/Hとすれば、下式となる。 If the average value of the tipping limit slope is D/H, then the following formula is obtained.

Figure 2023161018000101
Figure 2023161018000101

ただし、D[cm]は、ブロック塀15の幅(図29参照)、E[dGkmax]は、耐震診断基準が想定している大地震に対するブロック塀15の頂部16の絶対変位あるいは相対変位の期待値、a(表50参照)は、転倒限界傾斜をD/Hとした場合の転倒限界頂部変位である。 However, D [cm] is the width of the block wall 15 (see Fig. 29), and E [d Gkmax ] is the absolute displacement or relative displacement of the top 16 of the block wall 15 in response to a large earthquake, which is assumed by the seismic diagnostic standards. The expected value a (see Table 50) is the tipping limit top displacement when the tipping limit slope is D/H.

Figure 2023161018000102
Figure 2023161018000102

次に、ブロック塀に本発明方法を適用した具体的な微動計測事例を以下に説明する。 Next, a specific example of microtremor measurement in which the method of the present invention is applied to a block wall will be described below.

諸元は、以下のとおりである。
場所:大阪府枚方市 某マンション ブロック塀
構造:CB造
厚さ:150[mm]
延長:~15000[mm]
高さ:1870[mm] (基準となる計測装置から頂部までの高さは、1790[
mm]
ブロックサイズ:(厚さ×延長×高さ)150[mm] ×390[mm]×200
[mm]
控壁:無し
微動計測装置4台使用
The specifications are as follows.
Location: Hirakata City, Osaka Prefecture, certain condominium block wall Structure: CB construction Thickness: 150 [mm]
Extension: ~15000 [mm]
Height: 1870 [mm] (The height from the reference measuring device to the top is 1790 [mm]
mm]
Block size: (thickness x extension x height) 150 [mm] x 390 [mm] x 200
[mm]
Retaining wall: None, 4 microtremor measuring devices used

図30(a)~(c)は、計測地点毎の実際の計測状況を示すものであり、そのうちの(a)は計測地点1の状況を、(b)は計測地点2の状況を、(c)は計測地点3の状況をそれぞれ示す。また、図31は、図30との対応のもとで上からブロック塀を見た際の計測装置(微動計)の配置状況を模式的示す説明図である。 30(a) to (c) show the actual measurement situation for each measurement point, of which (a) shows the situation at measurement point 1, (b) shows the situation at measurement point 2, and ( c) shows the situation at measurement point 3, respectively. Further, FIG. 31 is an explanatory diagram schematically showing the arrangement of the measuring device (micromotion meter) when looking at the block wall from above in correspondence with FIG. 30.

ブロック塀の転倒危険度については、数式51により転倒危険度を算定した。その結果を表51に示す。 Regarding the fall risk of the block wall, the fall risk was calculated using Equation 51. The results are shown in Table 51.

Figure 2023161018000103
Figure 2023161018000103

表51によれば、転倒危険度は、いずれも1.0を下回り、耐震診断基準が想定する地震動(最大変位2.5cm)では、転倒の危険性は大きくはないと判定された。しかし、これを上回る地震動(例えば、最近の地震動)では転倒の危険がある。 According to Table 51, the risk of falling was all below 1.0, and it was determined that the risk of falling was not large under the seismic motion (maximum displacement of 2.5 cm) assumed by the seismic diagnosis standards. However, seismic motions exceeding this level (for example, recent earthquake motions) pose a risk of falling.

微動診断の役割について
地震の作用は地動加速度に比例する慣性力であるとする方法(慣性力近似)は、新旧耐震基準の別、動的、静的計算に関らず、現行の耐震設計の基本原理となっている。これは、有限要素法に代表される数値計算法、デジタルコンピュータの発達と相まって、1960年代の後半から現在まで、未だかつて地上に存在しなかった規模、形状、材質の構造物を、我が国を始めとする世界中の地震帯地域に続々と建設する原動力となった。
新耐震基準で構造物の崩壊過程を数値的に追うように規定されたことにより専用ソフトがないと構造設計ができないほど、耐震計算は複雑化した。専門家でも、構造耐震指標や保有水平耐力、あるいは、動的解析の計算過程の詳細な把握は物理的にできない。コンピュータの打ち出す数値を信じるしかないのが現状である。一方で、20世紀末から今世紀にかけ、地震活動は活発さを増し、観測される地震動の大きさ、継続時間ともに、1970年代までの地震観測に基づいて定められた現行基準の想定を数倍から一桁上回っている。
About the role of microtremor diagnosis The method that assumes that the action of an earthquake is an inertial force proportional to the ground motion acceleration (inertial force approximation) is a method that assumes that the action of an earthquake is an inertial force proportional to the ground acceleration. This is the basic principle. Coupled with the development of numerical calculation methods such as the finite element method and digital computers, from the latter half of the 1960s to the present, structures of scale, shape, and materials never before existed on earth have been built in Japan and elsewhere. It became the driving force for construction in seismic zone areas around the world.
The new seismic standards require that the collapse process of structures be tracked numerically, making seismic calculations so complex that structural design is impossible without specialized software. Even experts are physically unable to understand the details of the structural seismic resistance index, horizontal bearing capacity, or dynamic analysis calculation process. Currently, we have no choice but to trust the numbers that the computer puts out. On the other hand, from the end of the 20th century to this century, seismic activity has increased, and both the magnitude and duration of observed seismic motions have exceeded the assumptions of the current standards based on earthquake observations up to the 1970s. It's an order of magnitude higher.

地動加速度が1Gを超えるような最近の地震動レベルでは、慣性力近似は成立しない。3次元運動をしようとする構造物・地盤系をx方向、y方向に分けて設計することの非合理性も際立ってくる。そもそも、大地震の時空間的スケールは個々の構造物のスケールと比較にならない。大地震の地震動を構造物のスケールで捉えようとすれば、極めてランダムになる。大地震の引き起こす現象は、条件が少し変わっただけで、結果が不連続的に大きく変化する。統計的現象と呼ばれるものである。現行基準の方法による計算を根拠に、これまで存在しなかった規模や形式の構造物を建設することは、入力地震動においても、計算の仮定とモデルにおいても、合理的であるとはいえない。 At recent seismic motion levels where ground motion acceleration exceeds 1G, the inertial force approximation does not hold. The irrationality of designing structures and ground systems that are intended to move in three dimensions by dividing them into x and y directions is becoming clearer. In the first place, the spatiotemporal scale of a major earthquake cannot be compared to the scale of individual structures. If you try to capture the seismic motion of a major earthquake on the scale of a structure, it will become extremely random. In the phenomena caused by large earthquakes, even small changes in conditions can cause large, discontinuous changes in the results. This is called a statistical phenomenon. It cannot be said that constructing a structure of a scale or type that did not exist before based on calculations using the current standard method is rational, neither for the input seismic motion nor for the calculation assumptions and models.

1891年濃尾地震を契機に我が国で開始された近代的な耐震構造の研究は、鉄筋コンクリート材料の設計施工技術の開発・改良と相まって、1923年関東大震災にも耐え抜き、1960年代までに東京を始めとする主要都市に中低層RC系建築物を基調とする重厚な景観を生み出した。ところが、1963年の高さ制限撤廃、1964年東京オリンピック、高度経済成長政策、コンクリートポンプ圧送工法の急速な普及も手伝って、以前の建物が取り壊され、過密化、高層化が急速に進展している。 Research into modern earthquake-resistant structures, which began in Japan in the wake of the 1891 Nobi Earthquake, combined with the development and improvement of design and construction techniques for reinforced concrete materials, withstood the Great Kanto Earthquake of 1923, and by the 1960s, Tokyo It created a stately landscape based on medium- and low-rise RC buildings in major cities such as Nagoya. However, due to the removal of height restrictions in 1963, the 1964 Tokyo Olympics, high economic growth policies, and the rapid spread of concrete pumping methods, the old buildings were demolished and the area rapidly became overcrowded and high-rise. There is.

1995年阪神淡路大震災の震度7の帯の地域で、現行基準の想定を3倍以上上回る地震動を受けても、中低層のRC系建築物は旧基準でもピロティを除けば約半数が無被害で
あり、倒壊したものは数パーセントに過ぎない。土木構造物である新幹線高架橋、高速道路等が倒壊したが、設計で想定した数倍の地震動を受けており、かつ、旧河道等の地盤の影響の大きいところに被害が集中しており、倒壊することは当然であったといわれている。2011年東日本大震災においても、同様である。旧基準でも建築物は地震動で倒壊したものは僅かである。震度5以上の地震を受けたIs値0.3以下の中低層RC系公共建物98棟の内、倒壊した物はなく、97棟がほとんど無被害で使用継続していた。一方で、耐震補強した校舎、マンション等が使用不能となり、取り壊されたり、大規模修繕を余儀なくされた。また、東北新幹線は、橋脚に鉄板を用いた耐震補強が実施済みであったが、震災後、梁の破壊、架線等の上部工の損壊により不通になり、復旧に50日以上を要している。
In the 1995 Great Hanshin-Awaji Earthquake, in areas with a seismic intensity of 7, approximately half of low- and medium-rise RC buildings remained undamaged, excluding pilotis, despite receiving seismic motion more than three times greater than expected under the current standards, even under the old standards. Only a few percent of the buildings have collapsed. Civil engineering structures such as Shinkansen viaducts and expressways collapsed, but they were subject to seismic motion several times stronger than expected in the design, and the damage was concentrated in areas where the ground was heavily affected, such as old river channels, leading to collapse. It is said that it was natural to do so. The same thing happened in the 2011 Great East Japan Earthquake. Even under the old standards, very few buildings collapsed due to earthquake motion. Of the 98 medium- and low-rise RC public buildings with an Is value of 0.3 or less that were affected by an earthquake with a seismic intensity of 5 or higher, none collapsed and 97 continued to be used with almost no damage. Meanwhile, earthquake-reinforced school buildings and apartment buildings became unusable and had to be demolished or undergo large-scale repairs. In addition, the Tohoku Shinkansen had already undergone seismic reinforcement using steel plates on its piers, but after the earthquake, the bridge was disrupted due to broken beams and damage to overhead wires and other superstructures, and it took more than 50 days for restoration to take place. ing.

現行耐震基準の抜本的改定が必要なことは、先述の診断基準において述べられている。ここでは、微動診断の特徴と合理的な耐震設計・監理、補強工事を行う上で、微動診断が果たす役割を述べる。 The need for a fundamental revision of the current seismic standards is stated in the diagnostic criteria mentioned above. This article describes the characteristics of microtremor diagnosis and the role it plays in rational seismic design, supervision, and reinforcement work.

(1)応答計算
地震時に構造物に求められる性能としては、損傷が少なく、使用継続できることが大きい。地動加速度が1Gを超えるような最近の地震動レベルでは、保有水平耐力等の指標を用いて、構造物が非線形化した後を追跡することは物理学的に困難であるだけでなく、使用継続性を確保するという観点からは、非線形化自体を生じない構造物、即ち、診断基準で述べられているように、強度が高い(非線形化のハードルが高い)建物が望まれる。
応答計算で分かることは、ある特定の地震動、あるいは、一般的な地震動に対して、構造物地盤系が線形に応答した場合の振動モード、最大加速度、速度、変位、履歴吸収エネルギー等である。微動診断により、弾性範囲内の計算に必要な情報を直接得ることができる。また、計算と実測の比較も容易である。
(1) Response calculation The performance required of a structure during an earthquake is that it has minimal damage and can continue to be used. At recent seismic motion levels where ground acceleration exceeds 1G, it is not only physically difficult to track the nonlinearity of structures using indicators such as horizontal capacity, but also to ensure continuity of use. From the perspective of ensuring this, it is desirable to have a structure that does not cause nonlinearity itself, that is, a building with high strength (high hurdle for nonlinearity) as stated in the diagnostic criteria.
Response calculations reveal the vibration mode, maximum acceleration, velocity, displacement, historical absorbed energy, etc. when a structure's ground system responds linearly to a specific earthquake motion or general earthquake motion. Micromotion diagnosis allows us to directly obtain the information necessary for calculations within the elastic range. It is also easy to compare calculations and actual measurements.

(2)地震動想定
地震の作用は、近接作用である。震源から周辺地盤へ、そして周辺地盤から基礎へ、土台から一階の柱へと、下から上へ伝わってくるという実現象に則して、想定地震動(計算に用いる地震動)を決めることが合理的である。現行の建築基準が行っているように、構造物の応答加速度、あるいは、応答スペクトルを予め決める方法は合理的でないだけでなく、構造物に過度の地震力を発生させ倒壊したり大きな損傷を受ける危険性がある。ましてや、応答スペクトルに合うような地震動を数値的に合成し、時刻歴応答解析を行うことは、本末転倒になる。
(2) Earthquake motion assumption The action of an earthquake is a proximity action. It is reasonable to determine the assumed seismic motion (earthquake motion used in calculations) based on the actual phenomenon that the earthquake is transmitted from the epicenter to the surrounding ground, from the surrounding ground to the foundation, and from the foundation to the pillars on the first floor, from bottom to top. It is true. The method of predetermining the response acceleration or response spectrum of a structure, as the current building standards do, is not only unreasonable, but also causes excessive seismic force to be generated in the structure, causing it to collapse or be seriously damaged. There is a risk. Furthermore, numerically synthesizing seismic motion that matches the response spectrum and performing time history response analysis would be putting the cart before the horse.

想定地震動を定義する場所として、工学的基盤面とする方法があり、限界耐力計算等で用いられている。しかし、実際に構造物が受ける地震動は、直下の工学的基盤の地震動だけでなく、3次元的に広がった広い範囲の基盤面からの影響を受ける。実現象にそった計算、即ち、3次元的な地盤の振動解析計算はほとんど不可能である。これに代えて、1次元の重複反射を計算するのでは、構造物に実際に入力する地震動と計算された地震動の差異は、極めて大きくならざるを得ない。 There is a method of defining the expected seismic motion at the engineering foundation surface, which is used in calculations of critical strength. However, the seismic motion actually experienced by a structure is not only affected by the seismic motion of the engineering foundation immediately below, but also from a wide range of three-dimensionally spread foundation surfaces. Calculations based on actual phenomena, that is, three-dimensional ground vibration analysis calculations, are almost impossible. If one-dimensional multiple reflections are calculated instead, the difference between the seismic motion actually input to the structure and the calculated seismic motion will be extremely large.

微動診断では、構造物の基礎で、入力振動を与えている。また、想定地震動の性質としては、最大加速度、最大速度、最大変位、及び強震継続時間を用いている。ただし、想定地震動の大きさ等に関して、具体的な数値を決めたとしても、あくまで、期待値(平均値)になる。実際の地震動は、この数値に対して、大きなばらつきを加減したものになる。 In microtremor diagnosis, input vibrations are applied to the foundation of the structure. In addition, maximum acceleration, maximum velocity, maximum displacement, and strong motion duration are used as the properties of the assumed earthquake motion. However, even if a specific value is determined regarding the magnitude of the expected seismic motion, it will still be an expected value (average value). Actual seismic motion is based on this value, with large variations added or subtracted.

(3)性能評価
地動加速度が1Gを超え、継続時間が数分以上に渡るような最近の地震動では、木造から超高層まで、目に見える変位が生ずることは避けられず、また、多数の繰り返し変位が
生ずることを明確に取り入れた評価指標が必要である。さらに、構造物の層毎に、指標を集計するのではなく、個々の部材、部分に関する指標の集合体を用いて性能評価を行う必要がある。
微動診断では、使用継続性を直接評価する指標として、損傷度を定義して用いている。これを収震性能指標と称している。
(3) Performance evaluation In recent earthquakes where the ground motion acceleration exceeds 1G and the duration lasts several minutes or more, it is inevitable that visible displacement will occur in buildings ranging from wooden buildings to super high-rise buildings, and many repeated Evaluation indicators that clearly take into account the occurrence of displacement are needed. Furthermore, instead of summing up indicators for each layer of a structure, it is necessary to perform performance evaluation using a collection of indicators for individual members and parts.
In microtremor diagnosis, the degree of damage is defined and used as an index to directly evaluate continued use. This is called the seismic performance index.

(4)合理的耐震構造
最近の地震動レベルでは、現行基準が想定しているような、全体崩壊形を呈する構造物では、計算上倒壊することは避けられず、使用継続性は望むべくもない。大きく変形・振動させ、地震動のエネルギーを吸収する部分と損傷限界内の変形に収める部分を予め計画する構造が合理的である。
整形なRC系構造物では、各々の柱の柱頭、柱脚部が曲げヒンジとなり、全体的な変形と運動を生ずる。偏心したもの、ピロティでは、壁の少ない部分の柱頭、柱脚が稼働し、ピロティ階、偏心で振られる部分が大きく振動しエネルギーを吸収することで、その他の階、部分の変形は小さく抑えることができる。
RC系構造物では、岩盤立地でない限り、構造躯体の剛性は周辺地盤に比べて十分大きいので、上記の躯体の振動部分に加えて、周辺地盤と躯体の境界(基礎)によるエネルギー吸収を計画的に行うことを考えたい。基礎と周辺地盤の相対運動を設計に取り入れることが有効である。木造では、個々の接合部、釘打ち部の変形・エネルギー吸収能力が大きいので、3次元的な可動性、復元性のある接合部、釘打ち部とする。また、基礎からの土台の浮き上がりによる地震作用の低減を具体的に設計に反映したい。
微動診断で現行基準の想定地震動に対して、構造物各部分の累積強度指標及び損傷度を計算し、固有振動モードを可視化することで、振動の腹、節を抽出し、要の部材、及び接合部に対してエネルギー吸収能力を付与する補強を行うことで、大地震に耐える運動能力とエネルギー吸収能力を持つ構造とすることができる。上記の補強には、SRF工法が有効である。
(4) Rational earthquake-resistant structure At recent earthquake ground motion levels, if a structure exhibits the type of total collapse assumed by the current standards, it is computationally inevitable that it will collapse, and there is no hope for continued use. . It is rational to have a structure that allows for large deformations and vibrations, and plans in advance for parts that absorb the energy of seismic motion and parts that can be kept deformed within damage limits.
In a well-shaped RC structure, the capital and base of each column serve as bending hinges, causing overall deformation and movement. With eccentric pilotis, the capitals and bases of the pillars in the parts with fewer walls operate, and the piloti floors and the parts that are shaken by the eccentricity vibrate greatly and absorb energy, keeping deformation of other floors and parts to a small level. I can do it.
In RC structures, unless the structure is located on bedrock, the rigidity of the structural frame is sufficiently greater than that of the surrounding ground, so in addition to the vibrating parts of the structure mentioned above, energy absorption at the boundary (foundation) between the surrounding ground and the structure is planned. I want to think about doing it. It is effective to incorporate the relative movement between the foundation and the surrounding ground into the design. In wooden structures, individual joints and nailed parts have a large deformation and energy absorption capacity, so joints and nailed parts should have three-dimensional mobility and resilience. We also want to specifically reflect in the design the reduction in seismic effects caused by the lifting of the foundation from the foundation.
Microtremor diagnosis calculates the cumulative strength index and degree of damage for each part of the structure against the assumed seismic motion based on current standards, visualizes the natural vibration mode, extracts vibration antinodes and nodes, and By reinforcing the joints to provide energy absorption capacity, it is possible to create a structure that has the movement and energy absorption capacity to withstand large earthquakes. The SRF method is effective for the above reinforcement.

(5)新築時確認検査、及び構造的改修工事の検査
構造物が竣工した後、あるいは、改修工事が完了した後に微動診断を実施し、振動モード、振動周期(T)、層せん断力分布係数(Aim)、応答倍率(Ramk、Rvmk)、累積強度指標(C 、損傷度(Idm)を計測し、設計計算と比較して、
計算・工事の妥当性を確認するとともに、必要に応じて、対策工を追加する判断材料とすることができる。なお、上記各指標は、構造物全体で計算するとともに、部分に設置した鉛直アレー計測で、その部分の振動特性も把握する。
現在は、新築の中間検査と確認検査は、検査員が目視により、図面との整合性を確認しているに留まっている。耐震改修に関しても同様である。微動診断により、検査員の判断指標に客観的な数値を加えることができる。
(5) Confirmation inspection at the time of new construction and inspection of structural repair work After the structure is completed or repair work is completed, conduct microtremor diagnosis and check the vibration mode, vibration period (T m ), and layer shear force distribution. The coefficient ( Aim ), response magnification ( Ramk , Rvmk ), cumulative strength index ( CTSD ) m , and degree of damage ( Idm ) were measured and compared with design calculations .
In addition to confirming the validity of calculations and construction work, it can be used as a basis for making decisions about adding countermeasures, if necessary. In addition, each of the above indicators is calculated for the entire structure, and the vibration characteristics of that part are also determined by measuring with a vertical array installed in that part.
Currently, intermediate inspections and confirmation inspections for new construction are limited to inspectors visually checking consistency with drawings. The same applies to seismic retrofitting. Microtremor diagnosis allows the addition of objective numerical values to the inspector's judgment indicators.

(6)定期健全性診断
定期的に微動診断を実施し、前項の各指標を計測し、構造物の劣化等が認められた場合には補修を行う判断材料とする。また、補修後に再度微動診断を実施して補修効果を確認する資料とすることができる。
(6) Periodic Health Diagnosis Microtremor diagnosis will be conducted periodically to measure each of the indicators listed in the previous section, and if deterioration of the structure is found, this will be used as a basis for making decisions regarding repairs. In addition, the microtremor diagnosis can be performed again after the repair and can be used as data for confirming the repair effect.

(7)既設構造物の耐震診断と耐震改修設計
現行基準あるいは旧耐震基準で建設された既設構造物に対して微動診断を実施し、耐震性能を評価し、必要に応じて、対策工を設計・施工する資料とする。また、補強前後に計測・診断を行い、補強効果を定量的に確認する資料とすることができる。
現在は、数ヶ月の期間と数百万円あるいは一千万円以上の費用を投じて耐震診断が実施されている。これは、計算が、複雑でかつ高度の専門知識を要する為である。診断計算を単純化し、微動診断によって得られた指標と総合して判断することとすれば、費用と時間
を大幅に縮減することができる。
(7) Seismic diagnosis of existing structures and seismic retrofit design We conduct microtremor diagnosis on existing structures built according to current or old seismic standards, evaluate seismic performance, and design countermeasures as necessary.・Materials for construction. In addition, measurement and diagnosis can be performed before and after reinforcement, which can be used as data to quantitatively confirm the reinforcement effect.
Currently, earthquake resistance diagnosis is carried out over a period of several months and at a cost of several million yen or more than 10 million yen. This is because the calculations are complex and require a high degree of specialized knowledge. If diagnostic calculations are simplified and judgments are made by combining them with the indicators obtained through microtremor diagnosis, it is possible to significantly reduce costs and time.

(8)被害・無被害事例の分析
今後、多数の実測例が蓄積され、実地震での実被害・無被害との相関分析等が行われれば、計算と診断者の判断の比率を最小化し、微動診断結果を主とした耐震診断と改修箇所の抽出等の改修設計が可能になると期待される。さらに、新築時、改修後、及び定期検査における微動診断の役割を増やし、計算と判断を必要な範囲に絞り込むことが可能になる。
(8) Analysis of damage/no-damage cases In the future, if a large number of actual measurement cases are accumulated and a correlation analysis between actual damage/no-damage in actual earthquakes is performed, it will be possible to minimize the ratio of calculations and diagnostician judgments. It is expected that it will be possible to perform seismic diagnosis based on the results of microtremor diagnosis and to design renovations by identifying areas to be repaired. Furthermore, the role of microtremor diagnosis during new construction, after renovation, and periodic inspections will be increased, making it possible to narrow down calculations and judgments to the necessary range.

耐震基準の課題とSRF工法(包帯補強)を用いた解決策については、2017年4月に耐震の変革と題した論文を公表している。微動診断とともに、耐震設計を合理化し、地震に対する経済的な負担とリスクを軽減するお役に立つことを願っている。 In April 2017, we published a paper entitled Transformation of Earthquake Resistance regarding issues with seismic standards and solutions using the SRF construction method (bandage reinforcement). We hope that along with microtremor diagnosis, this will be useful in streamlining seismic design and reducing the economic burden and risk of earthquakes.

以上に詳述した説明からも明らかなように、本発明によれば、現行の既存構造物の診断・耐震改修設計に用いている累積強度指標、構造耐震指標の期待値や、現行の新築の設計に用いている層せん断力の高さ方向の分布係数の期待値や、構造物の使用継続性を直接評価するための損傷度を定義付けてその期待値をそれぞれ微動の測定値から直接取得することで、構造物の各部分に鉛直アレーを設けた観測により、各フロアーの部分(ゾーン)の震動性情、強度、損傷度等を測定することができる結果、構造物の健全性、安全性を対象物に直接外力などを作用させる従来法より、はるかに詳細な耐震設計、補強のみならず、個々の振動特性に応じた耐震性評価、耐震設計や構造物の使用継続性(耐震補強工事実施の最も重要な目標性能である。)を直接、安価、迅速に評価できることになった。 As is clear from the above-detailed explanation, the present invention enables the expected values of the cumulative strength index and structural seismic resistance index used in the diagnosis and seismic retrofit design of existing structures, as well as the expected values of the current new construction. Define the expected value of the distribution coefficient in the height direction of the layer shear force used in the design and the degree of damage to directly evaluate the continued use of the structure, and obtain the expected value directly from the measured values of microtremors. By doing this, we can measure the seismic characteristics, strength, degree of damage, etc. of each floor section (zone) by observing vertical arrays installed in each part of the structure, and as a result, we can improve the soundness and safety of the structure. Compared to the conventional method of applying external forces directly to a target object, it is not only possible to perform far more detailed seismic design and reinforcement, but also to evaluate seismic resistance according to individual vibration characteristics, seismic design, and the continuity of use of structures (seismic reinforcement work). The most important target performance for implementation) can now be evaluated directly, inexpensively, and quickly.

つまり、本発明によれば、以上の指標を用いることで、新築後、改修工事後、また、定期的な診断時に、現行の耐震診断よりはるかに安価かつ迅速に耐震診断を行うことができるので、合理的な耐震補強設計、新設構造物の耐震設計を行うことができることになる。 In other words, according to the present invention, by using the above-mentioned indicators, seismic diagnosis can be performed much more cheaply and quickly than the current seismic diagnosis after new construction, after renovation work, or during periodic diagnosis. This will enable rational seismic reinforcement design and seismic design of new structures.

1 微動計
1a 足
2 分析器
10 構造物
10a,10b,10c 層境界面
11 RC造病院建物
12 1階
13 2階
14 3階
15 4階
16 ブロック塀
17 頂部
18 基礎
20 地盤面
21 周辺地盤
1 Microtremometer 1a Feet 2 Analyzer 10 Structure 10a, 10b, 10c Layer interface 11 RC hospital building 12 1st floor 13 2nd floor 14 3rd floor 15 4th floor 16 Block wall 17 Top 18 Foundation 20 Ground surface 21 Surrounding ground

ここで、m は、第j層の質量、a(表5のa欄参照)、及びb(表5のb欄参照)はそれぞれ、第j層k方向の加速度及び速度のエネルギー伝達率であり、Baikを平均加速度エネルギー伝達率、Bvikを平均速度エネルギー伝達率と称する。ただし、エネルギー伝達率とは、注目する微動時刻歴と基準点の微動時刻歴のRMSの比であり、微動診断では、これが地震動入力による弾性最大応答時に保存されるとし、ピークファクタを適
宜仮定して、注目時刻歴の最大応答を基準点の最大入力値にエネルギー伝達率を乗じて計算する。
Here, m j is the mass of the j-th layer, a (see column a of Table 5), and b (see column b of Table 5) are the acceleration and velocity energy transfer rates in the k-direction of the j-th layer, respectively. B aik is called the average acceleration energy transfer rate, and B vik is called the average velocity energy transfer rate. However, the energy transfer rate is the RMS ratio of the microtremor time history of interest to the microtremor time history of the reference point, and in microtremor diagnosis, this is assumed to be stored at the time of the maximum elastic response due to seismic motion input, and the peak factor is assumed as appropriate. Then, the maximum response of the time history of interest is calculated by multiplying the maximum input value of the reference point by the energy transfer rate.

Claims (10)

常時微動観測により、構造物の性能を評価する方法において、
前記構造物内の複数の観測点で同時に常時微動時刻歴を観測し、これらの時刻歴の二乗平均値平方根(RMS)を用いて、前記構造物の耐震設計に用いる指標の推定値Aを算出し、この値Aに対応する設計時点で用いられる指標の値Bに対する比率を用いて、前記構造物の前記観測に基づく耐震性能の評価であって、
前記指標が、現行基準に規定された層せん断力の高さ方向の分布係数(Ai)であり、
第i層k方向の層せん断力の高さ方向の分布を表す係数の期待値E[Aik] が、
[数9]
Figure 2023161018000104
であり、
微動診断で得られた第i層k方向の絶対加速度エネルギー伝達率a(表4のa欄参照)と、
基準点の最大加速度を乗じて絶対加速度の最大値の期待値b(表4のb欄参照)と、
構造物の各層の質量mから、最大層せん断力の期待値c(表4のc欄参照)を求めて得られ、
[表4]
Figure 2023161018000105
(ただし、絶対加速度エネルギー伝達率a(表4のa欄参照)とは、エネルギー伝達率において、注目する微動時刻歴を絶対加速度時刻歴としたもの、即ち、第i層k方向の絶対加速度時刻歴のRMSの第1層k方向の絶対加速度時刻歴のRMSに対する比である。
またエネルギー伝達率とは、注目する微動時刻歴と基準点の微動時刻歴のRMSの比であり、微動診断では、これが地震動入力による弾性最大応答時に保存されるとし、ピークファクタを適宜仮定して、注目時刻歴の最大応答を基準点の最大入力値にエネルギー伝達率を乗じて計算する。
またα(基準化重量)は、
[数11]
Figure 2023161018000106
である。また、wは第j層の重量であり、Wは、第1層から上の合計重量(全重量)であり、mは構造物の各層の質量であり、Mは、第1層から上の合計質量(全質量)である。)
で表され、
指標の推定値Aが、第i層k方向の層せん断力の高さ方向の分布を表す係数の期待値E[Aik]である、
構造物の常時微動に基づく構造物の診断評価方法。
In the method of evaluating the performance of structures through continuous observation of microtremors,
Simultaneously observe microtremor time histories at multiple observation points within the structure, and use the root mean square (RMS) of these time histories to calculate the estimated value A of the index used for seismic design of the structure. and evaluating the seismic performance of the structure based on the observation using the ratio of the index used at the time of design corresponding to this value A to the value B,
The index is the distribution coefficient (Ai) of the layer shear force in the height direction specified in the current standard,
The expected value E[A ik ] of the coefficient representing the height distribution of the layer shear force in the k direction of the i-th layer is
[Number 9]
Figure 2023161018000104
and
The absolute acceleration energy transfer rate a in the k direction of the i-th layer obtained by microtremor diagnosis (see column a of Table 4),
Multiplying the maximum acceleration of the reference point gives the expected value b of the maximum absolute acceleration (see column b in Table 4),
The expected value c of the maximum layer shear force (see column c in Table 4) is obtained from the mass m j of each layer of the structure,
[Table 4]
Figure 2023161018000105
(However, the absolute acceleration energy transfer rate a (see column a of Table 4) is the energy transfer rate with the microtremor time history of interest as the absolute acceleration time history, that is, the absolute acceleration time in the k direction of the i-th layer. It is the ratio of the RMS of the absolute acceleration time history in the k direction of the first layer to the RMS.
In addition, the energy transfer rate is the RMS ratio of the microtremor time history of interest to the microtremor time history of the reference point, and in microtremor diagnosis, this is assumed to be stored at the time of the maximum elastic response due to seismic motion input, and the peak factor is assumed as appropriate. , the maximum response of the time history of interest is calculated by multiplying the maximum input value of the reference point by the energy transfer rate.
Also, α i (standardized weight) is
[Number 11]
Figure 2023161018000106
It is. In addition, w j is the weight of the jth layer, W is the total weight (total weight) from the first layer on, m j is the mass of each layer of the structure, and M is the weight from the first layer onwards. This is the total mass (total mass) of the above. )
It is expressed as
The estimated value A of the index is the expected value E[ Aik ] of the coefficient representing the distribution of the layer shear force in the k direction of the i-th layer in the height direction,
A diagnostic evaluation method for structures based on constant microtremors of structures.
常時微動観測により、構造物の性能を評価する方法において、
前記構造物内の複数の観測点で同時に常時微動時刻歴を観測し、これらの時刻歴の二乗平均値平方根(RMS)を用いて、前記構造物の耐震設計に用いる指標の推定値Aを算出し、この値Aに対応する設計時点で用いられる指標の値Bに対する比率を用いて、前記構造物の前記観測に基づく耐震性能の評価であって、
前記指標が、現行基準に規定された保有水平耐力であり、
保有水平耐力b(表8のb欄参照)が、建築物の構造モデルの各層にAi分布するせん断力を漸増させて載荷し、第i層が降伏する時に第i層に作用している層せん断力a(表8のa欄参照)であり、
地盤の微動によって構造物に生ずる層せん断力と基準点の加速度の関係が、平均加速度伝達率(Baik)によって表され、
層間変位と基準点の加速度の関係が、エネルギー伝達率により表され、
保有水平耐力の期待値が、構造物が線形に応答した場合に第i層の層間変位の最大値が降伏変位に達するときの期待値であって、第i層以外は降伏しないと仮定した場合の保有水平耐力の期待値であり、
平均加速度エネルギー伝達率が、
第i層に対する地震の作用を考える場合に、その層が支持する部分b(第i層から第n層まで)の平均加速度のRMSを与える指標であり、
[数13]
Figure 2023161018000107
(ここで、mは、第j層の質量、a(表5のa欄参照)は、第j層k方向の加速度のエネルギー伝達率であり、Baikを平均加速度エネルギー伝達率と称する。ただし、エネルギー伝達率とは、注目する微動時刻歴と基準点の微動時刻歴のRMSの比であり、微動診断では、これが地震動入力による弾性最大応答時に保存されるとし、ピークファクタを適宜仮定して、注目時刻歴の最大応答を基準点の最大入力値にエネルギー伝達率を乗じて計算する。
[表5]
Figure 2023161018000108

であり、
保有水平耐力の期待値が、表8のc欄に示される保有水平耐力の期待値cであり、
基準点のk方向の加速度が、表8のd欄に示される基準点のk方向の加速度dであり、
基準点のk方向の加速度dに対する第i層k方向の層間変位(eik(t))のエネルギー伝達率が、表8のe欄に示される基準点のk方向の加速度dに対する第i層k方向の層間変位(eik(t))のエネルギー伝達率eであり、
[表8]
Figure 2023161018000109
基準点のk方向の加速度dに対する第i層k方向の層間変位(eik(t))のエネルギー伝達率eが、
[数20]
Figure 2023161018000110
で表され、
(ここでσeikは、第i層k方向の層間変位時刻歴のRMSであり、数式20の右辺の分母は、基準点のk方向の加速度時刻歴のRMSである)
ikYが、層間変位の最大値eikmax が降伏変位eikY に達するときの基準点の加速度の最大値であり、
[数21]
Figure 2023161018000111
この時の層せん断力の最大値の期待値a(表9のa欄参照)が、第i層が支持する部分bの質量b(表9のb欄参照)にこの部分の平均加速度の最大値の期待値Abkmax を乗じて計算され、
[表9]
Figure 2023161018000112
[数22]
Figure 2023161018000113
指標の推定値Aが、層せん断力の最大値の期待値a(表9のa欄参照)、すなわち、表8のc欄に示される保有水平耐力の期待値である、
構造物の常時微動に基づく構造物の診断評価方法。
In the method of evaluating the performance of structures through continuous observation of microtremors,
Simultaneously observe microtremor time histories at multiple observation points within the structure, and use the root mean square (RMS) of these time histories to calculate the estimated value A of the index used for seismic design of the structure. and evaluating the seismic performance of the structure based on the observation using the ratio of the index used at the time of design corresponding to this value A to the value B,
The indicator is the horizontal bearing capacity specified in the current standards,
The possessed horizontal strength b (see column b of Table 8) is the layer that acts on the i-th layer when the i-th layer yields by gradually increasing the shear force distributed in Ai on each layer of the structural model of the building. Shear force a (see column a of Table 8),
The relationship between the layer shear force generated in the structure due to ground microtremors and the acceleration at the reference point is expressed by the average acceleration transmissibility (B aik ),
The relationship between the interlayer displacement and the acceleration of the reference point is expressed by the energy transfer rate,
The expected value of the retained horizontal strength is the expected value when the maximum value of the interstory displacement of the i-th layer reaches the yield displacement when the structure responds linearly, assuming that no layers other than the i-th layer will yield. is the expected value of the horizontal bearing capacity of
The average acceleration energy transfer rate is
When considering the action of an earthquake on the i-th layer, it is an index that gives the RMS of the average acceleration of the part b (from the i-th layer to the n-th layer) supported by that layer,
[Number 13]
Figure 2023161018000107
(Here, m j is the mass of the j-th layer, a (see column a of Table 5) is the energy transfer rate of acceleration in the k-direction of the j-th layer, and B aik is referred to as the average acceleration energy transfer rate. However, the energy transfer rate is the RMS ratio of the microtremor time history of interest to the microtremor time history of the reference point, and in microtremor diagnosis, this is assumed to be stored at the time of the maximum elastic response due to seismic motion input, and the peak factor is assumed as appropriate. Then, the maximum response of the time history of interest is calculated by multiplying the maximum input value of the reference point by the energy transfer rate.
[Table 5]
Figure 2023161018000108
)
and
The expected value of the horizontal bearing capacity is the expected value c of the horizontal bearing capacity shown in column c of Table 8,
The acceleration of the reference point in the k direction is the acceleration d of the reference point in the k direction shown in column d of Table 8,
The energy transfer rate of the interlayer displacement (eik(t)) in the k direction of the i-th layer with respect to the acceleration d in the k direction of the reference point is shown in column e of Table 8. is the energy transfer rate e of the interlayer displacement (e ik (t)) in the direction,
[Table 8]
Figure 2023161018000109
The energy transfer rate e of the interlayer displacement (e ik (t)) in the k direction of the i-th layer with respect to the acceleration d in the k direction of the reference point is
[Number 20]
Figure 2023161018000110
It is expressed as
(Here, σ eik is the RMS of the interlayer displacement time history of the i-th layer in the k direction, and the denominator on the right side of Equation 20 is the RMS of the acceleration time history of the reference point in the k direction.)
aikY is the maximum value of the acceleration at the reference point when the maximum interlayer displacement eikmax reaches the yield displacement eikY ,
[Number 21]
Figure 2023161018000111
The expected value a (see column a of Table 9) of the maximum value of the layer shear force at this time is the mass b of the part b supported by the i-th layer (see column b of Table 9), and the maximum average acceleration of this part Calculated by multiplying the expected value A bkmax of the value,
[Table 9]
Figure 2023161018000112
[Number 22]
Figure 2023161018000113
The estimated value A of the index is the expected value a of the maximum value of the layer shear force (see column a of Table 9), that is, the expected value of the horizontal bearing capacity shown in column c of Table 8,
A diagnostic evaluation method for structures based on constant microtremors of structures.
常時微動観測により、構造物の性能を評価する方法において、
前記構造物内の複数の観測点で同時に常時微動時刻歴を観測し、これらの時刻歴の二乗平均値平方根(RMS)を用いて、前記構造物の耐震設計に用いる指標の推定値Aを算出し、この値Aに対応する設計時点で用いられる指標の値Bに対する比率を用いて、前記構造物の前記観測に基づく耐震性能の評価であって、
前記指標が、現行基準に規定されたベースシア係数であり、
ベースシア係数が、保有水平耐力に達するときの第一層の層せん断力係数であり、
ベースシア係数の期待値Cui1km が、
[数8]
Figure 2023161018000114
(ここで、Ai は、層せん断力を第1層のせん断力a(表3のa欄参照)で基準化した
値b(表3のb欄参照)と、その層から上の重量を第1層から上の合計重量(全重量)Wで基準化した量とαの比であり、層せん断力の高さ方向の分布を表す係数であり、
[表3]
Figure 2023161018000115
は地震層せん断力係数、Zは地域係数、Rは振動特性係数およびCは標準せん断力係数であり、

[数6]
Figure 2023161018000116
で表され、
第1層については、
[数7]
Figure 2023161018000117
である。
また層せん断力aが、n層からなる建築物が地震の作用を受けて振動した場合に第i層に生ずる最大せん断力(表2のa欄参照)であり、
その層が支持する重量bが、表2のb欄で示される値である。
[表2]
Figure 2023161018000118
[数5]
Figure 2023161018000119
また表3のa欄は、第1層のせん断力であり、
表3のb欄は、せん断力が第1層のせん断力aにより基準化された値であり、

は、建物の第j層に作用する地震力であり、
は、震度であり、
は、建物の第j層の重量であり、
は、
[数4]
Figure 2023161018000120
で表され、
αは、基準化重量である。)の関係から、
[数26]
Figure 2023161018000121
(ここで、H0ik[m]は、第i層のk方向の階高であり、
Yik[rad]は、降伏変形角であり、
g[m/sec] は、重力加速度である。)
をAiで除して求められ、
指標の推定値Aが、ベースシア係数の期待値Cui1kmである、
構造物の常時微動に基づく構造物の診断評価方法。
In the method of evaluating the performance of structures through continuous observation of microtremors,
Simultaneously observe microtremor time histories at multiple observation points within the structure, and use the root mean square (RMS) of these time histories to calculate the estimated value A of the index used for seismic design of the structure. and evaluating the seismic performance of the structure based on the observation using the ratio of the index used at the time of design corresponding to this value A to the value B,
The index is a base shear coefficient specified in the current standard,
The base shear coefficient is the layer shear strength coefficient of the first layer when it reaches the horizontal bearing capacity,
The expected value of base shear coefficient C ui1km is
[Number 8]
Figure 2023161018000114
(Here, Ai is the value b (see column b of Table 3) obtained by standardizing the layer shear force with the shear force a of the first layer (see column a of Table 3), and the weight above that layer. It is the ratio of α i to the amount standardized by the total weight (total weight) W from the first layer onwards, and is a coefficient representing the distribution of layer shear force in the height direction,
[Table 3]
Figure 2023161018000115
C i is the seismic layer shear force coefficient, Z is the regional coefficient, R t is the vibration characteristic coefficient and C 0 is the standard shear force coefficient,
C i is [Math. 6]
Figure 2023161018000116
It is expressed as
Regarding the first layer,
[Number 7]
Figure 2023161018000117
It is.
In addition, the layer shear force a is the maximum shear force that occurs in the i-th layer when a building consisting of n layers vibrates under the action of an earthquake (see column a of Table 2),
The weight b supported by the layer is the value shown in column b of Table 2.
[Table 2]
Figure 2023161018000118
[Number 5]
Figure 2023161018000119
In addition, column a of Table 3 is the shear force of the first layer,
Column b in Table 3 is the value where the shear force is standardized by the shear force a of the first layer,

P j is the seismic force acting on the jth layer of the building,
k j is the seismic intensity;
w j is the weight of the jth layer of the building;
P j is
[Number 4]
Figure 2023161018000120
It is expressed as
α i is the normalized weight. ), from the relationship
[Number 26]
Figure 2023161018000121
(Here, H 0ik [m] is the floor height of the i-th layer in the k direction,
R Yik [rad] is the yield deformation angle,
g [m/sec 2 ] is the gravitational acceleration. )
is obtained by dividing by Ai,
The estimated value A of the index is the expected value C ui1km of the base shear coefficient,
A diagnostic evaluation method for structures based on constant microtremors of structures.
常時微動観測により、構造物の性能を評価する方法において、
前記構造物内の複数の観測点で同時に常時微動時刻歴を観測し、これらの時刻歴の二乗平均値平方根(RMS)を用いて、前記構造物の耐震設計に用いる指標の推定値Aを算出し、この値Aに対応する設計時点で用いられる指標の値Bに対する比率を用いて、前記構
造物の前記観測に基づく耐震性能の評価であって、
前記指標が、現行基準に規定された加速度応答倍率Ramkであり、
前記構造物の耐震設計に用いる指標の推定値Aが、1自由度系に縮約した場合の加速度応答倍率Ramkの期待値であり、
1自由度系に縮約した場合の加速度応答倍率Ramkの期待値が、
数式13で、
[数13]
Figure 2023161018000122
であり、
j=1とした平均加速度伝達率Baikが、構造物の平均絶対加速度のa(表7のa欄参照)と基準点の絶対加速度のb(表7のb欄参照)の比
(ただし、
[表7]
Figure 2023161018000123
ここで、mjは、第j層の質量、a(表5のa欄参照)、及びb(表5のb欄参照)はそれぞれ、第j層k方向の加速度及び速度のエネルギー伝達率であり、Baikを平均加速度エネルギー伝達率、Bvikを平均速度エネルギー伝達率と称する。ただし、エネルギー伝達率とは、注目する微動時刻歴と基準点の微動時刻歴のRMSの比であり、微動診断では、これが地震動入力による弾性最大応答時に保存されるとし、ピークファクタを適宜仮定して、注目時刻歴の最大応答を基準点の最大入力値にエネルギー伝達率を乗じて計算する。
[表5]
Figure 2023161018000124

である、
構造物の常時微動に基づく構造物の診断評価方法。
In the method of evaluating the performance of structures through continuous observation of microtremors,
Simultaneously observe microtremor time histories at multiple observation points within the structure, and use the root mean square (RMS) of these time histories to calculate the estimated value A of the index used for seismic design of the structure. and evaluating the seismic performance of the structure based on the observation using the ratio of the index used at the time of design corresponding to this value A to the value B,
The index is an acceleration response magnification Ramk defined in the current standard,
The estimated value A of the index used for seismic design of the structure is the expected value of the acceleration response magnification R amk when reduced to a 1 degree of freedom system,
The expected value of the acceleration response magnification R amk when reduced to a one-degree-of-freedom system is
In formula 13,
[Number 13]
Figure 2023161018000122
and
The average acceleration transmissibility B aik with j = 1 is the ratio of the average absolute acceleration of the structure a (see column a of Table 7) to the absolute acceleration of the reference point b (see column b of Table 7) (however,
[Table 7]
Figure 2023161018000123
Here, mj is the mass of the j-th layer, a (see column a of Table 5), and b (see column b of Table 5) are the acceleration and velocity energy transfer rates in the k-direction of the j-th layer, respectively. , B aik is called the average acceleration energy transfer rate, and B vik is called the average velocity energy transfer rate. However, the energy transfer rate is the RMS ratio of the microtremor time history of interest to the microtremor time history of the reference point, and in microtremor diagnosis, this is assumed to be stored at the time of the maximum elastic response due to seismic motion input, and the peak factor is assumed as appropriate. Then, the maximum response of the time history of interest is calculated by multiplying the maximum input value of the reference point by the energy transfer rate.
[Table 5]
Figure 2023161018000124
)
is,
A diagnostic evaluation method for structures based on constant microtremors of structures.
常時微動観測により、構造物の性能を評価する方法において、
前記構造物内の複数の観測点で同時に常時微動時刻歴を観測し、これらの時刻歴の二乗平均値平方根(RMS)を用いて、前記構造物の耐震設計に用いる指標の推定値Aを算出し、この値Aに対応する設計時点で用いられる指標の値Bに対する比率を用いて、前記構造物の前記観測に基づく耐震性能の評価であって、
前記指標が、現行基準に規定された累積強度指標と形状指標との積であり、
第i層のk方向の終局時累積強度指標に形状指標を乗じた量((CTUik )の期待値が、
[数32]
Figure 2023161018000125
で表され、
(ここで、hegikは、微動診断で得られた相関変位エネルギー伝達率であり、基準点変位xG0[1978] が、基準地震動(G0)に対応する基準点変位であり、eG0ikが、相関変位であり、eYikが、降伏変位である。また、CTUは、終局時累積強度指標であり、Sは、形状指数であり、(CTU)mikは、終局時累積強度指標と形状指標の積の期待値である。)
指標の推定値Aが、第i層のk方向の終局時累積強度指標に形状指標を乗じた量((CTUik )の期待値である、
構造物の常時微動に基づく構造物の診断評価方法。
In the method of evaluating the performance of structures through continuous observation of microtremors,
Simultaneously observe microtremor time histories at multiple observation points within the structure, and use the root mean square (RMS) of these time histories to calculate the estimated value A of the index used for seismic design of the structure. and evaluating the seismic performance of the structure based on the observation using the ratio of the index used at the time of design corresponding to this value A to the value B,
The index is the product of a cumulative strength index and a shape index specified in the current standard,
The expected value of the amount ((C TU SD ) ik ) obtained by multiplying the final cumulative intensity index in the k direction of the i-th layer by the shape index is
[Number 32]
Figure 2023161018000125
It is expressed as
(Here, h egik is the correlated displacement energy transfer rate obtained by microtremor diagnosis, the reference point displacement x G0 [1978] is the reference point displacement corresponding to the reference earthquake ground motion (G0), and e G0ik is is the correlated displacement, e Yik is the yield displacement, C TU is the final cumulative strength index, S D is the shape index, and (C TU SD )mik is the final cumulative strength It is the expected value of the product of the index and the shape index.)
The estimated value A of the index is the expected value of the amount (( CTUSD ) ik ) obtained by multiplying the final cumulative intensity index in the k direction of the i-th layer by the shape index,
A diagnostic evaluation method for structures based on constant microtremors of structures.
常時微動観測により、構造物の性能を評価する方法において、
前記構造物内の複数の観測点で同時に常時微動時刻歴を観測し、これらの時刻歴の二乗平均値平方根(RMS)を用いて、前記構造物の耐震設計に用いる指標の推定値Aを算出し、この値Aに対応する設計時点で用いられる指標の値Bに対する比率を用いて、前記構造物の前記観測に基づく耐震性能の評価であって、
前記指標が、損傷度であり、
損傷度が、
[数49]
Figure 2023161018000126
(ここで、Idikは、損傷度であり、Baikは、第i層k方向に関して、構造物周辺地盤系の微動観測から得た振動特性をこれが支持する部分の平均加速度伝達率であり、Bvikは、平均速度エネルギー伝達率であり、Tvikは、構造物周辺地盤系の微動観測から得た振動特性をこれが支持する部分の平均速度伝達率であり、表18のaが、基準点加速度に対する第i層k方向の層間変位エネルギー伝達率であり、Tvikが、速度時刻歴の中心周期であり、αvikが、バンド幅指数であり、sは、強震継続時間であり、Vmaxkは、最大速度であり、Amaxkは最大加速度であり、γは、最大速度のピークファクターであり、γは、最大加速度のピークファクターである。また、RYikは、第i層k方向の降伏変形角であり、H0ikは、標準階高であり、Fuikは、靭性
指標であり、Nikは、限界繰り返し回数である。
[表18]
Figure 2023161018000127

で表され、
指標の推定値Aが、上記数式49で表される損傷度である、
構造物の常時微動に基づく構造物の診断評価方法。
In the method of evaluating the performance of structures through continuous observation of microtremors,
Simultaneously observe microtremor time histories at multiple observation points within the structure, and use the root mean square (RMS) of these time histories to calculate the estimated value A of the index used for seismic design of the structure. and evaluating the seismic performance of the structure based on the observation using the ratio of the index used at the time of design corresponding to this value A to the value B,
The index is a degree of damage,
The degree of damage is
[Number 49]
Figure 2023161018000126
(Here, I dik is the degree of damage, B aik is the average acceleration transmissibility of the part that supports the vibration characteristics obtained from microtremor observation of the ground system around the structure with respect to the k direction of the i-th layer, B vik is the average velocity energy transfer rate, T vik is the average velocity transfer rate of the part where this supports the vibration characteristics obtained from microtremor observation of the ground system surrounding the structure, and a in Table 18 is the reference point is the interstory displacement energy transfer rate in the k direction of the i-th layer with respect to acceleration, T vik is the central period of the velocity time history, α vik is the bandwidth index, s 0 is the strong motion duration, and V maxk is the maximum velocity, A maxk is the maximum acceleration, γ v is the peak factor of the maximum velocity, γ a is the peak factor of the maximum acceleration, and R Yik is the i-th layer k is the yield deformation angle in the direction, H 0ik is the standard floor height, F uik is the toughness index, and N ik is the critical number of repetitions.
[Table 18]
Figure 2023161018000127
)
It is expressed as
The estimated value A of the index is the degree of damage expressed by the above formula 49,
A diagnostic evaluation method for structures based on constant microtremors of structures.
常時微動観測により、構造物の性能を評価する方法において、
前記構造物内の複数の観測点で同時に常時微動時刻歴を観測し、これらの時刻歴の二乗平均値平方根(RMS)を用いて、前記構造物の耐震設計に用いる指標の推定値Aを算出し、この値Aに対応する設計時点で用いられる指標の値Bに対する比率を用いて、前記構造物の前記観測に基づく耐震性能の評価であって、
前記指標が、転倒危険度であり、
転倒危険度が、
[数51]
Figure 2023161018000128
(ここで、Itbwは転倒危険度であり、D[cm]は、ブロック塀の幅であり、E[dGkmax]は、耐震診断基準が想定している大地震に対するブロック塀の頂部の絶対変位あるいは相対変位の期待値であり、a(表50参照)は、転倒限界傾斜をD/Hとした場合の転倒限界頂部変位である。
[表50]
Figure 2023161018000129
また、Hは、ブロック塀の高さであり、hdkは伝達率である。

で表され、
指標の推定値Aが、上記数式51で表される転倒危険度である、
構造物の常時微動に基づく構造物の診断評価方法。
In the method of evaluating the performance of structures through continuous observation of microtremors,
Simultaneously observe microtremor time histories at multiple observation points within the structure, and use the root mean square (RMS) of these time histories to calculate the estimated value A of the index used for seismic design of the structure. and evaluating the seismic performance of the structure based on the observation using the ratio of the index used at the time of design corresponding to this value A to the value B,
the index is a fall risk;
The risk of falling is
[Number 51]
Figure 2023161018000128
(Here, I tbw is the fall risk, D [cm] is the width of the block wall, and E [d Gkmax ] is the absolute value of the top of the block wall in response to a large earthquake, which is assumed by the seismic diagnosis standards. It is the expected value of displacement or relative displacement, and a (see Table 50) is the tipping limit top displacement when the tipping limit slope is D/H.
[Table 50]
Figure 2023161018000129
Further, H is the height of the block wall, and h dk is the transmissibility.
)
It is expressed as
The estimated value A of the index is the fall risk expressed by the above formula 51,
A diagnostic evaluation method for structures based on constant microtremors of structures.
連続して計測した前記常時微動時刻歴を分割し、複数の部分時刻歴を抽出し、各部分時刻歴に関して前記指標の期待値を計算し、そのサンプル平均を前記指標の推定値とする構造物の常時微動に基づく、請求項1~7のいずれかに記載の構造物の常時微動に基づく構造物の診断評価方法。 A structure that divides the continuous microtremor time history measured continuously, extracts a plurality of partial time histories, calculates the expected value of the index for each partial time history, and uses the sample average as the estimated value of the index. 8. The method for diagnosing and evaluating a structure based on the constant microtremor of a structure according to any one of claims 1 to 7, which is based on the constant microtremor of the structure. 前記部分時刻歴の継続時間は、1~2分間である、請求項8に記載の構造物の常時微動
に基づく構造物の診断評価方法。
The method for diagnosing and evaluating a structure based on constant microtremors of a structure according to claim 8, wherein the duration of the partial time history is 1 to 2 minutes.
前記観測を、構造物の新築後、改修工事前後、また、定期的な診断時に行い、各観測時点の前記推定値を相互比較することにより、構造物の耐震性能と大地震時の倒壊危険性と使用継続性の経時変化と改修工事前後の変化とのうちの少なくともいずれかを診断評価する、請求項1~7のいずれかに記載の構造物の常時微動に基づく構造物の診断評価方法。 The above-mentioned observations are performed after the structure is newly constructed, before and after renovation work, and during periodic diagnostics, and by mutually comparing the above-mentioned estimated values at each observation point, the seismic performance of the structure and the risk of collapse in the event of a major earthquake can be determined. 8. The method for diagnosing and evaluating a structure based on constant microtremors of a structure according to any one of claims 1 to 7, wherein at least one of changes over time in the continuity of use and changes before and after renovation work is diagnosed and evaluated.
JP2023149639A 2017-12-26 2023-09-14 Method for diagnosing and evaluating structure based on always fine movement of structure Pending JP2023161018A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017250238 2017-12-26
JP2017250238 2017-12-26
JP2020185851A JP2021021746A (en) 2017-12-26 2020-11-06 Method for diagnosing and evaluating structure based on always fine movement of structure
JP2022107375A JP7373616B2 (en) 2017-12-26 2022-07-01 Diagnostic evaluation method for structures based on constant microtremors of structures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022107375A Division JP7373616B2 (en) 2017-12-26 2022-07-01 Diagnostic evaluation method for structures based on constant microtremors of structures

Publications (1)

Publication Number Publication Date
JP2023161018A true JP2023161018A (en) 2023-11-02

Family

ID=67304321

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2018242947A Pending JP2019117195A (en) 2017-12-26 2018-12-26 Method for diagnostic evaluation of structure based on constant fine movement of structure
JP2020185851A Pending JP2021021746A (en) 2017-12-26 2020-11-06 Method for diagnosing and evaluating structure based on always fine movement of structure
JP2022107375A Active JP7373616B2 (en) 2017-12-26 2022-07-01 Diagnostic evaluation method for structures based on constant microtremors of structures
JP2023149639A Pending JP2023161018A (en) 2017-12-26 2023-09-14 Method for diagnosing and evaluating structure based on always fine movement of structure

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2018242947A Pending JP2019117195A (en) 2017-12-26 2018-12-26 Method for diagnostic evaluation of structure based on constant fine movement of structure
JP2020185851A Pending JP2021021746A (en) 2017-12-26 2020-11-06 Method for diagnosing and evaluating structure based on always fine movement of structure
JP2022107375A Active JP7373616B2 (en) 2017-12-26 2022-07-01 Diagnostic evaluation method for structures based on constant microtremors of structures

Country Status (1)

Country Link
JP (4) JP2019117195A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7418798B2 (en) * 2020-01-15 2024-01-22 株式会社サイエンス構造 Building risk assessment server, building risk assessment method, and its program, information communication terminal, information processing method, and its program, and building risk assessment system
TR202020208A2 (en) * 2020-12-10 2021-03-22 Ali Samet Ayvaz EARTHQUAKE RESISTANCE DETERMINATION METHOD WITHOUT DAMAGE TO STRUCTURES
CN114048678B (en) * 2021-11-10 2022-08-09 哈尔滨工业大学 Local tangent space reconstruction method for nonlinear correlation structural damage diagnosis index
CN116465586A (en) * 2023-06-20 2023-07-21 湖南大学 Top excitation anti-seismic performance evaluation method and system based on standard reaction spectrum method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510616B2 (en) * 2000-12-28 2004-03-29 構造品質保証研究所株式会社 Method and system for diagnosing structures by microtremor observation

Also Published As

Publication number Publication date
JP2021021746A (en) 2021-02-18
JP7373616B2 (en) 2023-11-02
JP2022121674A (en) 2022-08-19
JP2019117195A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP7373616B2 (en) Diagnostic evaluation method for structures based on constant microtremors of structures
Ji et al. Seismic damage detection of a full-scale shaking table test structure
Oliveira et al. Minaret behavior under earthquake loading: The case of historical Istanbul
Karapetrou et al. “Time-building specific” seismic vulnerability assessment of a hospital RC building using field monitoring data
Bilgin et al. Comparison of near and far-fault ground motion effects on low and mid-rise masonry buildings
Belleri et al. Damage assessment through structural identification of a three‐story large‐scale precast concrete structure
Erdogan et al. Investigation of the seismic behavior of a historical masonry minaret considering the interaction with surrounding structures
Akhoondi et al. Seismic fragility curves of steel structures including soil-structure interaction and variation of soil parameters
Shan et al. Health monitoring and field‐testing of high‐rise buildings: A review
Güllü et al. Microtremor measurements and 3D dynamic soil–structure interaction analysis for a historical masonry arch bridge under the effects of near-and far-fault earthquakes
JP3876247B2 (en) Diagnosis method and diagnosis system of structure by microtremor observation
Pan et al. Seismic fragility analysis of transmission towers considering effects of soil-structure interaction and depth-varying ground motion inputs
Kordestani et al. Localization of damaged cable in a tied‐arch bridge using Arias intensity of seismic acceleration response
Themelis Pushover analysis for seismic assessment and design of structures
Magrinelli et al. Numerical insight on the interaction effects of a confined masonry tower
Günaydin Seismic performance evaluation of a fire-exposed historical structure using an updated finite element model
Shan et al. Rapid seismic performance evaluation of existing frame structures using equivalent SDOF modeling and prior dynamic testing
Falamarz-Sheikhabadi et al. Revised seismic intensity parameters for middle-field horizontal and rocking strong ground motions
Guettafi et al. Numerical evaluation of soil-pile-structure interaction effects in nonlinear analysis of seismic fragility curves
Shabani et al. Seismic fragility analysis of low-rise unreinforced masonry buildings subjected to near-and far-field ground motions
VASIC A multidisciplinary approach for the structural assessment of historical constructions with tie-rods
Celano et al. Thermographic investigations and dynamic identification tests for non-destructive structural assessment and enhanced FE modelling of a historical iron-strengthened masonry church
HEIDARY et al. Fragility curves derivation for a pile-supported wharf
Hoult A computationally-effective method for rapidly determining the seismic structural response of high-rise buildings with a limited number of sensors
Spoldi et al. Non‐destructive techniques for structural characterization of cultural heritage: A pilot case study

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230921