JP2021197225A - 画像生成方法 - Google Patents

画像生成方法 Download PDF

Info

Publication number
JP2021197225A
JP2021197225A JP2020101065A JP2020101065A JP2021197225A JP 2021197225 A JP2021197225 A JP 2021197225A JP 2020101065 A JP2020101065 A JP 2020101065A JP 2020101065 A JP2020101065 A JP 2020101065A JP 2021197225 A JP2021197225 A JP 2021197225A
Authority
JP
Japan
Prior art keywords
wafer
electron beam
height
pattern
normal vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020101065A
Other languages
English (en)
Inventor
浩太郎 丸山
Kotaro Maruyama
伸一 中澤
Shinichi Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tasmit Inc
Original Assignee
Tasmit Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tasmit Inc filed Critical Tasmit Inc
Priority to JP2020101065A priority Critical patent/JP2021197225A/ja
Priority to PCT/JP2021/020617 priority patent/WO2021251190A1/ja
Publication of JP2021197225A publication Critical patent/JP2021197225A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】ウェーハに反りがある場合でも、電子ビームをウェーハ表面に対して垂直に入射させることができる技術を提供する。【解決手段】本方法は、ウェーハ124に形成されている三次元構造パターン203の画像を生成する方法であって、試料ステージ121上に置かれたウェーハ124上の複数の高さ測定点202の高さを測定し、複数の高さ測定点202の高さを用いて、三次元構造パターン203の位置でのウェーハ表面の法線ベクトルを算出し、電子ビームの入射方向が法線ベクトルと平行な状態で、三次元構造パターン203を含むウェーハ124に電子ビームを照射し、ウェーハ124から放出された電子を検出し、電子の検出信号から三次元構造パターン203の画像を生成する。【選択図】図2

Description

本発明は、走査電子顕微鏡を用いてウェーハの画像を生成する方法に関し、特に電子ビームの入射方向を調整する技術に関する。
従来の半導体デバイスは平面構造内の微細化を続けてきた。しかし、特に微細化の先端を進んできたNANDフラッシュメモリでは、微細化の影響により記憶素子に蓄えることができる電子数が減少し、デバイス特性の物理的限界によりデバイスの信頼性が悪化した。この解決策として、記憶素子を縦方向に配列した3次元のメモリセル構造によりデバイス特性の物理限界を解決し、記憶素子の大容量化が実現されている。
NANDフラッシュメモリのメーカー各社は、従来の半導体デバイス微細化技術の開発から、3次元メモリ構造における積層技術の開発に方向転換し、積層数の増大による更なる大容量化を目指している。2020年において、既に100層近い3次元メモリ構造のデバイスが製品化され、今後も積層数の増大が要求されている。
特開2000−348658号公報
デバイス製造工程で加えられる熱応力等に起因して、デバイスが形成されたウェーハには反りが発生する。反りによるウェーハの高さ方向の変化量は、3D NANDフラッシュメモリ等のウェーハでは、大きいもので数百μm程度となる。この高さ方向の変化量を300μmと仮定すると、ウェーハ表面に対する垂直方向のコンタクトの傾きは、
300μm(高さ方向の変化量)/15mm(ウェーハ半径)=1/500(rad)
となる。
一方、3D NANDデバイスのコンタクトの高さは最大10μmである。コンタクトのトップとボトムとの位置ずれ(傾き)の測定精度は5nm以下が要求されている。つまり、傾きの測定精度としては、
5nm/10μm=5/10000(rad)
以下が求められている。ウェーハの反りによるコンタクトの傾きは、要求される測定精度よりも大きく、測定結果に多大な影響を与えてしまう。
図5に示すように、一般的に、SEM等を用いた測定装置では、静電チャックによる吸着型のウェーハチャック500が用いられているが、ウェーハチャック500はウェーハWの全面の反りを強制的に抑制することはできない。ウェーハWが反った状態でコンタクトの傾きを測定すると、図6に示すように、電子ビームはウェーハWの表面に対して垂直に入射しない。そのため、コンタクト600のボトムまで電子ビームが到達しない等、傾き測定の精度が低下してしまう。
そこで、本発明は、電子ビームをウェーハ表面に対して垂直に入射させることができる技術を提供する。
一態様では、ウェーハに形成されている三次元構造パターンの画像を生成する方法であって、試料ステージ上に置かれた前記ウェーハ上の複数の高さ測定点の高さを測定し、前記複数の高さ測定点の高さを用いて、前記三次元構造パターンの位置でのウェーハ表面の法線ベクトルを算出し、電子ビームの入射方向が前記法線ベクトルと平行な状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射し、前記ウェーハから放出された電子を検出し、前記電子の検出信号から前記三次元構造パターンの画像を生成する、方法が提供される。
一態様では、前記法線ベクトルを算出する工程は、前記複数の高さ測定点の高さを用いて、ウェーハ表面の高さを表す近似式を決定し、前記三次元構造パターンの座標と前記近似式とから前記三次元構造パターンの位置でのウェーハ表面の法線ベクトルを算出する工程である。
一態様では、前記複数の高さ測定点は、前記三次元構造パターンの周りに位置する少なくとも3つの高さ測定点である。
一態様では、前記電子ビームを前記ウェーハに照射する工程は、前記電子ビームの入射方向が前記法線ベクトルと平行になるように前記電子ビームを傾けた状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射する工程である。
一態様では、前記電子ビームを前記ウェーハに照射する工程は、前記電子ビームの入射方向が前記法線ベクトルと平行になるように前記試料ステージを傾けた状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射する工程である。
一態様では、前記画像から前記三次元構造パターンの傾きを算出する工程をさらに含む。
一態様では、前記三次元構造パターンは、前記ウェーハの深さ方向に次元を持つ1つまたは複数のパターンである。
一態様では、前記三次元構造パターンは、上層パターンと下層パターンを含み、前記方法は、前記画像から、前記上層パターンと前記下層パターン間の位置ずれを算出する工程をさらに含む。
本発明によれば、ウェーハに反りがある場合でも、電子ビームはウェーハに垂直に入射する。したがって、ウェーハに形成されているコンタクトなどの三次元構造パターンの傾きを正確に測定することができる。
画像生成装置の一実施形態を示す模式図である。 ウェーハ表面の傾きを測定する方法の一実施形態を説明する模式図である。 ウェーハ表面の局所的な傾きを測定する方法の一実施形態を説明する模式図である。 試料ステージを傾けるステージアクチュエータを示す模式図である。 静電チャックに保持されたウェーハを示す模式図である。 ウェーハに入射する電子ビームを表す模式図である。
以下、本発明の実施形態について図面を参照して説明する。
図1は、画像生成装置の一実施形態を示す模式図である。図1に示すように、画像生成装置は、走査電子顕微鏡100および演算システム150を備えている。走査電子顕微鏡100は、演算システム150に接続されており、走査電子顕微鏡100の動作は演算システム150によって制御される。
演算システム150は、プログラムが格納された記憶装置162と、プログラムに含まれる命令に従って演算を実行する処理装置163を備えている。処理装置163は、記憶装置162に格納されているプログラムに含まれる命令に従って演算を行うCPU(中央処理装置)またはGPU(グラフィックプロセッシングユニット)などを含む。記憶装置162は、処理装置163がアクセス可能な主記憶装置(例えばランダムアクセスメモリ)と、データおよびプログラムを格納する補助記憶装置(例えば、ハードディスクドライブまたはソリッドステートドライブ)を備えている。
演算システム150は、少なくとも1台のコンピュータを備えている。例えば、演算システム150は、走査電子顕微鏡100に通信線で接続されたエッジサーバであってもよいし、インターネットまたはローカルネットワークなどの通信ネットワークによって走査電子顕微鏡100に接続されたクラウドサーバであってもよいし、あるいは走査電子顕微鏡100に接続されたネットワーク内に設置されたフォグコンピューティングデバイス(ゲートウェイ、フォグサーバ、ルーターなど)であってもよい。演算システム150は、複数のサーバの組み合わせであってもよい。例えば、演算システム150は、インターネットまたはローカルネットワークなどの通信ネットワークにより互いに接続されたエッジサーバとクラウドサーバとの組み合わせであってもよい。他の例では、演算システム150は、ネットワークで接続されていない複数のサーバ(コンピュータ)を備えてもよい。
走査電子顕微鏡100は、一次電子(荷電粒子)からなる電子ビームを発する電子銃111と、電子銃111から放出された電子ビームを集束する集束レンズ112、電子ビームをX方向に偏向するX偏向器113、電子ビームをY方向に偏向するY偏向器114、電子ビームを試料の一例であるウェーハ124にフォーカスさせる対物レンズ115を有する。電子銃111の構成は特に限定されない。例えば、フィールドエミッタ型電子銃、または半導体フォトカソード型電子銃などが電子銃111として使用できる。
集束レンズ112および対物レンズ115はレンズ制御装置116に接続され、集束レンズ112および対物レンズ115の動作はレンズ制御装置116によって制御される。このレンズ制御装置116は演算システム150に接続されている。X偏向器113、Y偏向器114は、偏向制御装置117に接続されており、X偏向器113、Y偏向器114の偏向動作は偏向制御装置117によって制御される。この偏向制御装置117も同様に演算システム150に接続されている。二次電子検出器130と反射電子検出器131は画像取得装置118に接続されている。画像取得装置118は二次電子検出器130の出力信号と反射電子検出器131の出力信号をそれぞれ画像に変換するように構成される。この画像取得装置118も同様に演算システム150に接続されている。
試料チャンバー120内に配置される試料ステージ121は、ステージ制御装置122に接続されており、試料ステージ121の位置はステージ制御装置122によって制御される。このステージ制御装置122は演算システム150に接続されている。ウェーハ124を、試料チャンバー120内の試料ステージ121に載置するための搬送装置140も同様に演算システム150に接続されている。
電子銃111から放出された電子ビームは集束レンズ112で集束された後に、X偏向器113、Y偏向器114で偏向されつつ対物レンズ115により集束されてウェーハ124の表面に照射される。ウェーハ124に電子ビームの一次電子が照射されると、ウェーハ124からは二次電子および反射電子が放出される。二次電子は二次電子検出器130により検出され、反射電子は反射電子検出器131により検出される。二次電子検出器130から出力された二次電子の検出信号、および反射電子検出器131から出力された反射電子の検出信号は、画像取得装置118に入力され、二次電子画像および反射電子画像にそれぞれ変換される。
試料ステージ121の上方には、試料ステージ121上のウェーハ124の表面の高さを測定するための高さ測定装置としての変位センサ170、およびウェーハ124の表面に向けて光を発する光源171が配置されている。光源171からの光は、ウェーハ124の表面で反射して変位センサ170に届くように、光源171および変位センサ170が配置されている。光源171および変位センサ170の位置は、ウェーハ124の表面高さを測定できる限りにおいて特に限定されないが、本実施形態では変位センサ170は試料チャンバー120の上面に位置している。変位センサ170の構成も特に限定されないが、本実施形態では変位センサ170は光学式変位センサである。
次に、測定対象のパターン周辺のウェーハの傾きを測定する方法について説明する。
図2は、静電チャックにより試料ステージ121に保持されたウェーハ124を上から見た模式図である。演算システム150は、測定対象の三次元構造パターンの一例であるコンタクト203を有するウェーハ124の全面に複数の高さ測定点202を設定する。高さ測定点202の数は特に限定されないが、一例では4つ以上の高さ測定点202が設定される。
変位センサ170は、複数の高さ測定点202のそれぞれの高さを測定する。高さの測定値は、演算システム150に送られる。各高さ測定点202の高さは、予め定義された基準面からの高さである。基準面は仮想的な平面である。例えば、基準面は、試料ステージ121の上面であってもよい。ウェーハ表面上の座標(x,y)における高さzは、次の近似式で表すことができる。
z=a+a+axy+ax+ay+a=f(x,y)…(1)
高さ測定点202の座標を(Xn,Yn)、測定された高さをZnとする。演算システム150は、上記近似式(1)に対して最小二乗法を適用し、上記近似式(1)を用いて算出された複数の高さ測定点202の高さzと、各高さ測定点(Xn,Yn)で測定された高さZnとの誤差が最も小さい係数a,a,a,a,a,aを決定することにより、ウェーハ表面上の座標(x,y)において高さzを示す近似式f(x,y)が得られる。演算システム150は、上述のようにして決定された近似式(1)を記憶装置162内に記憶する。
コンタクト203の傾きを測定する際、演算システム150は、コンタクト203の座標と上記近似式f(x,y)とから、コンタクト203の位置でのウェーハ表面の法線ベクトルを算出する。さらに、演算システム150は、電子ビームを傾けて電子ビームの入射方向を法線ベクトルと平行にする。より具体的には、演算システム150は、偏向制御装置117に指令を発して、X偏向器113およびY偏向器114に印加する電圧を制御することで、電子ビームを傾け、電子ビームの入射方向を法線ベクトルと平行にする。電子ビームの入射方向が法線ベクトルと平行な状態で、電子ビームはコンタクト203を含むウェーハ124に照射される。
ウェーハ124に電子ビームが照射されると、ウェーハ124からは二次電子および反射電子が放出される。二次電子は二次電子検出器130により検出され、反射電子は反射電子検出器131により検出される。画像取得装置118は、二次電子の検出信号および反射電子の検出信号から、二次電子画像および反射電子画像をそれぞれ生成する。
コンタクト203は、高アスペクト比のパターンである。コンタクト203の傾きは、コンタクト203の反射電子画像から求めることができる。すなわち、走査型電子顕微鏡100は、コンタクト203のトップとボトムが現れている反射電子画像を生成し、演算システム150は、コンタクト203の反射電子画像を走査型電子顕微鏡100から取得し、反射電子画像上のコンタクト203のトップとボトムの位置からコンタクト203の傾きおよびテーパー角度を算出する。コンタクト203の傾きは、コンタクト203の全体の傾きであり、コンタクト203のテーパー角度は、コンタクト203の側壁の傾き角度である。本実施形態によれば、電子ビームはウェーハ表面に垂直に入射するため、演算システム150はコンタクト203の傾きを正確に測定することができる。
上述した実施形態では、三次元構造パターンの例としてコンタクト203が用いられているが、三次元構造パターンは、ウェーハの深さ方向に次元を持つ1つまたは複数のパターンであってもよい。例えば、三次元構造パターンは、コンタクト203に代えて、上層パターンと下層パターンを含んでもよい。この場合は、演算システム150は、上層パターンと下層パターンの反射電子画像から、上層パターンと下層パターン間の位置ずれを算出してもよい。
上述の実施形態では、高さ測定点202の高さを測定する高さ測定装置として、光学式の変位センサ170を用いたが、本発明はこの実施形態に限定されない。一実施形態では、高さ測定装置としてレーザー干渉計または静電容量変位センサを用いてもよい。
一実施形態では、変位センサ170などの高さ測定装置に代えて、対物レンズ115の励磁電流から高さ測定点202の高さを測定してもよい。具体的には、走査型電子顕微鏡100は、対物レンズ115により各高さ測定点202に電子ビームの焦点を合わせた状態で、各高さ測定点202の画像を生成し、演算システム150は、対物レンズ115への励磁電流から各高さ測定点202の高さを決定してもよい。焦点が合っているときの対物レンズ115への励磁電流は、高さ測定点202の高さに依存して決まる。演算システム150は、対物レンズ115への励磁電流と、高さ測定点202の高さとの関係式を記憶装置162内に予め記憶しており、焦点が合っているときの対物レンズ115への励磁電流に対応する高さ測定点202の高さを決定することができる。こうして測定された高さを、上記式(1)に適用してもよい。
上述の実施形態では、ウェーハの高さを求めるための近似式として2次多項式を用いたが、ウェーハの反りの形状に合わせて3次以上の多項式を用いることもできる。また、双3次スプライン等の区間近似を用いることもできる。
上述の実施形態では、ウェーハ124の全面に亘って分布する複数の高さ測定点202のそれぞれの高さを測定し、ウェーハ表面の傾きをウェーハ全面に適用してウェーハの反りを近似することができる。しかし、この方法では局所的なウェーハの傾きに対して精度が十分でない場合がある。また、ウェーハの一部のコンタクトのみを測定する場合、ウェーハ全面に亘って予め高さを測定すると、測定時間のロスが大きくなる。そこで、以下に説明するように、一実施形態では、測定対象のコンタクトの周辺のみにおいて予め高さを測定し、局所的な傾きを算出してもよい。
図3は、ウェーハ表面の局所的な傾きを測定する方法の一実施形態を説明する模式図である。特に説明しない本実施形態の動作は、図1および図2を参照して説明した上記実施形態と同じであるので、その重複する説明を省略する。
演算システム150は、測定対象の三次元構造パターンの一例であるコンタクト214の周りに、3つの高さ測定点210,211,212を設定する。変位センサ170(図1参照)は、高さ測定点210,211,212の高さをそれぞれ測定する。高さ測定点210,211,212の高さの測定値は、演算システム150に送られる。
高さ測定点210,211,212の座標(x,y)と、測定された高さzをそれぞれ(x1,y1,z1)、(x2,y2,z2)、(x3,y3,z3)とする。このとき、高さ測定点210,211,212を頂点とした平面の法線ベクトル213は、以下の式により表すことができる。
Figure 2021197225
図3に示すように、コンタクト214の傾きを測定する際、演算システム150は、上記式(2)により法線ベクトル213を算出し、電子ビーム215の入射方向を法線ベクトル213と平行にする。より具体的には、演算システム150は、偏向制御装置117に指令を発して、X偏向器113およびY偏向器114に印加する電圧を制御することで、電子ビーム215を傾け、電子ビーム215の入射方向を法線ベクトル213と平行にする。電子ビーム215の入射方向が法線ベクトル213と平行な状態で、電子ビーム215はコンタクト214を含むウェーハ124に照射される。
上述の実施形態では、3つの高さ測定点を用いて平面の法線ベクトルを求めたが、4つ以上の高さ測定点の高さを測定し、法線ベクトルの精度を向上させることも可能である。具体的には、平面を表す以下の多項式を用いる。
z=ax+ay+a=f(x,y) …(3)
各高さ測定点の座標を(Xn,Yn)、測定された高さをZnとする。演算システム150は、上記多項式(3)に対して最小二乗法を適用し、上記多項式(3)を用いて算出された複数の高さ測定点高さzと、各高さ測定点(Xn,Yn)で測定された高さZnとの誤差が最も小さい係数a,a,aを決定することにより、平面を表す多項式およびその平面の法線ベクトルが得られる。
上述の実施形態では、高さ測定点210,211,212の高さを測定する高さ測定装置として、光学式の変位センサ170を用いたが、本発明はこの実施形態に限定されない。一実施形態では、高さ測定装置としてレーザー干渉計または静電容量変位センサを用いてもよい。
一実施形態では、変位センサ170などの高さ測定装置に代えて、対物レンズ115の励磁電流から高さ測定点210,211,212の高さを測定してもよい。具体的には、走査型電子顕微鏡100は、対物レンズ115により各高さ測定点に電子ビームの焦点を合わせた状態で、各高さ測定点の画像を生成し、演算システム150は、対物レンズ115への励磁電流から各高さ測定点の高さを決定してもよい。こうして測定された高さを、上記式(2)または式(3)の計算に適用してもよい。
上述の方法により、コンタクト203,214における電子ビームの入射方向を制御し、電子ビームをコンタクト203,214に照射して画像を取得する。今まで説明した実施形態における電子ビームの入射方向の制御方法は、X偏向器113、Y偏向器114に印加する電圧を制御することで電子ビームを傾ける方法であるが、本発明はこれに限定されない。一実施形態では、ウェーハ124が置かれた試料ステージ121を機械的に傾けることでウェーハ124の全体を傾け、電子ビームの入射方向をウェーハ124の法線ベクトルと平行にしてもよい。
図4は、試料ステージ121を傾けるステージアクチュエータ250を示す模式図である。走査型電子顕微鏡100は、試料ステージ121を傾ける複数のステージアクチュエータ250を備えている。これらステージアクチュエータ250は、試料ステージ121の中心の周りに配列されており、試料ステージ121を支持している。少なくとも3つのステージアクチュエータ250が設けられる。各ステージアクチュエータ250の具体的構成は特に限定されないが、例えば、圧電素子、またはボールねじ機構とサーボモータとの組み合わせなどから構成される。
ステージアクチュエータ250は演算システム150に電気的に接続されており、ステージアクチュエータ250の動作は、演算システム150によって制御される。具体的には、演算システム150は、電子ビームの入射方向が上記法線ベクトルと平行になるように試料ステージ121を傾ける。電子ビームの入射方向が上記法線ベクトルと平行な状態で、三次元構造パターンの一例であるコンタクトを含むウェーハ124に電子ビームが照射される。
上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
100 走査電子顕微鏡
111 電子銃
112 集束レンズ
113 X偏向器
114 Y偏向器
115 対物レンズ
116 レンズ制御装置
117 偏向制御装置
118 画像取得装置
120 試料チャンバー
121 試料ステージ
122 ステージ制御装置
124 ウェーハ
130 二次電子検出器
131 反射電子検出器
140 搬送装置
150 演算システム
170 変位センサ
171 光源
202 高さ測定点
203 コンタクト(三次元構造パターン)
210,211,212 高さ測定点
213 法線ベクトル
214 コンタクト(三次元構造パターン)
215 電子ビーム
250 ステージアクチュエータ

Claims (8)

  1. ウェーハに形成されている三次元構造パターンの画像を生成する方法であって、
    試料ステージ上に置かれた前記ウェーハ上の複数の高さ測定点の高さを測定し、
    前記複数の高さ測定点の高さを用いて、前記三次元構造パターンの位置でのウェーハ表面の法線ベクトルを算出し、
    電子ビームの入射方向が前記法線ベクトルと平行な状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射し、
    前記ウェーハから放出された電子を検出し、
    前記電子の検出信号から前記三次元構造パターンの画像を生成する、方法。
  2. 前記法線ベクトルを算出する工程は、前記複数の高さ測定点の高さを用いて、ウェーハ表面の高さを表す近似式を決定し、前記三次元構造パターンの座標と前記近似式とから前記三次元構造パターンの位置でのウェーハ表面の法線ベクトルを算出する工程である、請求項1に記載の方法。
  3. 前記複数の高さ測定点は、前記三次元構造パターンの周りに位置する少なくとも3つの高さ測定点である、請求項1に記載の方法。
  4. 前記電子ビームを前記ウェーハに照射する工程は、前記電子ビームの入射方向が前記法線ベクトルと平行になるように前記電子ビームを傾けた状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射する工程である、請求項1乃至3のいずれか一項に記載の方法。
  5. 前記電子ビームを前記ウェーハに照射する工程は、前記電子ビームの入射方向が前記法線ベクトルと平行になるように前記試料ステージを傾けた状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射する工程である、請求項1乃至3のいずれか一項に記載の方法。
  6. 前記画像から前記三次元構造パターンの傾きを算出する工程をさらに含む、請求項1乃至5のいずれか一項に記載の方法。
  7. 前記三次元構造パターンは、前記ウェーハの深さ方向に次元を持つ1つまたは複数のパターンである、請求項1乃至5のいずれかの一項に記載の方法。
  8. 前記三次元構造パターンは、上層パターンと下層パターンを含み、
    前記方法は、前記画像から、前記上層パターンと前記下層パターン間の位置ずれを算出する工程をさらに含む、請求項7に記載の方法。
JP2020101065A 2020-06-10 2020-06-10 画像生成方法 Pending JP2021197225A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020101065A JP2021197225A (ja) 2020-06-10 2020-06-10 画像生成方法
PCT/JP2021/020617 WO2021251190A1 (ja) 2020-06-10 2021-05-31 画像生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020101065A JP2021197225A (ja) 2020-06-10 2020-06-10 画像生成方法

Publications (1)

Publication Number Publication Date
JP2021197225A true JP2021197225A (ja) 2021-12-27

Family

ID=78845639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020101065A Pending JP2021197225A (ja) 2020-06-10 2020-06-10 画像生成方法

Country Status (2)

Country Link
JP (1) JP2021197225A (ja)
WO (1) WO2021251190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100960A1 (ja) 2021-12-03 2023-06-08 パナソニックIpマネジメント株式会社 認証装置および認証方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075246A1 (fr) * 2001-03-16 2002-09-26 Hitachi, Ltd. Procede de mesure des dimensions d'un motif
JP6818588B2 (ja) * 2017-02-24 2021-01-20 株式会社ホロン サンプル傾斜自動補正装置およびサンプル傾斜自動補正方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100960A1 (ja) 2021-12-03 2023-06-08 パナソニックIpマネジメント株式会社 認証装置および認証方法

Also Published As

Publication number Publication date
WO2021251190A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6038053B2 (ja) パターン評価方法およびパターン評価装置
JP6511193B2 (ja) パターン計測装置およびパターン計測方法
JP5525528B2 (ja) パターン評価方法、その装置、及び電子線装置
KR102521799B1 (ko) 패턴 계측 장치 및 패턴 계측 방법
TW201935513A (zh) 基於掃描電子束信號之對稱性之重疊目標結構之重疊測量
US8677511B2 (en) Apparatus for charged particle lithography system
JP4213527B2 (ja) 立体形状計測装置
KR101352996B1 (ko) 하전 입자빔 묘화 장치
WO2021251190A1 (ja) 画像生成方法
TW202001973A (zh) 帶電粒子束畫像取得裝置
JP2015216225A (ja) リソグラフィ装置及び方法、並びに物品の製造方法
JP5025964B2 (ja) 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
WO2004044968A1 (ja) 露光装置、露光方法および半導体装置の製造方法
US6407398B1 (en) Electron beam exposure apparatus and exposure method
JP2014225428A (ja) 荷電粒子線照射装置、荷電粒子線の照射方法及び物品の製造方法
KR20060125738A (ko) 측정 시스템 및 방법
US10515779B2 (en) Imaging system and imaging method
US7910885B2 (en) System and method for determining a cross sectional feature of a structural element using a reference structural element
JP2017016791A (ja) 計測装置、計測方法および半導体装置の製造方法
JP6861543B2 (ja) 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
JP2010073870A (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
US20230375338A1 (en) Pattern Measurement Device
JP7280237B2 (ja) サンプル傾斜自動補正装置およびサンプル傾斜自動補正方法
US20240175829A1 (en) Inspection apparatus and inspection method
JP2017228650A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法