JP2021162281A - Turbo freezing machine - Google Patents

Turbo freezing machine Download PDF

Info

Publication number
JP2021162281A
JP2021162281A JP2020067563A JP2020067563A JP2021162281A JP 2021162281 A JP2021162281 A JP 2021162281A JP 2020067563 A JP2020067563 A JP 2020067563A JP 2020067563 A JP2020067563 A JP 2020067563A JP 2021162281 A JP2021162281 A JP 2021162281A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
sensor unit
evaporator
turbo chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020067563A
Other languages
Japanese (ja)
Inventor
潤 宮本
Jun Miyamoto
泰士 長谷川
Hiroshi Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2020067563A priority Critical patent/JP2021162281A/en
Priority to KR1020227037342A priority patent/KR20220153656A/en
Priority to PCT/JP2021/013427 priority patent/WO2021200880A1/en
Priority to CN202180025120.5A priority patent/CN115335649A/en
Publication of JP2021162281A publication Critical patent/JP2021162281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

To provide a turbo freezing machine which can determine leakage of a slightly flammable refrigerant early and efficiently.SOLUTION: A turbo freezing machine includes: a refrigeration cycle in which a compressor 10, a condenser 12, an expander, and an evaporator 20 are connected by a refrigerant pipe and which is filled with a slightly flammable refrigerant; and a refrigerant detector having a sensor part 72 for detecting a refrigerant, and a body part which determines leakage of the refrigerant based on information from the sensor part 72. Auxiliary machines 30, 32 in which the refrigerant circulates and which are attached to the compressor 10 and joint parts of the refrigerant pipe are consolidated at a predetermined portion. The sensor part 72 is installed below the predetermined portion.SELECTED DRAWING: Figure 4

Description

本開示は、ターボ冷凍機に関する。 The present disclosure relates to a turbo chiller.

冷凍機に充填されてる冷媒について、近年、地球温暖化への対応として、低GWP冷媒への代替が進んでいる。低GWP冷媒としては、R1234ze(E)やR1234yfなどが知られているが、これらの低GWP冷媒は、ISOにおいて微燃性(A2L)に分類されている。微燃性冷媒を国内で使用する場合は、冷媒漏洩検知器を設置することが好ましい。 In recent years, as a response to global warming, the refrigerant filled in the refrigerator has been replaced with a low GWP refrigerant. As the low GWP refrigerant, R1234ze (E), R1234yf and the like are known, and these low GWP refrigerants are classified as slightly flammable (A2L) in ISO. When a slightly flammable refrigerant is used in Japan, it is preferable to install a refrigerant leakage detector.

従来の冷媒としては、例えばR134aなどが知られているが、このR134aは不燃であったことから、冷媒漏洩時の環境汚染及び経済的損失の観点から、冷媒漏洩検知器を設置している技術が開示されている(特許文献1)。 As a conventional refrigerant, for example, R134a is known, but since this R134a is incombustible, a technique for installing a refrigerant leakage detector from the viewpoint of environmental pollution and economic loss at the time of refrigerant leakage. Is disclosed (Patent Document 1).

特開2013−113555号公報Japanese Unexamined Patent Publication No. 2013-11355

しかしながら、特許文献1においては、微燃性冷媒の使用が前提とされておらず、特に、微燃性冷媒が漏洩した場合については開示されていない。 However, Patent Document 1 does not presuppose the use of a slightly flammable refrigerant, and does not particularly disclose the case where the slightly flammable refrigerant leaks.

本開示はこのような事情を鑑みてなされたものであり、早期かつ効率的に微燃性の冷媒の漏洩を判断できるターボ冷凍機を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and an object of the present invention is to provide a turbo chiller capable of determining leakage of a slightly flammable refrigerant quickly and efficiently.

上記課題を解決するために、本開示のターボ冷凍機は以下の手段を採用する。
すなわち、本開示の一態様に係るターボ冷凍機は、圧縮機、凝縮器、膨張器及び蒸発器が冷媒配管によって接続され、微燃性の冷媒が充填された冷凍サイクルと、冷媒を検知するセンサ部と該センサ部からの情報に基づいて冷媒の漏洩を判断する本体部とを有する冷媒検知器とを備え、冷媒が流通するとともに前記圧縮機に付随する補機、及び前記冷媒配管の接合部は所定箇所に集約され、前記センサ部は、前記所定箇所の下方に設置されている。
In order to solve the above problems, the turbo chiller of the present disclosure adopts the following means.
That is, in the turbo chiller according to one aspect of the present disclosure, a compressor, a condenser, an expander, and an evaporator are connected by a refrigerant pipe, and a refrigerating cycle filled with a slightly flammable refrigerant and a sensor for detecting the refrigerant are used. A refrigerant detector having a unit and a main body unit that determines leakage of the refrigerant based on information from the sensor unit is provided, and an auxiliary machine attached to the compressor as the refrigerant flows and a joint portion of the refrigerant pipe are provided. Are aggregated at a predetermined location, and the sensor unit is installed below the predetermined location.

本態様に係るターボ冷凍機によれば、微燃性の冷媒が流通するとともに圧縮機に付随する補機(例えば油フィルタ、油冷却器等)、及び配管の接合部(例えば、継手部やねじ込み部等)を所定箇所に集約し、その集約箇所の下方に冷媒を検知するセンサ部を設置している。
冷媒は通常空気よりも比重が大きいため、所定箇所に集約された補機、これらの補機と圧縮機との接続部、及び/又は、所定箇所に集約された配管の接合部から冷媒が漏洩した場合、その所定箇所の下方にセンサ部を設置することで、センサ部によって早期かつ効率的に冷媒を検知できる。このとき、本体部は、センサ部からの検知信号に基づいて冷媒の漏洩を判断する。つまり、早期かつ効率的に冷媒の漏洩を判断できる。そのうえ、早期に冷媒の漏洩を判断することで、高価とされる微燃性冷媒の大量漏洩を抑制することで経済的損失を抑制できる。
また、別体とされたセンサ部と本体部のうちセンサ部のみを所定箇所下方のスペースに設置するので、所定箇所下方のスペースが狭い場合であっても、センサ部だけであれば容易にそのスペースに設置できる。
According to the turbo chiller according to this aspect, a slightly flammable refrigerant flows and auxiliary equipment (for example, an oil filter, an oil cooler, etc.) attached to the compressor, and a joint portion of a pipe (for example, a joint portion or a screw-in portion) are screwed. Parts, etc.) are aggregated at a predetermined location, and a sensor unit that detects the refrigerant is installed below the aggregation location.
Since the refrigerant usually has a higher specific density than air, the refrigerant leaks from the auxiliary equipment concentrated in a predetermined location, the connection between these auxiliary equipment and the compressor, and / or the joint of the pipes aggregated in the predetermined location. If this is the case, by installing the sensor unit below the predetermined location, the sensor unit can detect the refrigerant quickly and efficiently. At this time, the main body unit determines the leakage of the refrigerant based on the detection signal from the sensor unit. That is, the leakage of the refrigerant can be determined quickly and efficiently. Moreover, by determining the leakage of the refrigerant at an early stage, it is possible to suppress the large amount of leakage of the slightly flammable refrigerant, which is considered to be expensive, and thus the economic loss can be suppressed.
Further, since only the sensor part of the separate sensor part and the main body part is installed in the space below the predetermined place, even if the space below the predetermined place is narrow, the sensor part alone can easily be used. Can be installed in space.

また、本開示の一態様に係るターボ冷凍機において、前記所定箇所は、前記圧縮機の近傍とされている。 Further, in the turbo refrigerator according to one aspect of the present disclosure, the predetermined location is in the vicinity of the compressor.

本態様に係るターボ冷凍機によれば、所定箇所は圧縮機の近傍とされている。これによって、圧縮機を取り外すだけで補機及び冷媒配管の接合部へのアクセスが容易になり、冷媒が漏洩してしまった場合の処置を早急に行うことができる。 According to the turbo chiller according to this aspect, the predetermined location is in the vicinity of the compressor. As a result, it becomes easy to access the joint portion of the auxiliary machine and the refrigerant pipe simply by removing the compressor, and it is possible to promptly take measures when the refrigerant leaks.

また、本開示の一態様に係るターボ冷凍機において、前記圧縮機は、ハウジングの最底面が前記蒸発器のシェルの最上面よりも上方に位置するように配置され、前記所定箇所は、前記圧縮機の近傍の領域とされ、前記センサ部は、前記蒸発器の前記シェルの最底面と同程度の高さに配置されている。 Further, in the turbo chiller according to one aspect of the present disclosure, the compressor is arranged so that the bottom surface of the housing is located above the top surface of the shell of the evaporator, and the predetermined location is the compression. It is a region near the machine, and the sensor unit is arranged at the same height as the bottom surface of the shell of the evaporator.

本態様に係るターボ冷凍機によれば、圧縮機は、ハウジングの底面が蒸発器のシェルの最上面よりも上方に位置するように配置され、所定箇所は、圧縮機の近傍の領域とされ、センサ部は、蒸発器のシェルの最底面と同程度の高さに配置されている。これによって、冷媒が漏洩した場合、センサ部に冷媒がより導かれ易くなるような構成とすることができる。 According to the turbo chiller according to this aspect, the compressor is arranged so that the bottom surface of the housing is located above the uppermost surface of the shell of the evaporator, and the predetermined location is a region in the vicinity of the compressor. The sensor unit is arranged at the same height as the bottom surface of the shell of the evaporator. As a result, when the refrigerant leaks, the refrigerant can be more easily guided to the sensor unit.

本開示に係るターボ冷凍機によれば、早期かつ効率的に微燃性の冷媒の漏洩を判断できる。 According to the turbo chiller according to the present disclosure, leakage of a slightly flammable refrigerant can be determined quickly and efficiently.

本開示の一実施形態に係るターボ冷凍機の正面図である。It is a front view of the turbo chiller which concerns on one Embodiment of this disclosure. 図1に示すターボ冷凍機の右側面図である。It is a right side view of the turbo chiller shown in FIG. 図1に示すターボ冷凍機の平面図である。It is a top view of the turbo chiller shown in FIG. 図1に示すターボ冷凍機の背面図である。It is a rear view of the turbo chiller shown in FIG. 本開示の一実施形態に係るターボ冷凍機の他の例の右側面図である。It is a right side view of another example of the turbo chiller which concerns on one Embodiment of this disclosure. 図5に示すターボ冷凍機の正面図である。It is a front view of the turbo chiller shown in FIG.

以下に、本開示の一実施形態に係るターボ冷凍機について、図面を参照して説明する。 Hereinafter, the turbo chiller according to the embodiment of the present disclosure will be described with reference to the drawings.

図1には、一部機器が省略された状態のターボ冷凍機1の正面図が示されている。図2には、同じターボ冷凍機1の右側面図が示されている。図3には、同じターボ冷凍機1の平面図が示されている。図4には、同じターボ冷凍機1の背面図が示されている。 FIG. 1 shows a front view of the turbo chiller 1 in a state where some devices are omitted. FIG. 2 shows a right side view of the same turbo chiller 1. FIG. 3 shows a plan view of the same turbo chiller 1. FIG. 4 shows a rear view of the same turbo chiller 1.

図1から図4に示すように、ターボ冷凍機1は、圧縮機10、凝縮器12、第1膨張弁14(膨張器)、エコノマイザ16、第2膨張弁18(膨張器)、蒸発器20を備えており、これらの機器が冷媒配管によって接続されることで冷凍サイクルを構成している。 As shown in FIGS. 1 to 4, the turbo chiller 1 includes a compressor 10, a condenser 12, a first expansion valve 14 (expansion), an economizer 16, a second expansion valve 18 (expansion), and an evaporator 20. These devices are connected by a refrigerant pipe to form a refrigeration cycle.

この冷凍サイクルには、低GWP冷媒が充填されている。低GWP冷媒としては、例えば、R1234ze(E)やR1234yfなどがある。なお、これらの低GWP冷媒は、ISOにおいて微燃性(A2L)に分類されている。以下、低GWP冷媒を単に「冷媒」という。 This refrigeration cycle is filled with a low GWP refrigerant. Examples of the low GWP refrigerant include R1234ze (E) and R1234yf. These low GWP refrigerants are classified as slightly flammable (A2L) in ISO. Hereinafter, the low GWP refrigerant is simply referred to as "refrigerant".

圧縮機10は、電動モータ11とハウジング同士が一体に結合された密閉型とされており、冷凍サイクルに充填された冷媒を圧縮する装置である。このとき、圧縮機10は、多段(例えば2段)のターボ圧縮機とされている。 The compressor 10 is a closed type in which the electric motor 11 and the housing are integrally coupled to each other, and is a device that compresses the refrigerant filled in the refrigeration cycle. At this time, the compressor 10 is a multi-stage (for example, two-stage) turbo compressor.

凝縮器12は、所定方向に延在する円筒形状の外形を有するシェルアンドチューブ型の熱交換器とされており、図示しない冷却塔で冷却された冷却水と圧縮機10から導かれた高温高圧の冷媒とを熱交換させることで冷媒を凝縮させる装置である。 The condenser 12 is a shell-and-tube heat exchanger having a cylindrical outer shape extending in a predetermined direction, and is a high temperature and high pressure derived from cooling water cooled by a cooling tower (not shown) and a compressor 10. It is a device that condenses the refrigerant by exchanging heat with the refrigerant.

第1膨張弁14は、凝縮器12とエコノマイザ16とを接続する冷媒配管に設けられ、凝縮器12で凝縮された冷媒を膨張させることで中間圧まで減圧する装置である。 The first expansion valve 14 is a device provided in a refrigerant pipe connecting the condenser 12 and the economizer 16 to expand the refrigerant condensed by the condenser 12 to reduce the pressure to an intermediate pressure.

エコノマイザ16は、第1膨張弁14によって減圧された冷媒を気液分離する装置である。分離された冷媒のうちガス冷媒は、インジェクション配管50を介して圧縮機10の1段目と2段目との間に注入される。
また、液冷媒は、エコノマイザ16の下流側に接続された冷媒配管に設けられている第2膨張弁18側に導かれる。
The economizer 16 is a device that gas-liquid separates the refrigerant decompressed by the first expansion valve 14. Of the separated refrigerants, the gas refrigerant is injected between the first stage and the second stage of the compressor 10 via the injection pipe 50.
Further, the liquid refrigerant is guided to the second expansion valve 18 side provided in the refrigerant pipe connected to the downstream side of the economizer 16.

第2膨張弁18は、エコノマイザ16と蒸発器20とを接続する冷媒配管に設けられ、エコノマイザ16から導かれた冷媒を膨張させて低圧まで減圧する装置である。 The second expansion valve 18 is a device provided in a refrigerant pipe connecting the economizer 16 and the evaporator 20 to expand the refrigerant guided from the economizer 16 and reduce the pressure to a low pressure.

蒸発器20は、所定方向に延在する円筒形状の外形を有するシェルアンドチューブ型の熱交換器とされており、負荷側からの還水と第2膨張弁18によって減圧された冷媒とを熱交換させることで冷媒を蒸発させる装置である。
なお、蒸発器20から流出した冷媒は、再び圧縮機10に導かれる。これによって、閉サイクルとされた冷凍サイクルが構成される。
The evaporator 20 is a shell-and-tube heat exchanger having a cylindrical outer shape extending in a predetermined direction, and heats the return water from the load side and the refrigerant decompressed by the second expansion valve 18. It is a device that evaporates the refrigerant by exchanging it.
The refrigerant flowing out of the evaporator 20 is guided to the compressor 10 again. This constitutes a refrigeration cycle that is considered to be a closed cycle.

上記の各機器を備えるターボ冷凍機1において、圧縮機10は、蒸発器20の上方に設置されている。より詳細には、圧縮機10のハウジングの最底面が、蒸発器20のシェルの最上面よりも上方に位置している。
また、凝縮器12は、図2において圧縮機10及び蒸発器20の側方(同図において右側)、かつ、高さ方向において圧縮機10と蒸発器20との略中間に位置している。
In the turbo chiller 1 provided with each of the above-mentioned devices, the compressor 10 is installed above the evaporator 20. More specifically, the bottom surface of the housing of the compressor 10 is located above the top surface of the shell of the evaporator 20.
Further, the condenser 12 is located on the side of the compressor 10 and the evaporator 20 (on the right side in the figure) in FIG. 2 and substantially in the middle between the compressor 10 and the evaporator 20 in the height direction.

図1から図4に示すように、上記の圧縮機10の近傍には、複数の油フィルタ30や油冷却器32等の圧縮機10に付随する補機が設けられている。詳細には、これらの補機は、凝縮器12が配置されている側方とは反対の側方(図2において左側)に設けられている。 As shown in FIGS. 1 to 4, auxiliary machines attached to the compressor 10 such as a plurality of oil filters 30 and an oil cooler 32 are provided in the vicinity of the compressor 10. Specifically, these accessories are provided on the side opposite to the side on which the condenser 12 is located (on the left side in FIG. 2).

また、圧縮機10に付随する補機の他に、圧縮機10の近傍には、冷媒配管の接合部(例えば、継手部やねじ込み部)が集中的に配置され、多数の接合部によって形成された配管接合部群40が圧縮機10の近傍に複数個所に存在している。 Further, in addition to the auxiliary machine attached to the compressor 10, joint portions (for example, joint portions and screwed portions) of the refrigerant pipe are intensively arranged in the vicinity of the compressor 10 and are formed by a large number of joint portions. There are a plurality of pipe joints 40 in the vicinity of the compressor 10.

すなわち、これらの油フィルタ30や油冷却器32等の補機、複数個所の配管接合部群40は圧縮機10の近傍に集中的に配置されており、その箇所は集約箇所S(所定箇所)とされている。 That is, the auxiliary machines such as the oil filter 30 and the oil cooler 32, and the pipe joint group 40 at a plurality of locations are centrally arranged in the vicinity of the compressor 10, and the locations are centralized locations S (predetermined locations). It is said that.

また、上記の配置に伴って、補機に対して接続される配管の接合部、補機と圧縮機10とを接続する配管の接合部についても同様に集約箇所Sに集中的に配置されることとなる。 Further, with the above arrangement, the joints of the pipes connected to the auxiliary machine and the joints of the pipes connecting the auxiliary machine and the compressor 10 are also concentratedly arranged at the aggregation point S in the same manner. It will be.

なお、多数ある補機や冷媒配管の接合部のうち、必ずしも全ての補機や接合部が集約箇所Sに集中的に配置されている状態でなくてもよく、少なくとも複数の補機や接合部が集約箇所Sに集中的に配置されている状態であればよい。 Of the many joints of auxiliary machines and refrigerant pipes, not all auxiliary machines and joints need to be centrally arranged at the aggregation point S, and at least a plurality of auxiliary machines and joints are not necessarily arranged. Is concentrated in the aggregation point S.

上記の構成に加えて、ターボ冷凍機1は、冷媒を検知するセンサ部72と、そのセンサ部72からの情報に基づいて冷媒の漏洩を判断する本体部74とを有する冷媒検知器を備えている。 In addition to the above configuration, the turbo chiller 1 includes a refrigerant detector having a sensor unit 72 for detecting the refrigerant and a main body unit 74 for determining the leakage of the refrigerant based on the information from the sensor unit 72. There is.

本実施形態において、センサ部72は、集約箇所Sの下方に設置されている。詳細には、センサ部72は、右側面視(図2参照)で集約箇所Sを通過する鉛直線上における略下方であって蒸発器20のシェルの最底面と同程度の高さ、かつ、背面視(図4参照)で蒸発器20の延在方向(同図で左右方向)における略中央に設置されている。
集約箇所Sから冷媒が漏洩した場合、空気に対して比重が大きい冷媒は、漏洩箇所の下方に流れ込んで滞留しやすいため、センサ部72を集約箇所Sの下方に設置することで冷媒が検知しやすいからである。
In the present embodiment, the sensor unit 72 is installed below the aggregation point S. Specifically, the sensor unit 72 is substantially below the vertical line passing through the aggregation point S when viewed from the right side (see FIG. 2), is at the same height as the bottom surface of the shell of the evaporator 20, and is at the back surface. Visually (see FIG. 4), the evaporator 20 is installed substantially in the center in the extending direction (horizontal direction in the figure).
When the refrigerant leaks from the collecting point S, the refrigerant having a large specific gravity with respect to the air easily flows under the leaking point and stays there. Therefore, the refrigerant is detected by installing the sensor unit 72 below the collecting point S. Because it is easy.

本体部74は、凝縮器12の下方に設置されている。なお、本体部74の位置は、図示された位置に限定されるものではなく、ターボ冷凍機1の仕様を踏まえて任意の位置に設置できる。 The main body 74 is installed below the condenser 12. The position of the main body 74 is not limited to the position shown in the drawing, and can be installed at any position based on the specifications of the turbo chiller 1.

センサ部72は、冷媒を検知することができ、ターボ冷凍機1を構成する機器や冷媒配管等の冷媒が流通する箇所から冷媒が漏洩した場合にその冷媒を検知できる。
冷媒を検知したセンサ部72は、その情報(検知信号)を後述の本体部74に送信する。
The sensor unit 72 can detect the refrigerant, and can detect the refrigerant when the refrigerant leaks from a place where the refrigerant flows, such as a device constituting the turbo chiller 1 or a refrigerant pipe.
The sensor unit 72 that has detected the refrigerant transmits the information (detection signal) to the main body unit 74, which will be described later.

本体部74は、センサ部72から送信された検知信号を受信することができ、検知信号に基づいて冷媒の漏洩を判断する。
例えば、本体部74は、センサ部72からの検知信号に基づいて冷媒の濃度を算出して、その算出値が所定値を超えた場合に冷媒が漏洩していると判断する。
The main body 74 can receive the detection signal transmitted from the sensor 72, and determines the leakage of the refrigerant based on the detection signal.
For example, the main body 74 calculates the concentration of the refrigerant based on the detection signal from the sensor 72, and determines that the refrigerant is leaking when the calculated value exceeds a predetermined value.

なお、センサ部72と本体部74との通信方式は、有線方式であってもよいし無線方式であってもよい。 The communication method between the sensor unit 72 and the main body 74 may be a wired system or a wireless system.

本実施形態によれば、以下の効果を奏する。
集約箇所Sに集約された補機(油フィルタ30、油冷却器32等)、これらの補機と圧縮機10との接続部、及び/又は、集約箇所Sに集約された配管接合部群40から冷媒が漏洩した場合、その集約箇所Sの下方にセンサ部72を設置することで、センサ部72によって早期かつ効率的に冷媒を検知できる。このとき、本体部74は、センサ部72からの検知信号に基づいて冷媒の漏洩を判断する。つまり、早期かつ効率的に冷媒の漏洩を判断できる。そのうえ、早期に冷媒の漏洩を判断することで、高価とされる冷媒の大量漏洩を抑制することで経済的損失を抑制できる。
According to this embodiment, the following effects are obtained.
Auxiliary equipment (oil filter 30, oil cooler 32, etc.) integrated at the aggregation point S, the connection between these auxiliary equipment and the compressor 10, and / or the pipe joint group 40 integrated at the aggregation point S. When the refrigerant leaks from the oil, the sensor unit 72 can detect the refrigerant quickly and efficiently by installing the sensor unit 72 below the aggregation point S. At this time, the main body 74 determines the leakage of the refrigerant based on the detection signal from the sensor 72. That is, the leakage of the refrigerant can be determined quickly and efficiently. Moreover, by determining the leakage of the refrigerant at an early stage, it is possible to suppress the large amount of leakage of the refrigerant, which is considered to be expensive, and thus the economic loss can be suppressed.

また、別体とされたセンサ部72及び本体部74のうちセンサ部72のみを集約箇所S下方のスペースに設置するので、集約箇所S下方のスペースが狭い場合であっても、センサ部72だけであれば容易にそのスペースに設置できる。 Further, since only the sensor unit 72 of the separate sensor unit 72 and the main body 74 is installed in the space below the aggregation point S, only the sensor unit 72 is installed even when the space below the aggregation point S is narrow. If so, it can be easily installed in that space.

また、集約箇所Sは、圧縮機10の近傍とされているので、圧縮機10を取り外すだけで補機及び配管接合部群40へのアクセスが容易になり、冷媒が漏洩してしまった場合の処置を早急に行うことができる。 Further, since the aggregation point S is located in the vicinity of the compressor 10, access to the auxiliary equipment and the pipe joint group 40 can be easily performed simply by removing the compressor 10, and the refrigerant leaks. Treatment can be done immediately.

なお、センサ部72は、図5及び図6に示すように、右側面視(図5参照)で集約箇所Sを通過する鉛直線上における略下方であって蒸発器20のシェルの最底面と同程度の高さ、かつ、正面視(図6参照)で蒸発器20の延在方向(同図で左右方向)における第2膨張弁18近傍に設置されてもよい。この配置であっても、センサ部72は、集約箇所Sの下方に設置されていることとなるので、早期かつ効率的に冷媒を検知できる。 As shown in FIGS. 5 and 6, the sensor unit 72 is substantially below the vertical line passing through the aggregation point S in the right side view (see FIG. 5) and is the same as the bottom surface of the shell of the evaporator 20. It may be installed in the vicinity of the second expansion valve 18 in the extending direction (left-right direction in the same figure) of the evaporator 20 in a front view (see FIG. 6) at a height of about the same degree. Even with this arrangement, the sensor unit 72 is installed below the aggregation point S, so that the refrigerant can be detected quickly and efficiently.

1 ターボ冷凍機
10 圧縮機
11 電動モータ
12 凝縮器
14 第1膨張弁
16 エコノマイザ
18 第2膨張弁
20 蒸発器
30 油フィルタ(補機)
32 油冷却器(補機)
40 配管接合部群
50 インジェクション配管
72 センサ部(冷媒検知器)
74 本体部(冷媒検知器)
S 集約箇所(所定箇所)
1 Centrifugal chiller 10 Compressor 11 Electric motor 12 Condenser 14 1st expansion valve 16 Economizer 18 2nd expansion valve 20 Evaporator 30 Oil filter (auxiliary machine)
32 Oil cooler (auxiliary machine)
40 Piping joint group 50 Injection piping 72 Sensor section (refrigerant detector)
74 Main body (refrigerant detector)
S Aggregation location (predetermined location)

Claims (3)

圧縮機、凝縮器、膨張器及び蒸発器が冷媒配管によって接続され、微燃性の冷媒が充填された冷凍サイクルと、
冷媒を検知するセンサ部と該センサ部からの情報に基づいて冷媒の漏洩を判断する本体部とを有する冷媒検知器と、
を備え、
冷媒が流通するとともに前記圧縮機に付随する補機、及び前記冷媒配管の接合部は所定箇所に集約され、
前記センサ部は、前記所定箇所の下方に設置されているターボ冷凍機。
A refrigeration cycle in which a compressor, a condenser, an expander and an evaporator are connected by a refrigerant pipe and filled with a slightly flammable refrigerant.
A refrigerant detector having a sensor unit for detecting the refrigerant and a main body unit for determining the leakage of the refrigerant based on the information from the sensor unit.
With
As the refrigerant flows, the auxiliary equipment attached to the compressor and the joints of the refrigerant pipes are gathered at predetermined locations.
The sensor unit is a turbo chiller installed below the predetermined location.
前記所定箇所は、前記圧縮機の近傍とされている請求項1に記載のターボ冷凍機。 The turbo chiller according to claim 1, wherein the predetermined location is in the vicinity of the compressor. 前記圧縮機は、ハウジングの最底面が前記蒸発器のシェルの最上面よりも上方に位置するように配置され、
前記所定箇所は、前記圧縮機の近傍の領域とされ、
前記センサ部は、前記蒸発器の前記シェルの最底面と同程度の高さに配置されている請求項2に記載のターボ冷凍機。
The compressor is arranged so that the bottom surface of the housing is located above the top surface of the shell of the evaporator.
The predetermined location is a region in the vicinity of the compressor.
The turbo chiller according to claim 2, wherein the sensor unit is arranged at the same height as the bottom surface of the shell of the evaporator.
JP2020067563A 2020-04-03 2020-04-03 Turbo freezing machine Pending JP2021162281A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020067563A JP2021162281A (en) 2020-04-03 2020-04-03 Turbo freezing machine
KR1020227037342A KR20220153656A (en) 2020-04-03 2021-03-29 turbo chiller
PCT/JP2021/013427 WO2021200880A1 (en) 2020-04-03 2021-03-29 Turbo refrigerator
CN202180025120.5A CN115335649A (en) 2020-04-03 2021-03-29 Turbo refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020067563A JP2021162281A (en) 2020-04-03 2020-04-03 Turbo freezing machine

Publications (1)

Publication Number Publication Date
JP2021162281A true JP2021162281A (en) 2021-10-11

Family

ID=77928867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020067563A Pending JP2021162281A (en) 2020-04-03 2020-04-03 Turbo freezing machine

Country Status (4)

Country Link
JP (1) JP2021162281A (en)
KR (1) KR20220153656A (en)
CN (1) CN115335649A (en)
WO (1) WO2021200880A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281573A (en) * 1997-02-10 1998-10-23 Daikin Ind Ltd Freezer
JP2009270797A (en) * 2008-05-09 2009-11-19 Daikin Ind Ltd Refrigerating device
JP2013113555A (en) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd Turbo chiller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340462A (en) * 2001-05-18 2002-11-27 Fujitsu General Ltd Electric refrigerator
CN105805845A (en) * 2014-12-31 2016-07-27 广东美的制冷设备有限公司 Window type room air conditioner and control method of window type room air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281573A (en) * 1997-02-10 1998-10-23 Daikin Ind Ltd Freezer
JP2009270797A (en) * 2008-05-09 2009-11-19 Daikin Ind Ltd Refrigerating device
JP2013113555A (en) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd Turbo chiller

Also Published As

Publication number Publication date
WO2021200880A1 (en) 2021-10-07
CN115335649A (en) 2022-11-11
KR20220153656A (en) 2022-11-18

Similar Documents

Publication Publication Date Title
JP6091399B2 (en) Air conditioner
KR101633781B1 (en) Chiller
US20140290292A1 (en) Refrigerating and air-conditioning apparatus
JP2008530511A (en) Refrigeration circuit with improved liquid / vapor receiver
JP4065313B2 (en) Refrigeration cycle equipment
JP2013257121A (en) Refrigerating device
JP2011208860A (en) Air conditioner
JPWO2018230281A1 (en) Air conditioning system, air conditioning method, and control device
JP6340213B2 (en) Turbo refrigerator
JP2003097443A (en) Compressor and refrigeration unit
JP2008249259A (en) Refrigerating air conditioner
JPWO2020241622A1 (en) Refrigeration equipment
KR20110097367A (en) Chiller
JP6987269B2 (en) Refrigeration cycle device
WO2017086343A1 (en) Refrigeration cycle for vehicular air-conditioning device, and vehicle equipped therewith
JP6498299B2 (en) Refrigeration cycle equipment
JP5773711B2 (en) refrigerator
WO2021200880A1 (en) Turbo refrigerator
JP2004175232A (en) Air conditioner for vehicle
CN107208951A (en) Refrigerant amount abnormal detector and refrigerating plant
JP7369030B2 (en) Refrigeration system and refrigeration system control method
JP4278351B2 (en) Oil level detection method and apparatus for compressor
JP2018159496A (en) Condenser for compression type refrigerator
KR101542120B1 (en) Chiller type air conditioner
JP2012163299A (en) Oil returning mechanism of flooded-evaporator, and refrigeration apparatus

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20230216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240404

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240412