JP2021059868A - Base isolation structure for building - Google Patents

Base isolation structure for building Download PDF

Info

Publication number
JP2021059868A
JP2021059868A JP2019183695A JP2019183695A JP2021059868A JP 2021059868 A JP2021059868 A JP 2021059868A JP 2019183695 A JP2019183695 A JP 2019183695A JP 2019183695 A JP2019183695 A JP 2019183695A JP 2021059868 A JP2021059868 A JP 2021059868A
Authority
JP
Japan
Prior art keywords
seismic isolation
building
horizontal rigidity
base isolation
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019183695A
Other languages
Japanese (ja)
Other versions
JP7357504B2 (en
Inventor
寛之 増田
Hiroyuki Masuda
寛之 増田
和宏 佐分利
Kazuhiro Saburi
和宏 佐分利
達彦 前田
Tatsuhiko Maeda
達彦 前田
好徳 芹澤
Yoshinori Serizawa
好徳 芹澤
一高 小島
Kazutaka Kojima
一高 小島
拓己 松田
Takumi Matsuda
拓己 松田
秀俊 ▲高▼山
秀俊 ▲高▼山
Hidetoshi Takayama
隆博 犬山
Takahiro Inuyama
隆博 犬山
史朗 大須賀
Fumiaki Osuga
史朗 大須賀
至 ▲徳▼永
至 ▲徳▼永
Itaru Tokunaga
貴大 中条
Takahiro Nakajo
貴大 中条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=75381293&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2021059868(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2019183695A priority Critical patent/JP7357504B2/en
Publication of JP2021059868A publication Critical patent/JP2021059868A/en
Application granted granted Critical
Publication of JP7357504B2 publication Critical patent/JP7357504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide a base isolation structure of a building capable of effectively suppressing deformation accompanying vibration of an upper structure and a lower structure without requiring a special base isolation rubber support and even though a commercially available base isolation rubber support can be used.SOLUTION: In a base isolation structure of a building, a multi-story building 1 is divided into an upper structure 2 and a lower structure 3, and a base isolation support 5 is installed on an intermediate floor 4 between the upper structure 2 and the lower structure 3 so that the upper structure 2 functions as a weight of a TMD, the base isolation bearing 5 is a base isolation rubber bearing 5 and has 2.0 - 4.0 times higher horizontal rigidity than the normal horizontal rigidity corresponding to the axial force to be normally borne.SELECTED DRAWING: Figure 1

Description

本発明は、多層階の建物が、上部構造物と下部構造物とに区分けされ、その上部構造物がTMDの錘として機能するように、前記上部構造物と下部構造物との間の中間階に免震支承が設置される建物の免震構造に関する。 In the present invention, a multi-story building is divided into a superstructure and a substructure, and the intermediate floor between the superstructure and the substructure so that the superstructure functions as a weight of the TMD. Regarding the seismic isolation structure of the building where the seismic bearing is installed.

このような建物の免震構造としては、従来、免震支承として積層ゴムからなる免震ゴム支承を使用したものが知られており、その場合、積層ゴムとして、通常負担すべき軸力に見合う通常の水平剛性を有する積層ゴムを選択して使用していたのが実情である。しかしながら、その場合、上部構造物の震動は抑制できるが、逆に、下部構造物の震動が大きくなり、この点に改良の余地があった。
そこで、従来、免震支承である積層ゴムとして、特異な数式により算出される水平剛性を有する積層ゴムを使用し、更に、特異な数式により算出される減衰定数を備えた減衰力発生手段(オイルダンパ)を使用することで、上部構造物の震動に加えて下部構造物の震動も抑制するように構成したものが提案された(例えば、特許文献1参照)。
As a seismic isolation structure of such a building, a seismic isolation bearing made of laminated rubber is conventionally known as a seismic isolation bearing, and in that case, the laminated rubber is commensurate with the axial force normally to be borne. The reality is that laminated rubber with normal horizontal rigidity was selected and used. However, in that case, although the vibration of the superstructure can be suppressed, the vibration of the substructure becomes large, and there is room for improvement in this respect.
Therefore, conventionally, as the laminated rubber that is a seismic isolation bearing, a laminated rubber having horizontal rigidity calculated by a peculiar formula is used, and further, a damping force generating means (oil) having a damping constant calculated by a peculiar formula. It has been proposed that the damper) is used to suppress not only the vibration of the superstructure but also the vibration of the substructure (see, for example, Patent Document 1).

特開2007−2455号公報(特に、図1(B)および段落[0037]参照)JP-A-2007-2455 (see, in particular, FIG. 1 (B) and paragraph [0037]).

しかしながら、上記特許文献1に記載の従来技術では、特殊な水平剛性を有する積層ゴムを必要とするため、必ずしも市販の免震用の積層ゴムをそのまま使用し得るとは限らず、場合によっては、特注する必要があり、材料費の高騰を招く可能性がある。その上、減衰力発生手段も必要不可欠で、かつ、その減衰力発生手段に関しても、市販のものがそのまま使用し得るとは限らず、特注の可能性もある。 However, since the conventional technique described in Patent Document 1 requires a laminated rubber having a special horizontal rigidity, it is not always possible to use a commercially available laminated rubber for seismic isolation as it is, and in some cases, it may be possible to use the laminated rubber for seismic isolation. It needs to be custom-made, which may lead to soaring material costs. Moreover, the damping force generating means is also indispensable, and the damping force generating means may not always be commercially available as it is, and may be custom-made.

本発明は、このような従来の問題点に着目したもので、その目的は、特殊な免震ゴム支承を必要とせず、市販の免震ゴム支承を使用し得るのもかかわらず、上部構造物と下部構造物の震動に伴う変形を効果的に抑制することが可能な建物の免震構造を提供することにある。 The present invention focuses on such a conventional problem, and an object thereof is a superstructure, although a commercially available seismic isolation rubber bearing can be used without requiring a special seismic isolation rubber bearing. The purpose is to provide a seismic isolation structure for a building that can effectively suppress deformation of the substructure due to vibration.

本発明の第1特徴構成は、多層階の建物が、上部構造物と下部構造物とに区分けされ、その上部構造物がTMDの錘として機能するように、前記上部構造物と下部構造物との間の中間階に免震支承が設置される建物の免震構造であって、前記免震支承が、免震ゴム支承であって、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0〜4.0倍の高い水平剛性を有する点にある。 The first characteristic configuration of the present invention is that the multi-story building is divided into a superstructure and a substructure, and the superstructure and the substructure are divided so that the superstructure functions as a weight of the TMD. It is a seismic isolation structure of a building where a seismic isolation bearing is installed on the middle floor between the two, and the seismic isolation bearing is a seismic isolation rubber bearing, which has a normal horizontal rigidity commensurate with the axial force to be normally borne. The point is that it has a high horizontal rigidity of 2.0 to 4.0 times.

本構成によれば、建物の中間階に設置される免震支承が、免震ゴム支承であって、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0〜4.0倍の高い水平剛性を有するので、例えば、市販の免震ゴム支承を使用しても、上部構造物の震動に伴う変形はもちろんのこと、下部構造物の変形も効果的に抑制することができる。
すなわち、後に詳しく説明するように、本発明者らが各種のシミュレーションを繰り返して解析を試みた結果、免震ゴム支承が、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0〜4.0倍の高い水平剛性を有する場合、特にオイルダンパなどの減衰力発生手段を使用しなくても、上部構造物の震動に加えて、下部構造物の震動をも抑制し得る事実を知見するに至った。
本発明は、このような新知見に基づくものであり、特殊な免震ゴム支承を必要とせず、市販の免震ゴム支承を使用し得るのもかかわらず、上部構造物と下部構造物の震動に伴う変形を効果的に抑制することが可能となる。
According to this configuration, the seismic isolation bearing installed on the middle floor of the building is a seismic isolation rubber bearing, which is 2.0 to 4.0 with respect to the normal horizontal rigidity commensurate with the axial force that should normally be borne. Since it has twice as high horizontal rigidity, for example, even if a commercially available seismic isolation rubber bearing is used, not only the deformation of the superstructure due to the vibration but also the deformation of the substructure can be effectively suppressed. ..
That is, as will be described in detail later, as a result of repeated analysis by the present inventors, the seismic isolation rubber bearing has a normal horizontal rigidity corresponding to the axial force that should normally be borne. The fact that when the horizontal rigidity is 0 to 4.0 times higher, it is possible to suppress the vibration of the substructure in addition to the vibration of the superstructure without using a damping force generating means such as an oil damper. Came to discover.
The present invention is based on such new findings, does not require a special seismic isolation rubber bearing, and although a commercially available seismic isolation rubber bearing can be used, the vibration of the superstructure and the substructure It is possible to effectively suppress the deformation caused by the above.

本発明の第2特徴構成は、前記免震ゴム支承が、前記通常の水平剛性に対して、2.5〜3.0倍の高い水平剛性を有する点にある。 The second characteristic configuration of the present invention is that the seismic isolation rubber bearing has a horizontal rigidity 2.5 to 3.0 times higher than the normal horizontal rigidity.

本構成によれば、免震ゴム支承が、通常の水平剛性に対して、2.5〜3.0倍の高い水平剛性を有するので、後述するシミュレーション結果から明らかなように、たとえオイルダンパなどの減衰力発生手段を設けなくても、上部構造物と下部構造物の震動を確実に抑制することができる。 According to this configuration, the seismic isolation rubber bearing has a horizontal rigidity 2.5 to 3.0 times higher than the normal horizontal rigidity. Therefore, as is clear from the simulation results described later, even an oil damper or the like It is possible to reliably suppress the vibration of the superstructure and the substructure without providing the damping force generating means.

本発明の第3特徴構成は、前記中間階が、前記多層階の建物の上から1/2〜1/4の高さ階に設定される点にある。 The third characteristic configuration of the present invention is that the intermediate floor is set to a height of 1/2 to 1/4 from the top of the multi-story building.

本構成によれば、免震ゴム支承を設置する中間階が、多層階の建物の上から1/2〜1/4の高さ階に設定されるので、建物の上部構造物と下部構造物との質量上の関係、つまり、TMDの錘として機能する上部構造物の質量が、下部構造物の質量に対して理想に近い状態となり、上部構造物、下部構造物、および、免震ゴム支承で構成される震動系が、所望どおりに機能して確実な制震が可能となる。 According to this configuration, the middle floor where the seismic isolation rubber support is installed is set to the height of 1/2 to 1/4 from the top of the multi-story building, so the upper and lower structures of the building In other words, the mass of the superstructure that functions as the weight of the TMD is close to the ideal with respect to the mass of the substructure, and the superstructure, the substructure, and the seismic isolation rubber support The seismic system composed of the above functions as desired and enables reliable seismic isolation.

本発明の第4特徴構成は、前記中間階が、前記多層階の建物の上から1/3程度の高さ階に設定される点にある。 The fourth characteristic configuration of the present invention is that the intermediate floor is set to a height of about 1/3 from the top of the multi-story building.

本構成によれば、免震ゴム支承を設置する中間階が、多層階の建物の上から1/3程度の高さ階に設定されるので、上部構造物、下部構造物、および、免震ゴム支承で構成される震動系は、更に理想に近い状態となり、より一層確実な制震が可能となる。
特に、免震ゴム支承が、通常の水平剛性に対して、2.5〜3.0倍の高い水平剛性を有する場合には、理想に近い震動系との協働作用によって更に顕著な制震効果を期待することができる。
According to this configuration, the middle floor where the seismic isolation rubber bearings are installed is set to a height of about 1/3 from the top of the multi-story building, so the superstructure, substructure, and seismic isolation The seismic system composed of rubber bearings will be in a state closer to the ideal, and more reliable seismic control will be possible.
In particular, when the seismic isolation rubber bearing has a horizontal rigidity 2.5 to 3.0 times higher than the normal horizontal rigidity, the vibration control is more remarkable due to the cooperative action with the vibration system close to the ideal. The effect can be expected.

本発明の建物の免震構造を示す概略模式図Schematic schematic diagram showing the seismic isolation structure of the building of the present invention 本発明の制震効果を示すグラフGraph showing the damping effect of the present invention 比較例の制震効果を示すグラフGraph showing the damping effect of the comparative example 比較例の制震効果を示すグラフGraph showing the damping effect of the comparative example

本発明による建物の免震構造の実施形態を図面に基づいて説明する。
本発明の建物の免震構造は、図1に示すように、例えば、22階建ての多層階の建物1が、15階以上の上部構造物2と14階以下の下部構造物3とに区分けされ、その上部構造物2がTMD(チューンドマスダンパー)の錘として機能するように、上部構造物2と下部構造物3との間の中間階4に免震支承としての免震ゴム支承5が設置される。つまり、14階と15階との間の中間階4において、複数の柱6のそれぞれに免震ゴム支承5が介装されて設置される。
そして、各免震ゴム支承5としては、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0〜4.0倍の高い水平剛性を有する市販の免震ゴム支承5が使用される。
An embodiment of the seismic isolation structure of a building according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the seismic isolation structure of the building of the present invention is, for example, divided into a 22-story multi-story building 1 into an upper structure 2 having 15 or more floors and a substructure 3 having 14 floors or less. A seismic isolation rubber support 5 as a seismic isolation support is provided on the intermediate floor 4 between the upper structure 2 and the lower structure 3 so that the upper structure 2 functions as a weight of the TMD (tuned mass damper). Will be installed. That is, on the intermediate floor 4 between the 14th floor and the 15th floor, seismic isolation rubber bearings 5 are installed on each of the plurality of pillars 6.
As each seismic isolation rubber bearing 5, a commercially available seismic isolation rubber bearing 5 having a horizontal rigidity 2.0 to 4.0 times higher than the normal horizontal rigidity corresponding to the axial force to be normally borne is used. Will be done.

本発明者らが各種のシミュレーションを繰り返して解析を試みた結果、上述したように、免震ゴム支承5として、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0〜4.0倍の高い水平剛性を有する免震ゴム支承5を使用することにより、多層階の建物1の上部構造物2と下部構造物3の震動を効果的に抑制し得ることを知見するに至った。
そのシミュレーションの一例について説明すると、22階建ての多層階ビルを対象として、免震ゴム支承5を設置しない場合と設置した場合における各層の層間変形角について解析した。その結果が図2〜図4のグラフであり、各グラフにおいて、縦軸はビルの階層、横軸は層間変形角(×1/1000rad)を示し、〇と●は日本において過去に発生した2つの地震の具体的な振動を付与したときの結果を示す。なお、免震ゴム支承5は、14階と15階の間に設置するものとし、その場合、15階以上の上部構造物2の重量は、13.256(t)×9.8(N/kg)で、19本の柱6にそれぞれ免震ゴム支承5を介装して設置するとすれば、免震ゴム支承5ひとつ当たりにかかる重量は、13.256(t)×9.8(N/kg)/19≒6837(kN)となる。
As a result of repeated analysis by the present inventors by repeating various simulations, as described above, as the seismic isolation rubber bearing 5, 2.0 to 4 is obtained with respect to the normal horizontal rigidity corresponding to the axial force normally to be borne. It has been found that the seismic isolation rubber bearing 5 having a high horizontal rigidity of 0.0 times can effectively suppress the vibration of the superstructure 2 and the substructure 3 of the multi-story building 1. It was.
Explaining an example of the simulation, we analyzed the inter-story deformation angle of each layer when the seismic isolation rubber bearing 5 was not installed and when it was installed in a 22-story multi-story building. The results are the graphs of FIGS. 2 to 4. In each graph, the vertical axis indicates the building hierarchy, the horizontal axis indicates the inter-story deformation angle (× 1/1000 rad), and 〇 and ● indicate the past occurrences in Japan 2 The results when concrete vibrations of two earthquakes are applied are shown. The seismic isolation rubber bearing 5 shall be installed between the 14th and 15th floors, and in that case, the weight of the superstructure 2 on the 15th floor and above shall be 13.256 (t) x 9.8 (N /). If the seismic isolation rubber bearings 5 are installed on each of the 19 pillars 6 with kg), the weight per seismic isolation rubber bearing 5 is 13.256 (t) x 9.8 (N). / Kg) / 19≈6837 (kN).

図3のグラフは、免震ゴム支承5を設置しない普通の多層階ビルの場合であり、〇も●も共に、15階付近の階において12/1000radに設定した基準線を上回る大きな変形が確認され、特に、〇について顕著な変形が確認される。
図4のグラフは、通常負担すべき軸力に見合う通常の水平剛性を有する免震ゴム支承5を設置した場合である。例えば、(株)ブリヂストン製の天然ゴム系積層ゴムのNHシリーズを使用するとすれば、ひとつの免震ゴム支承5の負担軸力が6837(kN)であるから、安全を見込んで軸力7630(kN)のNH09064(製品呼称)の免震ゴム支承5を使用することになり、その免震ゴム支承5は1.26(×1000kN/m)の水平剛性を備えている。そのNH09064を設置した場合には、図4のグラフから明らかなように、15階付近の階を含む上部階において顕著な制震効果が確認される反面、5階より下の下部階において基準線を上回る非常に大きな変形が認められる。
なお、この図4のグラフと後述する図2のグラフにおいて、グラフの線が分断している部分は、免震ゴム支承5を設置した中間階近辺の階層である。
The graph in Fig. 3 shows the case of an ordinary multi-story building without seismic isolation rubber bearings 5, and both 〇 and ● confirmed large deformation exceeding the reference line set at 12/1000 rad on the floor near the 15th floor. In particular, a remarkable deformation is confirmed for 〇.
The graph of FIG. 4 shows a case where a seismic isolation rubber bearing 5 having a normal horizontal rigidity corresponding to an axial force to be normally borne is installed. For example, if the NH series of natural rubber laminated rubber manufactured by Bridgestone Co., Ltd. is used, the bearing axial force of one seismic isolation rubber bearing 5 is 6738 (kN), so the axial force 7630 (kN) in anticipation of safety. The seismic isolation rubber bearing 5 of NH09064 (product name) of kN) will be used, and the seismic isolation rubber bearing 5 has a horizontal rigidity of 1.26 (× 1000 kN / m). When the NH09064 is installed, as is clear from the graph in FIG. 4, a remarkable damping effect is confirmed on the upper floors including the floors near the 15th floor, but the reference line is on the lower floors below the 5th floor. Very large deformation is observed.
In the graph of FIG. 4 and the graph of FIG. 2 to be described later, the portion where the line of the graph is divided is the layer near the middle floor where the seismic isolation rubber bearing 5 is installed.

それに対して、図2のグラフは、通常負担すべき軸力に見合う通常の水平剛性に対して、約2.7倍の水平剛性を有する免震ゴム支承5を設置した場合、つまり、本発明の場合である。すなわち、(株)ブリヂストン製の天然ゴム系積層ゴムのNHシリーズを使用するとすれば、ひとつの免震ゴム支承の負担軸力が6837(kN)であり、通常、軸力7630(kN)で水平剛性1.26(×1000kN/m)のNH09064を使用すべきところ、水平剛性が3.46(×1000kN/m)で、通常の水平剛性に対して、3.46÷1.26≒2.7倍の水平剛性を有するNH15064(製品呼称)の免震ゴム支承5を使用することになり、26500(kN)の軸力を備えている。
本発明の場合には、図2のグラフから明らかなように、オイルダンパなどの減衰力発生手段を併用していないにもかかわらず、下部階における大きな変形も認められず、ほぼ全階にわたって基準線を下回る良好な制震効果が確認される。
On the other hand, the graph of FIG. 2 shows the case where the seismic isolation rubber bearing 5 having a horizontal rigidity of about 2.7 times the normal horizontal rigidity corresponding to the axial force to be normally borne is installed, that is, the present invention. This is the case. That is, if the NH series of natural rubber-based laminated rubber manufactured by Bridgestone Co., Ltd. is used, the bearing axial force of one seismic isolation rubber bearing is 6837 (kN), which is usually horizontal at an axial force of 7630 (kN). Where NH09064 with a rigidity of 1.26 (× 1000 kN / m) should be used, the horizontal rigidity is 3.46 (× 1000 kN / m), and 3.46 ÷ 1.26 ≈ 2. NH15064 (product name) seismic isolation rubber bearing 5 having 7 times the horizontal rigidity will be used, and it has an axial force of 26500 (kN).
In the case of the present invention, as is clear from the graph of FIG. 2, no large deformation was observed in the lower floors even though the damping force generating means such as the oil damper was not used in combination, and the reference was made over almost all floors. Good seismic control effect below the line is confirmed.

その他にも種々のシミュレーションを試みた結果、免震ゴム支承5の水平剛性に関しては、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0〜4.0倍の高い水平剛性を有するものが適用可能であり、特に、通常の水平剛性に対して、2.5〜3.0倍の高い水平剛性を有するものが好ましいことが判明した。
同様に、免震ゴム支承5を設置する中間階4に関しては、多層階の建物1の上から1/2〜1/4の高さ階に設定するのがよく、特に、多層階の建物1の上から1/3程度の高さ階に設定するのが好ましいことが判明した。
なお、本発明の実施に際しては、必ずしもオイルダンパなどの減衰力発生手段を併用する必要はないが、制震効果を更に向上させるために減衰力発生手段を併用することは可能である。
As a result of various other simulations, the horizontal rigidity of the seismic isolation rubber support 5 is 2.0 to 4.0 times higher than the normal horizontal rigidity corresponding to the axial force to be normally borne. It has been found that the one having the above is applicable, and in particular, the one having a horizontal rigidity 2.5 to 3.0 times higher than the normal horizontal rigidity is preferable.
Similarly, regarding the intermediate floor 4 where the seismic isolation rubber bearing 5 is installed, it is preferable to set the height of the building 1 on the multi-story floor to 1/2 to 1/4, and in particular, the building 1 on the multi-story floor. It was found that it is preferable to set the floor to a height of about 1/3 from the top.
In carrying out the present invention, it is not always necessary to use a damping force generating means such as an oil damper together, but it is possible to use a damping force generating means together in order to further improve the vibration control effect.

1 多層階の建物
2 上部構造物
3 下部構造物
4 中間階
5 免震ゴム支承

1 Multi-story building 2 Superstructure 3 Substructure 4 Intermediate floor 5 Seismic isolation rubber bearings

Claims (4)

多層階の建物が、上部構造物と下部構造物とに区分けされ、その上部構造物がTMDの錘として機能するように、前記上部構造物と下部構造物との間の中間階に免震支承が設置される建物の免震構造であって、
前記免震支承が、免震ゴム支承であって、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0〜4.0倍の高い水平剛性を有する建物の免震構造。
The multi-story building is divided into a superstructure and a substructure, and a seismic isolation support is provided on the intermediate floor between the superstructure and the substructure so that the superstructure functions as a weight of the TMD. It is a seismic isolation structure of the building where
The seismic isolation bearing is a seismic isolation rubber bearing, and has a seismic isolation structure of a building having a high horizontal rigidity of 2.0 to 4.0 times that of a normal horizontal rigidity corresponding to an axial force to be normally borne.
前記免震ゴム支承が、前記通常の水平剛性に対して、2.5〜3.0倍の高い水平剛性を有する請求項1に記載の建物の免震構造。 The seismic isolation structure of a building according to claim 1, wherein the seismic isolation rubber bearing has a horizontal rigidity 2.5 to 3.0 times higher than the normal horizontal rigidity. 前記中間階が、前記多層階の建物の上から1/2〜1/4の高さ階に設定される請求項1または2に記載の建物の免震構造。 The seismic isolation structure of the building according to claim 1 or 2, wherein the intermediate floor is set to a height of 1/2 to 1/4 from the top of the multi-story building. 前記中間階が、前記多層階の建物の上から1/3程度の高さ階に設定される請求項3に記載の建物の免震構造。


The seismic isolation structure of the building according to claim 3, wherein the intermediate floor is set to a height of about 1/3 from the top of the multi-story building.


JP2019183695A 2019-10-04 2019-10-04 Seismic isolation structure of buildings Active JP7357504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019183695A JP7357504B2 (en) 2019-10-04 2019-10-04 Seismic isolation structure of buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019183695A JP7357504B2 (en) 2019-10-04 2019-10-04 Seismic isolation structure of buildings

Publications (2)

Publication Number Publication Date
JP2021059868A true JP2021059868A (en) 2021-04-15
JP7357504B2 JP7357504B2 (en) 2023-10-06

Family

ID=75381293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019183695A Active JP7357504B2 (en) 2019-10-04 2019-10-04 Seismic isolation structure of buildings

Country Status (1)

Country Link
JP (1) JP7357504B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002455A (en) * 2005-06-22 2007-01-11 Fujita Corp Vibration control device
JP2007278340A (en) * 2006-04-04 2007-10-25 Takenaka Komuten Co Ltd Method for installing damper for seismically isolated structure and damping structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002455A (en) * 2005-06-22 2007-01-11 Fujita Corp Vibration control device
JP2007278340A (en) * 2006-04-04 2007-10-25 Takenaka Komuten Co Ltd Method for installing damper for seismically isolated structure and damping structure

Also Published As

Publication number Publication date
JP7357504B2 (en) 2023-10-06

Similar Documents

Publication Publication Date Title
Allen et al. Control of floor vibration
JP2015227605A (en) Vibration control device and building comprising the same
JP5413681B2 (en) 3D seismic isolation system
JP2007002455A (en) Vibration control device
JP2021059868A (en) Base isolation structure for building
TW201544668A (en) Boiler support structure
JP2010203150A (en) Seismic response control frame
JP2017071908A (en) Multistoried base-isolated structure
JP2013104231A (en) Base-isolated building, and design method for the same
JP2006144476A (en) Base-isolating device and building structure
KR102015561B1 (en) Vibration control system for lateral force reduction of apartment building
JP6298402B2 (en) Partial seismic isolation structure
JP5586566B2 (en) Damping structure
JP2017125324A (en) Base isolation structure
JPH10311162A (en) Base isolated building
JP5327647B2 (en) Damping structure
JP2017071909A (en) Multistoried base-isolated structure
JP6951860B2 (en) Seismic isolation structure
JP2016135944A (en) Base-isolation structure
JP2014156707A (en) Vibration control structure
JP2016151278A (en) Vibration control device
JP2007138421A (en) Floor structure
JP7502144B2 (en) Vibration-damping structure
JP2016056875A (en) Seismic base isolation structure with vibration control function
JP2015014091A (en) Base-isolated building and base isolation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230926

R150 Certificate of patent or registration of utility model

Ref document number: 7357504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150