JP2020176822A - Distributor, heat exchanger, indoor machine, outdoor machine and air conditioner - Google Patents

Distributor, heat exchanger, indoor machine, outdoor machine and air conditioner Download PDF

Info

Publication number
JP2020176822A
JP2020176822A JP2019203695A JP2019203695A JP2020176822A JP 2020176822 A JP2020176822 A JP 2020176822A JP 2019203695 A JP2019203695 A JP 2019203695A JP 2019203695 A JP2019203695 A JP 2019203695A JP 2020176822 A JP2020176822 A JP 2020176822A
Authority
JP
Japan
Prior art keywords
refrigerant
pipes
heat exchanger
space
distributor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019203695A
Other languages
Japanese (ja)
Other versions
JP6840212B2 (en
Inventor
法福 守
Mamoru Hofuku
守 法福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2019203695A priority Critical patent/JP6840212B2/en
Publication of JP2020176822A publication Critical patent/JP2020176822A/en
Application granted granted Critical
Publication of JP6840212B2 publication Critical patent/JP6840212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

To provide a distributor, etc. capable of improving drift of refrigerant even in a case where an operation load is low, having a simple structure and capable of being provided at low cost.SOLUTION: A distributor comprises: a tubular member 62 having, on side surfaces, a plurality of insertion ports 60 into which a plurality of pipes are inserted, and a supply port 61 to which a refrigerant is supplied; first and second closing members 63, 64 that close two points in a longitudinal direction of the tubular member 62; and a partition member 67 that divides the internal space of the tubular member 62 into a space on the insertion port side and a space on the supply port side. The partition member 67 comprises two protrusion parts 68, 69 that contact the tips of the plurality of inserted pipes, and has a passage 70 between the two protrusion parts 68, 69 through which the refrigerant flows on the closing member 64 side from the insertion port closest to the closing member 64.SELECTED DRAWING: Figure 6

Description

本発明は、複数の管に冷媒を分配する分配器、該分配器を含む熱交換器、該熱交換器を含む室内機および室外機、該室内機と該室外機とを含む空気調和装置に関する。 The present invention relates to a distributor that distributes a refrigerant to a plurality of pipes, a heat exchanger including the distributor, an indoor unit and an outdoor unit including the heat exchanger, and an air conditioner including the indoor unit and the outdoor unit. ..

空気調和装置は、室内機と室外機との間で冷媒を循環し、冷媒と空気との間で熱交換を行い、室内を冷却し、または暖める。このため、室内機および室外機は、それぞれ熱交換器を備え、一方の熱交換器が冷媒の蒸発器として用いられる。熱交換器としては、例えば熱交換効率が高い、両端に管寄せ(ヘッダ)を有する扁平管熱交換器が用いられている。 The air conditioner circulates the refrigerant between the indoor unit and the outdoor unit, exchanges heat between the refrigerant and the air, and cools or warms the room. Therefore, each of the indoor unit and the outdoor unit is provided with a heat exchanger, and one of the heat exchangers is used as a refrigerant evaporator. As the heat exchanger, for example, a flat tube heat exchanger having high heat exchange efficiency and having tube gatherings (headers) at both ends is used.

扁平管熱交換器を蒸発器として用いる場合、冷媒入口側のヘッダ内は、冷媒が気液二相状態であり、気液の密度差が大きいことから、各伝熱管へ冷媒を分配する際、気液が均等になるように分配することは難しい。このため、熱交換器の伝熱面積を有効に利用することができず、空気調和装置のエネルギー効率が低下するという問題があった。 When a flat tube heat exchanger is used as an evaporator, the refrigerant is in a gas-liquid two-phase state in the header on the refrigerant inlet side, and the difference in gas-liquid density is large. Therefore, when distributing the refrigerant to each heat transfer tube, It is difficult to distribute the gas and liquid evenly. Therefore, there is a problem that the heat transfer area of the heat exchanger cannot be effectively used and the energy efficiency of the air conditioner is lowered.

そこで、扁平管が差し込まれた下側部分の冷媒流路の断面積を、バイパス配管が接続された上側部分の冷媒流路の断面積より小さくし、循環流を発生し易くして、冷媒を略均等に分配する技術や、ヘッダ内を仕切部材で2つの空間に仕切り、上連通路と下連通路を設け、気液二相の冷媒を循環させ、冷媒の偏流を抑制する技術等が提案されている(例えば、特許文献1、2参照)。 Therefore, the cross-sectional area of the lower portion of the refrigerant flow path into which the flat pipe is inserted is made smaller than the cross-sectional area of the upper portion of the refrigerant flow path to which the bypass pipe is connected to facilitate the generation of circulating flow, and the refrigerant is used. Proposed a technology to distribute the refrigerant almost evenly, and a technology to divide the inside of the header into two spaces with a partition member, provide an upper passage and a lower passage, circulate the two-phase gas-liquid refrigerant, and suppress the drift of the refrigerant. (See, for example, Patent Documents 1 and 2).

特開2017−141999号公報JP-A-2017-141999 特開2015−68623号公報JP-A-2015-68623

しかしながら、上記特許文献1に記載の技術では、運転負荷が低い場合、充分な引き込み効果が得られず、液冷媒がヘッダ内で落下し、偏流が改善されないという問題があった。 However, the technique described in Patent Document 1 has a problem that when the operating load is low, a sufficient drawing effect cannot be obtained, the liquid refrigerant falls in the header, and the drift flow is not improved.

上記特許文献2に記載の技術では、運転負荷が低い場合でも、偏流を抑制することができるが、冷媒を循環させる必要があるため、構造が複雑になり、また、扁平管より下側のヘッダ内に流入部を設ける必要があるため、部材が増加し、安価に提供することができないといった問題があった。 The technique described in Patent Document 2 can suppress the drift even when the operating load is low, but the structure becomes complicated because the refrigerant needs to be circulated, and the header below the flat tube Since it is necessary to provide an inflow portion inside, there is a problem that the number of members increases and it cannot be provided at low cost.

本発明は、上記課題に鑑み、複数の管に冷媒を分配する分配器であって、
側面に複数の管が挿入される複数の挿入口と冷媒が供給される供給口とを備える管状部と、
管状部の長手方向の2箇所を閉鎖する第1および第2の閉鎖部と、
第1の閉鎖部から第2の閉鎖部へ向けて延び、管状部の内部空間を挿入口側の空間と供給口側の空間とに分割する仕切部と
を含み、
仕切部が、複数の挿入口に挿入された複数の管の先端と当接する2つの突出部を含み、2つの突出部間であって、第1の閉鎖部に最も近い挿入口より第1の閉鎖部側に冷媒が流通する通路を有し、
供給口が、第1の閉鎖部と第2の閉鎖部の中央より第2の閉鎖部側の管状部の側面に設けられる、分配器が提供される。
In view of the above problems, the present invention is a distributor that distributes a refrigerant to a plurality of pipes.
A tubular portion having a plurality of insertion ports into which a plurality of pipes are inserted on the side surfaces and a supply port to which a refrigerant is supplied, and
A first and second closure that closes two locations in the longitudinal direction of the tubular portion,
It includes a partition extending from the first closed portion toward the second closed portion and dividing the internal space of the tubular portion into a space on the insertion port side and a space on the supply port side.
The partition includes two protrusions that abut the tips of the plurality of tubes inserted into the plurality of insertion openings, and is between the two protrusions and is the first from the insertion opening closest to the first closure. It has a passage for the refrigerant to flow on the closed side,
A distributor is provided in which the supply port is provided on the side surface of the tubular portion on the second closed portion side from the center of the first closed portion and the second closed portion.

本発明によれば、運転負荷が低い場合でも冷媒の偏流を改善することができ、簡単な構造で、安価で提供することが可能となる。 According to the present invention, the drift of the refrigerant can be improved even when the operating load is low, and the refrigerant can be provided with a simple structure at low cost.

空気調和装置の構成例を示した図。The figure which showed the configuration example of the air conditioner. 室内機および室外機の構成例を示した図。The figure which showed the configuration example of an indoor unit and an outdoor unit. 室内機および室外機の動作について説明する図。The figure explaining the operation of an indoor unit and an outdoor unit. 室内機および室外機が備える熱交換器の一例を示した図。The figure which showed an example of the heat exchanger provided in the indoor unit and the outdoor unit. 熱交換器内に発生する偏流について説明する図。The figure explaining the drift flow generated in a heat exchanger. 熱交換器に設けられる分配器の第1の例を示した図。The figure which showed the 1st example of the distributor provided in the heat exchanger. 熱交換器に設けられる分配器の第2の例を示した図。The figure which showed the 2nd example of the distributor provided in the heat exchanger. 熱交換器に設けられる分配器の第3の例を示した図。The figure which showed the 3rd example of the distributor provided in the heat exchanger. 室内機内の熱交換器の配置の一例を示した図。The figure which showed an example of the arrangement of the heat exchanger in the indoor unit. 冷媒の偏流の試験結果を示した表。A table showing the test results of the drift of the refrigerant.

図1は、空気調和装置の構成例を示した図である。空気調和装置は、同一空間内に設けられる1以上の室内機と、その空間の外部に設置される1以上の室外機とを含む。また、空気調和装置は、ユーザが操作するためのリモートコントローラを含む。 FIG. 1 is a diagram showing a configuration example of an air conditioner. The air conditioner includes one or more indoor units installed in the same space and one or more outdoor units installed outside the space. The air conditioner also includes a remote controller for user operation.

図1に例示した装置は、室内に設置された1台の室内機10と、室外に設置された1台の室外機11と、室内機10を運転するための1個のリモートコントローラ12とから構成されている。 The device illustrated in FIG. 1 is composed of one indoor unit 10 installed indoors, one outdoor unit 11 installed outdoors, and one remote controller 12 for operating the indoor unit 10. It is configured.

室内機10と室外機11とは、2本の配管13により接続され、配管13内を冷媒が循環するように構成されている。冷媒は、熱を移動させるために用いられる熱媒体で、ハイドロフルオロカーボン(HFC)やハイドロフルオロオレフィン(HFO)等が用いられる。 The indoor unit 10 and the outdoor unit 11 are connected by two pipes 13 so that the refrigerant circulates in the pipe 13. The refrigerant is a heat medium used for transferring heat, and hydrofluorocarbon (HFC), hydrofluoroolefin (HFO), or the like is used.

リモートコントローラ12は、電源ボタンや温度設定ボタン等の各種の入力ボタンを備え、室内機10との間で通信を行う。リモートコントローラ12は、ユーザの入力を受けて、室内機10に対し、運転の開始や停止を指示し、設定温度等の情報を通知する。室内機10と室外機11とは、通信ケーブル等により接続され、室内機10と室外機11との間で通信を行う。この通信により、室内機10は、室外機11に対し、運転の開始や停止を指示し、室内温度や設定温度等の情報を通知する。室外機11は、室内機10からの指示を受けて、運転を開始または停止し、室内機10からの情報を取得して、室内温度を設定温度に近づけるように運転負荷を変える。 The remote controller 12 includes various input buttons such as a power button and a temperature setting button, and communicates with the indoor unit 10. Upon receiving the user's input, the remote controller 12 instructs the indoor unit 10 to start or stop the operation, and notifies the indoor unit 10 of information such as the set temperature. The indoor unit 10 and the outdoor unit 11 are connected by a communication cable or the like, and communication is performed between the indoor unit 10 and the outdoor unit 11. By this communication, the indoor unit 10 instructs the outdoor unit 11 to start or stop the operation, and notifies the information such as the indoor temperature and the set temperature. The outdoor unit 11 starts or stops operation in response to an instruction from the indoor unit 10, acquires information from the indoor unit 10, and changes the operating load so that the indoor temperature approaches the set temperature.

図2は、室内機10および室外機11の構成例を示した図である。図2(a)は、室内機10の構成例を示し、図2(b)は、室外機11の構成例を示す。 FIG. 2 is a diagram showing a configuration example of the indoor unit 10 and the outdoor unit 11. FIG. 2A shows a configuration example of the indoor unit 10, and FIG. 2B shows a configuration example of the outdoor unit 11.

室内機10は、室内の空気を吸い込み、吹き出すファン20と、吸い込んだ空気を温め、または冷却する熱交換器21と、室内機10を制御する制御基板22とを備えている。室内機10は、室内の温度を測定する温度センサ、室内の湿度を測定する湿度センサ等を備えることができる。 The indoor unit 10 includes a fan 20 that sucks in and blows out indoor air, a heat exchanger 21 that heats or cools the sucked air, and a control board 22 that controls the indoor unit 10. The indoor unit 10 can be provided with a temperature sensor for measuring the temperature in the room, a humidity sensor for measuring the humidity in the room, and the like.

制御基板22は、ユーザが操作するリモートコントローラ12と通信を行い、リモートコントローラ12から指示を受けて、室内機10を運転または停止し、運転モード、温度、湿度、風量等の設定や変更を行う。また、制御基板22は、温度センサ等で測定された室内温度等や設定温度等の情報を室外機11に通知する。さらに、制御基板22は、ファン20を制御し、設定温度や設定風量になるように風量を調整する。 The control board 22 communicates with the remote controller 12 operated by the user, receives an instruction from the remote controller 12, operates or stops the indoor unit 10, and sets or changes the operation mode, temperature, humidity, air volume, and the like. .. Further, the control board 22 notifies the outdoor unit 11 of information such as the indoor temperature and the set temperature measured by the temperature sensor and the like. Further, the control board 22 controls the fan 20 and adjusts the air volume so as to reach the set temperature and the set air volume.

室外機11は、外気を吸い込み、吹き出すファン30と、吸い込んだ空気を温め、または冷却する熱交換器31と、室内機10と室外機11との間で冷媒を循環する圧縮機32と、室外機11を制御する制御基板33と、膨張弁34とを備えている。室外機11は、外気温を計測する温度センサ、圧縮機32に供給する電流を計測するセンサ、冷媒の流量を計測するセンサ、冷媒の圧力を計測するセンサ、四方弁、アキュムレータ等を備えることができる。 The outdoor unit 11 includes a fan 30 that sucks in and blows out outside air, a heat exchanger 31 that heats or cools the sucked air, a compressor 32 that circulates a refrigerant between the indoor unit 10 and the outdoor unit 11, and an outdoor unit. A control board 33 for controlling the machine 11 and an expansion valve 34 are provided. The outdoor unit 11 may include a temperature sensor for measuring the outside temperature, a sensor for measuring the current supplied to the compressor 32, a sensor for measuring the flow rate of the refrigerant, a sensor for measuring the pressure of the refrigerant, a four-way valve, an accumulator, and the like. it can.

制御基板33は、室内機10からの指示を受けて、室外機11を運転または停止し、通知された情報に基づき、ファン30や圧縮機32を制御して室内温度が設定温度になるように運転負荷を変え、室内機10へ供給する冷媒の温度や冷媒を循環する流量等を調整する。膨張弁34は、圧縮された冷媒を膨張させ、冷媒の温度を下げるために使用される。 The control board 33 operates or stops the outdoor unit 11 in response to an instruction from the indoor unit 10, and controls the fan 30 and the compressor 32 based on the notified information so that the indoor temperature reaches the set temperature. The operating load is changed to adjust the temperature of the refrigerant supplied to the indoor unit 10, the flow rate of circulating the refrigerant, and the like. The expansion valve 34 is used to expand the compressed refrigerant and lower the temperature of the refrigerant.

ここで、図3を参照して、運転中の空気調和装置における室内機10および室外機11の動作を簡単に説明しておく。室外機11の運転が開始されると、圧縮機32が起動され、室内機10と室外機11との間の冷媒の循環が開始される。 Here, the operations of the indoor unit 10 and the outdoor unit 11 in the air conditioner during operation will be briefly described with reference to FIG. When the operation of the outdoor unit 11 is started, the compressor 32 is started, and the circulation of the refrigerant between the indoor unit 10 and the outdoor unit 11 is started.

図3(a)を参照して、空気調和装置を冷房に使用する場合について説明する。圧縮機32が冷媒を圧縮し、吐出すると、高温、高圧の冷媒は、四方弁35を介して熱交換器31内に供給される。冷媒は、ファン30により吸い込まれた外気と熱交換され、冷却される。冷却後、冷媒は、膨張弁34により膨張され、温度が下がり、少なくとも一部が蒸発する。冷媒は、気液二相流状態で、配管13を通して室外機11から室内機10へ送られる。 A case where the air conditioner is used for cooling will be described with reference to FIG. 3 (a). When the compressor 32 compresses and discharges the refrigerant, the high-temperature, high-pressure refrigerant is supplied into the heat exchanger 31 via the four-way valve 35. The refrigerant exchanges heat with the outside air sucked by the fan 30 and is cooled. After cooling, the refrigerant is expanded by the expansion valve 34, the temperature drops, and at least a part of it evaporates. The refrigerant is sent from the outdoor unit 11 to the indoor unit 10 through the pipe 13 in a gas-liquid two-phase flow state.

室内機10では、熱交換器21内に冷媒が供給され、ファン20により吸い込まれた室内の空気と熱交換される。空気は、冷媒により冷却され、室内へ吹き出される。 In the indoor unit 10, the refrigerant is supplied into the heat exchanger 21 and exchanges heat with the indoor air sucked by the fan 20. The air is cooled by the refrigerant and blown into the room.

冷媒は、熱交換器21で空気に熱を奪われ、冷媒は気化する。冷媒は、配管13を通り、四方弁35を介してアキュムレータ36に入り、熱交換器21で気化しきれなかった液状態の冷媒を分離し、ガス状態の冷媒のみが圧縮機32へ戻される。この動作を繰り返し、吹き出された冷たい空気で室内を設定温度になるように冷却していく。 The refrigerant is deprived of heat by the air in the heat exchanger 21, and the refrigerant is vaporized. The refrigerant passes through the pipe 13 and enters the accumulator 36 via the four-way valve 35, separates the liquid-state refrigerant that could not be vaporized by the heat exchanger 21, and returns only the gas-state refrigerant to the compressor 32. This operation is repeated, and the room is cooled to the set temperature with the blown cold air.

図3(b)を参照して、空気調和装置を暖房に使用する場合について説明する。暖房の場合は、冷房の場合と逆の動作となる。四方弁35を切り替えて冷媒の流れを冷房とは逆にする。圧縮機32は、気体の冷媒を断熱圧縮し、高温、高圧の状態にして吐出する。冷媒は、四方弁35を介し、熱交換器31ではなく、配管13を通して室内機10へ送られる。室内機10では、熱交換器21内に冷媒が供給され、ファン20により吸い込まれた室内の空気と熱交換される。空気は、冷媒により温められ、室内へ吹き出される。 A case where the air conditioner is used for heating will be described with reference to FIG. 3 (b). In the case of heating, the operation is the opposite of that in the case of cooling. The four-way valve 35 is switched to reverse the flow of the refrigerant to the cooling. The compressor 32 adiabatically compresses the gaseous refrigerant and discharges it in a high temperature and high pressure state. The refrigerant is sent to the indoor unit 10 through the pipe 13 instead of the heat exchanger 31 via the four-way valve 35. In the indoor unit 10, the refrigerant is supplied into the heat exchanger 21 and exchanges heat with the indoor air sucked by the fan 20. The air is warmed by the refrigerant and blown into the room.

冷媒は、熱交換器21で空気に熱を与えて冷却され、少なくとも一部が凝縮する。冷媒は、配管13を通して室外機11へ送られる。室外機11では、膨張弁34により凝縮した高圧の冷媒を膨張させる。これにより、冷媒は、低温、低圧の状態になる。冷媒は、熱交換器31内に供給され、ファン30により吸い込まれた外気と熱交換され、気化される。冷媒は、四方弁35およびアキュムレータ36を介して圧縮機32へ戻される。この動作を繰り返し、吹き出された温かい空気で室内を設定温度になるように暖めていく。 The refrigerant is cooled by applying heat to the air in the heat exchanger 21, and at least a part of the refrigerant is condensed. The refrigerant is sent to the outdoor unit 11 through the pipe 13. In the outdoor unit 11, the high-pressure refrigerant condensed by the expansion valve 34 is expanded. As a result, the refrigerant is in a low temperature and low pressure state. The refrigerant is supplied into the heat exchanger 31 and exchanges heat with the outside air sucked by the fan 30 to be vaporized. The refrigerant is returned to the compressor 32 via the four-way valve 35 and the accumulator 36. This operation is repeated to warm the room to the set temperature with the warm air blown out.

図2(a)、(b)に示した室内機10および室外機11で使用される熱交換器21、31の一例を、図4に示す。熱交換器21、31は、いずれも同じ熱交換器を使用することができるので、ここでは熱交換器21についてのみ説明する。 FIG. 4 shows an example of the heat exchangers 21 and 31 used in the indoor unit 10 and the outdoor unit 11 shown in FIGS. 2 (a) and 2 (b). Since the same heat exchanger can be used for both the heat exchangers 21 and 31, only the heat exchanger 21 will be described here.

熱交換器21は、複数の管と、複数の管の外面に取付けられる板状部材(フィン)41と、複数の管の両端に設けられ、複数の管に冷媒を分配し、分配された冷媒を合流させる分配器(ヘッダ)42、43とを含む。熱交換器21は、複数の管が平行に延び、一方に冷媒が流れる平行流(パラレルフロー)型の熱交換器とされている。 The heat exchanger 21 is provided at a plurality of pipes, a plate-shaped member (fin) 41 attached to the outer surface of the plurality of pipes, and both ends of the plurality of pipes, and distributes the refrigerant to the plurality of pipes. Includes distributors (headers) 42 and 43 that merge. The heat exchanger 21 is a parallel flow type heat exchanger in which a plurality of pipes extend in parallel and a refrigerant flows in one of them.

管は、1つの穴を有する円管であってもよいが、図4に拡大して示す、複数の穴40aを有する扁平な形状の扁平管40が好ましい。これは、管内の伝熱面積を拡大し、管とフィン41との接触長さが増加してフィン効率を改善し、ロウ付け接続により接合し、熱抵抗を小さくすることができるからである。以下、管を扁平管40として説明する。 The tube may be a circular tube having one hole, but a flat tube 40 having a flat shape having a plurality of holes 40a, which is enlarged in FIG. 4, is preferable. This is because the heat transfer area in the pipe can be expanded, the contact length between the pipe and the fin 41 can be increased to improve the fin efficiency, and the joint can be joined by brazing to reduce the thermal resistance. Hereinafter, the tube will be described as a flat tube 40.

扁平管40は、一定の間隔で一方向に並ぶように配置され、該一方向に対して一定の間隔で平行に複数のフィン41が接合されている。複数のフィン41は、伝熱面積を広くし、伝熱量を増加させる。 The flat tubes 40 are arranged so as to be arranged in one direction at regular intervals, and a plurality of fins 41 are joined in parallel at regular intervals with respect to the one direction. The plurality of fins 41 increase the heat transfer area and increase the amount of heat transfer.

ヘッダ42は、2本の配管13のうちの1つと接続され、例えば配管13から供給された冷媒を複数の扁平管40に分配する。ヘッダ43は、2本の配管13のうちの残りの1つと接続され、例えば複数の扁平管40に分配された冷媒を合流させ、合流した冷媒を送出する。 The header 42 is connected to one of the two pipes 13, and for example, the refrigerant supplied from the pipe 13 is distributed to the plurality of flat pipes 40. The header 43 is connected to the remaining one of the two pipes 13, for example, the refrigerants distributed in the plurality of flat pipes 40 are merged, and the merged refrigerant is delivered.

冷媒は、複数の扁平管40の中の複数の穴40aを通してヘッダ42からヘッダ43へ移動する。空気は、フィン41の間を通り移動する。冷媒と空気は、扁平管40の管壁およびフィン41を介して熱交換する。 The refrigerant moves from the header 42 to the header 43 through the plurality of holes 40a in the plurality of flat pipes 40. Air travels between the fins 41. The refrigerant and air exchange heat through the pipe wall of the flat pipe 40 and the fins 41.

このため、扁平管40やフィン41は、熱伝導率が高い材料から作製されることが好ましい。熱伝導率が高い材料としては、カーボンナノチューブ、金、銀、銅、アルミニウム、アルミニウム合金等を挙げることができる。 Therefore, the flat tube 40 and the fins 41 are preferably made of a material having high thermal conductivity. Examples of the material having high thermal conductivity include carbon nanotubes, gold, silver, copper, aluminum, and aluminum alloys.

図5を参照して、熱交換器50を蒸発器として用いる場合の熱交換器50内に発生する偏流について説明する。熱交換器50は、図4に示した熱交換器21と同様、複数の扁平管51と、複数のフィン52と、ヘッダ53、54とを含む。ここでは、ヘッダ53に冷媒が供給され、ヘッダ53で各扁平管51に冷媒が分配され、ヘッダ54へと移動し、ヘッダ54で合流して送出されるものとする。 With reference to FIG. 5, the drift flow generated in the heat exchanger 50 when the heat exchanger 50 is used as an evaporator will be described. Similar to the heat exchanger 21 shown in FIG. 4, the heat exchanger 50 includes a plurality of flat tubes 51, a plurality of fins 52, and headers 53 and 54. Here, it is assumed that the refrigerant is supplied to the header 53, the refrigerant is distributed to each flat pipe 51 at the header 53, moves to the header 54, merges at the header 54, and is sent out.

ヘッダ53へ供給される冷媒は、気体と液体が混ざり合った気液二相流状態である。図5は、冷媒がヘッダ53で各扁平管51に分配され、各扁平管51内を流れている様子を示している。図5中、扁平管51内の塗り潰した部分55が気液二相流状態を示し、白色で示す部分56がガス状態を示す。 The refrigerant supplied to the header 53 is in a gas-liquid two-phase flow state in which a gas and a liquid are mixed. FIG. 5 shows how the refrigerant is distributed to each flat pipe 51 by the header 53 and flows through each flat pipe 51. In FIG. 5, the filled portion 55 in the flat tube 51 shows a gas-liquid two-phase flow state, and the white portion 56 shows a gas state.

ヘッダ53、54の内部が空洞である場合、気体に比較して液体は密度が大きいため、重力により下方へ集まり、気液二相流状態の冷媒は下側の扁平管51に多く流れる。図5に示す例では、5段に配置された扁平管51の最下段の扁平管51がほぼ塗り潰され、それ以外の扁平管51はその量が少なく、流れに偏り(偏流)が生じている。 When the insides of the headers 53 and 54 are hollow, the liquid has a higher density than the gas, so that the liquid gathers downward due to gravity, and a large amount of the refrigerant in the gas-liquid two-phase flow state flows into the lower flat pipe 51. In the example shown in FIG. 5, the flat tube 51 at the bottom of the flat tubes 51 arranged in five stages is almost filled, and the amount of the other flat tubes 51 is small, causing a bias (eccentric flow) in the flow. ..

このように偏流が発生すると、熱交換器50の熱交換効率が低下する。したがって、偏流を発生しないように均等に分配することができるヘッダ53が必要となる。 When the drift occurs in this way, the heat exchange efficiency of the heat exchanger 50 decreases. Therefore, a header 53 that can be evenly distributed so as not to generate a drift is required.

図6は、ヘッダの第1の構成例を示した図である。図6(a)は、ヘッダを長手方向に切断した断面図で、図6(b)は、図6(a)の切断線A−Aで切断した断面図である。蒸発器として用いる場合のヘッダは、冷媒の入口側のヘッダ42である。ヘッダ42は、側面に複数の扁平管40が挿入される複数の挿入口60と、冷媒が供給される供給口61とを備える管状部材62と、管状部材62の長手方向の2箇所を閉鎖する閉鎖部材63、64とを含む。管状部材62は、例えば断面が円形の管とされる。閉鎖部材63、64は、管状部材62の内部を閉鎖する略円形の蓋等とされる。なお、管状部材62は、管状のものであれば、管に限られるものではない。例えば、管状部材62としては、断面がコの字形の部材を2つ使用して形成した断面が矩形の管であってもよいし、断面が楕円形の管であってもよい。以下、閉鎖部材(第2の閉鎖部材)63が設けられる位置を上側とし、閉鎖部材(第1の閉鎖部材)64が設けられる位置を下側として説明する。 FIG. 6 is a diagram showing a first configuration example of the header. FIG. 6A is a cross-sectional view of the header cut in the longitudinal direction, and FIG. 6B is a cross-sectional view of the header cut along the cutting line AA of FIG. 6A. The header when used as an evaporator is the header 42 on the inlet side of the refrigerant. The header 42 closes a tubular member 62 having a plurality of insertion ports 60 into which a plurality of flat tubes 40 are inserted on the side surfaces, a supply port 61 to which a refrigerant is supplied, and two locations in the longitudinal direction of the tubular member 62. Includes closing members 63, 64. The tubular member 62 is, for example, a tube having a circular cross section. The closing members 63 and 64 are substantially circular lids and the like that close the inside of the tubular member 62. The tubular member 62 is not limited to a pipe as long as it is tubular. For example, the tubular member 62 may be a tube having a rectangular cross section formed by using two members having a U-shaped cross section, or a tube having an elliptical cross section. Hereinafter, the position where the closing member (second closing member) 63 is provided will be described as the upper side, and the position where the closing member (first closing member) 64 is provided will be described as the lower side.

ヘッダ42は、上側の閉鎖部材63から下側の閉鎖部材64へ向けて延び、管状部材62の内部空間を複数の挿入口60側の空間65と供給口61側の空間66とに分割する仕切部材67を含む。仕切部材67は、上側の閉鎖部材63から下側の閉鎖部材64へ向けて延び、複数の挿入口60に挿入された複数の扁平管40の先端と当接する2つの突出部68、69を含む。また、仕切部材67は、2つの突出部68、69の間であって、最も下側の挿入口60より下側(閉鎖部材64側)に冷媒が流通する通路70を有する。 The header 42 extends from the upper closing member 63 toward the lower closing member 64, and divides the internal space of the tubular member 62 into a plurality of spaces 65 on the insertion port 60 side and a space 66 on the supply port 61 side. Includes member 67. The partition member 67 includes two protrusions 68, 69 extending from the upper closing member 63 toward the lower closing member 64 and abutting the tips of the plurality of flat tubes 40 inserted into the plurality of insertion openings 60. .. Further, the partition member 67 has a passage 70 between the two protrusions 68 and 69, on the lower side (closed member 64 side) of the lowermost insertion port 60, through which the refrigerant flows.

管状部材62は、扁平管40が差し込まれるように挿入されるため、挿入口60が内部へ押し込められた位置となり、側部の断面が扁平管40を挟んで円弧状になっている。 Since the tubular member 62 is inserted so that the flat tube 40 is inserted, the insertion port 60 is pushed inward, and the cross section of the side portion is arcuate with the flat tube 40 in between.

冷媒は、気液二相流状態で供給口61から供給され、仕切部材67により形成された空間66を通り、重力も加わって下方へ向けて流れる。冷媒は、通路70を通って空間65内へ入り、空間65内を下側から上側へ向けて流れる。空間65は、冷媒が流れる流路断面の一部が、挿入された扁平管40により塞がれており、扁平管40の先端に2つの突出部68、69が当接することから、図6(b)に示すように、3つの流路71〜73が形成される。2つの突出部68、69は、扁平管40の穴を塞がないように、扁平管40の先端の最も離間した2点と当接している。 The refrigerant is supplied from the supply port 61 in a gas-liquid two-phase flow state, passes through the space 66 formed by the partition member 67, and flows downward with the addition of gravity. The refrigerant enters the space 65 through the passage 70 and flows in the space 65 from the lower side to the upper side. In the space 65, a part of the cross section of the flow path through which the refrigerant flows is closed by the inserted flat pipe 40, and the two protrusions 68 and 69 abut on the tip of the flat pipe 40. As shown in b), three flow paths 71 to 73 are formed. The two protrusions 68, 69 are in contact with the two most distant points at the tip of the flat tube 40 so as not to block the hole of the flat tube 40.

第1の流路71は、断面が2つの突出部68、69と仕切部材67の本体(2つの突出部68、69以外の平板部分)と複数の扁平管40の先端とによって囲まれた部分とされ、下側の閉鎖部材64から上側の閉鎖部材63へと連続する領域である。第2の流路72は、断面が管状部材62と管状部材62内へ挿入された扁平管40の側部と突出部68とによって囲まれた部分とされ、下側の閉鎖部材64から上側の閉鎖部材63へと連続する領域である。第3の流路73は、断面が管状部材62と管状部材62内へ挿入された扁平管40の側部と突出部69とによって囲まれた部分とされ、下側の閉鎖部材64から上側の閉鎖部材63へと連続する領域である。 The first flow path 71 is a portion having a cross section surrounded by two protrusions 68 and 69, a main body of the partition member 67 (a flat plate portion other than the two protrusions 68 and 69), and tips of a plurality of flat pipes 40. It is a region continuous from the lower closing member 64 to the upper closing member 63. The second flow path 72 is a portion whose cross section is surrounded by the tubular member 62, the side portion of the flat tube 40 inserted into the tubular member 62, and the protruding portion 68, and is above the lower closing member 64. It is a region continuous to the closing member 63. The third flow path 73 is a portion whose cross section is surrounded by the tubular member 62, the side portion of the flat tube 40 inserted into the tubular member 62, and the protruding portion 69, and is above the lower closing member 64. It is a region continuous to the closing member 63.

第2の流路72と第3の流路73の断面積は、ほぼ同じである。第1の流路71の断面積と第2の流路72および第3の流路73の断面積は、2つの突出部68、69の突出長さによって変わる。断面積は、冷媒の流速と関係し、速いほど、気液が分離することなく気液二相流状態で流路を流れる。 The cross-sectional areas of the second flow path 72 and the third flow path 73 are substantially the same. The cross-sectional area of the first flow path 71 and the cross-sectional areas of the second flow path 72 and the third flow path 73 vary depending on the protrusion lengths of the two protrusions 68 and 69. The cross-sectional area is related to the flow velocity of the refrigerant, and the faster the cross-sectional area, the more the gas-liquid flows through the flow path in a gas-liquid two-phase flow state without separation.

このため、第1の流路71の断面積を、第2の流路72の断面積と第3の流路73の断面積とを加算したものより大きくすることができる。これにより、第2の流路72および第3の流路73での冷媒の流速を速くして気液二相流状態で流れ、第1の流路71には、下側と上側の両方から気液二相流状態で冷媒を供給することができる。その結果、いずれの扁平管40にも、均等に気液二相流状態の冷媒が流れ、冷媒の偏流を改善することができる。 Therefore, the cross-sectional area of the first flow path 71 can be made larger than the sum of the cross-sectional areas of the second flow path 72 and the cross-sectional area of the third flow path 73. As a result, the flow velocity of the refrigerant in the second flow path 72 and the third flow path 73 is increased to flow in a gas-liquid two-phase flow state, and the first flow path 71 is supplied from both the lower side and the upper side. The refrigerant can be supplied in a gas-liquid two-phase flow state. As a result, the refrigerant in the gas-liquid two-phase flow state flows evenly in each of the flat pipes 40, and the drift of the refrigerant can be improved.

なお、空間65には、第1の流路71、第2の流路72、第3の流路73以外の領域、すなわち上下に並ぶ扁平管40の間の空間74が存在する。空間74では、流速が異なる冷媒が流れ込み、滞留する冷媒が押し出され、各流路へ流出することが繰り返される。これにより、図6(a)に示すように各空間74内で渦75が発生し、冷媒を撹拌する効果が得られ、気液の分離が抑制される。 In the space 65, there is a region other than the first flow path 71, the second flow path 72, and the third flow path 73, that is, the space 74 between the flat pipes 40 arranged vertically. In the space 74, refrigerants having different flow velocities flow in, the retained refrigerant is pushed out, and the refrigerants flow out to each flow path repeatedly. As a result, as shown in FIG. 6A, a vortex 75 is generated in each space 74, the effect of stirring the refrigerant is obtained, and the separation of gas and liquid is suppressed.

ところで、空気調和装置の運転条件には、定格負荷条件と中間負荷条件とがある。定格負荷条件は、仕様を満足する最大負荷で運転するときの条件で、中間負荷条件は、定格負荷より小さい負荷で運転するときの条件で、例えば定格負荷の50%の負荷で運転するときの条件である。なお、運転条件は、定格負荷条件と中間負荷条件に限られるものではなく、最小負荷条件等のその他の条件を含んでいてもよい。条件は、冷媒の循環量等の条件を含み、ほぼ負荷に比例して決められる。 By the way, the operating conditions of the air conditioner include a rated load condition and an intermediate load condition. The rated load condition is the condition when operating at the maximum load that satisfies the specifications, and the intermediate load condition is the condition when operating at a load smaller than the rated load, for example, when operating at a load of 50% of the rated load. It is a condition. The operating conditions are not limited to the rated load conditions and the intermediate load conditions, but may include other conditions such as the minimum load conditions. The conditions include conditions such as the circulation amount of the refrigerant, and are determined in proportion to the load.

このため、中間負荷条件等の冷媒の循環量が少なくなる条件では、ヘッダ内が単なる空洞で、下側から供給する場合、ヘッダ内での冷媒流速が遅くなり、冷媒が上側の閉鎖部材まで到達しにくくなる。 Therefore, under conditions such as intermediate load conditions where the amount of refrigerant circulation is small, the inside of the header is simply a cavity, and when supplied from the lower side, the flow velocity of the refrigerant in the header slows down and the refrigerant reaches the closing member on the upper side. It becomes difficult to do.

図6に示したヘッダ42では、仕切部材67で内部を仕切り、上側から冷媒を供給するため、冷媒の循環量が少なくなっても、重力も加わって冷媒速度を加速させることができる。また、下側から上側へと流れる冷媒の流路の断面の一部が挿入された扁平管40で塞がれているため、冷媒の流路の断面積が小さくなる。このため、中間負荷条件等のように冷媒の循環量が少なくなったとしても、一定以上の流速とし、冷媒を上側の閉鎖部材63まで到達させることができ、冷媒の偏流を改善することができる。 In the header 42 shown in FIG. 6, since the inside is partitioned by the partition member 67 and the refrigerant is supplied from the upper side, even if the circulation amount of the refrigerant is small, gravity can be added to accelerate the refrigerant speed. Further, since a part of the cross section of the refrigerant flow path flowing from the lower side to the upper side is blocked by the flat pipe 40 into which the refrigerant flow path is inserted, the cross-sectional area of the refrigerant flow path becomes smaller. Therefore, even if the circulation amount of the refrigerant is reduced due to an intermediate load condition or the like, the flow velocity can be set to a certain level or higher, the refrigerant can reach the closing member 63 on the upper side, and the drift of the refrigerant can be improved. ..

ここでは、冷媒入口側のヘッダ42の構造について説明したが、出口側のヘッダ43は複数の扁平管40が挿入され、内部が空洞とされたヘッダであってもよいし、ヘッダ42と同じ構造のヘッダであってもよい。 Here, the structure of the header 42 on the refrigerant inlet side has been described, but the header 43 on the outlet side may be a header in which a plurality of flat tubes 40 are inserted and the inside is hollow, or has the same structure as the header 42. It may be the header of.

図7は、ヘッダの第2の構成例を示した図である。図7(a)は、ヘッダを長手方向に切断した断面図で、図7(b)は、図7(a)の切断線B−Bで切断した断面図である。ヘッダ42は、図6に示した例と同様、複数の挿入口60と供給口61とを備える管状部材62と、管状部材62の長手方向の2箇所を閉鎖する閉鎖部材63、64とを含む。 FIG. 7 is a diagram showing a second configuration example of the header. FIG. 7A is a cross-sectional view of the header cut in the longitudinal direction, and FIG. 7B is a cross-sectional view of the header cut along the cutting line BB of FIG. 7A. Similar to the example shown in FIG. 6, the header 42 includes a tubular member 62 having a plurality of insertion ports 60 and a supply port 61, and closing members 63 and 64 that close two locations in the longitudinal direction of the tubular member 62. ..

ヘッダ42は、図6に示した例と同様、管状部材62の内部空間を複数の挿入口60側の空間65と供給口61側の空間66とに分割する仕切部材67を含む。仕切部材67は、複数の挿入口60に挿入された複数の扁平管40の先端と当接する2つの突出部68、69を含み、2つの突出部68、69の間であって、最も下側の挿入口60より下側に通路70を有する。これらの構成は、図6を参照して既に説明したので、ここでは説明を省略する。 Similar to the example shown in FIG. 6, the header 42 includes a partition member 67 that divides the internal space of the tubular member 62 into a plurality of spaces 65 on the insertion port 60 side and a space 66 on the supply port 61 side. The partition member 67 includes two protrusions 68, 69 that come into contact with the tips of the plurality of flat tubes 40 inserted into the plurality of insertion ports 60, and is between the two protrusions 68, 69 and is the lowermost portion. The passage 70 is provided below the insertion port 60 of the. Since these configurations have already been described with reference to FIG. 6, description thereof will be omitted here.

仕切部材67は、挿入された各扁平管40の先端の2点と当接する2つの突出部68、69に加え、2つの突出部68、69の間であって、各扁平管40の穴を塞がないように、各扁平管40の先端と当接する複数の突起80を備える。 The partition member 67 is between the two protrusions 68 and 69 in addition to the two protrusions 68 and 69 that abut the two points at the tip of each of the inserted flat pipes 40, and provides a hole in each flat pipe 40. A plurality of protrusions 80 that come into contact with the tip of each flat tube 40 are provided so as not to block the flat tube 40.

各扁平管40は、2つの突出部68、69と当接し、挿入方向への位置決めを行うことができるが、当接する点が同じ高さの2点では、上下に傾き、位置決めが安定しない。そこで、上記の2点とは高さが異なる位置に突起80を設けることで、上下に傾くことを防止し、位置決めを安定させることができる。突起80は、例えば扁平管40の先端の、2つの突出部68、69を結ぶ直線より上側の1点と当接する位置に設けることができる。なお、これは一例であるので、下側の1点と当接する位置等であってもよい。 Each flat tube 40 abuts on the two protrusions 68 and 69 and can be positioned in the insertion direction, but at two points where the abutting points are at the same height, the flat tube 40 tilts up and down and the positioning is not stable. Therefore, by providing the protrusion 80 at a position different in height from the above two points, it is possible to prevent the protrusion 80 from tilting up and down and stabilize the positioning. The protrusion 80 can be provided, for example, at a position where the tip of the flat tube 40 comes into contact with one point above the straight line connecting the two protrusions 68 and 69. Since this is an example, it may be a position where it comes into contact with one point on the lower side.

仕切部材67は、各扁平管40の先端と当接する2つの突出部68、69を備える面の裏面に、上側の閉鎖部材63から下側の閉鎖部材64に向けて延び、管状部材62の内面と当接する2つの配置固定部81、82を備える。2つの配置固定部81、82を備えることで、仕切部材67が管状部材62の内面に沿って回転することが抑制され、仕切部材67の配置を固定することができる。なお、配置を固定できれば、2つ設ける必要はなく、1つであってもよい。また、配置を固定できれば、閉鎖部材63から閉鎖部材64まで延びていなくてもよい。 The partition member 67 extends from the upper closing member 63 toward the lower closing member 64 on the back surface of the surface provided with the two protrusions 68 and 69 that abut the tip of each flat pipe 40, and is the inner surface of the tubular member 62. It is provided with two arrangement fixing portions 81 and 82 that come into contact with. By providing the two arrangement fixing portions 81 and 82, the partition member 67 is suppressed from rotating along the inner surface of the tubular member 62, and the arrangement of the partition member 67 can be fixed. If the arrangement can be fixed, it is not necessary to provide two, and one may be provided. Further, if the arrangement can be fixed, it does not have to extend from the closing member 63 to the closing member 64.

また、仕切部材67は、2つの配置固定部81、82の間であって、供給口61に挿入される冷媒の供給配管44の先端と当接する突起83を備える。供給配管44を供給口61に挿入する場合、どの程度挿入してよいか分からない。また、供給配管44の先端が仕切部材67と当接すると、冷媒の供給口が閉鎖され、冷媒が供給できなくなってしまう。仕切部材67に突起83を設けることで、供給配管44の挿入方向への位置決めを安定させることができる。 Further, the partition member 67 includes a protrusion 83 between the two arrangement fixing portions 81 and 82 and in contact with the tip of the refrigerant supply pipe 44 inserted into the supply port 61. When inserting the supply pipe 44 into the supply port 61, it is unknown how much the supply pipe 44 may be inserted. Further, when the tip of the supply pipe 44 comes into contact with the partition member 67, the refrigerant supply port is closed and the refrigerant cannot be supplied. By providing the protrusion 83 on the partition member 67, the positioning of the supply pipe 44 in the insertion direction can be stabilized.

仕切部材67が複数の突起80および突起83を備えることで、各扁平管40および供給配管44の位置決めが容易となる。なお、突起は、複数の突起80のみを設けてもよいし、突起83のみを設けてもよい。また、突起は、各扁平管40、供給配管44に対して1つに限られるものではなく、2つ以上設けてもよい。ただし、数が増えると、冷媒の流路を塞ぐので、各扁平管40、供給配管44に対して1つが好ましい。 When the partition member 67 includes the plurality of protrusions 80 and 83, the positioning of each of the flat pipe 40 and the supply pipe 44 becomes easy. The protrusions may be provided with only a plurality of protrusions 80, or may be provided with only protrusions 83. Further, the number of protrusions is not limited to one for each of the flat pipe 40 and the supply pipe 44, and two or more may be provided. However, as the number increases, the flow path of the refrigerant is blocked, so one is preferable for each of the flat pipe 40 and the supply pipe 44.

図8は、ヘッダの第3の構成例を示した図である。図8(a)は、ヘッダを長手方向に切断した断面図で、図8(b)は、図8(a)の切断線C−Cで切断した断面図である。ヘッダ42は、複数の挿入口60と供給口61とを備える管状部材62と、管状部材62の長手方向の2箇所を閉鎖する閉鎖部材63、64とを含む。 FIG. 8 is a diagram showing a third configuration example of the header. FIG. 8A is a cross-sectional view of the header cut in the longitudinal direction, and FIG. 8B is a cross-sectional view of the header cut along the cutting line CC of FIG. 8A. The header 42 includes a tubular member 62 having a plurality of insertion ports 60 and a supply port 61, and closing members 63 and 64 that close two points in the longitudinal direction of the tubular member 62.

ヘッダ42は、管状部材62の長手方向を閉鎖する閉鎖部材(第3の閉鎖部材)90を含む。また、ヘッダ42は、閉鎖部材63と閉鎖部材90により閉鎖された空間を、複数の挿入口60側の空間91と、供給口61側の空間92とに分割する仕切部材(第2の仕切部材)93を含む。仕切部材93は、複数の挿入口60に挿入された複数の扁平管40の先端と当接する2つの突出部(第2の突出部)94、95を含み、2つの突出部94、95の間であって、最も下側の挿入口60より下側(閉鎖部材63側)に通路(第3の通路)96を有する。閉鎖部材63には、冷媒が流れる通路(第2の通路)97が形成され、空間92は下側が閉鎖される。 The header 42 includes a closing member (third closing member) 90 that closes the tubular member 62 in the longitudinal direction. Further, the header 42 is a partition member (second partition member) that divides the space closed by the closing member 63 and the closing member 90 into a space 91 on the side of the plurality of insertion ports 60 and a space 92 on the side of the supply port 61. ) 93 is included. The partition member 93 includes two protrusions (second protrusions) 94, 95 that come into contact with the tips of the plurality of flat tubes 40 inserted into the plurality of insertion ports 60, and is between the two protrusions 94, 95. The passage (third passage) 96 is provided below the lowermost insertion port 60 (closed member 63 side). A passage (second passage) 97 through which the refrigerant flows is formed in the closing member 63, and the lower side of the space 92 is closed.

冷媒が供給口61から流入すると、空間66を下方に向けて流れる冷媒と、通路97、96を通り、上側の空間91へ流れる冷媒とに分岐される。空間66へ供給された冷媒については、図6を参照して既に説明したので、ここでは説明を省略する。 When the refrigerant flows in from the supply port 61, it is branched into a refrigerant flowing downward in the space 66 and a refrigerant flowing through the passages 97 and 96 and flowing into the upper space 91. Since the refrigerant supplied to the space 66 has already been described with reference to FIG. 6, the description thereof will be omitted here.

空間91へ供給された冷媒は、通路96を通して空間91へ入り、下側から上側へと3つの流路を流れる。3つの流路は、図6で示した例と同様、第1の流路、第2の流路、第3の流路である。第1の流路100は、仕切部材93と2つの突出部94、95と扁平管40の先端とで囲まれる部分とされ、下側の閉鎖部材63から上側の閉鎖部材90へと連続する領域である。第2の流路101は、管状部材62と扁平管40の側部と突出部94とで囲まれる部分とされ、下側の閉鎖部材63から上側の閉鎖部材90へと連続する領域である。第3の流路102は、管状部材62と扁平管40の側部と突出部95とで囲まれる部分とされ、下側の閉鎖部材63から上側の閉鎖部材90へと連続する領域である。 The refrigerant supplied to the space 91 enters the space 91 through the passage 96, and flows through three flow paths from the lower side to the upper side. The three flow paths are the first flow path, the second flow path, and the third flow path, as in the example shown in FIG. The first flow path 100 is a portion surrounded by the partition member 93, the two protrusions 94 and 95, and the tip of the flat pipe 40, and is a region continuous from the lower closing member 63 to the upper closing member 90. Is. The second flow path 101 is a portion surrounded by the tubular member 62, the side portion of the flat tube 40, and the projecting portion 94, and is a region continuous from the lower closing member 63 to the upper closing member 90. The third flow path 102 is a portion surrounded by the tubular member 62, the side portion of the flat pipe 40, and the projecting portion 95, and is a region continuous from the lower closing member 63 to the upper closing member 90.

この場合も、第1の流路100の断面積を、第2の流路101の断面積と第3の流路102の断面積とを加算したものより大きくし、第2の流路101および第3の流路102での冷媒の流速を速くして気液二相流状態で流れるようにし、第1の流路100には、下側と上側の両方から気液二相状態で冷媒を供給することができる。これにより、いずれの扁平管40にも、均等に気液二相流状態で冷媒が流れ、冷媒の偏流を改善することができる。 In this case as well, the cross-sectional area of the first flow path 100 is made larger than the sum of the cross-sectional areas of the second flow path 101 and the cross-sectional area of the third flow path 102, and the second flow path 101 and The flow velocity of the refrigerant in the third flow path 102 is increased so that the refrigerant flows in a gas-liquid two-phase flow state, and the refrigerant is supplied to the first flow path 100 from both the lower side and the upper side in a gas-liquid two-phase state. Can be supplied. As a result, the refrigerant flows evenly in the gas-liquid two-phase flow state in each of the flat pipes 40, and the drift of the refrigerant can be improved.

この場合、空間91へも冷媒が適切に供給されるように、供給口61は、出来るだけ上側で通路97に近い位置に設けることが好ましい。 In this case, it is preferable that the supply port 61 is provided at a position as close to the passage 97 as possible on the upper side so that the refrigerant can be appropriately supplied to the space 91.

図8に示した例では、図7に示した突起80、83が設けられていないが、突起80、83の一方またはその両方が設けられていてもよい。 In the example shown in FIG. 8, the protrusions 80 and 83 shown in FIG. 7 are not provided, but one or both of the protrusions 80 and 83 may be provided.

このように、管状部材62の長手方向に閉鎖部材90とその内部に仕切部材93とを追加していくことで、扁平管40の本数が多くなっても、ヘッダ42を1本とし、各扁平管40に冷媒をほぼ均等に分配することができる。閉鎖部材と仕切部材を追加するだけであるため、材料費を抑制することができる。 In this way, by adding the closing member 90 and the partition member 93 in the longitudinal direction of the tubular member 62, even if the number of flat tubes 40 increases, the header 42 becomes one and each flattening member 92. The refrigerant can be distributed to the pipe 40 substantially evenly. Since only the closing member and the partitioning member are added, the material cost can be suppressed.

図9は、図6〜図8に例示したヘッダ42を使用した熱交換器21を室内機10に適用する場合の配置例を示した図である。室内機10は、内部にファン20を有し、熱交換器21は、ファン20の周囲を取り囲むように配置される。 FIG. 9 is a diagram showing an arrangement example when the heat exchanger 21 using the header 42 illustrated in FIGS. 6 to 8 is applied to the indoor unit 10. The indoor unit 10 has a fan 20 inside, and the heat exchanger 21 is arranged so as to surround the fan 20.

図9に示す例では、熱交換器21は、2段1組で、3組配置されている。各熱交換器21のヘッダのヘッダ軸と矢線で示す重力方向とのなす角度θが、45度以内の角度となるように配置されている。 In the example shown in FIG. 9, the heat exchangers 21 are arranged in two stages, one set, and three sets. The angle θ formed by the header axis of the header of each heat exchanger 21 and the direction of gravity indicated by the arrow is arranged so as to be within 45 degrees.

これは、熱交換器21の外表面に空気中の水分が凝縮し、水滴となっても、熱交換器21の外表面を伝って下方へ流れ、ファン20へ水滴が落下しないようにするためである。 This is because even if the moisture in the air condenses on the outer surface of the heat exchanger 21 and becomes water droplets, it flows downward along the outer surface of the heat exchanger 21 and prevents the water droplets from falling on the fan 20. Is.

なお、熱交換器21は、2段1組に限られるものではなく、1段であってもよいし、3段以上であってもよい。 The heat exchanger 21 is not limited to one set of two stages, and may be one stage or three or more stages.

ここで、偏流を表す指標として、各扁平管40における気液二相流状態の長さ(図5の塗り潰した部分55の長さ)の標準偏差をσLとし、各扁平管40における気液二相流状態の長さの平均値をLaveとすると、偏流率Dは、次の式1で定義することができる。偏流率Dは、その値が小さいほど、冷媒が均等に分配されていることを示す指標である。 Here, as an index representing the drift, the standard deviation of the length of the gas-liquid two-phase flow state in each flat tube 40 (the length of the filled portion 55 in FIG. 5) is set to σL, and the gas-liquid two in each flat tube 40. When the average length of the phase flow state and L ave, drift rate D r may be defined by the following equation 1. Drift rate D r is the smaller the value is an index indicating that the refrigerant is evenly distributed.

図10は、偏流率を比較するために試験を行った結果を示した図である。試験は、従来の内部が空洞とされたヘッダ(仕切部材なし)と、図6に示した内部に仕切部材67を設けたヘッダ(仕切部材有り)とを使用して行った。ヘッダへは、冷媒としてR32(ハイドロフルオロカーボン)を10kg/hと5kg/hの2つの流量で供給した。また、試験は、冷媒入口の乾き度を約0.7、出口冷媒過熱度を5度、空気側入口温度を27度として行った。乾き度は、気液二相流状態において気体が占める重量割合で、飽和のときが1で、液体のみの場合が0である。過熱度は、飽和温度から何度温度上昇したかを示す値である。試験は、仕切部材なしと仕切部材有りで流量を変えて2回ずつ行った。 FIG. 10 is a diagram showing the results of a test conducted to compare the drift rates. The test was carried out using a conventional header (without a partition member) having a hollow inside and a header (with a partition member) having a partition member 67 inside as shown in FIG. R32 (hydrofluorocarbon) was supplied to the header as a refrigerant at two flow rates of 10 kg / h and 5 kg / h. The test was conducted with the degree of dryness of the refrigerant inlet being about 0.7, the degree of superheat of the outlet refrigerant being 5 degrees, and the temperature of the air side inlet being 27 degrees. The degree of dryness is the weight ratio occupied by the gas in the gas-liquid two-phase flow state, and is 1 when saturated and 0 when only liquid is used. The degree of superheat is a value indicating how many times the temperature has risen from the saturation temperature. The test was carried out twice with no partition member and with a partition member at different flow rates.

試験結果は、図10に示すように、従来の仕切部材なしの場合、偏流率が大きかったが、仕切部材有りの本分配器の場合は、偏流率が小さくなり、偏流が改善していることが確認された。また、10kg/hの流量のときを定格負荷条件とし、5kg/hの流量のときを中間負荷条件として参照した場合、従来の仕切部材なしの場合、偏流率が拡大しているが、本分配器の場合、偏流率がほぼ変わらず、負荷を変えて運転しても、各扁平管40にほぼ均等に冷媒を分配できていることが確認された。 As shown in FIG. 10, the test result showed that the drift rate was large when there was no conventional partition member, but in the case of this distributor with a partition member, the drift rate was small and the drift rate was improved. Was confirmed. Further, when the rated load condition is referred to when the flow rate is 10 kg / h and the intermediate load condition is referred to when the flow rate is 5 kg / h, the deviation rate is increased when there is no conventional partition member, but this distribution In the case of the vessel, it was confirmed that the drift rate was almost the same and that the refrigerant could be distributed to each flat tube 40 almost evenly even when the operation was performed with different loads.

本分配器を提供することで、中間負荷条件や最小負荷条件での運転時であっても、パラレルフロー型の熱交換器内の各扁平管40への液冷媒供給量の偏りを単純な構造で抑制することができる。また、液冷媒供給量の偏りを抑制することができるので、熱交換器21としての性能を改善することができ、熱交換器21を備えた室内機や室外機を含む空気調和装置の消費電力を抑制することが可能となる。 By providing this distributor, even during operation under intermediate load conditions or minimum load conditions, the bias of the amount of liquid refrigerant supplied to each flat pipe 40 in the parallel flow type heat exchanger can be simplified. Can be suppressed with. Further, since the unevenness of the liquid refrigerant supply amount can be suppressed, the performance as the heat exchanger 21 can be improved, and the power consumption of the air conditioner including the indoor unit and the outdoor unit provided with the heat exchanger 21 can be improved. Can be suppressed.

これまで本発明の分配器、熱交換器、室内機、室外機および空気調和装置について上述した実施形態をもって詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。 Although the distributor, heat exchanger, indoor unit, outdoor unit, and air conditioner of the present invention have been described in detail with the above-described embodiments, the present invention is not limited to the above-described embodiments. Other embodiments, additions, changes, deletions, etc. can be made within the range conceivable by those skilled in the art, and in any aspect, as long as the actions and effects of the present invention are exhibited, the scope of the present invention is applicable. It is included.

10…室内機
11…室外機
12…リモートコントローラ
13…配管
20、30…ファン
21、31、50…熱交換器
22、33…制御基板
32…圧縮機
34…膨張弁
35…四方弁
36…アキュムレータ
40、51…扁平管
40a…穴
41、52…フィン
42、43、53、54…ヘッダ
44…供給配管
55、56…部分
60…挿入口
61…供給口
62…管状部材
63、64、90…閉鎖部材
65、66、74、91、92…空間
67、93…仕切部材
68、69、94、95…突出部
70、96、97…通路
71、100…第1の流路
72、101…第2の流路
73、102…第3の流路
75…渦
80、83…突起
81、82…配置固定部
10 ... Indoor unit 11 ... Outdoor unit 12 ... Remote controller 13 ... Piping 20, 30 ... Fans 21, 31, 50 ... Heat exchangers 22, 33 ... Control board 32 ... Compressor 34 ... Expansion valve 35 ... Four-way valve 36 ... Accumulator 40, 51 ... Flat tube 40a ... Hole 41, 52 ... Fin 42, 43, 53, 54 ... Header 44 ... Supply pipe 55, 56 ... Part 60 ... Insertion port 61 ... Supply port 62 ... Tubular member 63, 64, 90 ... Closing members 65, 66, 74, 91, 92 ... Spaces 67, 93 ... Partition members 68, 69, 94, 95 ... Protruding parts 70, 96, 97 ... Passages 71, 100 ... First flow paths 72, 101 ... First 2 flow path 73, 102 ... 3rd flow path 75 ... vortex 80, 83 ... protrusion 81, 82 ... arrangement fixing portion

Claims (10)

複数の管に冷媒を分配する分配器であって、
側面に前記複数の管が挿入される複数の挿入口と、前記冷媒が供給される供給口とを備える管状部と、
前記管状部の長手方向の2箇所を閉鎖する第1および第2の閉鎖部と、
前記第1の閉鎖部から前記第2の閉鎖部へ向けて延び、前記管状部の内部空間を挿入口側の空間と供給口側の空間とに分割する仕切部と
を含み、
前記仕切部が、前記複数の挿入口に挿入された前記複数の管の先端と当接する2つの突出部を含み、前記2つの突出部間であって、前記第1の閉鎖部に最も近い挿入口より前記第1の閉鎖部側に前記冷媒が流通する通路を有し、
前記供給口が、前記第1の閉鎖部と前記第2の閉鎖部の中央より前記第2の閉鎖部側の管状部の側面に設けられる、分配器。
A distributor that distributes refrigerant to multiple pipes.
A tubular portion having a plurality of insertion ports into which the plurality of pipes are inserted on the side surface and a supply port to which the refrigerant is supplied.
A first and second closing portion that closes two locations in the longitudinal direction of the tubular portion, and
A partition portion extending from the first closed portion toward the second closed portion and dividing the internal space of the tubular portion into a space on the insertion port side and a space on the supply port side is included.
The partition includes two protrusions that abut the tips of the plurality of tubes inserted into the plurality of insertion openings, and is inserted between the two protrusions and closest to the first closure. A passage through which the refrigerant flows is provided on the side of the first closed portion from the mouth.
A distributor in which the supply port is provided on the side surface of the tubular portion on the side of the second closed portion from the center of the first closed portion and the second closed portion.
前記挿入口側の空間には、前記2つの突出部を含む前記仕切部と挿入された前記複数の管とにより第1の流路が形成され、前記管状部と挿入された前記複数の管とにより第2および第3の流路が形成され、
前記第1の流路の断面積が、前記第2の流路の断面積と前記第3の流路の断面積とを加算した面積より大きいことを特徴とする、請求項1に記載の分配器。
In the space on the insertion port side, a first flow path is formed by the partition portion including the two protruding portions and the plurality of inserted pipes, and the tubular portion and the plurality of inserted pipes are formed. The second and third flow paths are formed by
The distribution according to claim 1, wherein the cross-sectional area of the first flow path is larger than the area obtained by adding the cross-sectional area of the second flow path and the cross-sectional area of the third flow path. vessel.
前記仕切部は、前記2つの突出部が突出する面に、前記各管と当接する複数の突起を含む、請求項1または2に記載の分配器。 The distributor according to claim 1 or 2, wherein the partition portion includes a plurality of protrusions in contact with each of the pipes on a surface on which the two protrusions protrude. 前記仕切部は、前記2つの突出部が突出する面の裏側に、前記管状部の内面に当接する配置固定部を含む、請求項1〜3のいずれか1項に記載の分配器。 The distributor according to any one of claims 1 to 3, wherein the partition portion includes an arrangement fixing portion that abuts on the inner surface of the tubular portion on the back side of the surface on which the two projecting portions protrude. 前記管状部の長手方向を閉鎖する第3の閉鎖部と、
前記第2の閉鎖部から前記第3の閉鎖部へ向けて延び、前記管状部の内部空間を挿入口側の空間と供給口側の空間とに分割する第2の仕切部と
を含み、
前記第2の閉鎖部は、前記冷媒が流通する第2の通路が形成され、
前記第2の仕切部は、前記第2の閉鎖部から前記第3の閉鎖部へ向けて延び、前記複数の挿入口に挿入された前記複数の管の先端と当接する2つの第2の突出部を含み、前記2つの第2の突出部間であって、前記第2の閉鎖部に最も近い挿入口より第2の閉鎖部側に前記冷媒が流通する第3の通路を有する、請求項1〜4のいずれか1項に記載の分配器。
A third closure that closes the tubular portion in the longitudinal direction,
A second partition extending from the second closed portion toward the third closed portion and dividing the internal space of the tubular portion into a space on the insertion port side and a space on the supply port side is included.
In the second closed portion, a second passage through which the refrigerant flows is formed.
The second partition extends from the second closure toward the third closure and abuts on the tips of the plurality of tubes inserted into the plurality of insertion openings. A claim that includes a portion, and has a third passage between the two second protrusions and on the side of the second closure from the insertion port closest to the second closure, through which the refrigerant flows. The distributor according to any one of 1 to 4.
複数の管と、前記複数の管に冷媒を分配する、請求項1〜5のいずれか1項に記載の分配器とを含む、熱交換器。 A heat exchanger comprising a plurality of tubes and a distributor according to any one of claims 1 to 5, which distributes a refrigerant to the plurality of tubes. 複数の管と、前記複数の管に冷媒を分配する、請求項1〜5のいずれか1項に記載の分配器とを含む熱交換器を搭載した、室内機。 An indoor unit comprising a plurality of pipes and a heat exchanger including the distributor according to any one of claims 1 to 5, which distributes a refrigerant to the plurality of pipes. 前記室内機は、送風手段を含み、
前記熱交換器は、前記送風手段を取り囲むように複数配置され、前記各熱交換器が備える前記分配器の長手方向と重力方向とのなす角度が45度以内であることを特徴とする、請求項7に記載の室内機。
The indoor unit includes a ventilation means.
A plurality of the heat exchangers are arranged so as to surround the blower means, and the angle between the longitudinal direction and the gravity direction of the distributor included in each heat exchanger is within 45 degrees. Item 7. The indoor unit according to item 7.
複数の管と、前記複数の管に冷媒を分配する、請求項1〜5のいずれか1項に記載の分配器とを含む熱交換器を搭載した、室外機。 An outdoor unit comprising a plurality of pipes and a heat exchanger including the distributor according to any one of claims 1 to 5, which distributes a refrigerant to the plurality of pipes. 複数の管と、前記複数の管に冷媒を分配する、請求項1〜5のいずれか1項に記載の分配器とを含む熱交換器を搭載した、少なくとも1つの室外機および室外機を含む、空気調和装置。 Includes at least one outdoor unit and an outdoor unit equipped with a heat exchanger comprising a plurality of pipes and the distributor according to any one of claims 1 to 5, which distributes the refrigerant to the plurality of pipes. , Air conditioner.
JP2019203695A 2019-11-11 2019-11-11 Distributor, heat exchanger, indoor unit, outdoor unit and air conditioner Active JP6840212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019203695A JP6840212B2 (en) 2019-11-11 2019-11-11 Distributor, heat exchanger, indoor unit, outdoor unit and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203695A JP6840212B2 (en) 2019-11-11 2019-11-11 Distributor, heat exchanger, indoor unit, outdoor unit and air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019080765 Division 2019-04-22 2019-04-22

Publications (2)

Publication Number Publication Date
JP2020176822A true JP2020176822A (en) 2020-10-29
JP6840212B2 JP6840212B2 (en) 2021-03-10

Family

ID=72935755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203695A Active JP6840212B2 (en) 2019-11-11 2019-11-11 Distributor, heat exchanger, indoor unit, outdoor unit and air conditioner

Country Status (1)

Country Link
JP (1) JP6840212B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380492U (en) * 1986-11-10 1988-05-27
JPH1061963A (en) * 1996-08-23 1998-03-06 Mitsubishi Electric Corp Room unit for air conditioner
US20100089559A1 (en) * 2006-10-13 2010-04-15 Carrier Corporation Method and apparatus for improving distribution of fluid in a heat exchanger
JP2018091503A (en) * 2016-11-30 2018-06-14 ダイキン工業株式会社 Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380492U (en) * 1986-11-10 1988-05-27
JPH1061963A (en) * 1996-08-23 1998-03-06 Mitsubishi Electric Corp Room unit for air conditioner
US20100089559A1 (en) * 2006-10-13 2010-04-15 Carrier Corporation Method and apparatus for improving distribution of fluid in a heat exchanger
JP2018091503A (en) * 2016-11-30 2018-06-14 ダイキン工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP6840212B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP6058219B2 (en) Air conditioner
JP6352401B2 (en) Air conditioner
JP7108177B2 (en) heat exchangers and air conditioners
JP2013061091A (en) Refrigeration device
JP2018162901A (en) Heat exchanger and air conditioner using the same
JP2015087074A (en) Outdoor unit of air conditioning device
CN205102469U (en) Heat exchanger and possess this heat exchanger's refrigeration cycle device
CN112567193B (en) Heat exchanger and air conditioner
JP2021008973A (en) Heat exchanger and heat pump device
CN111829385B (en) Distributor, heat exchanger, indoor unit, outdoor unit, and air conditioning apparatus
JP2018091503A (en) Heat exchanger
EP3569938A1 (en) Air conditioner
JP6840212B2 (en) Distributor, heat exchanger, indoor unit, outdoor unit and air conditioner
JP6727398B2 (en) Heat exchanger and air conditioner
WO2019211893A1 (en) Heat exchanger and refrigeration cycle device
JP2012137223A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JP6927353B1 (en) Heat exchanger
JP6927352B1 (en) Heat exchanger
JP2014137172A (en) Heat exchanger and refrigerator
JP7118247B2 (en) air conditioner
JP2022028490A (en) Heat exchanger
JP6391838B2 (en) Heat exchanger unit and refrigeration cycle system
WO2023119468A1 (en) Heat exchanger and air conditioner
JPWO2019155571A1 (en) Heat exchanger and refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6840212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150