JP2018153909A - Noncontact electric power supply robot - Google Patents

Noncontact electric power supply robot Download PDF

Info

Publication number
JP2018153909A
JP2018153909A JP2017168091A JP2017168091A JP2018153909A JP 2018153909 A JP2018153909 A JP 2018153909A JP 2017168091 A JP2017168091 A JP 2017168091A JP 2017168091 A JP2017168091 A JP 2017168091A JP 2018153909 A JP2018153909 A JP 2018153909A
Authority
JP
Japan
Prior art keywords
transmitter
power
control signal
pair
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017168091A
Other languages
Japanese (ja)
Inventor
粟井 郁雄
Ikuo Awai
郁雄 粟井
健太朗 川辺
Kentaro Kawabe
健太朗 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYUTECH CO Ltd
Original Assignee
RYUTECH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYUTECH CO Ltd filed Critical RYUTECH CO Ltd
Publication of JP2018153909A publication Critical patent/JP2018153909A/en
Priority to JP2021193690A priority Critical patent/JP7158074B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact electric power supply robot that transmits electric power and control signals in a noncontact manner between adjacent joint components, uses a small device at a joint, and is lightweight.SOLUTION: A noncontact electric power supply robot 1 comprises a power transmitter 2 having a power transmission resonator 21 and sending electric power, electric wire lines 4 and 4 respectively provided for adjacent joint components 1a and 1a, a transmitter 5 that is formed by a pair of transmitter plate bodies 51 and 51 fixed to the respective adjacent joint components 1a and 1a and positioned opposite each other, and by the electric wire lines 4 and 4 connected to the pair of transmitter plate bodies 51 and 51 respectively and that transmits at least electric power in a noncontact manner between the pair of transmitter plate bodies 51 and 51, and a power receiver 6 having a power receiving resonator 61 that resonates with the power transmission resonator 21, receiving electric power via the electric wire line 4 and supplying electric power to a joint driving controller 8 capable of changing an angle between the adjacent joint components 1a and 1a.SELECTED DRAWING: Figure 6

Description

本発明は、関節を非接触で経由して給電する非接触給電ロボットに関する。   The present invention relates to a contactless power supply robot that supplies power via a joint without contact.

ロボットの関節は、頻繁にしかも高速で動作するものである。一般に、ロボットの関節を構成するところの隣接する関節構成部材の間では、各々の関節構成部材を通って来た電気配線は、曲がったり捩れたりできるように位置が固定されずに空中配線されており、頻繁かつ高速の動作に耐え得るように、経時劣化が少なく耐久性が高くなるように用いられている。   Robot joints operate frequently and at high speeds. In general, between adjacent joint constituent members constituting a joint of a robot, the electrical wiring passing through each joint constituent member is wired in the air without being fixed in position so that it can be bent or twisted. In order to withstand frequent and high-speed operation, it is used so that it has little deterioration with time and high durability.

しかしながら、隣接する関節構成部材の間に位置が固定されずに空中配線された電気配線にかかる力は原理的に無くなることはないので、経時劣化により接触不良又は断線が起こる可能性が残る。そのため、空中配線の電気配線をなくして、隣接する関節構成部材の間での電力及び制御信号の伝送を非接触で行う試みもなされている。例えば、特許文献1では、隣接する関節構成部材の間で電磁誘導により電力を伝送し、電磁誘導又は光伝送により制御信号を伝送する非接触給電ロボットが開示されている。また、特許文献2では、隣接する関節構成部材の間での電気的接続を、回転部と固定部との間にロータリトランスを挿入して電磁誘導で行う非接触給電ロボットが開示されている。   However, since the force applied to the electric wiring that is wired in the air without fixing the position between the adjacent joint constituent members is not lost in principle, there is a possibility that contact failure or disconnection may occur due to deterioration over time. For this reason, attempts have been made to eliminate the electrical wiring of the aerial wiring and perform non-contact transmission of power and control signals between adjacent joint constituent members. For example, Patent Document 1 discloses a non-contact power supply robot that transmits electric power between adjacent joint constituent members by electromagnetic induction and transmits a control signal by electromagnetic induction or optical transmission. Further, Patent Document 2 discloses a non-contact power feeding robot that performs electrical connection between adjacent joint constituent members by electromagnetic induction by inserting a rotary transformer between a rotating portion and a fixed portion.

特開平07−100786号公報Japanese Patent Laid-Open No. 07-1000078 特開2003−117877号公報JP 2003-117877 A

しかしながら、特許文献1及び特許文献2に開示される非接触給電ロボットでは、電磁誘導のための素子が大きく、かつ、非常に重くなるので、関節における頻繁かつ高速の動作には不利である。また、関節の数が増え、電磁誘導の素子が多段に接続されるのに応じて、インピーダンスが高くなってしまい、電力伝送の効率の低下が大きいと考えられる。なお、電磁誘導の周波数は比較的低いため、制御信号の伝送には、実用的な情報量とするために、他の手段(特許文献1での例では、光伝送)が用いられる。   However, the non-contact power feeding robots disclosed in Patent Document 1 and Patent Document 2 are disadvantageous for frequent and high-speed operations in the joint because the elements for electromagnetic induction are large and very heavy. Further, as the number of joints increases and electromagnetic induction elements are connected in multiple stages, the impedance increases, and it is considered that the power transmission efficiency is greatly reduced. Since the frequency of electromagnetic induction is relatively low, other means (in the example of Patent Document 1, optical transmission) is used for transmission of the control signal in order to obtain a practical amount of information.

本発明は、係る事由に鑑みてなされたものであり、その目的は、隣接する関節構成部材の間で電力及び制御信号の伝送を非接触で行い、関節における素子が小さく、かつ、軽量である非接触給電ロボットを提供することにある。   The present invention has been made in view of such reasons, and the object thereof is to perform non-contact transmission of power and control signals between adjacent joint constituent members, and the elements in the joint are small and lightweight. It is to provide a non-contact power feeding robot.

上記目的を達成するために、請求項1に記載の非接触給電ロボットは、電力を送る送電器と、隣接する関節構成部材の各々に設けられた電気配線と、前記隣接する関節構成部材の各々に固定された伝送器用平板体が互いに対向して一対に設けられ、該一対の伝送器用平板体の各々に前記電気配線が接続されてなり、該一対の伝送器用平板体の間で少なくとも前記電力の伝送を非接触で行う伝送器と、前記送電共振器に共振する受電共振器を有し、前記電気配線により前記電力を受信し、前記隣接する関節構成部材の間の角度を変え得る関節駆動制御器に電力を供給する受電器と、を備えてなることを特徴とする。   In order to achieve the above object, a non-contact power feeding robot according to claim 1 includes a power transmitter that transmits electric power, an electric wiring provided in each of adjacent joint constituent members, and each of the adjacent joint constituent members. A pair of transmitter flat plates fixed to each other, and the electric wiring is connected to each of the pair of transmitter flat plates, and at least the power between the pair of transmitter flat plates. A joint drive that has a transmitter that performs non-contact transmission and a power receiving resonator that resonates with the power transmission resonator, and that can receive the power through the electrical wiring and change an angle between the adjacent joint components And a power receiver that supplies power to the controller.

請求項2に記載の非接触給電ロボットは、請求項1に記載の非接触給電ロボットにおいて、制御信号送信共振器を有し制御信号送信器用平板体を介して制御信号を送る制御信号送信器と、前記制御信号送信共振器に共振する制御信号受信共振器を有し、前記電気配線に接続された制御信号受信器用平板体を介して前記制御信号を受信し、前記関節駆動制御器に前記制御信号を送る制御信号受信器と、を更に備えてなり、前記伝送器は、前記一対の伝送器用平板体の間で更に前記制御信号の伝送を非接触で行うことを特徴とする。   The contactless power supply robot according to claim 2 is the contactless power supply robot according to claim 1, wherein the control signal transmitter has a control signal transmission resonator and transmits a control signal via a flat plate for a control signal transmitter; A control signal receiving resonator that resonates with the control signal transmitting resonator, receives the control signal via a control signal receiver flat plate connected to the electrical wiring, and controls the joint drive controller with the control. And a control signal receiver for sending a signal, wherein the transmitter further performs non-contact transmission of the control signal between the pair of transmitter flat plates.

請求項3に記載の非接触給電ロボットは、請求項1又は2に記載の非接触給電ロボットにおいて、前記一対の伝送器用平板体は、円板状であることを特徴とする。   According to a third aspect of the present invention, there is provided the non-contact power feeding robot according to the first or second aspect, wherein the pair of transmitter flat plates are disk-shaped.

請求項4に記載の非接触給電ロボットは、請求項1〜3のいずれか1項に記載の非接触給電ロボットにおいて、前記一対の伝送器用平板体の各々は、1個のもの又は並列配置された複数個のものであることを特徴とする。   The contactless power supply robot according to a fourth aspect of the present invention is the contactless power supply robot according to any one of the first to third aspects, wherein each of the pair of flat plates for the transmitter is one or arranged in parallel. It is characterized by being a plurality of things.

請求項5に記載の非接触給電ロボットは、請求項1〜4のいずれか1項に記載の非接触給電ロボットにおいて、前記一対の伝送器用平板体は、その間隙に誘電体を挟んでいることを特徴とする。   The contactless power supply robot according to claim 5 is the contactless power supply robot according to any one of claims 1 to 4, wherein the pair of flat plates for a transmitter sandwich a dielectric in the gap. It is characterized by.

請求項6に記載の非接触給電ロボットは、請求項1〜5のいずれか1項に記載の非接触給電ロボットにおいて、隣接する前記関節構成部材の各々に設けられたグランド線を更に備えており、前記伝送器は、グランド用円筒体が互いに同軸状に一対に設けられ、該一対のグランド用円筒体の各々に前記グランド線が接続されてなることを特徴とする。   The contactless power supply robot according to a sixth aspect of the present invention is the contactless power supply robot according to any one of the first to fifth aspects, further including a ground wire provided in each of the adjacent joint constituent members. The transmitter is characterized in that a pair of ground cylinders are provided coaxially with each other, and the ground line is connected to each of the pair of ground cylinders.

請求項7に記載の非接触給電ロボットは、請求項1〜6のいずれか1項に記載の非接触給電ロボットにおいて、前記伝送器用平板体に代えて伝送器用円筒体が互いに同軸状に一対に設けられていることを特徴とする。   The non-contact power supply robot according to claim 7 is the non-contact power supply robot according to any one of claims 1 to 6, wherein the transmitter cylinders are coaxially paired with each other instead of the transmitter flat plate. It is provided.

本発明の非接触給電ロボットによれば、隣接する関節構成部材の間で少なくとも電力の伝送を非接触で行い、関節における素子が小さく、かつ、軽量にすることができる。   According to the non-contact power feeding robot of the present invention, at least electric power is transmitted between adjacent joint constituent members in a non-contact manner, and the elements in the joint can be made small and lightweight.

本発明の実施形態に係る非接触給電ロボットの例の概略を示す側面図である。It is a side view which shows the outline of the example of the non-contact electric power feeding robot which concerns on embodiment of this invention. 同上の非接触給電ロボットの送電器と制御信号送信器を示す模式的な斜視図であって、(a)が送電器、(b)が制御信号送信器である。It is a typical perspective view which shows the power transmitter and control signal transmitter of a non-contact electric power feeding robot same as the above, (a) is a power transmitter, (b) is a control signal transmitter. 同上の非接触給電ロボットの送電器の変形例を示す模式的な斜視図である。It is a typical perspective view which shows the modification of the power transmission device of a non-contact electric power feeding robot same as the above. 同上の非接触給電ロボットの送電器の更なる変形例を示す模式図である。It is a schematic diagram which shows the further modification of the power transmission device of a non-contact electric power feeding robot same as the above. 同上の非接触給電ロボットの伝送器を示すものであって。(a)が側面図、(b)が模式的な斜視図である。The transmitter of the non-contact power feeding robot described above is shown. (A) is a side view, (b) is a typical perspective view. 同上の非接触給電ロボットの関節及びその周辺の概略を示すものであって。(a)が平面図、(b)がその一部の平面視拡大断面図である。The outline of the joint of the non-contact electric power feeding robot same as the above and its periphery is shown. (A) is a top view, (b) is the one part planar view enlarged sectional view of the part. 同上の非接触給電ロボットの伝送器についての変形例を示す側面図であって、(a)は伝送器用平板体と電気配線の接続位置を変えたもの、(b)は伝送器用平板体を並列配置したものである。It is a side view which shows the modification about the transmitter of a non-contact electric power feeding robot same as the above, (a) which changed the connection position of the flat plate for transmitters and an electrical wiring, (b) is parallel to the flat plate for transmitters. It is arranged. 同上の非接触給電ロボットの受電器と制御信号受信器を示す模式的な斜視図であって、(a)が受電器、(b)が制御信号受信器である。It is a typical perspective view which shows the power receiver and control signal receiver of a non-contact electric power feeding robot same as the above, (a) is a power receiver, (b) is a control signal receiver. 同上の非接触給電ロボットの関節及びその周辺の他の例の概略を示すものであって。(a)が平面図、(b)がその一部の平面視拡大断面図である。The outline of the joint of a non-contact electric power feeding robot same as the above and other examples of the circumference is shown. (A) is a top view, (b) is the one part planar view enlarged sectional view of the part. 同上の非接触給電ロボットの関節及びその周辺の更に他の例の概略を示すものであって。(a)が平面図、(b)がその一部の平面視拡大断面図である。The outline of the joint of a non-contact electric power feeding robot same as the above and other examples of the circumference are shown. (A) is a top view, (b) is the one part planar view enlarged sectional view of the part. 同上の非接触給電ロボットに関連する第1のシミュレーションの構成を示すブロック図である。It is a block diagram which shows the structure of the 1st simulation relevant to the non-contact electric power feeding robot same as the above. 同上の非接触給電ロボットに関連する第1のシミュレーションの結果を示す特性図である。It is a characteristic view which shows the result of the 1st simulation relevant to the non-contact electric power feeding robot same as the above. 同上の非接触給電ロボットに関連する第2のシミュレーションの構成を示すブロック図である。It is a block diagram which shows the structure of the 2nd simulation relevant to the non-contact electric power feeding robot same as the above. 同上の非接触給電ロボットに関連する第2のシミュレーションの結果を示す特性図である。It is a characteristic view which shows the result of the 2nd simulation relevant to the non-contact electric power feeding robot same as the above. 同上の非接触給電ロボットの伝送器にグランド用円筒体を設けた変形例を示すものであって。(a)が断面図、(b)が模式的な斜視図である。FIG. 9 shows a modified example in which a ground cylindrical body is provided in the transmitter of the above non-contact power feeding robot. (A) is sectional drawing, (b) is a typical perspective view. 同上の非接触給電ロボットの伝送器の伝送器用平板体を分割した変形例を示すものであって。(a)が断面図、(b)が模式的な斜視図である。The modification which divided | segmented the flat plate for transmitters of the transmitter of a non-contact electric power feeding robot same as the above is shown. (A) is sectional drawing, (b) is a typical perspective view. 同上の非接触給電ロボットの伝送器に伝送器用円筒体を用いた変形例を示すものであって。(a)が断面図、(b)が(a)を更に変形した断面図、(c)が模式的な斜視図である。The modification which used the cylinder for transmitters for the transmitter of a non-contact electric supply robot same as the above is shown. (A) is sectional drawing, (b) is sectional drawing which deform | transformed (a) further, (c) is a typical perspective view.

以下、本発明を実施するための形態を図面を参照しながら説明する。本発明の実施形態に係る非接触給電ロボット1は、図1に例示するように、複数の関節を有する多関節のものであって、各関節は、隣接する関節構成部材1a、1aによって構成される。関節構成部材1aとしては、台座1a、アーム部材1a、又は先端部材(物体に接触して所要の作業を行う部材)1aなどが適用可能である(図1参照)。非接触給電ロボット1は、送電器2、制御信号送信器3、電気配線4、伝送器5、受電器6、制御信号受信器7、関節駆動制御器8を備えてなる。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. As illustrated in FIG. 1, the non-contact power feeding robot 1 according to the embodiment of the present invention is a multi-joint having a plurality of joints, and each joint is configured by adjacent joint constituent members 1 a and 1 a. The As the joint constituent member 1a, a pedestal 1a 1 , an arm member 1a 2 , or a tip member (a member that performs a required operation in contact with an object) 1a 3 can be applied (see FIG. 1). The non-contact power supply robot 1 includes a power transmitter 2, a control signal transmitter 3, an electrical wiring 4, a transmitter 5, a power receiver 6, a control signal receiver 7, and a joint drive controller 8.

送電器2は、図2(a)に示すように、送電共振器21を有し、送電器用平板体22を介して電力を送る。送電共振器21の共振周波数は、限定されるものではないが、例えば、1MHz〜50MHzの範囲の一つの周波数にすることができる。送電器用平板体22は、送電共振器21に対向するように配置されており、後述する電気配線4が接続されている。なお、送電器2は、定数等の合わせこみにより、図3に示すように、送電器用平板体22を介さず送電共振器21に電気配線4を接続して電力を送ることも場合によっては可能である。   As illustrated in FIG. 2A, the power transmitter 2 includes a power transmission resonator 21 and transmits power via a power transmitter flat body 22. Although the resonant frequency of the power transmission resonator 21 is not limited, For example, it can be set as one frequency of the range of 1 MHz-50 MHz. The power transmitter flat plate 22 is disposed so as to face the power transmission resonator 21 and is connected to an electrical wiring 4 described later. In addition, as shown in FIG. 3, the power transmitter 2 may connect the electric wiring 4 to the power transmission resonator 21 without passing through the power transmitter plate 22 and send electric power depending on the case, depending on adjustment of constants and the like. Is possible.

送電共振器21は、限定されるものではないが、電気導線が平面的でスパイラル状に巻かれて形成されるコイル、すなわちスパイラルコイルとすることができる(図2(a)参照)。スパイラルコイルは、両端を開放すると1/2波長共振、一方端を開放し他方端を接地すると1/4波長共振が可能である。1/4波長共振の方が、同じ共振周波数ならば、スパイラルコイルのサイズを小さくできる。送電共振器21は、インピーダンスの整合を行うインピーダンス整合手段23、24を介して、電力用高周波電源25の信号によって励振される。インピーダンス整合手段23、24は、典型的には、送電共振器21に電磁誘導結合する結合ループ及びそれと直列接続されるコンデンサを用いることができるが、他の形態(例えば、結合ループを用いずに送電共振器21に直結する形態など)であってもよい。なお、送電器2は、定数等の合わせこみにより、図4に示すように、電力用高周波電源25に電気配線4を接続して電力を送ることも場合によっては可能である。   The power transmission resonator 21 is not limited, but may be a coil formed by winding an electric conductor in a flat and spiral shape, that is, a spiral coil (see FIG. 2A). The spiral coil can resonate at 1/2 wavelength when both ends are opened, and can resonate at 1/4 wavelength when one end is opened and the other end is grounded. If the 1/4 wavelength resonance is the same resonance frequency, the size of the spiral coil can be reduced. The power transmission resonator 21 is excited by a signal from the power high-frequency power supply 25 via impedance matching means 23 and 24 that perform impedance matching. The impedance matching means 23 and 24 can typically use a coupling loop that electromagnetically couples to the power transmission resonator 21 and a capacitor connected in series therewith, but other forms (for example, without using a coupling loop). It may be a form directly connected to the power transmission resonator 21. In addition, the power transmitter 2 can send electric power by connecting the electric wiring 4 to the power high-frequency power supply 25 as shown in FIG.

送電器用平板体22は、通常、金属製(例えば、銅製など)の円板状のものである。また、送電器用平板体22の表面(送電共振器21に対向する面)は、通常、凹凸がなく平坦である。   The power transmitter flat plate 22 is usually a disk-shaped member made of metal (for example, copper). Further, the surface of the power transmitting flat plate 22 (the surface facing the power transmitting resonator 21) is usually flat without any irregularities.

制御信号送信器3は、図2(b)に示すように、制御信号送信共振器31を有し、制御信号送信器用平板体32を介して制御信号を送る。制御信号送信共振器31の共振周波数は、限定されるものではないが、例えば、100MHz〜200MHzの範囲の一つの周波数にすることができる。制御信号送信器用平板体32は、制御信号送信共振器31に対向するように配置されており、電気配線4が接続されている。   As shown in FIG. 2B, the control signal transmitter 3 has a control signal transmission resonator 31 and sends a control signal via a control signal transmitter plate 32. The resonance frequency of the control signal transmission resonator 31 is not limited, but can be one frequency in the range of 100 MHz to 200 MHz, for example. The control signal transmitter plate 32 is disposed so as to face the control signal transmitter resonator 31 and is connected to the electric wiring 4.

制御信号送信共振器31は、限定されるものではないが、図2(b)に示すように、電気導線が平面的でスパイラル状に巻かれて形成されるコイル、すなわちスパイラルコイルとすることができる。スパイラルコイルは、両端を開放すると1/2波長共振、一方端を開放し他方端を接地すると1/4波長共振が可能である。制御信号送信共振器31は、インピーダンスの整合を行うインピーダンス整合手段33、34を介して、制御信号用高周波電源35の信号によって励振される。インピーダンス整合手段33、34は、典型的には、制御信号送信共振器31に電磁誘導結合する結合ループ及びそれと直列接続されるコンデンサを用いることができるが、他の形態(例えば、結合ループを用いずに制御信号送信共振器31に直結する形態など)であってもよい。   The control signal transmission resonator 31 is not limited, but as shown in FIG. 2B, the control signal transmission resonator 31 may be a coil formed by winding an electrical conductor in a flat and spiral shape, that is, a spiral coil. it can. The spiral coil can resonate at 1/2 wavelength when both ends are opened, and can resonate at 1/4 wavelength when one end is opened and the other end is grounded. The control signal transmission resonator 31 is excited by a signal from the control signal high-frequency power source 35 via impedance matching means 33 and 34 that perform impedance matching. The impedance matching means 33 and 34 can typically use a coupling loop that electromagnetically couples to the control signal transmission resonator 31 and a capacitor connected in series therewith, but other forms (for example, a coupling loop are used). Without being connected directly to the control signal transmission resonator 31).

制御信号送信器用平板体32は、通常、金属製(例えば、銅製など)の円板状のものである。また、制御信号送信器用平板体32の表面(制御信号送信共振器31に対向する面))は、通常、凹凸がなく平坦である。   The control signal transmitter flat plate 32 is usually a disk-shaped member made of metal (for example, copper). Further, the surface of the control signal transmitter flat plate 32 (the surface facing the control signal transmission resonator 31) is usually flat without any irregularities.

電気配線4は、各関節を構成する関節構成部材1aの中に設けられ、関節構成部材1aに固定されている。電気配線4は、グランド線を伴わない単線でよいが、同軸線路構造にして外部導体を関節構成部材1aの金属部分などに接続してグランドとすることも可能である。また、適宜、折り曲げることが可能である。   The electrical wiring 4 is provided in the joint constituent member 1a constituting each joint, and is fixed to the joint constituent member 1a. The electrical wiring 4 may be a single wire without a ground wire, but it may be a ground by connecting an external conductor to a metal portion of the joint component 1a or the like with a coaxial line structure. Further, it can be appropriately bent.

伝送器5は、隣接する関節構成部材1a、1aの間で電力及び制御信号の伝送を非接触で行うものである。伝送器5は、図5(a)、(b)に示すように、互いに対向する一対の伝送器用平板体51、51が設けられ、これら一対の伝送器用平板体51、51の各々に電気配線4、4が接続されている。一対の伝送器用平板体51、51の間で電力及び制御信号の伝送が非接触で行われる。一対の伝送器用平板体51、51は、通常、金属製(例えば、銅製など)の円板状のものである。一対の伝送器用平板体51、51の表面(互いに対向する面)は、通常、凹凸がなく平坦である。   The transmitter 5 performs non-contact transmission of electric power and control signals between adjacent joint constituent members 1a and 1a. As shown in FIGS. 5A and 5B, the transmitter 5 is provided with a pair of transmitter flat bodies 51, 51 facing each other, and electric wiring is provided to each of the pair of transmitter flat bodies 51, 51. 4 and 4 are connected. Transmission of electric power and control signals is performed in a non-contact manner between the pair of transmitter flat bodies 51, 51. The pair of transmitter flat bodies 51 and 51 are usually disk-shaped ones made of metal (for example, copper). The surfaces (surfaces facing each other) of the pair of transmitter flat bodies 51 and 51 are usually flat without any irregularities.

一対の伝送器用平板体51、51は、中心軸が一致する、つまり同軸になるように配置されている。更には、一対の伝送器用平板体51、51は、図6(a)、(b)に示すように、それらの中心軸が関節の回動軸Cに一致するように配置される。一対の伝送器用平板体51、51の各々は、各々の関節構成部材1aに固定される。図6(b)では、一対の伝送器用平板体51、51の各々が頑丈な電気配線4を介して各々の関節構成部材1aに固定されるものを示している。一対の伝送器用平板体51、51の各々が、固定用部材(図示せず。)を介して各々の関節構成部材1aに固定されるようにしてもよい。   The pair of transmitter flat plates 51, 51 are arranged so that their central axes coincide, that is, are coaxial. Furthermore, as shown in FIGS. 6A and 6B, the pair of transmitter flat plates 51 and 51 are arranged so that their central axes coincide with the rotation axis C of the joint. Each of the pair of transmitter flat bodies 51, 51 is fixed to each joint constituent member 1a. In FIG. 6B, each of the pair of transmitter flat bodies 51, 51 is fixed to each joint component member 1a via the sturdy electric wiring 4. Each of the pair of transmitter flat bodies 51, 51 may be fixed to each joint constituent member 1a via a fixing member (not shown).

電気配線4、4は、図5(a)、(b)においては一対の伝送器用平板体51、51の裏面(互いに対向する面の反対面)の中央部に接続されているが、例えば、図7(a)に示すように外側面などに接続しても構わない。また、一対の伝送器用平板体51、51は、その各々が、図5(a)、(b)に示すような1個のものに限らず、図7(b)に示すように、並列配置された複数個のものとすることも可能である。そうすると、伝送器5のサイズを小さくすることができる。   The electrical wirings 4 and 4 are connected to the center part of the back surfaces (opposite surfaces opposite to each other) of the pair of transmitter flat bodies 51 and 51 in FIGS. 5A and 5B. You may connect to an outer surface etc. as shown to Fig.7 (a). Further, each of the pair of transmitter flat plates 51, 51 is not limited to one as shown in FIGS. 5 (a) and 5 (b), but is arranged in parallel as shown in FIG. 7 (b). It is also possible to use a plurality of such. Then, the size of the transmitter 5 can be reduced.

また、一対の伝送器用平板体51、51の間隙に、誘電体を挟むことも可能である。この誘電体は、固体のものでも可能であるが、シリコンオイルなどの潤滑油でも可能である。潤滑油は、例えば、図6(b)に示す空間Sを密封可能にしてそこに潤滑油を注入することで、一対の伝送器用平板体51、51の間隙に存在させ得る。この誘電体は、過度の振動が起こったとき、一対の伝送器用平板体51、51が互いに接触することを防止するとともに、一対の伝送器用平板体51、51の間隙を小さくするのと同様の特性の効果を得ることができる。   It is also possible to sandwich a dielectric between the pair of transmitter flat bodies 51, 51. This dielectric can be solid, but it can also be a lubricating oil such as silicone oil. For example, the lubricating oil can be present in the gap between the pair of transmitter flat bodies 51 and 51 by sealing the space S shown in FIG. 6B and injecting the lubricating oil therein. This dielectric prevents the pair of transmitter flat bodies 51, 51 from coming into contact with each other when excessive vibrations occur, and is similar to reducing the gap between the pair of transmitter flat bodies 51, 51. A characteristic effect can be obtained.

このような伝送器5は、隣接する関節構成部材1a、1aの間の角度が変わっても、つまり、隣接する関節構成部材1a、1aが回動軸Cのまわりに回動しても、伝送器用平板体51、51の間の外観及び電気的関係が変化しないようにすることができ、従って、電力及び制御信号の伝送の特性が変化しないようにすることができる。また、伝送器5は、隣接する関節構成部材1a、1aの間には位置が固定されずに空中配線された電気配線がないので、関節の動作が頻繁かつ高速であってもそれに耐え得、経時劣化が少なく耐久性が高くなる。また、伝送器5を構成する一対の伝送器用平板体51、51は、素子として小さく、かつ、軽量である。   Such a transmitter 5 transmits even if the angle between the adjacent joint constituent members 1a and 1a changes, that is, even if the adjacent joint constituent members 1a and 1a rotate around the rotation axis C. It is possible to prevent the appearance and the electrical relationship between the flat plates 51 and 51 from being changed, and thus it is possible to prevent the transmission characteristics of the power and the control signal from changing. Further, the transmitter 5 has no electrical wiring between the adjacent joint constituent members 1a, 1a that is not fixed in position and is wired in the air. Less deterioration with time and higher durability. Further, the pair of transmitter flat bodies 51 and 51 constituting the transmitter 5 are small and lightweight as elements.

受電器6は、図8(a)に示すように、送電共振器21に共振する受電共振器61を有し、受電器用平板体62を介して電力を受ける。受電器用平板体62は、送電共振器61に対向するように配置されており、電気配線4に接続されている。なお、末端の関節構成部材1aなどでは、受電器6は、受電器用平板体62を介さず受電共振器61に電気配線4を接続して電力を受けることも可能である。   As illustrated in FIG. 8A, the power receiver 6 includes a power receiving resonator 61 that resonates with the power transmitting resonator 21, and receives power through a power receiving plate 62. The power receiving flat plate 62 is disposed so as to face the power transmission resonator 61, and is connected to the electrical wiring 4. Note that in the terminal joint component 1a and the like, the power receiver 6 can receive electric power by connecting the electric wiring 4 to the power receiving resonator 61 without using the power receiving plate 62.

受電共振器61は、限定されるものではないが、電気導線が平面的でスパイラル状に巻かれて形成されるコイル、すなわちスパイラルコイルとすることができる(図8(a)参照)。スパイラルコイルは、両端を開放すると1/2波長共振、一方端を開放し他方端を接地すると1/4波長共振が可能である。受電共振器61が受けた電力は、インピーダンスの整合を行うインピーダンス整合手段63、64を介して、関節駆動制御器8に供給される。インピーダンス整合手段63、64は、典型的には、受電共振器61に電磁界結合する結合ループ及びそれと直列接続されるコンデンサを用いることができるが、他の形態(例えば、結合ループを用いずに受電共振器61に直結する形態など)であってもよい。   The power receiving resonator 61 is not limited, but may be a coil formed by winding an electric conductor in a flat and spiral shape, that is, a spiral coil (see FIG. 8A). The spiral coil can resonate at 1/2 wavelength when both ends are opened, and can resonate at 1/4 wavelength when one end is opened and the other end is grounded. The electric power received by the power receiving resonator 61 is supplied to the joint drive controller 8 through impedance matching means 63 and 64 that perform impedance matching. The impedance matching means 63 and 64 can typically use a coupling loop that electromagnetically couples to the power receiving resonator 61 and a capacitor connected in series therewith, but other forms (for example, without using a coupling loop). It may be a form directly connected to the power receiving resonator 61.

受電器用平板体62は、通常、金属製(例えば、銅製など)の円板状のものである。また、受電器用平板体62の表面(受電共振器61に対向する面)は、通常、凹凸がなく平坦である。   The power receiving flat plate 62 is usually a disk-shaped member made of metal (for example, copper). Further, the surface of the power receiving flat plate 62 (the surface facing the power receiving resonator 61) is usually flat without any irregularities.

制御信号受信器7は、図8(b)に示すように、制御信号送信共振器31に共振する制御信号受信共振器71を有し、制御信号受信器用平板体72を介して制御信号を受ける。制御信号受信器用平板体72は、制御信号受信共振器71に対向するように配置されており、電気配線4に接続されている。   As shown in FIG. 8B, the control signal receiver 7 includes a control signal receiving resonator 71 that resonates with the control signal transmitting resonator 31, and receives the control signal via the control signal receiver flat plate 72. . The control signal receiver flat plate 72 is disposed so as to face the control signal receiving resonator 71 and is connected to the electrical wiring 4.

制御信号受信共振器71は、限定されるものではないが、電気導線が平面的でスパイラル状に巻かれて形成されるコイル、すなわちスパイラルコイルとすることができる(図8(b)参照)。スパイラルコイルは、両端を開放すると1/2波長共振、一方端を開放し他方端を接地すると1/4波長共振が可能である。制御信号受信共振器71が受けた制御信号は、インピーダンスの整合を行うインピーダンス整合手段73、74を介して、関節駆動制御器8に送られる。インピーダンス整合手段73、74は、典型的には、制御信号受信共振器71に電磁界結合する結合ループ及びそれと直列接続されるコンデンサを用いることができるが、他の形態(例えば、結合ループを用いずに制御信号受信共振器71に直結する形態など)であってもよい。   Although the control signal receiving resonator 71 is not limited, the control signal receiving resonator 71 may be a coil formed by winding an electric conductor in a flat and spiral shape, that is, a spiral coil (see FIG. 8B). The spiral coil can resonate at 1/2 wavelength when both ends are opened, and can resonate at 1/4 wavelength when one end is opened and the other end is grounded. The control signal received by the control signal receiving resonator 71 is sent to the joint drive controller 8 via impedance matching means 73 and 74 that perform impedance matching. The impedance matching means 73 and 74 can typically use a coupling loop electromagnetically coupled to the control signal receiving resonator 71 and a capacitor connected in series therewith, but other forms (for example, a coupling loop are used). Without being connected directly to the control signal receiving resonator 71).

制御信号受信器用平板体72は、通常、金属製(例えば、銅製など)の円板状のものである。また、制御信号受信器用平板体72の表面(制御信号受信共振器71に対向する面)は、通常、凹凸がなく平坦である。   The control signal receiver flat plate 72 is usually a disk-shaped member made of metal (for example, copper). Further, the surface of the control signal receiver flat plate 72 (surface facing the control signal receiving resonator 71) is usually flat without any irregularities.

関節駆動制御器8は、受電器6から電力が供給され、また、制御信号受信器7から制御信号を受ける。関節駆動制御器8は、隣接する関節構成部材1a、1aの間の角度、つまり、隣接する関節構成部材1a、1aが回動軸Cのまわりに回動する角度を変え得るものである。具体的には、図6(b)に示すように、関節駆動制御器8は、一方の関節構成部材1aに固定されたステータ9Aを駆動制御し、ロータ9Bを及びそれに固着された回動部材9Cを回動させることができる。他方の関節構成部材1aは、回動部材9Cに固定されおり、回動部材9Cの回動とともに回動することができる。関節駆動制御器8の具体的な構成は、公知のものを用いることができるので、詳細な説明は省略する。   The joint drive controller 8 is supplied with power from the power receiver 6 and receives a control signal from the control signal receiver 7. The joint drive controller 8 can change the angle between the adjacent joint constituent members 1a and 1a, that is, the angle at which the adjacent joint constituent members 1a and 1a rotate around the rotation axis C. Specifically, as shown in FIG. 6 (b), the joint drive controller 8 drives and controls the stator 9A fixed to one joint component 1a, and the rotor 9B and the rotating member fixed thereto. 9C can be rotated. The other joint constituent member 1a is fixed to the rotating member 9C, and can rotate with the rotation of the rotating member 9C. Since the specific structure of the joint drive controller 8 can use a well-known thing, detailed description is abbreviate | omitted.

なお、隣接する関節構成部材1a、1aは、様々な形状が可能である。隣接する関節構成部材1a、1aが図9(a)で示すような場合、内部構成を、図9(b)で示すように、図6(b)と同様な構成にすることが可能である。   The adjacent joint constituent members 1a, 1a can have various shapes. When the adjacent joint constituent members 1a and 1a are as shown in FIG. 9A, the internal configuration can be the same as that shown in FIG. 6B as shown in FIG. 9B. .

また、隣接する関節構成部材1a、1aが図10(a)で示すような場合、図10(b)に示すように、隣接する関節構成部材1a、1aの間の機構や関節駆動制御器8、ステータ9A、ロータ9B、回動部材9Cなどの形状又は位置などを変更することが可能である。なお、図10(b)における符号9C’は、回動部材9Cの対称位置に有って、他方の関節構成部材1a(図においては上側の関節構成部材1a)に固定され、一方の関節構成部材1a(図においては下側の関節構成部材1a)に対して自由に他方の関節構成部材1aが回動するように、一方の関節構成部材1aに結合する回動部材である。更には、回動部材9C’のために別の受電器6、制御信号受信器7、関節駆動制御器8、ステータ9A、及びロータ9Bを設け、そのロータ9Bに回動部材9C’を固着することも可能である。従って、この場合、同じ関節構成部材1aの電気配線4は分岐して、2セットの受電器6及び制御信号受信器7に接続されることになる。   Further, when the adjacent joint constituent members 1a and 1a are as shown in FIG. 10A, as shown in FIG. 10B, the mechanism or joint drive controller 8 between the adjacent joint constituent members 1a and 1a. The shape or position of the stator 9A, the rotor 9B, the rotating member 9C, etc. can be changed. Note that reference numeral 9C ′ in FIG. 10B is located at the symmetrical position of the rotating member 9C and is fixed to the other joint constituent member 1a (upper joint constituent member 1a in the figure), and one joint configuration This is a rotating member coupled to one joint constituent member 1a so that the other joint constituent member 1a can freely rotate with respect to the member 1a (the lower joint constituent member 1a in the figure). Furthermore, another power receiver 6, a control signal receiver 7, a joint drive controller 8, a stator 9A, and a rotor 9B are provided for the rotating member 9C ′, and the rotating member 9C ′ is fixed to the rotor 9B. It is also possible. Accordingly, in this case, the electrical wiring 4 of the same joint component 1a is branched and connected to the two sets of power receiver 6 and control signal receiver 7.

このような非接触給電ロボット1は、電力とともに制御信号を同じ電気配線4及び伝送器5を用いて必要な箇所(例えば、非接触給電ロボット1の先端部材1aの関節)まで伝送可能であるが、制御信号送信器3及び制御信号受信器7を省略して、その代わりに他の構成(電波などを用いて通信する構成)を用いることも可能である。 Such a non-contact power supply robot 1 can transmit a control signal together with electric power to a necessary location (for example, a joint of the tip member 1a 3 of the non-contact power supply robot 1) using the same electric wiring 4 and transmitter 5. However, it is also possible to omit the control signal transmitter 3 and the control signal receiver 7 and use another configuration (a configuration in which communication is performed using radio waves or the like) instead.

次に、非接触給電ロボット1に関連して行った2つのシミュレーションについて述べる。電気配線4の太さは、直径1mmとした。送電器2の送電共振器21及び受電器6の受電共振器61は、直径15cm、巻き数15のスパイラルコイルを両端とも接地せずに用いた。制御信号送信器3の制御信号送信共振器31及び制御信号受信器7の制御信号受信共振器71は、直径7.5cm、巻き数6のスパイラルコイルを両端とも接地せずに用いた。送電器2の送電器用平板体22、制御信号送信器3の制御信号送信器用平板体32、伝送器5の伝送器用平板体51、受電器6の受電器用平板体62、制御信号受信器7の制御信号受信器用平板体72は、直径7.5cmの円板状のものを用いた。送電器2の送電共振器21と送電器用平板体22の間隔、制御信号送信器3の制御信号送信共振器31と制御信号送信器用平板体32の間隔、受電器6の受電共振器61と受電器用平板体62の間隔、制御信号受信器7の制御信号受信共振器71と制御信号受信器用平板体72、の間隔を5mmとし、伝送器用平板体51、51の間隔を2mmとした。受電器6のインピーダンス整合手段63、64及び制御信号受信器7のインピーダンス整合手段73、74は結合ループのみ用い、それに負荷として50オームの抵抗を接続した。   Next, two simulations performed in connection with the non-contact power feeding robot 1 will be described. The thickness of the electric wiring 4 was 1 mm in diameter. As the power transmission resonator 21 of the power transmitter 2 and the power reception resonator 61 of the power receiver 6, a spiral coil having a diameter of 15 cm and a winding number of 15 was used without grounding both ends. As the control signal transmission resonator 31 of the control signal transmitter 3 and the control signal reception resonator 71 of the control signal receiver 7, a spiral coil having a diameter of 7.5 cm and a winding number of 6 was used without grounding both ends. The power transmitter flat plate 22 of the power transmitter 2, the control signal transmitter flat plate 32 of the control signal transmitter 3, the transmitter flat plate 51 of the transmitter 5, the power receiver flat plate 62 of the power receiver 6, and the control signal receiver. The control signal receiver flat plate 72 of No. 7 was a disc-shaped member having a diameter of 7.5 cm. The distance between the power transmission resonator 21 of the power transmitter 2 and the power transmitter plate 22, the distance between the control signal transmitter resonator 31 of the control signal transmitter 3 and the control signal transmitter flat body 32, and the power receiving resonator 61 of the power receiver 6. The interval between the power receiving flat plate 62, the interval between the control signal receiving resonator 71 of the control signal receiver 7 and the control signal receiving flat plate 72 was set to 5 mm, and the interval between the transmitter flat plates 51 and 51 was set to 2 mm. The impedance matching means 63 and 64 of the power receiver 6 and the impedance matching means 73 and 74 of the control signal receiver 7 are only used as a coupling loop, and a 50 ohm resistor is connected as a load thereto.

第1のシミュレーションでは、図11に示すように、送電器2に電気配線4を接続し、その電気配線4に伝送器5(5A)を接続し、かつ、中間点Aで分岐させて受電器6(6A)を接続した。また、伝送器5(5A)のもう一方に電気配線4を接続し、その電気配線4に伝送器5(5B)を接続し、かつ、中間点Bで分岐させて受電器6(6B)を接続した。また、伝送器5(5B)のもう一方に電気配線4を接続し、その電気配線4に、中間点Cで折り曲げて受電器6(6C)を接続した。電気配線4の長さは、送電器2と中間点Aの間、中間点Aと伝送器5(5A)の間、中間点Aと受電器6(6A)の間、伝送器5(5A)と中間点Bの間、中間点Bと伝送器5(5B)の間、中間点Bと受電器6(6B)の間、伝送器5(5B)と中間点Cの間、中間点Cと受電器6(6C)の間、でいずれも20cmとした。   In the first simulation, as shown in FIG. 11, the electric wiring 4 is connected to the power transmitter 2, the transmitter 5 (5 </ b> A) is connected to the electric wiring 4, and the power is received at the intermediate point A. 6 (6A) was connected. Further, the electric wiring 4 is connected to the other side of the transmitter 5 (5A), the transmitter 5 (5B) is connected to the electric wiring 4, and the power receiving device 6 (6B) is branched at the intermediate point B. Connected. In addition, the electrical wiring 4 was connected to the other side of the transmitter 5 (5B), and the power receiving device 6 (6C) was connected to the electrical wiring 4 by bending at an intermediate point C. The length of the electrical wiring 4 is between the power transmitter 2 and the intermediate point A, between the intermediate point A and the transmitter 5 (5A), between the intermediate point A and the power receiver 6 (6A), and between the transmitter 5 (5A). Between the intermediate point B and the intermediate point B, between the intermediate point B and the transmitter 5 (5B), between the intermediate point B and the power receiver 6 (6B), between the transmitter 5 (5B) and the intermediate point C, The distance between the power receivers 6 (6C) was 20 cm.

図12において、S11、S21、S31、S41はそれぞれ、反射係数、受電器6(6A)への伝送係数、受電器6(6B)への伝送係数、受電器6(6C)への伝送係数を示している。周波数が約30MHzで共振しており、その周波数における伝送係数は、S21が約−3.5dB(約40%)、S31が約−7dB(約20%)、S41が約−6dB(約25%)であった。よって、関節の数が多くても、電力伝送の効率の低下が少ないことが分かる。   In FIG. 12, S11, S21, S31, and S41 respectively represent the reflection coefficient, the transmission coefficient to the power receiver 6 (6A), the transmission coefficient to the power receiver 6 (6B), and the transmission coefficient to the power receiver 6 (6C). Show. The frequency resonates at about 30 MHz, and the transmission coefficient at that frequency is about −3.5 dB (about 40%) for S21, about −7 dB (about 20%) for S31, and about −6 dB (about 25%) for S41. )Met. Therefore, it can be seen that even if the number of joints is large, the decrease in the efficiency of power transmission is small.

第2のシミュレーションでは、図13に示すように、送電器2に電気配線4を接続し、その電気配線4に受電器6を接続し、かつ、中間点Dで分岐させて更に中間点Eで折り曲げて制御信号送信器3を接続し、かつ、中間点Dよりも受電器6側の中間点Fで分岐させて更に中間点Gで折り曲げて制御信号受信器7を接続した。電気配線4の長さは、送電器2と中間点Dの間で5cm、中間点Dと中間点Eの間で30cm、中間点Eと制御信号送信器3の間で5cm、中間点Dと中間点Fの間で35cm、中間点Fと中間点Gの間で30cm、中間点Gと制御信号受信器7の間で5cm、中間点Fと受電器6の間で5cmとした。   In the second simulation, as shown in FIG. 13, the electrical wiring 4 is connected to the power transmitter 2, the power receiver 6 is connected to the electrical wiring 4, and the branch is made at the intermediate point D, and further at the intermediate point E. The control signal transmitter 3 was bent and connected, and the control signal receiver 7 was connected by branching at an intermediate point F closer to the power receiver 6 than the intermediate point D and further bent at the intermediate point G. The length of the electrical wiring 4 is 5 cm between the power transmitter 2 and the intermediate point D, 30 cm between the intermediate point D and the intermediate point E, 5 cm between the intermediate point E and the control signal transmitter 3, The distance between the intermediate point F was 35 cm, the intermediate point F and the intermediate point G were 30 cm, the intermediate point G and the control signal receiver 7 were 5 cm, and the intermediate point F and the power receiver 6 were 5 cm.

図14(a)において、S11、S21はそれぞれ、送電器2の反射係数、送電器2から受電器6への伝送係数を示している。送電器2と受電器6は、周波数が約28MHzで共振しており、その周波数における伝送係数が約―0.6dB(約90%)であった。また、図14(b)において、S33、S43はそれぞれ、制御信号送信器3の反射係数、制御信号送信器3から制御信号受信器7への伝送係数を示している。制御信号送信器3と制御信号受信器7は、周波数が約155MHzで共振しており、その周波数における伝送係数が約―0.6dB(約90%)であった。よって、電力と制御信号が同じ電気配線4を用いて伝送可能であることが分かる。   In FIG. 14A, S11 and S21 indicate the reflection coefficient of the power transmitter 2 and the transmission coefficient from the power transmitter 2 to the power receiver 6, respectively. The power transmitter 2 and the power receiver 6 resonated at a frequency of about 28 MHz, and the transmission coefficient at that frequency was about -0.6 dB (about 90%). In FIG. 14B, S33 and S43 indicate the reflection coefficient of the control signal transmitter 3 and the transmission coefficient from the control signal transmitter 3 to the control signal receiver 7, respectively. The control signal transmitter 3 and the control signal receiver 7 resonated at a frequency of about 155 MHz, and the transmission coefficient at that frequency was about -0.6 dB (about 90%). Therefore, it can be seen that the power and the control signal can be transmitted using the same electrical wiring 4.

以上、本発明の実施形態に係る非接触給電ロボットについて説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、関節については、多関節に限らず、少なくとも1個有していれば、本発明は適用可能である。また、多関節の場合、本発明は少なくとも1箇所の関節に適用されればよい。また、当然ではあるが、非接触給電ロボット1の外観は様々なものが可能であり、台座1a、アーム部材1a、及び先端部材1aなどは、非接触給電ロボット1の使用目的に応じて様々な形状や構造が可能である。 As mentioned above, although the non-contact electric power feeding robot which concerns on embodiment of this invention was demonstrated, this invention is not restricted to what was described in the above-mentioned embodiment, Various in the range of the matter described in the claim Design changes are possible. For example, the present invention is applicable to any joint as long as it has at least one joint. In the case of a multi-joint, the present invention may be applied to at least one joint. Needless to say, the appearance of the non-contact power supply robot 1 can be various, and the pedestal 1a 1 , arm member 1a 2 , tip member 1a 3 and the like can be used according to the intended use of the non-contact power supply robot 1. Various shapes and structures are possible.

また、隣接する前記関節構成部材1a、1aが、合成樹脂製であって金属部分を有さないなどの場合、隣接する前記関節構成部材1a、1aの各々にグランド線9、9を設けることができる。伝送器5は、図15(a)、(b)に示すように、上述した一対の伝送器用平板体51、51を囲むように、一対のグランド用円筒体52A、52Bが互いに同軸状に非接触に設けられるようにすることができる。一対のグランド用円筒体52A、52Bの各々には、グランド線9、9が接続される。一対のグランド用円筒体52A、52Bは、円筒状(図においては有底円筒形状)である。一対のグランド用円筒体52A、52Bは、隣接する関節構成部材1a、1aの各々に固定される。このようにすると、伝送器5においてリターンパスを確保しながら、隣接する関節構成部材1a、1aを回動させることができる。なお、グランド線9は、長く延びてグランドとして用いられるものならば形状は限定されるものではないが、図15(a)、(b)に示すように、同軸線路構造の外部導体を用いればよい。   In addition, when the adjacent joint constituent members 1a and 1a are made of synthetic resin and do not have a metal portion, ground lines 9 and 9 may be provided on the adjacent joint constituent members 1a and 1a, respectively. it can. As shown in FIGS. 15A and 15B, the transmitter 5 includes a pair of ground cylindrical bodies 52A and 52B that are not coaxial with each other so as to surround the pair of transmitter flat bodies 51 and 51 described above. It can be provided for contact. The ground lines 9, 9 are connected to the pair of ground cylindrical bodies 52A, 52B, respectively. The pair of ground cylinders 52A and 52B has a cylindrical shape (a bottomed cylindrical shape in the figure). The pair of ground cylindrical bodies 52A and 52B are fixed to the adjacent joint constituent members 1a and 1a. If it does in this way, adjoining joint constituent members 1a and 1a can be rotated, securing a return path in transmitter 5. The shape of the ground wire 9 is not limited as long as it extends long and can be used as a ground, but as shown in FIGS. 15A and 15B, if an external conductor having a coaxial line structure is used. Good.

また、伝送器5においてリターンパスを確保するためには、図16(a)、(b)に示すように、一対の伝送器用平板体51、51を半径方向に分割して、隙間をあけ、電気配線4、4とグランド線9、9を接続することも可能である。図16(a)、(b)においては、中央部分にグランド線9、9が、周辺部分に電気配線4、4が接続されているが、逆も可能である。   In order to secure a return path in the transmitter 5, as shown in FIGS. 16 (a) and 16 (b), a pair of transmitter flat bodies 51 and 51 are divided in the radial direction to form a gap, It is also possible to connect the electrical wirings 4 and 4 and the ground lines 9 and 9. In FIGS. 16A and 16B, the ground lines 9 and 9 are connected to the central portion and the electrical wirings 4 and 4 are connected to the peripheral portion, but the reverse is also possible.

また、伝送器5の一対の伝送器用平板体51、51を一対の伝送器用円筒体53A、53Bに代えることも場合によっては可能である。一対の伝送器用円筒体53A、53Bは、図17(a)、(b)、(c)に示すように、互いに同軸状に非接触に設けられる。一対の伝送器用円筒体53A、53Bは、円筒状(図においては有底円筒形状)であり、多重(図17(b)参照)にすることも可能である。   Further, the pair of transmitter flat bodies 51, 51 of the transmitter 5 may be replaced with a pair of transmitter cylinders 53A, 53B in some cases. As shown in FIGS. 17A, 17B, and 17C, the pair of transmitter cylinders 53A and 53B are provided coaxially in a non-contact manner. The pair of transmitter cylinders 53A and 53B is cylindrical (bottom cylindrical shape in the figure), and can be multiple (see FIG. 17B).

1 非接触給電ロボット
1a 関節構成部材
2 送電器
21 送電共振器
22 送電器用平板体
3 制御信号送信器
31 制御信号送信共振器
32 制御信号送信器用平板体
4 電気配線
5 伝送器
51 伝送器用平板体
52A、52B グランド用円筒体
53A、53B 伝送器用円筒体
6 受電器
61 受電共振器
62 受電器用平板体
7 制御信号受信器
71 制御信号受信共振器
72 制御信号受信器用平板体
8 関節駆動制御器
9 グランド線
DESCRIPTION OF SYMBOLS 1 Non-contact electric power feeding robot 1a Joint component 2 Power transmitter 21 Power transmission resonator 22 Transmitter flat plate 3 Control signal transmitter 31 Control signal transmission resonator 32 Control signal transmitter flat plate 4 Electrical wiring 5 Transmitter 51 Transmitter flat plate Body 52A, 52B Ground cylinder 53A, 53B Transmitter cylinder 6 Power receiver 61 Power receiver resonator 62 Power receiver flat body 7 Control signal receiver 71 Control signal receiver resonator 72 Control signal receiver flat body 8 Joint drive control 9 Ground line

Claims (7)

電力を送る送電器と、
隣接する関節構成部材の各々に設けられた電気配線と、
前記隣接する関節構成部材の各々に固定された伝送器用平板体が互いに対向して一対に設けられ、該一対の伝送器用平板体の各々に前記電気配線が接続されてなり、該一対の伝送器用平板体の間で少なくとも前記電力の伝送を非接触で行う伝送器と、
前記送電共振器に共振する受電共振器を有し、前記電気配線により前記電力を受信し、前記隣接する関節構成部材の間の角度を変え得る関節駆動制御器に電力を供給する受電器と、
を備えてなることを特徴とする非接触給電ロボット。
A power transmitter to send power,
Electrical wiring provided on each adjacent joint component;
A pair of transmitter flat plates fixed to each of the adjacent joint constituent members are provided opposite to each other, and the electric wiring is connected to each of the pair of transmitter flat members, and the pair of transmitter flat members A transmitter that performs non-contact transmission of at least the power between flat plates;
A power receiving resonator having a power receiving resonator that resonates with the power transmitting resonator, receiving the power by the electric wiring, and supplying power to a joint drive controller capable of changing an angle between the adjacent joint constituent members;
A non-contact power supply robot characterized by comprising:
請求項1に記載の非接触給電ロボットにおいて、
制御信号送信共振器を有し制御信号送信器用平板体を介して制御信号を送る制御信号送信器と、
前記制御信号送信共振器に共振する制御信号受信共振器を有し、前記電気配線に接続された制御信号受信器用平板体を介して前記制御信号を受信し、前記関節駆動制御器に前記制御信号を送る制御信号受信器と、
を更に備えてなり、
前記伝送器は、前記一対の伝送器用平板体の間で更に前記制御信号の伝送を非接触で行うことを特徴とする非接触給電ロボット。
The contactless power supply robot according to claim 1,
A control signal transmitter having a control signal transmission resonator and sending a control signal through a flat plate for a control signal transmitter;
A control signal receiving resonator that resonates with the control signal transmitting resonator; receives the control signal via a control signal receiver flat plate connected to the electrical wiring; and transmits the control signal to the joint drive controller. Send control signal receiver,
Further comprising
The non-contact power supply robot, wherein the transmitter further performs non-contact transmission of the control signal between the pair of transmitter flat plates.
請求項1又は2に記載の非接触給電ロボットにおいて、
前記一対の伝送器用平板体は、円板状であることを特徴とする非接触給電ロボット。
The contactless power supply robot according to claim 1 or 2,
The pair of transmitter flat plates has a disc shape, and is a non-contact power feeding robot.
請求項1〜3のいずれか1項に記載の非接触給電ロボットにおいて、
前記一対の伝送器用平板体の各々は、1個のもの又は並列配置された複数個のものであることを特徴とする非接触給電ロボット。
In the non-contact electric power feeding robot of any one of Claims 1-3,
Each of the pair of transmitter flat plates is one or a plurality of parallelly arranged non-contact power feeding robots.
請求項1〜4のいずれか1項に記載の非接触給電ロボットにおいて、
前記一対の伝送器用平板体は、その間隙に誘電体を挟んでいることを特徴とする非接触給電ロボット。
In the non-contact electric power feeding robot of any one of Claims 1-4,
The non-contact power feeding robot according to claim 1, wherein the pair of transmitter flat plates has a dielectric sandwiched between the gaps.
請求項1〜5のいずれか1項に記載の非接触給電ロボットにおいて、
隣接する前記関節構成部材の各々に設けられたグランド線を更に備えており、
前記伝送器は、グランド用円筒体が互いに同軸状に一対に設けられ、該一対のグランド用円筒体の各々に前記グランド線が接続されてなることを特徴とする非接触給電ロボット。
In the non-contact electric power feeding robot of any one of Claims 1-5,
A ground wire provided in each of the adjacent joint component members;
The non-contact power supply robot according to claim 1, wherein the transmitter includes a pair of ground cylindrical bodies coaxially provided to each other, and the ground wire is connected to each of the pair of ground cylindrical bodies.
請求項1〜6のいずれか1項に記載の非接触給電ロボットにおいて、
前記伝送器用平板体に代えて伝送器用円筒体が互いに同軸状に一対に設けられていることを特徴とする非接触給電ロボット。
In the non-contact electric power feeding robot of any one of Claims 1-6,
A non-contact power feeding robot characterized in that a pair of transmitter cylinders are coaxially provided in place of the transmitter flat plate.
JP2017168091A 2016-08-31 2017-08-31 Noncontact electric power supply robot Pending JP2018153909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021193690A JP7158074B2 (en) 2016-08-31 2021-11-29 Contactless power supply robot

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016170408 2016-08-31
JP2016170408 2016-08-31
JP2016226377 2016-11-21
JP2016226377 2016-11-21
JP2017062125 2017-03-28
JP2017062125 2017-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021193690A Division JP7158074B2 (en) 2016-08-31 2021-11-29 Contactless power supply robot

Publications (1)

Publication Number Publication Date
JP2018153909A true JP2018153909A (en) 2018-10-04

Family

ID=63717598

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017168091A Pending JP2018153909A (en) 2016-08-31 2017-08-31 Noncontact electric power supply robot
JP2021193690A Active JP7158074B2 (en) 2016-08-31 2021-11-29 Contactless power supply robot

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021193690A Active JP7158074B2 (en) 2016-08-31 2021-11-29 Contactless power supply robot

Country Status (1)

Country Link
JP (2) JP2018153909A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276392A (en) * 1995-04-06 1996-10-22 Mitsubishi Electric Corp Robot device
JPH09312942A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Noncontact collection method and its device
JP2001077733A (en) * 1999-09-03 2001-03-23 Japan Science & Technology Corp Transmitter and receiver for ac power and information signal
WO2012077296A1 (en) * 2010-12-07 2012-06-14 株式会社アルバック Power supply device
JP2012228147A (en) * 2011-04-22 2012-11-15 Yazaki Corp Resonance type non-contact power supply system
JP2015023638A (en) * 2013-07-17 2015-02-02 株式会社リューテック Wireless power transmission system
US9358684B1 (en) * 2015-02-18 2016-06-07 Merry Electronics Co., Ltd. Wireless transmission device and robot arm using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276392A (en) * 1995-04-06 1996-10-22 Mitsubishi Electric Corp Robot device
JPH09312942A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Noncontact collection method and its device
JP2001077733A (en) * 1999-09-03 2001-03-23 Japan Science & Technology Corp Transmitter and receiver for ac power and information signal
WO2012077296A1 (en) * 2010-12-07 2012-06-14 株式会社アルバック Power supply device
JP2012228147A (en) * 2011-04-22 2012-11-15 Yazaki Corp Resonance type non-contact power supply system
JP2015023638A (en) * 2013-07-17 2015-02-02 株式会社リューテック Wireless power transmission system
US9358684B1 (en) * 2015-02-18 2016-06-07 Merry Electronics Co., Ltd. Wireless transmission device and robot arm using the same

Also Published As

Publication number Publication date
JP7158074B2 (en) 2022-10-21
JP2022016707A (en) 2022-01-21

Similar Documents

Publication Publication Date Title
US9478846B2 (en) Antenna device
JP4605203B2 (en) Communication system and communication apparatus
US10097039B2 (en) Wireless power transmission system for transmitting alternating-current power wirelessly
CN100539296C (en) Large diameter RF rotary coupler
AU2015311561A1 (en) Wireless electric field power transfer system, method, transmitter and receiver therefor
WO2011034205A1 (en) High frequency coupler
JP2016063683A (en) Wireless power transmission device, rotor sensing device and power receiving coil thin film substrate
JP2016105584A (en) Antenna device, radio communication device and rader device
US11476580B2 (en) Antenna and communication device
JP5354874B2 (en) Inductive power supply system
US8674553B2 (en) Electromagnetic transmission apparatus
JP2018153909A (en) Noncontact electric power supply robot
JP4311450B2 (en) Antenna device
JP5892512B2 (en) Mobile wireless power receiving apparatus and wireless power transmission system using the same
WO2016114158A1 (en) Wireless power transmission system
JP6294717B2 (en) Electric field resonance type wireless power transmission device
JP2022139153A (en) Coupled-resonant wireless power transmission system
JP2015164270A (en) Antenna device and radio communication equipment
WO2019107553A1 (en) Communication device
JP4908576B2 (en) Combiner and wireless communication device using the same
WO2019175031A1 (en) Wireless power supply equipment
JP6126494B2 (en) Substrate antenna
JP6066716B2 (en) Wireless power transmission device
JP2022188240A (en) Non-contact power supply device
JP7309386B2 (en) Wireless communication system, communication device, and communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831