JP2017050426A - Additive agent for hole transport layer of organic inorganic perovskite solar battery - Google Patents

Additive agent for hole transport layer of organic inorganic perovskite solar battery Download PDF

Info

Publication number
JP2017050426A
JP2017050426A JP2015173254A JP2015173254A JP2017050426A JP 2017050426 A JP2017050426 A JP 2017050426A JP 2015173254 A JP2015173254 A JP 2015173254A JP 2015173254 A JP2015173254 A JP 2015173254A JP 2017050426 A JP2017050426 A JP 2017050426A
Authority
JP
Japan
Prior art keywords
hole transport
transport layer
inorganic perovskite
perovskite solar
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015173254A
Other languages
Japanese (ja)
Other versions
JP6557098B2 (en
Inventor
隼 郷田
Hayato Goda
隼 郷田
米原 宏司
Koji Yonehara
宏司 米原
淳志 若宮
Atsushi Wakamiya
淳志 若宮
秀隆 西村
Hidetaka Nishimura
秀隆 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2015173254A priority Critical patent/JP6557098B2/en
Publication of JP2017050426A publication Critical patent/JP2017050426A/en
Application granted granted Critical
Publication of JP6557098B2 publication Critical patent/JP6557098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic inorganic perovskite solar battery small in the variation in battery characteristic as a result of the study made on a hole transport layer formed on a perovskite layer in order to overcome the problem of an unfavorable yield of a known organic inorganic composite film solar battery arranged by using lithium (fluorosulfonyl)(trifluoromethyl)imide as an additive agent for a hole transport layer owing to the large variation in battery characteristic arising in manufacturing a plurality of solar batteries in the same way.SOLUTION: An additive agent for a hole transport layer of an organic inorganic perovskite solar battery comprises lithium bis(fluorosulfonyl)imide.SELECTED DRAWING: Figure 2

Description

本発明は、有機無機ペロブスカイト太陽電池の正孔輸送層用添加剤に関する。   The present invention relates to an additive for a hole transport layer of an organic / inorganic perovskite solar cell.

太陽電池は、再生可能型エネルギーとして着目され、シリコン型太陽電池、色素増感型太陽電池、有機薄膜太陽電池等が知られている。シリコン型太陽電池は、太陽エネルギーを電力に変える際の変換効率が高いが、エネルギー回収に長時間かかり、高コストでもある。色素増感型太陽電池や有機薄膜太陽電池は、シリコン型太陽電池に比べて、軽量、フレキシブル、かつ低コストであるが、日光に弱く耐久性等に問題がある。   Solar cells are attracting attention as renewable energy, and silicon-type solar cells, dye-sensitized solar cells, organic thin-film solar cells, and the like are known. Silicon-type solar cells have high conversion efficiency when converting solar energy into electric power, but it takes a long time for energy recovery and is also expensive. Dye-sensitized solar cells and organic thin-film solar cells are lighter, more flexible, and less expensive than silicon solar cells, but are vulnerable to sunlight and have problems with durability.

こういった中、有機無機ハイブリッド構造のペロブスカイト結晶を光吸収に用いる有機無機ハイブリッド型ペロブスカイト太陽電池(以下、有機無機ペロブスカイト太陽電池)が2009年に発表され(非特許文献1)、その後、高効率化の成果が続々と発表されている。また、カーボンナノチューブに有機無機ペロブスカイト化合物を被覆した半導体層を、光電変換素子として用いる技術が公開されている(特許文献1)。
有機無機ペロブスカイト太陽電池においては、ペロブスカイト層を、溶液を用いて形成できるため、高速かつ低コストで太陽電池を製造できるというメリットがあり、今後の展開によっては、シリコン型の太陽電池の代替品となる可能性がある。
Under these circumstances, an organic-inorganic hybrid perovskite solar cell (hereinafter referred to as an organic-inorganic perovskite solar cell) using a perovskite crystal having an organic-inorganic hybrid structure for light absorption was announced in 2009 (Non-Patent Document 1), and then highly efficient. The results of the conversion have been announced one after another. Moreover, the technique which uses the semiconductor layer which coat | covered the organic inorganic perovskite compound on the carbon nanotube as a photoelectric conversion element is disclosed (patent document 1).
In organic / inorganic perovskite solar cells, the perovskite layer can be formed using a solution, which has the advantage that solar cells can be manufactured at high speed and at low cost. There is a possibility.

特開2014−56962号公報Japanese Patent Application Laid-Open No. 2014-56962 特開2015−92563号公報Japanese Patent Laying-Open No. 2015-92563

A.Kojima, K.Teshima, Y.Shirai, T.Miyasaki, J. Am. Chem. Soc. 2009, 131, 6050A. Kojima, K. Teshima, Y. Shirai, T. Miyasaki, J. Am. Chem. Soc. 2009, 131, 6050

例えば、特許文献2には、正孔輸送層用添加剤としてリチウム(フルオロスルホニル)(トリフルオロメチル)イミドを用いた有機無機複合薄膜太陽電池が開示されている。しかし、この太陽電池は、複数の太陽電池を同じように作製しても、電池特性に大きなばらつきが生じ、歩留まりが悪いという問題があった。   For example, Patent Document 2 discloses an organic-inorganic composite thin film solar cell using lithium (fluorosulfonyl) (trifluoromethyl) imide as an additive for a hole transport layer. However, this solar cell has a problem that even if a plurality of solar cells are produced in the same manner, the battery characteristics vary greatly and the yield is poor.

そこで本発明では、ペロブスカイト層の上に形成される正孔輸送層について検討し、電池特性のばらつきの少ない有機無機ペロブスカイト太陽電池を得ることを課題として掲げた。   Therefore, in the present invention, the hole transport layer formed on the perovskite layer was studied, and an object was to obtain an organic / inorganic perovskite solar cell with little variation in battery characteristics.

上記課題を解決した本発明は、リチウムビス(フルオロスルホニル)イミドからなる有機無機ペロブスカイト太陽電池の正孔輸送層用添加剤である。
上記において、正孔輸送材料がSpiro-OMeTADを含み、上記の正孔輸送層用添加剤は、Spiro-OMeTAD1モルに対し0.4〜0.6モル使用されることが好ましい。
また、本発明には、上記の正孔輸送層用添加剤を含む正孔輸送材料から形成される有機無機ペロブスカイト太陽電池の正孔輸送層、および、この正孔輸送層を有する有機無機ペロブスカイト太陽電池も包含される。
This invention which solved the said subject is an additive for positive hole transport layers of the organic inorganic perovskite solar cell which consists of lithium bis (fluoro sulfonyl) imide.
In the above, it is preferable that the hole transport material contains Spiro-OMeTAD, and the additive for the hole transport layer is used in an amount of 0.4 to 0.6 mol with respect to 1 mol of Spiro-OMeTAD.
Further, the present invention provides a hole transport layer of an organic / inorganic perovskite solar cell formed from a hole transport material containing the above additive for hole transport layer, and an organic / inorganic perovskite solar cell having the hole transport layer. A battery is also included.

本発明では、正孔輸送層用添加剤として、リチウムビス(フルオロスルホニル)イミドを用いたので、最終的に得られる有機無機ペロブスカイト太陽電池の電池特性のばらつきを抑制することができた。従って、特性のばらつきの小さな有機無機ペロブスカイト太陽電池を歩留まりよく作製することができるようになり、さらなる低コスト化が可能となった。   In the present invention, since lithium bis (fluorosulfonyl) imide is used as the additive for the hole transport layer, variations in battery characteristics of the finally obtained organic-inorganic perovskite solar battery can be suppressed. Therefore, organic / inorganic perovskite solar cells with small variations in characteristics can be manufactured with a high yield, and the cost can be further reduced.

図1は、実施例(LiFSI)と比較例(LiTFSI)で作製した太陽電池のJsc(短絡電流密度)とVoc(開放電圧)の測定結果である。FIG. 1 shows the measurement results of Jsc (short-circuit current density) and Voc (open-circuit voltage) of solar cells produced in Examples (LiFSI) and Comparative Examples (LiTFSI). 図2は、実施例(LiFSI)と比較例(LiTFSI)で作製した太陽電池のFF(曲線因子)とPCE(変換効率)の測定結果である。FIG. 2 shows measurement results of FF (curve factor) and PCE (conversion efficiency) of solar cells produced in Examples (LiFSI) and Comparative Examples (LiTFSI).

本発明の正孔輸送層用添加剤は、下記式で示されるリチウムビス(フルオロスルホニル)イミドからなる。   The additive for a hole transport layer of the present invention comprises lithium bis (fluorosulfonyl) imide represented by the following formula.

これまでは、正孔輸送層用添加剤として下記式で表されるリチウム(フルオロスルホニル)(トリフルオロメチル)イミドが用いられてきた。しかし、前記したように、同じように太陽電池を作製しても、特性がばらつくという問題があった。   Until now, lithium (fluorosulfonyl) (trifluoromethyl) imide represented by the following formula has been used as an additive for a hole transport layer. However, as described above, there is a problem that the characteristics vary even if the solar cells are manufactured in the same manner.

しかし、驚くべきことに、正孔輸送層用添加剤として、リチウム(フルオロスルホニル)(トリフルオロメチル)イミド(以下、LiTFSI)に変えてリチウムビス(フルオロスルホニル)イミド(以下、LiFSI)を用いると、太陽電池の特性のばらつきが抑制されることが本発明者らによって見出され、本発明が完成したのである。LiFSIはLiTFSIのトリフルオロメチル基がフッ素に変わっているだけであるのに、後述する実施例で確認したように、特性のばらつきは有意に抑制されている。その理由は、そもそものばらつきの原因と共に、明確にはなっていない。LiFSI(分子量187g/mol)はLiTFSI(287g/mol)よりも分子量が小さいことや、イオン伝導度がLiFSIは9.8mS/cmと、LiTFSIの6.8mS/cmよりも高いことが何か関係があるのではないかと推測される。   However, surprisingly, when lithium bis (fluorosulfonyl) imide (hereinafter referred to as LiFSI) is used instead of lithium (fluorosulfonyl) (trifluoromethyl) imide (hereinafter referred to as LiTFSI) as an additive for the hole transport layer. The present inventors have found that variation in characteristics of solar cells is suppressed, and the present invention has been completed. In LiFSI, although only the trifluoromethyl group of LiTFSI is changed to fluorine, variation in characteristics is significantly suppressed as confirmed in Examples described later. The reason is not clear with the cause of the variation in the first place. LiFSI (molecular weight 187 g / mol) has a smaller molecular weight than LiTFSI (287 g / mol), and ionic conductivity of LiFSI is 9.8 mS / cm, which is higher than 6.8 mS / cm of LiTFSI. It is speculated that there is.

正孔輸送層用材料としては、上記LiFSIの他に、Spiro-OMeTAD(2,2’,7,7’-テトラキス[ビス(4-メトキシフェニル)アミノ]スピロ[9H-フルオレン-9,9’-[9H]フルオレン])、4−t−ブチルピリジン(TBP)、Co(III)とTFSIとの錯体を用いることが好ましい。なお、LiFSI以外の化合物については、これらに代替できる公知の化合物を用いても構わない。Spiro-OMeTADは下記式で表される化合物である。   As a material for the hole transport layer, in addition to the above LiFSI, Spiro-OMeTAD (2,2 ′, 7,7′-tetrakis [bis (4-methoxyphenyl) amino] spiro [9H-fluorene-9,9 ′ -[9H] fluorene]), 4-t-butylpyridine (TBP), and a complex of Co (III) and TFSI is preferably used. In addition, about compounds other than LiFSI, you may use the well-known compound which can substitute for these. Spiro-OMeTAD is a compound represented by the following formula.

TBPは下記式で表される化合物である。
TBP is a compound represented by the following formula.

Co(III)とTFSIの錯体は下記式で表される化合物である。
A complex of Co (III) and TFSI is a compound represented by the following formula.

これらの使用比率は、クロロベンゼンやトルエン等の有機溶媒1Lに対して、
Spiro-OMeTAD;40〜80mol、
LiFSI;16〜48mol、ただし、Spiro-OMeTAD1molに対し、0.4〜0.6mol、
TBP;90〜300mol、
Co(III)錯体;4〜16mol
とすることが好ましい。
These usage ratios are based on 1 L of organic solvents such as chlorobenzene and toluene.
Spiro-OMeTAD; 40-80 mol,
LiFSI; 16 to 48 mol, with respect to 1 mol of Spiro-OMeTAD, 0.4 to 0.6 mol,
TBP; 90-300 mol,
Co (III) complex; 4-16 mol
It is preferable that

これらは、例えば、クロロベンゼン等に溶解させて、ペロブスカイト層の上に、スピンコート法、塗布法、スプレー法、ディッピング法等の方法で積層し、適宜乾燥すればよい。正孔輸送層の膜厚は、50nm〜10μm程度が好ましい。正孔輸送層は、例えば、基板上に正孔輸送層用溶液を80〜120μl程度載せ、2000〜5000rpmで、30〜60秒程度スピンコートすることにより成膜し、70℃程度で30分間程度乾燥させることにより形成できる。金電極は、真空蒸着法により、0〜5nm:0.01nm/sec、5〜10nm:0.01nm/sec、10〜20nm:0.05nm/sec、20nm以上:0.1nm/secと、段階的に蒸着レートを上昇させ、80〜100nm程度成膜して形成している。   These may be dissolved in, for example, chlorobenzene, and laminated on the perovskite layer by a method such as spin coating, coating, spraying, dipping, or the like, and dried appropriately. The thickness of the hole transport layer is preferably about 50 nm to 10 μm. The hole transport layer is formed, for example, by placing about 80 to 120 μl of the hole transport layer solution on the substrate and spin-coating at 2000 to 5000 rpm for about 30 to 60 seconds, and at about 70 ° C. for about 30 minutes. It can be formed by drying. The gold electrode is formed by the steps of 0 to 5 nm: 0.01 nm / sec, 5 to 10 nm: 0.01 nm / sec, 10 to 20 nm: 0.05 nm / sec, 20 nm or more: 0.1 nm / sec by vacuum deposition. In general, the deposition rate is increased to form a film of about 80 to 100 nm.

本発明の太陽電池は、透明導電性基板(透明電極)、緻密な酸化チタン層、メソポーラス酸化チタン層(多孔質酸化チタン層)、有機無機ペロブスカイト層、正孔輸送層、対極によって形成される。酸化チタン層とメソポーラス酸化チタン層が電子輸送層となる。   The solar cell of the present invention is formed by a transparent conductive substrate (transparent electrode), a dense titanium oxide layer, a mesoporous titanium oxide layer (porous titanium oxide layer), an organic / inorganic perovskite layer, a hole transport layer, and a counter electrode. The titanium oxide layer and the mesoporous titanium oxide layer serve as an electron transport layer.

基板としては、FTOガラス基板が好ましい。また、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリスルホン、ポリアリレート、脂環式ポリオレフィン等の透明樹脂基板にインジウムオキサイド等の導電性化合物を積層した透明導電性樹脂基板等も用いることができる。これらの基板の厚みは、0.05〜10mm程度が好ましい。   As the substrate, an FTO glass substrate is preferable. A transparent conductive resin substrate in which a conductive compound such as indium oxide is laminated on a transparent resin substrate such as polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polysulfone, polyarylate, and alicyclic polyolefin can also be used. The thickness of these substrates is preferably about 0.05 to 10 mm.

上記基板上に、まず緻密な酸化チタン層を形成する。この酸化チタン層の形成には、例えば、以下のようなスプレーピロリシス法が採用できる。まず、基板をホットプレートに並べた後、FTOガラス基板とコンタクトを取る部分にマスクを置き、450℃程度に加熱する。エタノール39mLに、ジイソプロポキシチタニウム(IV)ビス(アセチルアセトナト)(Ti(OiPr)2(acac)2)を75質量%含む2−プロパノール溶液1mLを加えた溶液を調製し、基板から約30cmの高さにスプレーを固定し、水平に約20cm/secで基板の上に噴射(キャリアガス:N2、0.5MPa)しながら掃引する(1枚を1ラインとして、枚数+前後1ラインずつ掃引する)。1秒間待って、同じ軌跡でもう一度掃引する。450℃のまま3分間待つ(2回掃引、3分待つ)。この1セットを合計3セット行う。別途、ポリエチレン容器に氷冷した蒸留水を100mLと、四塩化チタン(TiCl4)440μLを加え、50mMのTiCl4溶液を調製する。室温まで冷却した上記基板をTiCl4溶液に浸漬し、撹拌子を入れ、70℃のホットプレート上で30分撹拌する。その後取り出し、蒸留水で2回洗浄し、エアガンで表面に付着した水分を飛ばす。その後、電気炉により、500℃で20分間焼結する。これにより、基板上に緻密な酸化チタン層が形成される。なお、上記製造例は、一例であり、各操作に使用したものの量、操作時間、操作温度は、それぞれ2割程度、より好ましくは1割程度の増減があっても構わない。緻密な酸化チタン層の厚みは、30〜50nmが好ましい。 A dense titanium oxide layer is first formed on the substrate. For the formation of the titanium oxide layer, for example, the following spray pyrrolesis method can be employed. First, after arranging a board | substrate on a hotplate, a mask is set | placed in the part which contacts a FTO glass substrate, and it heats at about 450 degreeC. A solution was prepared by adding 1 mL of 2-propanol solution containing 75% by mass of diisopropoxytitanium (IV) bis (acetylacetonato) (Ti (OiPr) 2 (acac) 2 ) to 39 mL of ethanol, and about 30 cm from the substrate. The spray is fixed at a height of about 20 cm / sec and swept while being sprayed onto the substrate at a rate of about 20 cm / sec (carrier gas: N 2 , 0.5 MPa). Sweep). Wait one second and sweep again with the same trajectory. Wait for 3 minutes at 450 ° C. (2 sweeps, wait 3 minutes). A total of three sets of this one set are performed. Separately, 100 mL of ice-cooled distilled water and 440 μL of titanium tetrachloride (TiCl 4 ) are added to a polyethylene container to prepare a 50 mM TiCl 4 solution. The substrate cooled to room temperature is immersed in a TiCl 4 solution, and a stirrer is inserted, followed by stirring on a hot plate at 70 ° C. for 30 minutes. Then, it is taken out, washed twice with distilled water, and the water adhering to the surface is blown off with an air gun. Then, it sinters for 20 minutes at 500 degreeC with an electric furnace. Thereby, a dense titanium oxide layer is formed on the substrate. In addition, the said manufacture example is an example, The quantity of what was used for each operation, operation time, and operation temperature may each increase / decrease about about 20%, More preferably, about 10%. The thickness of the dense titanium oxide layer is preferably 30 to 50 nm.

緻密な酸化チタン層が形成されれば、その上に、メソポーラス酸化チタン層を形成する。メソポーラス酸化チタン層(多孔質酸化チタン層)は、例えば、日揮触媒化成社製の酸化チタンペースト「PST−18NR」をエタノールで希釈し、スピンコーティング法で緻密な酸化チタン層の上に成膜し、400〜600℃の温度で1〜2時間焼成することにより、形成することができる。メソポーラス酸化チタン層の厚みは、100〜300nmが好ましい。   If a dense titanium oxide layer is formed, a mesoporous titanium oxide layer is formed thereon. The mesoporous titanium oxide layer (porous titanium oxide layer) is formed by, for example, diluting a titanium oxide paste “PST-18NR” manufactured by JGC Catalysts & Chemicals with ethanol and forming a film on a dense titanium oxide layer by a spin coating method. It can be formed by baking at a temperature of 400 to 600 ° C. for 1 to 2 hours. The thickness of the mesoporous titanium oxide layer is preferably 100 to 300 nm.

続いてペロブスカイト層を形成する。ペロブスカイトとしては、CH3NH3PbX3(Xは、ハロゲン(F、Cl、Br、I)を表す)が好ましい。例えばXがヨウ素であるペロブスカイト層を形成する場合は、ヨウ化鉛(PbI2)を例えばジメチルホルムアミド(DMF)等に溶解させて、メソポーラス酸化チタン層の上に、スピンコート法等で積層する。続いて、これをCH3NH3Iのイソプロパノール溶液中に浸漬する。浸漬時間は、20秒〜1分程度が好ましい。その後、イソプロパノールを除去するために、加熱乾燥する。これによりペロブスカイト層が形成される。ペロブスカイト層の形成、正孔輸送層の形成、電極の形成は、水分や酸素の濃度が0.1ppm未満に低減された、例えばアルゴンガス等の不活性ガス雰囲気下で行う。 Subsequently, a perovskite layer is formed. The perovskite is preferably CH 3 NH 3 PbX 3 (X represents halogen (F, Cl, Br, I)). For example, when forming a perovskite layer in which X is iodine, lead iodide (PbI 2 ) is dissolved in, for example, dimethylformamide (DMF) or the like, and laminated on the mesoporous titanium oxide layer by a spin coating method or the like. Subsequently, it is immersed in an isopropanol solution of CH 3 NH 3 I. The immersion time is preferably about 20 seconds to 1 minute. Then, in order to remove isopropanol, it heat-drys. Thereby, a perovskite layer is formed. The formation of the perovskite layer, the formation of the hole transport layer, and the formation of the electrode are performed in an inert gas atmosphere such as argon gas in which the concentration of moisture and oxygen is reduced to less than 0.1 ppm.

そして前記した正孔輸送層をペロブスカイト層の上に形成し、金(Au)等の金属電極(対極)を蒸着法等で正孔輸送層の上に形成すれば、本発明の有機無機ペロブスカイト太陽電池ができあがる。なお、各層の形成に用いた材料は、同等の機能を有する代替品であっても構わない。   If the hole transport layer is formed on the perovskite layer and a metal electrode (counter electrode) such as gold (Au) is formed on the hole transport layer by vapor deposition or the like, the organic / inorganic perovskite solar cell of the present invention is used. The battery is completed. Note that the material used for forming each layer may be a substitute having an equivalent function.

以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実験例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to experimental examples.However, the present invention is not limited by the following experimental examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例
ホットプレート上に、耐熱ガラスを置き、その上にFTOガラス基板(旭硝子社製、FTN、75mm×25mm×1.8mmt)を並べ、FTOとコンタクトを取る部分(FTOをエッチングした辺の逆側)の上にマスク(1cm幅、2mm厚のアルミニウム板)を置いた。基板を450℃に加熱した。エタノール(和光純薬工業社製、超脱水)39mLに、ジイソプロポキシチタニウム(IV)ビス(アセチルアセトナト)(Ti(OiPr)2(acac)2)を75質量%含む2−プロパノール溶液1mLを加え、スプレー液を調製した。エアブラシ(Harder&Steenbeck社製、Evolution A、絵の具カップを15ccに換装したもの)にスプレー液を加え、基板から約30cmの高さにスプレーを固定し、水平に約20cm/secの速度で基板の上をスプレー(キャリアガス:N2、0.5MPa)しながら掃引した(1枚を1ラインとして、枚数+前後1ラインずつ掃引する)。1秒待って、同じ軌跡でもう一度掃引し、450℃のまま3分間待った。この1セットを合計3セット行った後、室温まで冷却した。別途、ポリエチレン容器に氷冷した蒸留水を100mLと、四塩化チタン(TiCl4;和光純薬工業社製)440μLを加え、50mMのTiCl4溶液を調製した。上記基板をTiCl4溶液に浸漬し、撹拌子を入れ、70℃のホットプレート上で30分撹拌した。その後、基板を取り出し、蒸留水で2回洗浄し、エアガンで表面に付着した水分を飛ばして乾燥した。その後、上記基板を電気炉に入れ、15分かけて、室温から500℃まで昇温し、500℃で20分間焼結した。その後、室温まで冷却した。これにより、厚みが30nmの緻密な酸化チタン層がFTO基板の上に形成された積層体Aを得た。
Example A heat-resistant glass is placed on a hot plate, and an FTO glass substrate (Asahi Glass Co., Ltd., FTN, 75 mm × 25 mm × 1.8 mmt) is arranged on the hot plate. A mask (1 cm wide, 2 mm thick aluminum plate) was placed on the side. The substrate was heated to 450 ° C. 1 mL of 2-propanol solution containing 75% by mass of diisopropoxytitanium (IV) bis (acetylacetonato) (Ti (OiPr) 2 (acac) 2 ) in 39 mL of ethanol (manufactured by Wako Pure Chemical Industries, Ltd., ultra-dehydrated) In addition, a spray solution was prepared. Spray solution is added to an airbrush (Harder & Steenbeck, Evolution A, paint cup replaced with 15 cc), and the spray is fixed at a height of about 30 cm from the substrate, and horizontally on the substrate at a speed of about 20 cm / sec. Sweeping was performed while spraying (carrier gas: N 2 , 0.5 MPa) (one sheet is taken as one line, and the number of sheets + one line before and after is swept). After waiting for 1 second, it was swept again with the same trajectory, and waited for 3 minutes at 450 ° C. A total of 3 sets of this 1 set were performed, and then cooled to room temperature. Separately, 100 mL of ice-cooled distilled water in a polyethylene container and 440 μL of titanium tetrachloride (TiCl 4 ; manufactured by Wako Pure Chemical Industries, Ltd.) were added to prepare a 50 mM TiCl 4 solution. The substrate was immersed in a TiCl 4 solution, a stirring bar was added, and the mixture was stirred on a hot plate at 70 ° C. for 30 minutes. Thereafter, the substrate was taken out, washed twice with distilled water, and dried by blowing off water adhering to the surface with an air gun. Then, the said board | substrate was put into the electric furnace, and it heated up from room temperature to 500 degreeC over 15 minutes, and sintered for 20 minutes at 500 degreeC. Then, it cooled to room temperature. As a result, a laminate A in which a dense titanium oxide layer having a thickness of 30 nm was formed on the FTO substrate was obtained.

上記積層体Aの緻密な酸化チタン層上に、日揮触媒化成社製の酸化チタンペースト「PST−18NR」をエタノールで希釈して濃度17質量%にした溶液を用いて、スピンコーティング法で成膜した。その後、500℃で、0.5時間焼成した。厚み200nmのメソポーラス酸化チタン層が形成された積層体Bを得た。   Using a solution of titanium oxide paste “PST-18NR” manufactured by JGC Catalysts & Chemicals Co., Ltd. diluted with ethanol to a concentration of 17% by mass on the dense titanium oxide layer of the laminate A, a film is formed by spin coating. did. Then, it baked at 500 degreeC for 0.5 hour. A layered product B on which a mesoporous titanium oxide layer having a thickness of 200 nm was formed was obtained.

ヨウ化鉛(PbI2)をジメチルホルムアミド(DMF)に溶解させて1.0mol/LのPbI2溶液を調製した。これを用いて、積層体Bの上にスピンコート法で成膜し、積層体Cを得た。続いて、積層体CをCH3NH3Iのイソプロパノール溶液(10mg/mL濃度)中に浸漬した。浸漬時間は、40秒とした。その後、イソプロパノールを除去するために、70℃で60分乾燥した。ペロブスカイト層が形成された積層体Dを得た。ペロブスカイト層の厚みは、200〜300nmであった。 Lead iodide (PbI 2 ) was dissolved in dimethylformamide (DMF) to prepare a 1.0 mol / L PbI 2 solution. Using this, a film was formed on the layered product B by a spin coating method, and a layered product C was obtained. Subsequently, the laminate C was immersed in an isopropanol solution of CH 3 NH 3 I (concentration of 10 mg / mL). The immersion time was 40 seconds. Then, in order to remove isopropanol, it dried at 70 degreeC for 60 minutes. A laminate D in which a perovskite layer was formed was obtained. The thickness of the perovskite layer was 200 to 300 nm.

Spiro-OMeTADを59mM、LiFSIを32mM、4−t−ブチルピリジンを195mMおよび前記したCo(III)錯体8.9mMをクロロベンゼン1.0mLに溶解させた。この正孔輸送層用の溶液を用いて、スピンコート法で、積層体Dのペロブスカイト層の上に成膜した。正孔輸送層の厚みは、200〜300nmであった。   Spiro-OMeTAD (59 mM), LiFSI (32 mM), 4-t-butylpyridine (195 mM) and the Co (III) complex (8.9 mM) were dissolved in chlorobenzene (1.0 mL). Using this hole transport layer solution, a film was formed on the perovskite layer of the laminate D by spin coating. The thickness of the hole transport layer was 200 to 300 nm.

最後に、正孔輸送層の上に、金(Au)からなる電極を蒸着法で形成し、本発明の太陽電池を得た。金電極の厚みは、80nmであった。   Finally, an electrode made of gold (Au) was formed on the hole transport layer by a vapor deposition method to obtain the solar cell of the present invention. The thickness of the gold electrode was 80 nm.

比較例
正孔輸送層用の溶液を調製する際に、LiFSIに代えてLiTFSIを用いた以外は実施例と同様にして太陽電池を形成した。
Comparative Example When preparing a solution for the hole transport layer, a solar cell was formed in the same manner as in Example except that LiTFSI was used instead of LiFSI.

実施例と比較例で作製した太陽電池の特性を、分光計器製太陽電池特性評価システム(OTENTO-SunIII)を用いて評価した。評価はn=5で行った。
なお、Jscは短絡電流密度であり、太陽電池素子に光照射した際の電圧が0Vのときの単位面積あたりの電流値(mA/cm2)を表す。Vocは開放電圧であり、短絡電流密度Jscが0となるときの電圧の値(V)を表す。FFは曲線因子であり、太陽電池素子の最大出力を、短絡電流密度Jscと開放電圧Vocとの積で割った値である。すなわちFFは1に近いほどよい。PCEは太陽電池素子の変換効率(最大出力)である。Rsは直列抵抗である。このRsは、発生した電子および正孔が再結合を起こし、電荷が失われる場合等に上昇する。すなわち、Rsは小さいほどよい。Rshは並列抵抗である。Rshは素子内の流れるべきでない経路に流れる電流(リーク電流)に対する抵抗である。すなわち、Rshは大きいほどよい。
The characteristics of the solar cells produced in the examples and comparative examples were evaluated using a spectrometer-equipped solar cell characteristics evaluation system (OTENTO-SunIII). Evaluation was performed at n = 5.
Jsc is a short-circuit current density and represents a current value per unit area (mA / cm 2 ) when the voltage when the solar cell element is irradiated with light is 0V. Voc is an open-circuit voltage and represents a voltage value (V) when the short-circuit current density Jsc becomes zero. FF is a curve factor, which is a value obtained by dividing the maximum output of the solar cell element by the product of the short-circuit current density Jsc and the open-circuit voltage Voc. That is, the closer FF is to 1, the better. PCE is the conversion efficiency (maximum output) of the solar cell element. Rs is a series resistance. This Rs rises when the generated electrons and holes recombine and the charge is lost. That is, Rs is better as it is smaller. Rsh is a parallel resistance. Rsh is a resistance against a current (leakage current) flowing in a path that should not flow in the element. That is, Rsh is better as it is larger.

結果を表1と図1および図2に示す。表1には、最もよいデータを載せている。表1から、最高性能値はLiTFSIとLiFSIとでは、大きな差はないが、図1および図2から、5サンプルの特性値のばらつきは、LiTFSIの方がLiFSIよりも大きいことがわかる。   The results are shown in Table 1 and FIGS. Table 1 contains the best data. From Table 1, it can be seen that the maximum performance value is not significantly different between LiTFSI and LiFSI, but from FIG. 1 and FIG. 2, the variation in the characteristic values of the five samples is larger in LiTFSI than in LiFSI.

本発明では、有機無機ペロブスカイト太陽電池の正孔輸送層用添加剤としてLiFSIを用いたので、電池特性のばらつきを小さくすることが可能となった。従って、有機無機ペロブスカイト太陽電池を歩留まりよく作製でき、低コスト化につながると考えられる。   In the present invention, since LiFSI is used as the additive for the hole transport layer of the organic / inorganic perovskite solar cell, it is possible to reduce the variation in battery characteristics. Accordingly, it is considered that an organic / inorganic perovskite solar cell can be manufactured with a high yield, leading to cost reduction.

Claims (4)

リチウムビス(フルオロスルホニル)イミドからなることを特徴とする有機無機ペロブスカイト太陽電池の正孔輸送層用添加剤。   An additive for a hole transport layer of an organic / inorganic perovskite solar cell, comprising lithium bis (fluorosulfonyl) imide. 正孔輸送材料がSpiro-OMeTADを含み、Spiro-OMeTAD1モルに対し0.4〜0.6モル使用される請求項1に記載の正孔輸送層用添加剤。   The hole transport layer additive according to claim 1, wherein the hole transport material contains Spiro-OMeTAD and is used in an amount of 0.4 to 0.6 mol per mol of Spiro-OMeTAD. 請求項1または2に記載の正孔輸送層用添加剤を含む正孔輸送材料から形成されることを特徴とする有機無機ペロブスカイト太陽電池の正孔輸送層。   A hole transport layer of an organic / inorganic perovskite solar cell, comprising a hole transport material containing the hole transport layer additive according to claim 1. 請求項3に記載の正孔輸送層を有することを特徴とする有機無機ペロブスカイト太陽電池。   An organic / inorganic perovskite solar cell comprising the hole transport layer according to claim 3.
JP2015173254A 2015-09-02 2015-09-02 Hole transport materials used in organic / inorganic perovskite solar cells Active JP6557098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173254A JP6557098B2 (en) 2015-09-02 2015-09-02 Hole transport materials used in organic / inorganic perovskite solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173254A JP6557098B2 (en) 2015-09-02 2015-09-02 Hole transport materials used in organic / inorganic perovskite solar cells

Publications (2)

Publication Number Publication Date
JP2017050426A true JP2017050426A (en) 2017-03-09
JP6557098B2 JP6557098B2 (en) 2019-08-07

Family

ID=58279588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173254A Active JP6557098B2 (en) 2015-09-02 2015-09-02 Hole transport materials used in organic / inorganic perovskite solar cells

Country Status (1)

Country Link
JP (1) JP6557098B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935705A (en) * 2017-03-14 2017-07-07 芜湖乐知智能科技有限公司 One kind is with MoO3/PEDOT:PSS films as hole transmission layer perovskite photovoltaic cell and preparation method thereof
CN109728169A (en) * 2018-12-28 2019-05-07 陕西师范大学 A kind of perovskite solar cell and preparation method thereof doped with functional additive
JP2019197800A (en) * 2018-05-09 2019-11-14 シャープ株式会社 Manufacturing method of photoelectric conversion element
CN111293223A (en) * 2020-02-27 2020-06-16 陕西师范大学 Quantum dot modified inorganic perovskite solar cell and preparation method thereof
JP2021144973A (en) * 2020-03-10 2021-09-24 三菱ケミカル株式会社 Photoelectric conversion element and electric power generation device
CN116261341A (en) * 2023-03-14 2023-06-13 西南石油大学 Precursor solution and preparation method thereof, hole transport layer preparation and perovskite solar cell preparation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065502A1 (en) * 2009-11-27 2011-06-03 株式会社日本触媒 Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
US20120192945A1 (en) * 2011-02-01 2012-08-02 Basf Se Photovoltaic element
WO2014011365A2 (en) * 2012-07-13 2014-01-16 Google Inc. Navigating among content items in a set
WO2014180780A1 (en) * 2013-05-06 2014-11-13 Greatcell Solar S.A. Organic-inorganic perovskite based solar cell
JP2014229359A (en) * 2013-05-17 2014-12-08 大日本印刷株式会社 Dye-sensitized solar battery, dye-sensitized solar battery module, and method of designing dye-sensitized solar battery, and method of manufacturing dye-sensitized solar battery
JP2015141944A (en) * 2014-01-27 2015-08-03 コニカミノルタ株式会社 Photoelectric conversion element and solar cell including the same
US20150333275A1 (en) * 2013-01-15 2015-11-19 Basf Se Triangulene oligomers and polymers and their use as hole conducting material
JP2017022354A (en) * 2015-07-14 2017-01-26 パナソニック株式会社 Perovskite solar battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065502A1 (en) * 2009-11-27 2011-06-03 株式会社日本触媒 Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
US20120192945A1 (en) * 2011-02-01 2012-08-02 Basf Se Photovoltaic element
WO2014011365A2 (en) * 2012-07-13 2014-01-16 Google Inc. Navigating among content items in a set
US20150333275A1 (en) * 2013-01-15 2015-11-19 Basf Se Triangulene oligomers and polymers and their use as hole conducting material
WO2014180780A1 (en) * 2013-05-06 2014-11-13 Greatcell Solar S.A. Organic-inorganic perovskite based solar cell
JP2014229359A (en) * 2013-05-17 2014-12-08 大日本印刷株式会社 Dye-sensitized solar battery, dye-sensitized solar battery module, and method of designing dye-sensitized solar battery, and method of manufacturing dye-sensitized solar battery
JP2015141944A (en) * 2014-01-27 2015-08-03 コニカミノルタ株式会社 Photoelectric conversion element and solar cell including the same
JP2017022354A (en) * 2015-07-14 2017-01-26 パナソニック株式会社 Perovskite solar battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935705A (en) * 2017-03-14 2017-07-07 芜湖乐知智能科技有限公司 One kind is with MoO3/PEDOT:PSS films as hole transmission layer perovskite photovoltaic cell and preparation method thereof
JP2019197800A (en) * 2018-05-09 2019-11-14 シャープ株式会社 Manufacturing method of photoelectric conversion element
JP7072437B2 (en) 2018-05-09 2022-05-20 シャープ株式会社 Manufacturing method of photoelectric conversion element
CN109728169A (en) * 2018-12-28 2019-05-07 陕西师范大学 A kind of perovskite solar cell and preparation method thereof doped with functional additive
CN109728169B (en) * 2018-12-28 2022-08-23 陕西师范大学 Perovskite solar cell doped with functional additive and preparation method thereof
CN111293223A (en) * 2020-02-27 2020-06-16 陕西师范大学 Quantum dot modified inorganic perovskite solar cell and preparation method thereof
CN111293223B (en) * 2020-02-27 2022-08-23 陕西师范大学 Quantum dot modified inorganic perovskite solar cell and preparation method thereof
JP2021144973A (en) * 2020-03-10 2021-09-24 三菱ケミカル株式会社 Photoelectric conversion element and electric power generation device
CN116261341A (en) * 2023-03-14 2023-06-13 西南石油大学 Precursor solution and preparation method thereof, hole transport layer preparation and perovskite solar cell preparation method
CN116261341B (en) * 2023-03-14 2023-10-03 西南石油大学 Precursor solution and preparation method thereof, hole transport layer preparation and perovskite solar cell preparation method

Also Published As

Publication number Publication date
JP6557098B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6557098B2 (en) Hole transport materials used in organic / inorganic perovskite solar cells
Yang et al. Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization
Ling et al. Room-temperature processed Nb2O5 as the electron-transporting layer for efficient planar perovskite solar cells
Yang et al. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement
Nejand et al. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate
Heo et al. Highly efficient low temperature solution processable planar type CH 3 NH 3 PbI 3 perovskite flexible solar cells
Zhao et al. Solvent-free ionic liquid/poly (ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells
JP6294808B2 (en) Perovskite thin film and method for manufacturing solar cell
JP6128900B2 (en) Perovskite photoelectric conversion device using inorganic hole transport material
JP6141054B2 (en) Organic-inorganic nano-hybrid photoelectric conversion device
Murugadoss et al. Fabrication of CH3NH3PbI3 perovskite-based solar cells: Developing various new solvents for CuSCN hole transport material
Hong et al. A facile and low-cost fabrication of TiO2 compact layer for efficient perovskite solar cells
KR101707050B1 (en) Preparation for method of perovskite absorber layer and perovskite solar cells comprising the perovskite absorber layer thereby
KR20170054389A (en) Method of formulating perovskite solar cell materials
Wu et al. Electrochemical formation of transparent nanostructured TiO 2 film as an effective bifunctional layer for dye-sensitized solar cells
Shirazi et al. Efficiency enhancement of hole-conductor-free perovskite solar cell based on ZnO nanostructure by Al doping in ZnO
JP6151378B2 (en) Solar cell
JP6554300B2 (en) Method for manufacturing photoelectric conversion device
KR20190043316A (en) Perovskite solar cell and preparation method thereof
Li et al. Hierarchical TiO 1.1 Se 0.9-wrapped carbon cloth as the TCO-free and Pt-free counter electrode for iodide-based and cobalt-based dye-sensitized solar cells
JP2016051891A (en) Solar cell and method of manufacturing the same
JP2016119468A (en) Organic inorganic hybrid solar cell
EP2936524A1 (en) An opto-electronic device and method for manufacturing the same
JP2018056473A (en) Perovskite solar battery arranged by use of pyridine derivative
Hsieh et al. Ultra-compact titanium oxide prepared by ultrasonic spray pyrolysis method for planar heterojunction perovskite hybrid solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190711

R150 Certificate of patent or registration of utility model

Ref document number: 6557098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150