JP2014113044A - Motor drive device - Google Patents

Motor drive device Download PDF

Info

Publication number
JP2014113044A
JP2014113044A JP2014023213A JP2014023213A JP2014113044A JP 2014113044 A JP2014113044 A JP 2014113044A JP 2014023213 A JP2014023213 A JP 2014023213A JP 2014023213 A JP2014023213 A JP 2014023213A JP 2014113044 A JP2014113044 A JP 2014113044A
Authority
JP
Japan
Prior art keywords
winding
phase
current
auxiliary winding
induction machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014023213A
Other languages
Japanese (ja)
Other versions
JP5783500B2 (en
Inventor
Hiroki Katsumata
洋樹 勝又
Akihiro Odaka
章弘 小高
Takashi Iida
貴志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014023213A priority Critical patent/JP5783500B2/en
Publication of JP2014113044A publication Critical patent/JP2014113044A/en
Application granted granted Critical
Publication of JP5783500B2 publication Critical patent/JP5783500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor drive device capable of acquiring torque and efficiency equivalent to or higher than those of a phase-advancing capacitor type single-phase induction machine regardless of a driving frequency and capable of controlling so that an auxiliary winding current does not exceed a permissible value regardless of a load.SOLUTION: The motor drive device, driving a two-winding induction machine 200 with a main winding 210 and an auxiliary winding 220 using a three-phase inverter 12, includes voltage command value generation means 20A that generates each of voltage command values of the main winding 210 and the auxiliary winding 220, on the basis of a driving frequency command value fof the three-phase inverter 12, so that a proportion of an electric current running through the auxiliary winding 220 to an electric current running through the main winding 210 is not more than a predetermined current proportion.

Description

本発明は、主巻線及び補巻線を備えた誘導電動機を電力変換器により駆動する電動機駆動装置に関するものである。   The present invention relates to an electric motor drive device that drives an induction motor including a main winding and an auxiliary winding by a power converter.

主巻線及び補巻線を備えた誘導電動機(以下、二巻線誘導機ともいう)は、もともと、補巻線と直列に進相コンデンサを接続してなる単相誘導電動機(以下、進相コンデンサ形単相誘導機ともいう)として設計されたものが多い。
この種の二巻線誘導機を電力変換器により可変速駆動する技術は既に多数公知となっており、例えば、図14は進相コンデンサ形単相誘導機の駆動装置の従来技術を示している。図において、110は単相交流電源、120は整流回路、130は平滑コンデンサ、140は半導体スイッチング素子を単相ブリッジ接続してなる単相インバータ、150は進相コンデンサ、200は二巻線誘導機、210は主巻線、220は補巻線、230は共通線である。
この従来技術では、単相インバータ140から単相交流電圧を出力することにより、二巻線誘導機200を容易に可変速駆動することができる。
An induction motor having a main winding and an auxiliary winding (hereinafter also referred to as a two-winding induction machine) is originally a single-phase induction motor (hereinafter referred to as a phase advancement) in which a phase advance capacitor is connected in series with the auxiliary winding. Many are designed as capacitor-type single-phase induction machines).
Many techniques for variable-speed driving of this type of two-winding induction machine using a power converter are already known. For example, FIG. 14 shows a prior art of a driving device for a phase advance capacitor type single-phase induction machine. . In the figure, 110 is a single-phase AC power source, 120 is a rectifier circuit, 130 is a smoothing capacitor, 140 is a single-phase inverter formed by connecting semiconductor switching elements in a single-phase bridge, 150 is a phase-advancing capacitor, and 200 is a two-winding induction machine , 210 is a main winding, 220 is an auxiliary winding, and 230 is a common line.
In this prior art, by outputting a single-phase AC voltage from the single-phase inverter 140, the two-winding induction machine 200 can be easily driven at a variable speed.

次に、図15は特許文献1に記載された電動機制御装置である。この従来技術では、図14における進相コンデンサ150を除去し、主巻線210及び補巻線220にそれぞれ位相の異なる電流を流すための電圧を三相インバータ160によって印加することにより、二巻線誘導機200を二相誘導機として駆動している。
なお、図15において、150は直流電源、310は電圧演算手段、320は電圧検出回路、330は電流検出回路、340はPWM信号発生手段、350は信号補正手段である。
Next, FIG. 15 shows an electric motor control device described in Patent Document 1. In this prior art, the phase advance capacitor 150 in FIG. 14 is removed, and a voltage for flowing currents having different phases to the main winding 210 and the auxiliary winding 220 is applied by the three-phase inverter 160, whereby two windings The induction machine 200 is driven as a two-phase induction machine.
In FIG. 15, 150 is a DC power supply, 310 is a voltage calculation means, 320 is a voltage detection circuit, 330 is a current detection circuit, 340 is a PWM signal generation means, and 350 is a signal correction means.

電圧演算手段310は、周波数指令値F、主巻線210の電流I及び補巻線220の電流Iに基づいて、主巻線210及び補巻線220に対する電圧指令値V,Vを生成する。PWM信号発生手段340は、直流電圧検出値V及び電圧指令値V,Vに基づいて三相インバータ160の各スイッチング素子に対する制御信号P〜Pを生成する。
信号補正手段350は、周波数指令値Fと主巻線210の電流Iとから二巻線誘導機200の運転状況を判断し、高速運転中かつ低負荷時には、制御信号P,Pをオフとした制御信号Pc2,Pd2を出力して補巻線220への通電を停止することにより、電動機制御装置の効率を向上させている。
Voltage calculation unit 310, based on the current I S of the current I R and Homakisen 220 frequency command value F C, the main winding 210, the voltage command value V R to the main windings 210 and Homakisen 220, V S is generated. The PWM signal generation means 340 generates control signals P a to P f for the switching elements of the three-phase inverter 160 based on the DC voltage detection value V D and the voltage command values V R and V S.
Signal correcting means 350 determines the operating status of the frequency command value F C and the main winding 210 current I R from the winding induction machine 200, the high speed operation during and low load, the control signal P c, P d The control signals P c2 and P d2 are turned off to stop energization of the auxiliary winding 220, thereby improving the efficiency of the motor control device.

特開2008−259348号公報(段落[0011]〜[0023]、図1等)JP 2008-259348 A (paragraphs [0011] to [0023], FIG. 1 etc.)

ここで、進相コンデンサ形単相誘導機の動作原理は、進相コンデンサによって主巻線電流に対する補巻線電流の位相を進め、これら二つの交流(以下、二相交流ともいう)から回転磁界を生成して回転子の駆動トルクを生じさせるものである。このとき、二相交流の位相差が90°(電気角)に近いほど平衡二相駆動に近づき、トルク・効率を向上させることができる。   Here, the operating principle of the phase advance capacitor type single phase induction machine is that the phase of the auxiliary winding current is advanced with respect to the main winding current by the phase advance capacitor, and the rotating magnetic field is converted from these two alternating currents (hereinafter also referred to as two-phase alternating current). Is generated to generate a driving torque of the rotor. At this time, the closer the phase difference of the two-phase alternating current is to 90 ° (electrical angle), the closer to the balanced two-phase drive, the higher the torque and efficiency.

しかしながら、進相コンデンサの容量は固定値であるため、原理的に特定の駆動周波数においてのみ90°に近い位相差の二相交流が得られ、それ以外の駆動周波数では二相交流の位相差が90°から離れてしまう。このため、進相コンデンサ形単相誘導機を可変速駆動すると、設定された最適な周波数以外の駆動周波数では、トルク・効率が低下してしまうという問題がある。   However, since the capacity of the phase advance capacitor is a fixed value, in principle, a two-phase alternating current with a phase difference close to 90 ° can be obtained only at a specific driving frequency, and the phase difference of the two-phase alternating current at other driving frequencies. It will be away from 90 °. For this reason, when the phase-advanced capacitor type single-phase induction machine is driven at a variable speed, there is a problem that torque and efficiency are lowered at a driving frequency other than the set optimum frequency.

一方、特許文献1のように、進相コンデンサを除去して三相インバータから二巻線誘導機の各巻線に任意の電圧を印加することにより二相誘導機として駆動すれば、上述した問題を解決することができ、あらゆる駆動周波数において90°位相差の二相交流を通流することが可能である。   On the other hand, if it drives as a two-phase induction machine by removing a phase advance capacitor and applying arbitrary voltage to each winding of a two-winding induction machine from a three-phase inverter like patent documents 1, the above-mentioned problem will be carried out. It is possible to solve the problem, and it is possible to pass a two-phase alternating current having a phase difference of 90 ° at any driving frequency.

しかし、この場合には、補巻線の電流許容値に起因する問題を生じる。
図16は、進相コンデンサ形単相誘導機及び二相誘導機の主巻線・補巻線電流特性の解析結果を示しており、横軸は誘導機の回転速度、縦軸は電流値である。なお、誘導機への印加電圧は100〔V〕,50〔Hz〕である。
However, in this case, there arises a problem due to the allowable current value of the auxiliary winding.
FIG. 16 shows the analysis results of the main winding and auxiliary winding current characteristics of the phase-advanced capacitor type single-phase induction machine and the two-phase induction machine. The horizontal axis is the rotation speed of the induction machine, and the vertical axis is the current value. is there. The applied voltage to the induction machine is 100 [V], 50 [Hz].

この図から明らかなように、進相コンデンサ形単相誘導機では、定常状態において補巻線にほとんど電流が流れないという特徴がある。このため、一般に進相コンデンサ形単相誘導機においては、補巻線の電流許容値(線径)が主巻線のそれよりも小さく設計されており、結果として補巻線の巻線抵抗値は主巻線のそれより大きい。よって、進相コンデンサ形単相誘導機から進相コンデンサを除去して二相誘導機として駆動する場合には、補巻線に、進相コンデンサ形単相誘導機よりも大きな電流が流れることになり、補巻線の異常過熱が懸念される。   As is apparent from this figure, the phase-advanced capacitor type single-phase induction machine has a feature that almost no current flows through the auxiliary winding in a steady state. For this reason, in general, in the phase-advanced capacitor type single-phase induction machine, the allowable current value (wire diameter) of the auxiliary winding is designed to be smaller than that of the main winding, resulting in the winding resistance value of the auxiliary winding. Is larger than that of the main winding. Therefore, when the phase advance capacitor is removed from the phase advance capacitor type single phase induction machine and driven as a two phase induction machine, a larger current flows in the auxiliary winding than in the phase advance capacitor type single phase induction machine. Therefore, there is a concern about abnormal overheating of the auxiliary winding.

従って、進相コンデンサ形単相誘導機から進相コンデンサを除去した二相誘導機を駆動する場合には、補巻線電流を小さく抑えるために補巻線への印加電圧を小さくする必要があるが、図16からわかるように二相誘導機の補巻線電流は運転負荷によって大きく変化するため、これを考慮しながら印加電圧を決定することは容易ではない。
更に、補巻線への印加電圧を必要以上に小さくすると、進相コンデンサ形単相誘導機として駆動した場合よりもトルク・効率が低下してしまうという問題がある。
Therefore, when driving a two-phase induction machine in which the phase advance capacitor is removed from the phase advance capacitor type single-phase induction machine, it is necessary to reduce the voltage applied to the auxiliary winding in order to keep the auxiliary winding current small. However, as can be seen from FIG. 16, since the auxiliary winding current of the two-phase induction machine varies greatly depending on the operating load, it is not easy to determine the applied voltage in consideration of this.
Furthermore, if the voltage applied to the auxiliary winding is made smaller than necessary, there is a problem that the torque and efficiency are lowered as compared with the case of driving as a phase advance capacitor type single phase induction machine.

特許文献1に係る従来技術は、特定の運転条件において補巻線に接続されたスイッチング素子をオフすることにより補巻線の端子を開放して主巻線のみに電圧を印加するものである。これはすなわち、巻線が一相分しかない純単相誘導機として駆動することを意味しており、前述したように補巻線電流が設計許容値を超えるという問題は生じないが、その反面、効率やトルクの面で問題を生じる。
図17は、進相コンデンサ形単相誘導機及び純単相誘導機の効率特性(図17(a))、トルク特性(図17(b))の解析結果を示しており、横軸は誘導機の回転速度である。また、誘導機への印加電圧は100〔V〕,50〔Hz〕である。
これらの図によれば、純単相誘導機では進相コンデンサ形単相誘導機に比べて効率及びトルクのいずれも低下していることがわかる。
The prior art according to Patent Literature 1 applies a voltage only to the main winding by opening the terminal of the auxiliary winding by turning off the switching element connected to the auxiliary winding under specific operating conditions. This means that the winding is driven as a pure single-phase induction machine having only one phase, and as described above, the problem that the auxiliary winding current exceeds the design allowable value does not occur. This creates problems in terms of efficiency and torque.
FIG. 17 shows the analysis results of the efficiency characteristics (FIG. 17 (a)) and torque characteristics (FIG. 17 (b)) of the phase advance capacitor type single-phase induction machine and the pure single-phase induction machine. The rotation speed of the machine. The applied voltage to the induction machine is 100 [V], 50 [Hz].
From these figures, it can be seen that the pure single-phase induction machine is reduced in both efficiency and torque as compared with the phase advance capacitor type single-phase induction machine.

そこで、本発明の解決課題は、誘導機の駆動周波数に関わらず、進相コンデンサ形単相誘導機相当またはそれ以上のトルク・効率を得ることができ、かつ、負荷の大きさに関わらず補巻線電流を小さく抑えて補巻線の過熱が生じないようにした電動機駆動装置を提供することにある。   Therefore, the problem to be solved by the present invention is that a torque / efficiency equivalent to or higher than that of a phase-advanced capacitor type single-phase induction machine can be obtained regardless of the drive frequency of the induction machine, and it can be compensated regardless of the load size. It is an object of the present invention to provide an electric motor drive device that suppresses the winding current and prevents overheating of the auxiliary winding.

上記課題を解決するため、請求項1に係る発明は、主巻線及び補巻線を有する二巻線誘導機を電力変換器により駆動する電動機駆動装置において、
前記主巻線に流れる電流に対して前記補巻線に流れる電流の比率が、予め設定した電流比率以下になるように、前記電力変換器の駆動周波数指令値に基づいて、前記主巻線及び前記補巻線の電圧指令値をそれぞれ生成する電圧指令値生成手段を備えたものである。
In order to solve the above problems, an invention according to claim 1 is an electric motor drive device for driving a two-winding induction machine having a main winding and an auxiliary winding by a power converter.
Based on the drive frequency command value of the power converter, the main winding and the current winding so that the ratio of the current flowing in the auxiliary winding to the current flowing in the main winding is equal to or less than a preset current ratio A voltage command value generating means for generating a voltage command value for the auxiliary winding is provided.

請求項2に係る発明は、請求項1に記載した電動機駆動装置において、前記電流比率は、前記補巻線の単位体積当たりで発生する損失が前記主巻線の単位体積当たりで発生する損失と同等以下となる比率であることを特徴とする。   According to a second aspect of the present invention, in the motor drive device according to the first aspect, the current ratio is a loss generated per unit volume of the auxiliary winding and a loss generated per unit volume of the main winding. The ratio is equal to or less than the same.

請求項3に係る発明は、請求項2に記載した電動機駆動装置において、前記電流比率を、前記主巻線及び補巻線の巻数比及び巻線抵抗から求めるものである。   According to a third aspect of the present invention, in the electric motor drive device according to the second aspect, the current ratio is obtained from a turns ratio and a winding resistance of the main winding and the auxiliary winding.

本発明によれば、二巻線誘導機の補巻線電流を設計許容値以下に抑えて巻線温度を許容値以下に保ちながら、進相コンデンサ形単相誘導機と同等以上のトルク・効率特性を実現することができる。   According to the present invention, torque and efficiency equal to or higher than those of a phase-advanced capacitor type single-phase induction machine while keeping the winding temperature below the allowable value by keeping the auxiliary winding current of the two-winding induction machine below the design allowable value. Characteristics can be realized.

本発明の参考形態を示す回路構成図である。It is a circuit block diagram which shows the reference form of this invention. 図1における電圧指令値生成手段の構成図である。It is a block diagram of the voltage command value production | generation means in FIG. 図2における振幅指令演算手段の特性図である。It is a characteristic view of the amplitude command calculating means in FIG. 進相コンデンサ形単相誘導機における印加電圧と電圧降下との関係を示す図である。It is a figure which shows the relationship between the applied voltage and voltage drop in a phase advance capacitor type | mold single phase induction machine. 図2における補巻線電圧指令値設定手段内の積分手段の構成図である。It is a block diagram of the integration means in the auxiliary winding voltage command value setting means in FIG. 純積分器、ローパスフィルタ及びバンドパスフィルタの伝達関数の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the transfer function of a pure integrator, a low-pass filter, and a band pass filter. 図1における相電圧指令値演算手段の構成図である。It is a block diagram of the phase voltage command value calculating means in FIG. 参考形態によって二巻線誘導機を駆動した場合と進相コンデンサ形単相誘導機を駆動した場合のトルク・効率特性の解析結果を示す図である。It is a figure which shows the analysis result of the torque and efficiency characteristic at the time of driving a two-winding induction machine by a reference form, and a case of driving a phase advance capacitor type single phase induction machine. 本発明の実施形態を示す主要部の構成図である。It is a configuration diagram of a main part showing a implementation form of the present invention. 図9における主巻線・補巻線電圧指令値設定手段の構成図である。FIG. 10 is a configuration diagram of a main winding / auxiliary winding voltage command value setting means in FIG. 9. 二相誘導機の主巻線及び補巻線の電流特性の解析結果を示す図である。It is a figure which shows the analysis result of the current characteristic of the main winding of a two-phase induction machine, and an auxiliary | assistant winding. 駆動周波数指令値と補正ゲインとの関係を示す図である。It is a figure which shows the relationship between a drive frequency command value and a correction gain. 実施形態によって二巻線誘導機を駆動した場合と進相コンデンサ形単相誘導機を駆動した場合のトルク・効率特性の解析結果を示す図である。Is a diagram showing an analysis result of torque and efficiency characteristics when driving the case of driving the wound-rotor induction machine and the phase advance capacitor type single-phase induction motor according to embodiments. 進相コンデンサ形単相誘導機の駆動装置の従来技術を示す回路構成図である。It is a circuit block diagram which shows the prior art of the drive device of a phase advance capacitor type | mold single phase induction machine. 特許文献1に記載された従来技術を示す回路構成図である。It is a circuit block diagram which shows the prior art described in patent document 1. 進相コンデンサ形単相誘導機及び二相誘導機の主巻線・補巻線電流特性の解析結果を示す図である。It is a figure which shows the analysis result of the main winding and auxiliary winding current characteristic of a phase advance capacitor type single phase induction machine and a two phase induction machine. 進相コンデンサ形単相誘導機及び純単相誘導機の効率及びトルク特性の解析結果を示す図である。It is a figure which shows the analysis result of the efficiency and torque characteristic of a phase advance capacitor type single phase induction machine and a pure single phase induction machine.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は、本発明の参考形態を示す回路構成図であり、10は二巻線誘導機200に交流電圧を印加して駆動するための電力変換器である。ここで、二相誘導機200は、前記同様にY結線された主巻線210、補巻線220及び共通線230を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a circuit configuration diagram showing a reference embodiment of the present invention, and 10 is a power converter for applying an AC voltage to a two-winding induction machine 200 for driving. Here, the two-phase induction machine 200 includes a main winding 210, an auxiliary winding 220, and a common line 230 that are Y-connected in the same manner as described above.

電力変換器10は、単相交流電源110と、その両端に接続された各2個のダイオード及び平滑コンデンサからなる倍電圧整流回路11と、その直流出力端子間に接続された半導体スイッチング素子S〜Sからなる三相インバータ12とから構成されており、三相インバータ12の各相出力端子が主巻線210、補巻線220及び共通線230の各一端にそれぞれ接続されている。
なお、電力変換器10の構成は上記構成になんら限定されるものではない。
The power converter 10 includes a single-phase AC power source 110, a voltage doubler rectifier circuit 11 including two diodes and smoothing capacitors connected to both ends thereof, and a semiconductor switching element S 1 connected between its DC output terminals. ~S is composed of a three-phase inverter 12 which consists of 6, each phase output terminal of the three-phase inverter 12 are respectively connected main winding 210, the one end of each of Homakisen 220 and the common line 230.
The configuration of the power converter 10 is not limited to the above configuration.

また、40は補巻線220の電流を検出する電流検出器であり、その電流検出値Iは電圧指令値生成手段20内の補巻線電圧指令値設定手段23に入力されている。
電圧指令値生成手段20は、主巻線210及び補巻線220にそれぞれ与える電圧指令値V ,V を生成する手段であり、駆動周波数指令値設定手段21、主巻線電圧指令値設定手段22及び補巻線電圧指令値設定手段23から構成されている。ここで、補巻線電圧指令値設定手段23は、主巻線電圧指令値V と補巻線電流検出値Iとから補巻線電圧指令値V を生成する。なお、各電圧及び電流はベクトル量であるが、この明細書本文では便宜上、「・」(ドット)を省略してある。
Further, 40 is a current detector for detecting current of Homakisen 220, the current detection value I A is input to the auxiliary winding voltage command value setting means 23 of the voltage command value in generator 20.
The voltage command value generation means 20 is a means for generating voltage command values V M * and V A * to be given to the main winding 210 and the auxiliary winding 220, respectively. The drive frequency command value setting means 21, the main winding voltage command It comprises a value setting means 22 and an auxiliary winding voltage command value setting means 23. Here, the auxiliary winding voltage command value setting means 23 generates the auxiliary winding voltage command value V A * from the main winding voltage command value V M * and the auxiliary winding current detection value I A. Each voltage and current is a vector quantity, but “·” (dot) is omitted for convenience in this specification.

30は、電圧指令値V ,V 通りの電圧を三相インバータ12から出力させるためにスイッチング素子S〜Sに対する制御信号(ゲート駆動信号)を生成する制御信号生成手段である。この制御信号生成手段30は、電圧指令値V ,V に基づいて三相各相の電圧指令値V ,V ,V を演算する相電圧指令値演算手段31と、これらの相電圧指令値V ,V ,V を例えば三角波キャリアと比較して各スイッチング素子S〜Sに対するPWM信号を生成するPWM信号発生手段32と、これらのPWM信号からゲート駆動信号を生成するゲート駆動信号発生手段33とから構成されている。
制御信号生成手段30の具体的な構成、動作は公知であるため、詳細な説明は省略する。
Reference numeral 30 denotes control signal generating means for generating control signals (gate drive signals) for the switching elements S 1 to S 6 in order to output the voltage command values V M * and V A * as the voltages from the three-phase inverter 12. . This control signal generating means 30 is a phase voltage command value calculating means 31 for calculating the voltage command values V U * , V V * , V W * of each of the three phases based on the voltage command values V M * , V A *. PWM signal generating means 32 for comparing the phase voltage command values V U * , V V * , V W * with, for example, a triangular wave carrier to generate PWM signals for the switching elements S 1 to S 6 , and It comprises gate drive signal generating means 33 for generating a gate drive signal from the PWM signal.
Since the specific configuration and operation of the control signal generating unit 30 are known, detailed description thereof is omitted.

次に、図2は、図1における電圧指令値生成手段20の構成図である。
主巻線電圧指令値設定手段22は、図3に示すような特性に従って駆動周波数指令値fから主巻線電圧の振幅指令を演算する振幅指令演算手段22aと、駆動周波数指令値fを積分して位相角指令θを演算する積分手段22bと、位相角指令θに応じたsin波を出力するsinテーブル22cと、このsin波と振幅指令とを乗算して主巻線電圧指令値(瞬時値)v を演算する乗算手段22dとから構成されている。
Next, FIG. 2 is a block diagram of the voltage command value generation means 20 in FIG.
The main winding voltage command value setting means 22 has an amplitude command calculation means 22a for calculating an amplitude command of the main winding voltage from the drive frequency command value f * according to the characteristics shown in FIG. 3, and a drive frequency command value f * . Integrating means 22b for calculating the phase angle command θ * by integrating, a sin table 22c for outputting a sin wave corresponding to the phase angle command θ * , and multiplying the sin wave by the amplitude command, the main winding voltage command And multiplication means 22d for calculating a value (instantaneous value) v M * .

また、図2における補巻線電圧指令値設定手段23は、補巻線220の電流検出値(瞬時値)iを積分する積分手段23aと、その出力に所定のゲインを乗算するゲイン乗算手段23bと、主巻線電圧指令値(瞬時値)v からゲイン乗算手段23bの出力を減算して補巻線電圧指令値(瞬時値)v を演算する減算手段23cとから構成されている。
参考形態では、運転負荷の大きさに関わらず補巻線電流を設計許容値に抑えられるという進相コンデンサ形単相誘導機の特性を二巻線誘導機にて実現するために、補巻線電圧指令値設定手段23により、補巻線220への印加電圧を進相コンデンサ形単相誘導機の場合と同様にしている。
Further, the auxiliary winding voltage command value setting means 23 in FIG. 2 includes an integrating means 23a for integrating the detected current value (instantaneous value) i A of the auxiliary winding 220, and a gain multiplying means for multiplying the output by a predetermined gain. and 23b, is composed of a subtraction means 23c for main winding voltage command value (instantaneous value) v M * after subtracting the output of the gain multiplier 23b auxiliary winding voltage command value (instantaneous value) v computes the a * ing.
In this reference form, in order to realize the characteristics of a phase-advanced capacitor type single-phase induction machine that can suppress the auxiliary winding current to the design allowable value regardless of the operating load, the auxiliary winding is realized. The voltage applied to the auxiliary winding 220 is made the same as in the case of the phase advance capacitor type single phase induction machine by the line voltage command value setting means 23.

ここで、図4は、進相コンデンサ形単相誘導機における印加電圧と電圧降下との関係を示している。図4において、Vは共通線230を基準とした主巻線210への印加電圧、Vは同じく補巻線220への印加電圧、Vは進相コンデンサ150の電圧降下である。
図4によれば、補巻線220への印加電圧Vは、数式1によって表される。
Here, FIG. 4 shows the relationship between the applied voltage and the voltage drop in the phase advance capacitor type single phase induction machine. In FIG. 4, V M is the voltage applied to the main winding 210 relative to the common line 230, V A is also applied voltage to Homakisen 220, V C is the voltage drop phase-advancing capacitor 150.
According to FIG. 4, the applied voltage V A to the auxiliary winding 220 is expressed by Equation 1.

Figure 2014113044
Figure 2014113044

本発明の参考形態では、数式1に基づき、二巻線誘導機の補巻線220への印加電圧指令値v を下記の数式2により決定する。この数式2において、Cは進相コンデンサ150の容量値である。
これにより、進相コンデンサ形単相誘導機における補巻線220への印加電圧を、二巻線誘導機において再現することができる。
In the reference embodiment of the present invention, the applied voltage command value v A * to the auxiliary winding 220 of the two-winding induction machine is determined by the following formula 2 based on the formula 1. In Equation 2, C is the capacitance value of the phase advance capacitor 150.
Thereby, the voltage applied to the auxiliary winding 220 in the phase advance capacitor type single-phase induction machine can be reproduced in the two-winding induction machine.

Figure 2014113044
Figure 2014113044

ただし、駆動周波数の変化によってトルク・効率が低下するという進相コンデンサ形単相誘導機の問題点を回避するため、本参考形態では、駆動周波数に応じて補巻線電流Iの積分結果に乗じる前記ゲイン乗算手段23bのゲイン(前記容量値Cの擬似的な値という意味で、以下では擬似容量値ともいう)を変化させる。 However, to avoid the problems of phase advancing capacitor type single-phase induction motor that is torque efficiency decreases due to a change in the driving frequency, in this reference embodiment, the integration result of the auxiliary winding current I A in accordance with the driving frequency The gain of the gain multiplication means 23b to be multiplied (in the sense of a pseudo value of the capacitance value C, hereinafter also referred to as a pseudo capacitance value) is changed.

図5は、図2における積分手段23aの構成図である。実際問題として、補巻線電流Iを検出する電流検出器40の出力信号には、直流オフセット成分が含まれる。このため、図2における積分手段23aとして純積分器を用いると、この直流オフセット成分を積分してしまい、所望の動作を実現することができない。そこで、直流オフセット成分の影響を低減するため、図5に示すごとく、積分手段23aとして純積分器の代わりにローパスフィルタLPFまたはバンドパスフィルタBPFを用いることにより、擬似的に積分を行う。 FIG. 5 is a block diagram of the integrating means 23a in FIG. In practice, the output signal of the current detector 40 for detecting the Homakisen current I A, include the DC offset component. For this reason, if a pure integrator is used as the integrating means 23a in FIG. 2, this DC offset component is integrated and a desired operation cannot be realized. Therefore, in order to reduce the influence of the DC offset component, pseudo integration is performed by using a low-pass filter LPF or a band-pass filter BPF instead of the pure integrator as the integration means 23a as shown in FIG.

図6は、純積分器、ローパスフィルタLPF及びバンドパスフィルタBPFの伝達関数の周波数特性を示しており、図6(a)はゲイン特性、図6(b)は位相特性である。
これらの図6(a),(b)によれば、ローパスフィルタLPFやバンドパスフィルタBPFでは直流ゲインが小さいため直流オフセット成分の影響を抑えることができ、かつ、二巻線誘導機の駆動周波数が数十〔Hz〕オーダーであれば、問題なく補巻線電流Iの積分を行えることがわかる。
FIG. 6 shows the frequency characteristics of the transfer functions of the pure integrator, the low-pass filter LPF, and the band-pass filter BPF. FIG. 6A shows the gain characteristic and FIG. 6B shows the phase characteristic.
According to these FIGS. 6A and 6B, since the low-pass filter LPF and the band-pass filter BPF have a small DC gain, the influence of the DC offset component can be suppressed, and the drive frequency of the two-winding induction machine if There several tens [Hz] order, it can be seen that perform the integration problems without auxiliary hoist line current I a.

図7は、図1における相電圧指令値演算手段31の構成図である。
相電圧指令値演算手段31では、三相インバータ12から指令値通りの主巻線電圧V、補巻線電圧Vを出力させるために相電圧指令値V ,V ,V を生成する必要があるが、これらの相電圧指令値V ,V ,V の組み合わせは無数にある。その一例として数式3〜数式5を挙げることができ、これらの相電圧指令値は図7のブロック図によって演算可能である。
FIG. 7 is a block diagram of the phase voltage command value calculation means 31 in FIG.
The phase voltage command value calculation means 31 outputs the phase voltage command values V U * , V V * , V W in order to output the main winding voltage V M and the auxiliary winding voltage V A according to the command values from the three-phase inverter 12. * Needs to be generated, but there are countless combinations of these phase voltage command values V U * , V V * , and V W * . Examples thereof include Equations 3 to 5, and these phase voltage command values can be calculated by the block diagram of FIG.

Figure 2014113044
Figure 2014113044

Figure 2014113044
Figure 2014113044

Figure 2014113044
Figure 2014113044

このようにして生成した相電圧指令値V ,V ,V を図1のPWM信号発生手段32に入力し、ゲート駆動信号発生手段33を介して半導体スイッチング素子S〜Sを駆動することにより、三相インバータ12から、電圧指令値V ,V 通りの電圧を主巻線210、補巻線220にそれぞれ印加することができる。 The phase voltage command values V U * , V V * , and V W * thus generated are input to the PWM signal generating means 32 shown in FIG. 1 and the semiconductor switching elements S 1 to S via the gate drive signal generating means 33. 6 can be applied to the main winding 210 and the auxiliary winding 220 from the three-phase inverter 12 in accordance with the voltage command values V M * and V A * , respectively.

図8は、この参考形態によって二巻線誘導機を駆動した場合(図では「本発明」と表記してある)と進相コンデンサ形単相誘導機を駆動した場合とのトルク・効率特性の解析結果を示しており、図8(a)は回転速度−効率特性、図8(b)は回転速度−トルク特性、図8(c)は巻線電流−トルク特性である。なお、誘導機への印加電圧は60〔V〕,30〔Hz〕である。
図17及び図8(a),(b)によれば、進相コンデンサ形単相誘導機では駆動周波数が変化するとトルク・効率が変化してしまうことがわかる。これに対し、本参考形態では、駆動周波数に応じて図2のゲイン乗算手段23bにおけるゲイン(擬似容量値)を変化させることにより、進相コンデンサ形単相誘導機よりもトルク・効率が改善されている。
FIG. 8 shows the torque / efficiency characteristics when a two-winding induction machine is driven according to this reference mode (indicated as “present invention” in the figure) and when a phase-advanced capacitor type single-phase induction machine is driven. FIG. 8A shows the rotational speed-efficiency characteristics, FIG. 8B shows the rotational speed-torque characteristics, and FIG. 8C shows the winding current-torque characteristics. The applied voltage to the induction machine is 60 [V], 30 [Hz].
17 and 8 (a) and 8 (b), it can be seen that in the phase-advanced capacitor type single-phase induction machine, the torque and efficiency change when the drive frequency changes. In contrast, in this preferred embodiment, by changing the gain (pseudo capacitance value) in the gain multiplication means 23b of FIG. 2 in accordance with the driving frequency, the torque and efficiency is improved than the power capacitor type single-phase induction motor ing.

また、図8(c)によれば、本参考形態による補巻線電流は約0.77〔A〕以下となっている。図16に示したように印加電圧・周波数によっては進相コンデンサ形単相誘導機でも同程度の補巻線電流が流れることから、この程度の電流であれば設計許容値を超えることはないと判断される。すなわち、本参考形態により、負荷の状況とは無関係に補巻線電流を設計許容値以下に抑えることができる。 In addition, according to FIG. 8 (c), the auxiliary hoist line current according to this reference embodiment is about 0.77 [A] or less. As shown in FIG. 16, depending on the applied voltage and frequency, the same amount of auxiliary winding current flows even in a phase-advanced capacitor type single-phase induction machine. To be judged. That is, by this preferred embodiment, it can be kept below design tolerances regardless the auxiliary hoist line current to the load conditions.

次いで、図9は本発明の実施形態の主要部を示す構成図である。
図9は、参考形態の電圧指令値生成手段20に相当する実施形態の電圧指令値生成手段20Aを示している。実施形態における電圧指令値生成手段20Aは、駆動周波数指令値設定手段21と、駆動周波数指令値fに基づいて主巻線電圧指令値V 及び補巻線電圧指令値V を生成する主巻線・補巻線電圧指令値設定手段24とから構成されており、主巻線・補巻線電圧指令値設定手段24は、主巻線電流に対する補巻線電流の比率を所定値以下に制御するような各電圧指令値V ,V を生成する。
なお、この電圧指令値生成手段20Aでは、電圧指令値の生成に当たり、参考形態のように電流検出器40による補巻線電流検出値Iを用いることはない。また、電力変換器10、制御信号生成手段30の構成は、参考形態と同様であるため説明を省略する。
Then, FIG. 9 is a block diagram showing a main part of the implementation of the invention.
Figure 9 shows a voltage command value generating means 20A for implementation form you corresponds to the voltage command value generating unit 20 of the reference embodiment. Voltage command value generating unit 20A in the implementation form, the drive frequency command value setting means 21, the driving frequency command value f * main winding voltage command value based on V M * and auxiliary hoisting line voltage command value V A * The main winding / auxiliary winding voltage command value setting means 24 is generated, and the main winding / auxiliary winding voltage command value setting means 24 has a predetermined ratio of the auxiliary winding current to the main winding current. Each voltage command value V M * , V A * is generated so as to be controlled below the value.
In the voltage command value generating means 20A, hits the generation of the voltage command value, is not to use the auxiliary hoist line current detection value I A by the current detector 40 as reference embodiment. Moreover, since the structure of the power converter 10 and the control signal production | generation means 30 is the same as that of a reference form, description is abbreviate | omitted.

図10は、図9における主巻線・補巻線電圧指令値設定手段24の構成を示しており、22は図2と同一構成の主巻線電圧指令値設定手段、23Aは補巻線電圧指令値設定手段である。なお、ここでは補巻線電圧Vの位相を主巻線電圧Vの位相に対して90°進みとする場合について説明する。
補巻線電圧指令値設定手段23Aは、駆動周波数指令値fに応じた補正ゲインKを出力する補正ゲインテーブル23dと、振幅指令演算手段22aから出力される主巻線電圧振幅指令と上記補正ゲインKとを乗算する乗算手段23fと、積分手段22bから出力される位相角指令θに応じたcos波を出力するcosテーブル23eと、このcos波と乗算手段23fの出力とを乗算して主巻線電圧指令値v (瞬時値)より90°進んだ補巻線電圧指令値(瞬時値)v を演算する乗算手段23gとから構成されている。
10 shows the configuration of the main winding / auxiliary voltage command value setting means 24 in FIG. 9, wherein 22 is the main winding voltage command value setting means having the same configuration as in FIG. 2, and 23A is the auxiliary winding voltage. Command value setting means. Here, it is described a case where a 90 ° advances the phase of the auxiliary hoist line voltage V A relative to the main winding voltage V M phase.
Homakisen voltage command value setting means 23A includes a compensation gain table 23d for outputting a correction gain K C according to the drive frequency command value f *, the main winding voltage amplitude command and the output from the amplitude command calculation unit 22a multiplying multiplication means 23f for multiplying the correction gain K C, and cos table 23e for outputting a cos wave corresponding to the phase angle command theta * output from the integrating means 22b, and an output of the cos wave and multiplying means 23f It is composed of a multiplier 23g for calculating the main winding voltage command value v M * (instantaneous value) from 90 ° advanced auxiliary hoist line voltage command value (instantaneous value) v a * and.

上記補正ゲインテーブル23dは、補巻線電流Iを小さく抑えて補巻線220の温度を許容温度以下にするために、主巻線電流Iに対する補巻線電流Iの比率(電流比率)が所定値以下になるように補巻線電圧の振幅指令を制御するためのものである。
以下に、上記の電流比率について説明する。
前述したように、一般に補巻線220の線径は主巻線210のそれより細く設計されており、補巻線220の巻線抵抗値も主巻線210より大きい。巻線の発熱量は銅損によって決まるため、主巻線電流Iと同等の大きさの補巻線電流Iが補巻線220に流れたとすると、補巻線220は異常過熱して最悪の場合には焼損してしまう。よって、補巻線電流Iは主巻線電流Iに比べて十分に小さくする必要がある。
Said compensation gain table 23d is Homakisen current I A Decrease suppressed in to the temperature of the auxiliary winding 220 than the allowable temperature, the ratio (current ratio of auxiliary hoist line current I A to the main winding current I M ) Is for controlling the amplitude command of the auxiliary winding voltage so that it is below a predetermined value.
Hereinafter, the current ratio will be described.
As described above, the diameter of the auxiliary winding 220 is generally designed to be thinner than that of the main winding 210, and the winding resistance value of the auxiliary winding 220 is also larger than that of the main winding 210. Worst heating value of the winding because determined by the copper loss, the main winding current I M equivalent to the size of the auxiliary hoist line current I A is to flow to Homakisen 220, Homakisen 220 is overheated In the case of, it will burn out. Therefore, the Homakisen current I A must be sufficiently small compared to the main winding current I M.

ここで、主巻線電流I及び補巻線電流Iの大きさについて考察する。
図16に示したように、二相誘導機の主巻線電流Iは進相コンデンサ形単相誘導機の主巻線電流よりも小さいことから、二相誘導機駆動時に流れる電流によって主巻線210の温度が許容温度を超えるおそれはない。
このため、二相誘導機として駆動する場合には、補巻線220の単位体積当たりで発生する銅損を、主巻線210の単位体積当たりで発生する銅損と同等以下になるような補巻線電流Iを流せば、補巻線220の単位体積当たりの発熱量が主巻線210の単位体積当たりの発熱量と同等以下になるので、補巻線220の温度が許容温度を超えるおそれはなくなる。
Here, the magnitudes of the main winding current I M and the auxiliary winding current I A will be considered.
As shown in FIG. 16, since the main winding current I M of the two-phase induction machine smaller than the main winding current of the phase advancing capacitor type single phase induction motor, the main hoisting by the current flowing during the two-phase induction motor drive There is no possibility that the temperature of the wire 210 exceeds the allowable temperature.
For this reason, when driving as a two-phase induction machine, the copper loss generated per unit volume of the auxiliary winding 220 is equal to or less than the copper loss generated per unit volume of the main winding 210. be allowed to flow winding current I a, since the amount of heat generated per unit volume of Homakisen 220 becomes equal to or less than the amount of heat generated per unit volume of the main winding 210, the temperature of Homakisen 220 exceeds the allowable temperature There is no fear.

補巻線220の単位体積当たりで発生する銅損が、主巻線210の単位体積当たりで発生する銅損と同等以下になるような主巻線電流Iに対する補巻線電流Iの比率(I/I)は、主巻線210及び補巻線220の線径、長さが既知であれば、数式6によって求められる。ただし、数式6において、Rは主巻線の抵抗、Wは主巻線の線径、Lは主巻線の長さ、Rは補巻線の抵抗、Wは補巻線の線径、Lは補巻線の長さである。 Ratio of the auxiliary winding current I A to the main winding current I M so that the copper loss generated per unit volume of the auxiliary winding 220 is equal to or less than the copper loss generated per unit volume of the main winding 210 If (I A / I M ) is known, the wire diameter and the length of the main winding 210 and the auxiliary winding 220 are obtained by Expression 6. However, in Equation 6, R M is the resistance of the main winding, W M is the wire diameter of the main winding, L M is the length of the main winding, the R A is the resistance of Homakisen, W A Homakisen The wire diameter L A is the length of the auxiliary winding.

Figure 2014113044
Figure 2014113044

また、主巻線210及び補巻線220の線径、長さが既知でない場合には、次のようにして電流比率(I/I)を求める。
まず、一般的に、主巻線及び補巻線に用いられる導体材料は同一であるので、数式6は数式7のように表すことができる。ただし、数式7においてρは導体材料の抵抗率である。
When the wire diameter and length of the main winding 210 and the auxiliary winding 220 are not known, the current ratio (I A / I M ) is obtained as follows.
First, since the conductor materials used for the main winding and the auxiliary winding are generally the same, Equation 6 can be expressed as Equation 7. In Equation 7, ρ is the resistivity of the conductor material.

Figure 2014113044
Figure 2014113044

巻線の長さが巻数に比例するとすれば、主巻線に対する補巻線の巻数比α(=補巻線巻数N/主巻線巻数N)と巻線の長さの比(L/L)とは等しくなると考えられるので、数式7は数式8によって表される。 If the length of the winding is proportional to the number of turns, the turns ratio α of the auxiliary winding to the main winding (= the number of turns of the auxiliary winding N A / the number of turns of the main winding N M ) and the ratio of the length of the winding (L Since A / L M ) is considered to be equal, Equation 7 is expressed by Equation 8.

Figure 2014113044
Figure 2014113044

数式8によれば、主巻線210及び補巻線220の線径、長さが既知でない場合であっても、巻数比α及び各巻線の抵抗R,Rが既知であれば、電流比率(I/I)を求めることが可能である。
従って、数式6または数式8によって求めた電流比率(I/I)となるように補巻線電圧Vの振幅を制御すれば、補巻線電流Iを設計許容値以下、すなわち補巻線の許容温度以下で通流することができる。
According to Equation 8, even if the wire diameter and length of the main winding 210 and the auxiliary winding 220 are not known, if the turns ratio α and the resistances R M and R A of each winding are known, the current It is possible to determine the ratio (I A / I M ).
Therefore, if the amplitude of the auxiliary winding voltage V A is controlled so that the current ratio (I A / I M ) obtained by Equation 6 or Equation 8 is obtained, the auxiliary winding current I A is less than the design allowable value, that is, the complement. The current can be passed below the allowable temperature of the winding.

次いで、図10における補正ゲインテーブル23dについて具体的に説明する。ここで、表1は、二相誘導機の電動機定数の一例を示している。   Next, the correction gain table 23d in FIG. 10 will be specifically described. Here, Table 1 shows an example of the motor constant of the two-phase induction machine.

Figure 2014113044
Figure 2014113044

表1及び数式8より、この二相誘導機の電流比率(I/I)は数式9となる。 From Table 1 and Equation 8, the current ratio (I A / I M ) of this two-phase induction machine is Equation 9.

Figure 2014113044
Figure 2014113044

図11は、二相誘導機の駆動周波数が30〔Hz〕において、電流比率(I/I)が数式9を満足するように主巻線に60〔V〕、補巻線に49.3〔V〕(いずれも実効値)を印加したときの主巻線及び補巻線電流特性の解析結果を示している。
図11では、定格出力時(回転速度1700〔r/m〕の時点)に電流比率(I/I)が数式9の右辺の0.242となっている。そして、負荷が軽くなっても(速度が上昇しても)補巻線電流Iは増えることがないため、この印加電圧の比率によって補巻線に許容温度内で通流することが可能である。
FIG. 11 shows that when the drive frequency of the two-phase induction machine is 30 [Hz], the main winding is 60 [V] and the auxiliary winding is 49.49 so that the current ratio (I A / I M ) satisfies Equation 9. The analysis results of the main winding and auxiliary winding current characteristics when 3 [V] (both are effective values) are applied are shown.
In FIG. 11, the current ratio (I A / I M ) is 0.242 on the right side of Equation 9 at the rated output (at the time of the rotational speed of 1700 [r / m]). Then, the load (even increased speed) is light becomes even for Homakisen current I A is does not increase, can be flowing within the allowable temperature to the auxiliary winding by the ratio of the applied voltage is there.

また、図12は、各周波数の定格出力時における補巻線電圧振幅値VAratと主巻線電圧振幅値VMratとの比率を示した図である。この振幅比率(VArat/VMrat)を補正ゲインKとすれば、図10の補正ゲインテーブル23dとしては、入力である駆動周波数指令値fに応じた補正ゲインKを予め決定しておき、この補正ゲインKを乗算手段23fにおいて主巻線電圧の振幅指令に乗算することにより、補巻線電流Iを設計許容値以下にするような補巻線電圧の振幅指令を算出することができる。 Further, FIG. 12 is a diagram showing the ratio of the auxiliary winding voltage amplitude value V Arat main winding voltage amplitude value V MRAT at the rated output of each frequency. If this amplitude ratio (V Arat / V Mrat ) is the correction gain K C , the correction gain K C corresponding to the drive frequency command value f * as an input is determined in advance as the correction gain table 23 d in FIG. Place, by multiplying the amplitude command of the main winding voltage in the multiplier unit 23f the correction gain K C, calculates the amplitude command of auxiliary hoist line voltage such as below design tolerances to Homakisen current I a be able to.

図13は、この実施形態によって二巻線誘導機を駆動した場合(図では「本発明」と表記してある)と進相コンデンサ形単相誘導機を駆動した場合のトルク・効率特性の解析結果を示しており、図13(a)は回転速度−効率特性、図13(b)は回転速度−トルク特性である。
本実施形態においては、駆動周波数に応じて補正ゲインKを変化させることにより、電流比率(I/I)を所定値以下に制御し、結果として進相コンデンサ形単相誘導機よりもトルク・効率を改善することができる。
13, torque and efficiency characteristics when driven ( "present invention" are indicated as in the drawing) and phase advance capacitor type single-phase induction motor when driving the wound-rotor induction machine by implementation form of this FIG. 13A shows the rotational speed-efficiency characteristics, and FIG. 13B shows the rotational speed-torque characteristics.
In the present embodiment, the current ratio (I A / I M ) is controlled to a predetermined value or less by changing the correction gain K C according to the drive frequency. Torque and efficiency can be improved.

10:電力変換器
11:倍電圧整流回路
12:三相インバータ
20,20A:電圧指令値生成手段
21:駆動周波数指令値設定手段
22:主巻線電圧指令値設定手段
22a:振幅指令演算手段
22b:積分手段
22c:sinテーブル
22d:乗算手段
23,23A:補巻線電圧指令値設定手段
23a:積分手段
23b:ゲイン乗算手段
23c:減算手段
23d:補正ゲインテーブル
23e:cosテーブル
23f,23g:乗算手段
24:主巻線・補巻線電圧指令値設定手段
30:制御信号生成手段
31:相電圧指令値演算手段
32:PWM信号発生手段
33:ゲート駆動信号発生手段
40:電流検出器
110:単相交流電源
200:二巻線誘導機
210:主巻線
220:補巻線
230:共通線
〜S:半導体スイッチング素子
LPF:ローパスフィルタ
BPF:バンドパスフィルタ
10: Power converter 11: Voltage doubler rectifier circuit 12: Three-phase inverter 20, 20A: Voltage command value generation means 21: Drive frequency command value setting means 22: Main winding voltage command value setting means 22a: Amplitude command calculation means 22b : Integration means 22c: sin table 22d: multiplication means 23, 23A: auxiliary winding voltage command value setting means 23a: integration means 23b: gain multiplication means 23c: subtraction means 23d: correction gain table 23e: cos tables 23f, 23g: multiplication Means 24: main winding / auxiliary winding voltage command value setting means 30: control signal generating means 31: phase voltage command value calculating means 32: PWM signal generating means 33: gate drive signal generating means 40: current detector 110: single phase AC power supply 200: wound-rotor induction machine 210: main winding 220: Homakisen 230: common lines S 1 to S 6: the semiconductor switching element LP F: Low pass filter BPF: Band pass filter

Claims (3)

主巻線及び補巻線を有する二巻線誘導機を電力変換器により駆動する電動機駆動装置において、
前記主巻線に流れる電流に対して前記補巻線に流れる電流の比率が、予め設定した電流比率以下になるように、前記電力変換器の駆動周波数指令値に基づいて、前記主巻線及び前記補巻線の電圧指令値をそれぞれ生成する電圧指令値生成手段を備えたことを特徴とする電動機駆動装置。
In an electric motor drive device for driving a two-winding induction machine having a main winding and an auxiliary winding by a power converter,
Based on the drive frequency command value of the power converter, the main winding and the current winding so that the ratio of the current flowing in the auxiliary winding to the current flowing in the main winding is equal to or less than a preset current ratio An electric motor drive device comprising voltage command value generation means for generating a voltage command value for each of the auxiliary windings.
請求項1に記載した電動機駆動装置において、
前記電流比率は、
前記補巻線の単位体積当たりで発生する損失が前記主巻線の単位体積当たりで発生する損失と同等以下となる比率であることを特徴とする電動機駆動装置。
In the electric motor drive device according to claim 1,
The current ratio is
The motor driving device according to claim 1, wherein a loss generated per unit volume of the auxiliary winding is a ratio equal to or less than a loss generated per unit volume of the main winding.
請求項2に記載した電動機駆動装置において、
前記電流比率を、前記主巻線及び補巻線の巻数比及び巻線抵抗から求めることを特徴とする電動機駆動装置。
In the electric motor drive device according to claim 2,
An electric motor driving device characterized in that the current ratio is obtained from a turns ratio and winding resistance of the main winding and auxiliary winding.
JP2014023213A 2014-02-10 2014-02-10 Electric motor drive Expired - Fee Related JP5783500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014023213A JP5783500B2 (en) 2014-02-10 2014-02-10 Electric motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023213A JP5783500B2 (en) 2014-02-10 2014-02-10 Electric motor drive

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010004174A Division JP5549229B2 (en) 2010-01-12 2010-01-12 Electric motor drive

Publications (2)

Publication Number Publication Date
JP2014113044A true JP2014113044A (en) 2014-06-19
JP5783500B2 JP5783500B2 (en) 2015-09-24

Family

ID=51169770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023213A Expired - Fee Related JP5783500B2 (en) 2014-02-10 2014-02-10 Electric motor drive

Country Status (1)

Country Link
JP (1) JP5783500B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887993A (en) * 2017-04-01 2017-06-23 广州市百福电气设备有限公司 The electric system and its phase sequence detecting method and device of three bridge arm type Driven by inverter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131393A (en) * 1988-11-07 1990-05-21 Sanyo Electric Co Ltd Method of controlling single phase induction motor
JP2008259348A (en) * 2007-04-06 2008-10-23 Matsushita Electric Ind Co Ltd Motor control device
JP2009261212A (en) * 2008-03-17 2009-11-05 Toshiba Corp Inverter apparatus and inverter system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131393A (en) * 1988-11-07 1990-05-21 Sanyo Electric Co Ltd Method of controlling single phase induction motor
JP2008259348A (en) * 2007-04-06 2008-10-23 Matsushita Electric Ind Co Ltd Motor control device
JP2009261212A (en) * 2008-03-17 2009-11-05 Toshiba Corp Inverter apparatus and inverter system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887993A (en) * 2017-04-01 2017-06-23 广州市百福电气设备有限公司 The electric system and its phase sequence detecting method and device of three bridge arm type Driven by inverter

Also Published As

Publication number Publication date
JP5783500B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5639035B2 (en) Magnetic flux control device for induction motor, magnetic flux control device for induction motor
KR900001790B1 (en) Control system for a power converter for driving induction motor
US20090052209A1 (en) Inverter Device
CN105556816B (en) The control method of power inverter and power inverter
JP6269355B2 (en) Matrix converter, power generation system, and power factor control method
US10020763B2 (en) Power generation system
JP3773794B2 (en) Power converter
JP5783500B2 (en) Electric motor drive
WO2013007107A1 (en) Variable frequency speed control system for motor
JP5549229B2 (en) Electric motor drive
JP4693214B2 (en) Inverter device
JP2015122858A (en) Motor drive control device
JP5007546B2 (en) Permanent magnet synchronous motor drive device
CN109845088B (en) Method for operating a converter for coupling an electric machine to an ac voltage network
JP5851867B2 (en) Induction motor drive device
JP6833654B2 (en) Electric motor drive
EP3139489B1 (en) Method for braking an alternating current electric motor
JP6471352B2 (en) Motor control device for washing machine
JP2015029396A (en) Power conversion device and control method
RU2380821C2 (en) Ac electric drive
JP5306268B2 (en) Power converter and control method of power converter
JP6165575B2 (en) Power converter
JPH1132482A (en) Power conversion device
Singh et al. Experimental Investigations on the Influence of Flux Control Loop in a Direct Torque Control Drive.
JPH0213555B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5783500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150712

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees