JP2014062858A - Remaining life assessment method of oil-immersed stationary induction apparatus - Google Patents

Remaining life assessment method of oil-immersed stationary induction apparatus Download PDF

Info

Publication number
JP2014062858A
JP2014062858A JP2012209079A JP2012209079A JP2014062858A JP 2014062858 A JP2014062858 A JP 2014062858A JP 2012209079 A JP2012209079 A JP 2012209079A JP 2012209079 A JP2012209079 A JP 2012209079A JP 2014062858 A JP2014062858 A JP 2014062858A
Authority
JP
Japan
Prior art keywords
insulating
remaining life
static induction
insulating paper
diagnosing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012209079A
Other languages
Japanese (ja)
Other versions
JP5898597B2 (en
Inventor
Hisashi Morooka
寿至 師岡
Kenichi Kawamura
憲一 河村
Yuzuru Suzuki
譲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012209079A priority Critical patent/JP5898597B2/en
Publication of JP2014062858A publication Critical patent/JP2014062858A/en
Application granted granted Critical
Publication of JP5898597B2 publication Critical patent/JP5898597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly-accurate remaining life assessment method of a stationary induction apparatus.SOLUTION: In a stationary induction apparatus, an iron core, a coil which is attached to the iron core and which is made of an electric wire wounded with insulating paper, an insulator for insulating the coil, and an insulator forming a cooling passage of an insulating/cooling medium are immersed in the insulating/cooling medium in a transformer body. A remaining life of the stationary induction apparatus is assessed by analyzing a decomposition product derived from lignin (phenylpropanoid), which is a component of the insulating paper.

Description

本発明は、絶縁冷却媒体として鉱油、エステル油、シリコーン液などの液体を用い、巻線の絶縁被覆等の絶縁物として絶縁紙を用いた、鉱油入りの静止誘導電器の余寿命診断方法に関する。   The present invention relates to a method for diagnosing the remaining life of a stationary induction machine containing mineral oil using a liquid such as mineral oil, ester oil, or silicone liquid as an insulating cooling medium, and using insulating paper as an insulator such as an insulation coating of a winding.

一般に、油入変圧器などの静止誘導電器は、タンク内の鉱油などの絶縁冷却媒体中に、鉄心と、前記鉄心に装着され絶縁紙が巻回された電線からなるコイルと、コイル絶縁用及び絶縁冷却媒体の冷却通路構成用の絶縁物を備えた巻線とが浸漬されている。   Generally, a static induction appliance such as an oil-filled transformer is composed of an iron core, a coil that is mounted on the iron core and wound with insulating paper, and a coil insulation coil and an insulating cooling medium such as mineral oil in a tank. A winding provided with an insulator for cooling passage configuration of the insulating cooling medium is immersed.

このような静止誘導電器に使用されている材料のなかで、鉱油などの絶縁冷却媒体、あるいは絶縁紙などの絶縁物は経年劣化により特性が低下することが知られている。これら材料の経年劣化による特性低下が、変圧器の経年劣化の要因であり、変圧器の寿命を左右すると考えられている。   Among the materials used for such static induction appliances, it is known that the characteristics of insulating cooling media such as mineral oil or insulating materials such as insulating paper deteriorate due to aging. It is considered that the deterioration of characteristics due to aging of these materials is a factor of aging of the transformer and affects the life of the transformer.

非特許文献1には、従来の変圧器の経年劣化診断に関する基本的な考え方が記載されている。絶縁冷却媒体である鉱油については、酸素や水などが関与して経年劣化するが、その絶縁破壊電圧の低下は小さいことが知られている。変圧器製造時に適切な乾燥処理が行われ、タンク外部からの空気、水分の侵入が無ければ、通常は長期間使用することが可能である。また、経年劣化により特性が低下しても、新油と交換する、あるいは脱気ろ過処理などを行うことで、変圧器の運転に支障のない特性を維持することが可能である。   Non-Patent Document 1 describes a basic concept regarding the diagnosis of aging degradation of a conventional transformer. Mineral oil, which is an insulating cooling medium, is known to deteriorate over time due to the involvement of oxygen, water, etc., but it is known that the decrease in dielectric breakdown voltage is small. If a proper drying process is performed at the time of transformer production and there is no intrusion of air and moisture from the outside of the tank, it can be used for a long period of time. Even if the characteristics deteriorate due to deterioration over time, it is possible to maintain characteristics that do not hinder the operation of the transformer by replacing with new oil or performing degassing filtration.

一方、巻線被覆の絶縁紙については、経年劣化によって絶縁破壊電圧はほとんど低下しないのに対し、引張強度は低下し、運転を継続するうえで問題になる場合もある。例えば、変圧器巻線に雷撃や外部短絡などによるサージ電流が流れ、その際に発生する電磁機械力によって巻線被覆に引張り力が働く。この引張り力よりも絶縁紙の引張強度が低くなった場合、絶縁紙が破壊するため、絶縁紙の寿命となる。一般には、絶縁紙の巻き替えや、巻線の交換は不可能であるため、この絶縁紙の寿命が、変圧器の寿命を決めることになると考えられている。   On the other hand, with respect to the insulating paper covered with the winding, the dielectric breakdown voltage hardly decreases due to aging, whereas the tensile strength decreases, which may cause a problem in continuing the operation. For example, a surge current due to a lightning strike or an external short circuit flows through the transformer winding, and a tensile force acts on the winding coating due to the electromagnetic mechanical force generated at that time. When the tensile strength of the insulating paper becomes lower than this tensile force, the insulating paper breaks, and the life of the insulating paper is reached. In general, since it is impossible to rewind the insulating paper or replace the winding, it is considered that the life of the insulating paper determines the life of the transformer.

絶縁紙の主成分はセルロースであり、図1に示す化学構造を持つ、グルコース環が鎖状に重合した高分子材料である。   The main component of the insulating paper is cellulose, which is a polymer material having a chemical structure shown in FIG.

経年劣化により、この鎖が切れて短くなり、さらに分解してCO2、CO、フルフラール、アセトンといった低分子の化合物が生成する。フルフラールの化学構造を図2に示す。 Due to aging, this chain is broken and shortened and further decomposed to produce low molecular weight compounds such as CO 2 , CO, furfural and acetone. The chemical structure of furfural is shown in FIG.

導体に巻かれた絶縁紙は折れ等があり、その引張強度を正確に測定するのは難しいことから、引張強度との相関が高いセルロースの平均重合度が劣化の指標として用いられている。しかし、運転中の変圧器において、この絶縁紙の引張強度、平均重合度を直接測定することはできない。一方、セルロースの分解生成物である、(CO2+CO)量、フルフラール量、アセトン量などと、絶縁紙の平均重合度とは相関があることが知られている。
このことから、絶縁冷却媒体中の(CO2+CO)量、フルフラール量、アセトン量などを測定することによって、絶縁紙の引張強度、平均重合度を間接的に評価し、変圧器の経年劣化状態を外部診断している。
Since the insulating paper wound around the conductor is bent and it is difficult to accurately measure the tensile strength, the average degree of polymerization of cellulose having a high correlation with the tensile strength is used as an indicator of deterioration. However, it is not possible to directly measure the tensile strength and average polymerization degree of this insulating paper in a transformer in operation. On the other hand, it is known that there is a correlation between the amount of (CO 2 + CO), the amount of furfural, the amount of acetone, etc., which are decomposition products of cellulose, and the average degree of polymerization of insulating paper.
From this, by measuring the amount of (CO 2 + CO), furfural, acetone, etc. in the insulating cooling medium, the tensile strength and average polymerization degree of the insulating paper are indirectly evaluated, and the aging state of the transformer Have an external diagnosis.

近年、高度経済成長期に増大した国内の変電用、あるいは配電用変圧器は経年40年を超え、今後大量に更新時期を迎える見通しである。このため、これら高経年変圧器を診断して寿命を定量的に把握することにより、計画的に高経年変圧器をリプレースしていく必要があり、余寿命診断技術の高精度化が求められている。   In recent years, domestic transformers and distribution transformers, which have increased during the period of high economic growth, are over 40 years old and are expected to be renewed in large quantities in the future. For this reason, it is necessary to replace these high-age transformers systematically by diagnosing these high-age transformers and quantitatively grasping their lifetimes, and there is a need for high-precision remaining life diagnosis technology. Yes.

特許文献1には、絶縁油中に含まれる劣化指標成分の測定値を用いて油入電気機器の絶縁紙の平均重合度を推定し、この平均重合度により油入電気機器の劣化を診断する方法において、絶縁油中のフルフラール量、二酸化炭素及び一酸化炭素の量、水分量、酸素量、水素量の各測定値を前記劣化指標成分の測定値とし、少なくとも、前記劣化指標成分の測定値と、油入電気機器の運転履歴、保守履歴、及び、油入電気機器の設計諸元を入力因子群とし、前記絶縁紙の平均重合度を出力因子として、モデルの同定または学習を行うことにより、異なる平均重合度推定モデルを重回帰式またはニューラルネットワークによって複数構築し、診断対象である油入電気機器の前記入力因子群を前記各推定モデルにそれぞれ入力して得られた複数の平均重合度推定値を加工して、前記絶縁紙の最終的な平均重合度を推定する、変圧器の経年劣化診断方法が記載されている。   In Patent Document 1, an average degree of polymerization of insulating paper of an oil-filled electrical device is estimated using a measured value of a deterioration index component contained in the insulating oil, and deterioration of the oil-filled electrical device is diagnosed based on this average degree of polymerization. In the method, each measured value of the amount of furfural in insulating oil, the amount of carbon dioxide and carbon monoxide, the amount of moisture, the amount of oxygen, and the amount of hydrogen is taken as the measured value of the deterioration index component, and at least the measured value of the deterioration index component And by identifying or learning the model using the operating history, maintenance history, and design specifications of the oil-filled electrical device as input factor groups, and the average degree of polymerization of the insulating paper as the output factor. A plurality of different average polymerization degree estimation models are constructed by multiple regression equations or neural networks, and a plurality of averages obtained by inputting the input factor groups of the oil-filled electrical equipment to be diagnosed into the respective estimation models, respectively. And processing the Godo estimate, estimates a final average degree of polymerization of the insulating paper, aging diagnostic method of the transformer is described.

特許文献2には、油入変圧器内部の絶縁油を採取し、該絶縁油中の特定成分を分析した上で、該特定成分の量とコイル絶縁紙の平均重合度との相関関係に基づき、コイル絶縁紙の平均重合度を推定する第1種の方法(例えば、(CO2+CO)法やフルフラール法)を行うと共に、油入変圧器内部の採取可能な絶縁物を採取し、該絶縁物の平均重合度を求めることにより、コイル絶縁紙の平均重合度を推定する第2種の方法とを行い、第1種の方法により推定されたコイル絶縁紙の平均重合度と第2種の方法により推定されたコイル絶縁紙の平均重合度との差分を求め、該差分に基づき、第1種の方法における特定成分の量とコイル絶縁紙の平均重合度との相関関係を補正し、しかる後、第1種の方法によってコイル絶縁紙の平均重合度をモニタリングすることを特徴とする、変圧器の経年劣化診断方法が記載されている。 In Patent Document 2, insulating oil inside an oil-filled transformer is sampled, and after analyzing a specific component in the insulating oil, based on the correlation between the amount of the specific component and the average degree of polymerization of the coil insulating paper. The first type of method for estimating the average degree of polymerization of coil insulating paper (for example, (CO 2 + CO) method or furfural method) is performed, and the insulating material that can be collected inside the oil-filled transformer is collected and the insulation is collected. The second type of method for estimating the average degree of polymerization of the coil insulating paper is obtained by determining the average degree of polymerization of the product, and the average degree of polymerization of the coil insulating paper estimated by the first type of method and the second type of method. A difference between the average degree of polymerization of the coil insulating paper estimated by the method is obtained, and based on the difference, the correlation between the amount of the specific component and the average degree of polymerization of the coil insulating paper in the first type method is corrected, and accordingly After that, the average degree of polymerization of the coil insulating paper was measured by the first type method. Characterized by Taringu, aging diagnostic method of the transformer is described.

特開2006−308515号公報JP 2006-308515 A 特開2006−250872号公報JP 2006-250872 A

電気協同研究、第54巻、第5号(1)「油入変圧器の保守管理」 電力用変圧器保守管理専門委員会著、社団法人電気協同研究会、平成11年2月発行Electric cooperative research, Vol. 54, No. 5 (1) “Maintenance management of oil-filled transformers” by Electric Power Transformer Maintenance Management Special Committee, Electric Cooperative Research Association, published in February 1999 電気絶縁紙、(株)コロナ社、昭和44年発行Electrical insulation paper, Corona, Inc.

特許文献1、あるいは特許文献2記載の方法は、前記絶縁紙の劣化状態を診断するにあたり、主成分であるセルロースの劣化による引張強度、平均重合度の低下を、セルロースの分解生成物である、(CO2+CO)量、フルフラール量、アセトン量などを測定することによって推定するうえで、その精度向上を図ったものである。 The method described in Patent Document 1 or Patent Document 2 is a degradation product of cellulose, which is a degradation product of tensile strength and average polymerization degree due to deterioration of cellulose as a main component in diagnosing the deterioration state of the insulating paper. In estimating by measuring the amount of (CO 2 + CO), the amount of furfural, the amount of acetone, etc., the accuracy is improved.

一方、非特許文献2には、主として木材から得られるパルプから製造される絶縁紙には、主成分のセルロース以外に、ヘミセルロース、リグニン、樹脂分などが微量の不純物として含まれていることが記載されている。ヘミセルロースは多糖類であり、セルロースと類似の化学構造を持つことから、セルロースと同様に分解して、CO2、CO、フルフラールなどが生成すると考えられる。一方、リグニンは図3に示すように、フェニルプロパノイドが高度に脱水素重合した、複雑な樹脂状構造の物質である。 On the other hand, Non-Patent Document 2 describes that insulating paper produced mainly from pulp obtained from wood contains hemicellulose, lignin, resin, and the like as trace impurities in addition to the main component cellulose. Has been. Since hemicellulose is a polysaccharide and has a chemical structure similar to cellulose, it is considered that it decomposes like cellulose and produces CO 2 , CO, furfural, and the like. On the other hand, as shown in FIG. 3, lignin is a substance having a complicated resinous structure in which phenylpropanoid is highly dehydrogenatively polymerized.

このリグニンなどのフェニルプロパノイド由来の化合物は、絶縁紙中に含まれる量は少ないものの、絶縁紙の機械的強度に寄与すると考えられる。また、リグニンなどのフェニルプロパノイド由来の化合物は、セルロースと同様に経年劣化し、分解すると考えられる。しかしながら、リグニンなどのフェニルプロパノイド由来の化合物劣化については、絶縁紙の劣化状態を診断するうえで、考慮されていないという問題があった。また、リグニンなどのフェニルプロパノイド由来の化合物の分解生成物を指標とした、絶縁紙の経年劣化診断も行われていなかった。   The compound derived from phenylpropanoid such as lignin is considered to contribute to the mechanical strength of the insulating paper although the amount contained in the insulating paper is small. Moreover, it is thought that the compound derived from phenylpropanoids, such as lignin, deteriorates over time and decomposes like cellulose. However, there has been a problem that deterioration of compounds derived from phenylpropanoids such as lignin is not taken into account in diagnosing the deterioration state of insulating paper. In addition, aged deterioration diagnosis of insulating paper has not been performed using the decomposition product of a compound derived from phenylpropanoid such as lignin as an index.

本発明の目的は、高精度な静止誘導電器の余寿命診断方法を提供することにある。   An object of the present invention is to provide a highly accurate method for diagnosing the remaining life of a static induction appliance.

本発明は、変圧器本体内の絶縁冷却媒体中に、鉄心と、前記鉄心に装着された絶縁紙が巻回された電線からなるコイルと、コイル絶縁用絶縁体及び前記絶縁冷却媒体の冷却通路を構成する絶縁体を浸漬してなる静止誘導電器において、前記絶縁紙に含まれるリグニン(フェニルプロパノイド)由来の分解生成物を分析することにより、静止誘導電器の余寿命を診断することを特徴とする。   The present invention relates to a coil comprising an iron core and an electric wire wound with insulating paper attached to the iron core in an insulating cooling medium in a transformer body, a coil insulating insulator, and a cooling passage for the insulating cooling medium. In the static induction appliance formed by immersing the insulator constituting the structure, the remaining life of the static induction appliance is diagnosed by analyzing decomposition products derived from lignin (phenylpropanoid) contained in the insulating paper. And

本発明によれば、前記絶縁紙の構成成分であるリグニン(フェニルプロパノイド)由来の分解生成物を分析することにより、高精度に絶縁紙の劣化状態、ならびに静止誘導電器の余寿命を診断する静止誘導電器の余寿命診断方法を提供することができる。   According to the present invention, by analyzing a degradation product derived from lignin (phenylpropanoid), which is a component of the insulating paper, the deterioration state of the insulating paper and the remaining life of the static induction appliance are diagnosed with high accuracy. It is possible to provide a method for diagnosing the remaining life of a static induction appliance.

セルロースの化学構造。The chemical structure of cellulose. フルフラールの化学構造。The chemical structure of furfural. リグニンの化学構造の一例。An example of the chemical structure of lignin. 油入変圧器を示す縦断面図。The longitudinal section showing an oil-filled transformer. 本発明の余寿命診断方法のフローチャート図。The flowchart figure of the remaining life diagnosis method of this invention. 本発明の劣化状態の管理方法を説明するグラフ。The graph explaining the management method of the degradation state of this invention. 本発明の実施例2の構成を示すブロック図。The block diagram which shows the structure of Example 2 of this invention.

以下に本発明の実施形態について、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の余寿命診断方法を適用する絶縁冷却媒体として鉱油を用いた、鉱油入りの静止誘導電器の一例として油入変圧器を説明する。   An oil-filled transformer will be described as an example of a stationary induction device containing mineral oil using mineral oil as an insulating cooling medium to which the remaining life diagnosis method of the present invention is applied.

図4は油入変圧器を示す縦断面図である。鉄芯1の下部に取り付けた下部支持金具2の上に絶縁支持台3aを置き、この絶縁支持台3a上にコイル間スペーサ4aと円板コイル5aを交互に積み重ねて低圧巻線6を形成している。低圧巻線6の最上部には静電シールド7aが置かれる。低圧巻線6の外側に直線スペーサ8を当て、その外側に絶縁紙を巻回して絶縁筒9を形成し、更に、その外側に同様の直線スペーサ8と絶縁筒9を配置して主絶縁10を形成している。   FIG. 4 is a longitudinal sectional view showing the oil-filled transformer. An insulating support base 3a is placed on the lower support fitting 2 attached to the lower part of the iron core 1, and inter-coil spacers 4a and disk coils 5a are alternately stacked on the insulating support base 3a to form a low voltage winding 6. ing. An electrostatic shield 7 a is placed on the top of the low-voltage winding 6. A linear spacer 8 is applied to the outside of the low-voltage winding 6, and an insulating paper 9 is wound around the outside to form an insulating cylinder 9. Further, a similar linear spacer 8 and insulating cylinder 9 are arranged outside the main cylinder 10. Is forming.

主絶縁10の最も外側に位置する直線スペーサ8の外側に電線を締め付けながら巻回して円板コイル5bを形成し、この円板コイル5bとコイル間スペーサ4bを交互に積み重ねて高圧巻線11を構成している。高圧巻線11の最上部には静電シールド7bが設けられる。   A disk coil 5b is formed by winding an electric wire on the outer side of the linear spacer 8 located on the outermost side of the main insulation 10 to form a disk coil 5b, and the disk coil 5b and the inter-coil spacer 4b are alternately stacked to form a high voltage winding 11. It is composed. An electrostatic shield 7 b is provided on the top of the high voltage winding 11.

このように形成した低圧及び高圧巻線6、11の上部には絶縁支持台3bを乗せ、更にその上に押しボルト13を装着した上部支持金具12を乗せて鉄芯1に取り付ける。そして、押しボルト13で絶縁支持台3bに荷重を加え、低圧及び高圧巻線6、11を締め付けて巻線本体を構成している。   The insulating support base 3b is placed on the upper portions of the low-voltage and high-voltage windings 6 and 11 formed in this way, and the upper support fitting 12 with the push bolts 13 mounted thereon is further mounted on the iron core 1. Then, a load is applied to the insulating support 3b with the push bolt 13, and the low-voltage and high-voltage windings 6 and 11 are tightened to constitute the winding body.

高圧巻線11の上端から高圧リード線14を引き出して高圧ブッシング15に接続するが、その際、上部支持金具12から、高圧リード線14が入るような穴をあけた支持腕木16を出し、この穴に高圧リード線14を納めてリード線14の途中を支持している。また、高圧リード線の周囲との絶縁距離が小さい部分についてはスペーサ17を介して絶縁紙を巻回してリード線バリヤ18を配置している。これらすべては鉱油21を満たした変圧器本体20内に収納して円板巻の変圧器巻線22が構成されている。   The high-voltage lead wire 14 is pulled out from the upper end of the high-voltage winding 11 and connected to the high-voltage bushing 15. At this time, a support arm 16 having a hole into which the high-voltage lead wire 14 is inserted is taken out from the upper support fitting 12. The high-voltage lead wire 14 is placed in the hole and the middle of the lead wire 14 is supported. In addition, a lead wire barrier 18 is disposed by winding an insulating paper through a spacer 17 in a portion where the insulation distance from the periphery of the high voltage lead wire is small. All of these are housed in a transformer body 20 filled with mineral oil 21 to form a disk winding transformer winding 22.

絶縁用及び絶縁油の冷却通路構成用絶縁体として用いられるコイル間スペーサ4a、4b、直線スペーサ8の材料としては従来よりクラフトパルプからなるプレスボード等のボード材が広く用いられている。   As materials for the inter-coil spacers 4a and 4b and the linear spacer 8 used as insulators for insulating and insulating oil cooling passage construction, board materials such as press boards made of kraft pulp have been widely used.

主として木材から得られるパルプから製造される絶縁紙には、主成分のセルロース以外に、ヘミセルロース、リグニン、樹脂分などが微量の不純物として含まれている。このうち、リグニンなどのフェニルプロパノイド由来の化合物は、絶縁紙中に含まれる量は少ないものの、絶縁紙の機械的強度に寄与すると考えられる。また、リグニンなどのフェニルプロパノイド由来の化合物は、セルロースと同様に経年劣化し、分解すると考えられる。
しかしながら、リグニンなどのフェニルプロパノイド由来の化合物の劣化については、絶縁紙の劣化状態を診断するうえで、考慮されていないという問題があった。また、リグニンなどのフェニルプロパノイド由来の化合物の分解生成物を指標とした、絶縁紙の経年劣化診断も行われていなかった。
Insulating paper produced mainly from pulp obtained from wood contains hemicellulose, lignin, resin, and the like as trace amounts of impurities in addition to cellulose as a main component. Of these, compounds derived from phenylpropanoids such as lignin are thought to contribute to the mechanical strength of the insulating paper, although the amount contained in the insulating paper is small. Moreover, it is thought that the compound derived from phenylpropanoids, such as lignin, deteriorates over time and decomposes like cellulose.
However, there has been a problem that deterioration of compounds derived from phenylpropanoids such as lignin is not taken into account in diagnosing the deterioration state of insulating paper. In addition, aged deterioration diagnosis of insulating paper has not been performed using the decomposition product of a compound derived from phenylpropanoid such as lignin as an index.

このため、高精度な静止誘導電器の経年劣化診断方法を提供するために鋭意検討した結果、経年劣化した変圧器から採取した鉱油中や絶縁紙中には、セルロース、ヘミセルロースの分解ではほとんど生成しない、ベンゼン環構造をもつ化合物が含まれていることを見出した。新品のプレスボードに鉱油を含浸したもの、および経年変圧器から採取したプレスボードをヘキサンで洗浄して油成分等を除去した後、トルエン/エタノール=1/1(容量比)の混合溶媒で7hソックスレー抽出し、抽出物をガスクロマトグラフィ−質量分析(GC−MS)で分析した結果、ベンゼン環構造をもつ化合物としては、例えば、フェノール、トルエン、スチレン、バニリン、コニフェリルアルデヒドといった、いわゆるフェニルプロパノイド由来と考えられる分解生成物が多く含まれることがわかった。   For this reason, as a result of diligent research to provide a highly accurate method for diagnosing aging deterioration of static induction appliances, it is hardly generated by decomposition of cellulose and hemicellulose in mineral oil or insulating paper collected from aged transformers. The present inventors have found that compounds having a benzene ring structure are included. A new press board impregnated with mineral oil and a press board taken from an aged transformer are washed with hexane to remove oil components and the like, and then mixed with a mixed solvent of toluene / ethanol = 1/1 (volume ratio) for 7 hours. As a result of Soxhlet extraction and analysis of the extract by gas chromatography-mass spectrometry (GC-MS), examples of compounds having a benzene ring structure include so-called phenylpropanoids such as phenol, toluene, styrene, vanillin, and coniferyl aldehyde. It was found that many decomposition products considered to be derived are contained.

リグニンは図3に示すように、フェニルプロパノイドが高度に脱水素重合した、複雑な樹脂状構造の物質であるため、新品の絶縁紙から溶媒に溶出することはほとんど無いと考えられる。絶縁紙が経年劣化することにより、リグニンが分解し、リグニンの基本骨格であるフェニルプロパノイド由来の化合物が検出されたものと考えられる。   As shown in FIG. 3, lignin is a substance having a complicated resinous structure in which phenylpropanoids are highly dehydrogenatively polymerized. Therefore, it is considered that lignin hardly elutes into a solvent from new insulating paper. It is considered that when the insulating paper deteriorates over time, lignin is decomposed and a compound derived from phenylpropanoid, which is the basic skeleton of lignin, is detected.

検出されたベンゼン環構造由来の化合物の総量が多いほど、絶縁紙の平均重合度は低く、その引張強度が低いことがわかった。すなわち、ベンゼン環構造由来の化合物の総量によって、絶縁紙の劣化状態を推定することができ、変圧器の経年劣化診断の指標となることがわかった。   It was found that the greater the total amount of compounds derived from the benzene ring structure detected, the lower the average degree of polymerization of the insulating paper and the lower its tensile strength. In other words, it was found that the deterioration state of the insulating paper can be estimated by the total amount of the compound derived from the benzene ring structure, which is an index for aging diagnosis of the transformer.

リグニン(フェニルプロパノイド)由来の分解生成物は、紫外領域から可視領域にかけての光を吸収するため、分光光度計を用いて鉱油の光吸収スペクトルを測定することで、鉱油中のリグニン(フェニルプロパノイド)由来の分解生成物の量を推定することが可能である。   Since the degradation product derived from lignin (phenylpropanoid) absorbs light from the ultraviolet region to the visible region, the light absorption spectrum of mineral oil is measured using a spectrophotometer, so that the lignin (phenylpropanoid) in mineral oil is measured. It is possible to estimate the amount of decomposition products derived from (noid).

図5は、本発明の変圧器の経年劣化診断方法を示すフローチャート図である。リグニン(フェニルプロパノイド)由来の分解生成物を分析することによる診断が可能である。また、従来の(CO2+CO)量、フルフラール量、アセトン量などから得られるセルロースの平均重合度を推定する手法と組み合わせて絶縁紙の劣化状態を診断することにより、さらに高精度で劣化状態を診断することも可能である。

予め絶縁紙又は絶縁体に含まれるリグニン(フェニルプロパノイド)由来の分解生成物の量と、絶縁紙の劣化状態とを関連付けておくことにより、絶縁紙又は絶縁体の分析結果に基づく絶縁紙の劣化状態が可能である。例えば、絶縁紙又は絶縁体表面の分析を定期的に行い、得られたリグニン(フェニルプロパノイド)由来の分解生成物の量の分析値が所定値以上になった場合に、静止誘導電器に用いている絶縁紙の劣化状態が寿命に達したと判定する。
絶縁紙の劣化状態の管理方法を説明するグラフを図6に示す。図6には運転時間に対して、分析によって得られる絶縁紙又は絶縁体に含まれるリグニン(フェニルプロパノイド)由来の分解生成物の量をプロットしたものと、静止誘導電器で用いている絶縁紙の劣化状態を判定するために、予め適宜設定されたリグニン(フェニルプロパノイド)由来の分解生成物の量の所定値(破線)とが示されている。絶縁紙の劣化が進んでいると判定された場合、機器の運転停止や、日常の点検項目において機器の異常の有無を確認したり、絶縁油を採取してさらに状態を詳細に分析する。また、劣化の度合いに応じて、定期点検時等機器を停止した際に、静止誘導電器巻線、または静止誘導電器を交換することで静止誘導電器の故障を未然に防ぐことが可能となる。
FIG. 5 is a flowchart showing a method for diagnosing aged deterioration of a transformer according to the present invention. Diagnosis is possible by analyzing degradation products derived from lignin (phenylpropanoid). In addition, by diagnosing the deterioration state of insulating paper in combination with the conventional method of estimating the average degree of polymerization of cellulose obtained from the amount of (CO 2 + CO), the amount of furfural, the amount of acetone, etc., the deterioration state can be determined with higher accuracy. Diagnosis is also possible.

By associating the amount of degradation products derived from lignin (phenylpropanoid) contained in the insulating paper or the insulator in advance with the deterioration state of the insulating paper, the insulating paper based on the analysis result of the insulating paper or the insulating paper A degraded state is possible. For example, when the analysis of the surface of insulating paper or insulator is periodically performed and the analysis value of the amount of decomposition products derived from lignin (phenylpropanoid) exceeds a predetermined value, it is used for a static induction appliance It is determined that the deteriorated state of the insulating paper has reached the end of its life.
FIG. 6 is a graph for explaining a management method of the deterioration state of the insulating paper. FIG. 6 plots the amount of decomposition product derived from lignin (phenylpropanoid) contained in the insulating paper or the insulating material obtained by analysis with respect to the operating time, and the insulating paper used in the static induction appliance. In order to determine the deterioration state, a predetermined value (broken line) of the amount of decomposition product derived from lignin (phenylpropanoid), which is appropriately set in advance, is shown. If it is determined that the deterioration of the insulation paper is progressing, stop the operation of the equipment, check whether there is any abnormality in the daily inspection items, collect the insulating oil, and analyze the state in detail. In addition, when the equipment is stopped at the time of periodic inspection or the like according to the degree of deterioration, it is possible to prevent a failure of the static induction electric device by replacing the static induction winding or the static induction electric device.

図7は、本発明の実施例2を示すブロック図である。図7において、30は油入静止誘導電器に用いられる絶縁体と同じ材質の絶縁体からなる分析用サンプルであり、鉱油を透過可能なカプセル31内に収納され、分析の際に油入静止誘導電器内から取り出され、油入静止誘導電器外部の分析装置で分析される。これにより、直接絶縁体を分析するのに比較して、簡便に分析を行うことができる。   FIG. 7 is a block diagram showing Embodiment 2 of the present invention. In FIG. 7, reference numeral 30 denotes an analysis sample made of an insulator made of the same material as the insulator used for the oil-filled stationary induction electric appliance, which is housed in a capsule 31 that is permeable to mineral oil, and oil-filled stationary induction for analysis. It is taken out from the electric appliance and analyzed by an analyzer outside the oil-filled stationary induction electric appliance. Thereby, compared with analyzing an insulator directly, it can analyze simply.

1…鉄芯、6…低圧巻線、8…直線スペーサ、9…絶縁筒、10…主絶縁、11…高圧巻線、17…スペーサ、19…絶縁被覆、20…変圧器本体、21…鉱油、22…変圧器巻線、30…分析用サンプル、21…カプセル。 DESCRIPTION OF SYMBOLS 1 ... Iron core, 6 ... Low voltage winding, 8 ... Linear spacer, 9 ... Insulating cylinder, 10 ... Main insulation, 11 ... High voltage winding, 17 ... Spacer, 19 ... Insulation coating, 20 ... Transformer main body, 21 ... Mineral oil 22 ... transformer winding, 30 ... analytical sample, 21 ... capsule.

Claims (7)

絶縁冷却媒体中に、鉄心と、前記鉄心に装着された絶縁紙が巻回された電線からなるコイルと、コイル絶縁用絶縁体と、前記絶縁冷却媒体の冷却通路を構成する絶縁体とを浸漬してなる静止誘導電器の余寿命診断方法において、
前記絶縁紙に含まれるリグニン由来の分解生成物を分析することを特徴とする静止誘導電器の余寿命診断方法。
In an insulating cooling medium, an iron core, a coil made of an electric wire wound with insulating paper attached to the iron core, a coil insulating insulator, and an insulator constituting a cooling passage of the insulating cooling medium are immersed. In the method for diagnosing the remaining life of static induction appliances,
A method for diagnosing the remaining life of a static induction appliance, comprising analyzing a decomposition product derived from lignin contained in the insulating paper.
請求項1において、
前記リグニン由来の分解生成物の総量が多いほど、前記静止誘導電器が劣化していると判断することを特徴とする静止誘導電器の余寿命診断方法。
In claim 1,
The remaining life diagnosis method for static induction appliances, wherein the static induction appliance is judged to be deteriorated as the total amount of decomposition products derived from lignin increases.
請求項1または2において、
前記リグニン由来の分解生成物はフェニルプロパノイド由来の化合物であることを特徴とする静止誘導電器の余寿命診断方法。
In claim 1 or 2,
The method for diagnosing the remaining life of a static induction appliance, wherein the degradation product derived from lignin is a compound derived from phenylpropanoid.

請求項1乃至3のいずれかにおいて、
分光光度計を用いて前記絶縁冷却媒体の光吸収スペクトルを測定することにより、前記絶縁冷却媒体中のリグニン由来の分解生成物を定量することを特徴とする静止誘導電器の余寿命診断方法。

In any one of Claims 1 thru | or 3,
A method for diagnosing the remaining life of a static induction appliance, wherein a decomposition product derived from lignin in the insulating cooling medium is quantified by measuring a light absorption spectrum of the insulating cooling medium using a spectrophotometer.
請求項1乃至4のいずれかにおいて、
前記絶縁冷却媒体中の(CO2+CO)量、フルフラール量またはアセトン量から得られるセルロースの平均重合度を推定することを特徴とする静止誘導電器の余寿命診断方法。
In any one of Claims 1 thru | or 4,
A method for diagnosing the remaining life of a static induction appliance, wherein the average degree of polymerization of cellulose obtained from the amount of (CO 2 + CO), furfural or acetone in the insulating cooling medium is estimated.
請求項1乃至5のいずれかに記載の余寿命診断方法を行うことを特徴とする余寿命診断装置。   6. A remaining life diagnosis apparatus, wherein the remaining life diagnosis method according to claim 1 is performed. 変圧器本体内の鉱油よりなる絶縁冷却媒体中に、鉄心と、前記鉄心に装着された絶縁紙が巻回された電線からなるコイルと、コイル絶縁用絶縁体と、前記絶縁冷却媒体の冷却通路を構成する絶縁体を浸漬してなる静止誘導電器の余寿命診断方法において、
前記静止誘導電器に前記絶縁体と同一材料からなる分析用サンプルを着脱自在に設け、前記分析用サンプルに含まれるリグニン由来の分解生成物を分析することにより絶縁紙の劣化状態を診断することを特徴とする静止誘導電器の余寿命診断方法。
In an insulating cooling medium made of mineral oil in the transformer body, an iron core, a coil made of an electric wire wound with insulating paper attached to the iron core, an insulator for coil insulation, and a cooling passage for the insulating cooling medium In the method for diagnosing the remaining life of a static induction appliance formed by immersing the insulator constituting
An analysis sample made of the same material as the insulator is detachably provided on the static induction electric appliance, and the degradation state of the insulating paper is diagnosed by analyzing a decomposition product derived from lignin contained in the analysis sample. A method for diagnosing the remaining life of static induction appliances.
JP2012209079A 2012-09-24 2012-09-24 Remaining life diagnosis method for oil-filled stationary induction devices Active JP5898597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209079A JP5898597B2 (en) 2012-09-24 2012-09-24 Remaining life diagnosis method for oil-filled stationary induction devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209079A JP5898597B2 (en) 2012-09-24 2012-09-24 Remaining life diagnosis method for oil-filled stationary induction devices

Publications (2)

Publication Number Publication Date
JP2014062858A true JP2014062858A (en) 2014-04-10
JP5898597B2 JP5898597B2 (en) 2016-04-06

Family

ID=50618220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209079A Active JP5898597B2 (en) 2012-09-24 2012-09-24 Remaining life diagnosis method for oil-filled stationary induction devices

Country Status (1)

Country Link
JP (1) JP5898597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085817A (en) * 2018-11-30 2020-06-04 株式会社かんでんエンジニアリング Deterioration estimation method of heat-proof insulation paper
KR20220011046A (en) * 2020-07-20 2022-01-27 주식회사 원프레딕트 Method for status prediction of transformer based on oil filtering and apparatus for using the method
CN114994147A (en) * 2022-08-05 2022-09-02 杭州电子科技大学 Oil-immersed transformer and monitoring sensor based on oil aging automatic monitoring

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219909A (en) * 1983-05-30 1984-12-11 Mitsubishi Electric Corp Life examination device for oil-immersed electric apparatus
US5646047A (en) * 1993-10-20 1997-07-08 Powertech Labs Inc. Method and reagent kit for determining paper degredation in transformers
JPH09210914A (en) * 1996-01-31 1997-08-15 Japan Energy Corp Sensing method for furfurals in oil and deterioration testing method for oil-filled electric appliance
JPH10300670A (en) * 1997-04-23 1998-11-13 Hitachi Ltd Method and system for diagnosing deterioration of oil-filled electric apparatus
JP2002350426A (en) * 2001-05-23 2002-12-04 Mitsubishi Electric Corp Internal abnormality diagnostic method of oil-filled electric apparatus
JP2006250872A (en) * 2005-03-14 2006-09-21 Chugoku Electric Power Co Inc:The Method for diagnosing degradation in oil transformer
JP2006308515A (en) * 2005-05-02 2006-11-09 Fuji Electric Systems Co Ltd Degradation diagnosing method for oil-filled electric apparatus
JP2011233757A (en) * 2010-04-28 2011-11-17 Hitachi Ltd Stationary induction apparatus and method for diagnosing flow charging of the stationary induction apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219909A (en) * 1983-05-30 1984-12-11 Mitsubishi Electric Corp Life examination device for oil-immersed electric apparatus
US5646047A (en) * 1993-10-20 1997-07-08 Powertech Labs Inc. Method and reagent kit for determining paper degredation in transformers
JPH09210914A (en) * 1996-01-31 1997-08-15 Japan Energy Corp Sensing method for furfurals in oil and deterioration testing method for oil-filled electric appliance
JPH10300670A (en) * 1997-04-23 1998-11-13 Hitachi Ltd Method and system for diagnosing deterioration of oil-filled electric apparatus
JP2002350426A (en) * 2001-05-23 2002-12-04 Mitsubishi Electric Corp Internal abnormality diagnostic method of oil-filled electric apparatus
JP2006250872A (en) * 2005-03-14 2006-09-21 Chugoku Electric Power Co Inc:The Method for diagnosing degradation in oil transformer
JP2006308515A (en) * 2005-05-02 2006-11-09 Fuji Electric Systems Co Ltd Degradation diagnosing method for oil-filled electric apparatus
JP2011233757A (en) * 2010-04-28 2011-11-17 Hitachi Ltd Stationary induction apparatus and method for diagnosing flow charging of the stationary induction apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015045167; 'Origin of Furanic Compounds in Thermal Degradation of Cellulosic Insulating Paper' J Appl Polym Sci Vol.69, No.13, Page.2541-2547, 1998 *
JPN6015045168; 'Identification of a chemical indicator of the rupture of 1,4-beta-glycosidic bonds of cellulose in an' Cellulose Vil.14, No.4, Page.295-309, 2007 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085817A (en) * 2018-11-30 2020-06-04 株式会社かんでんエンジニアリング Deterioration estimation method of heat-proof insulation paper
JP7144739B2 (en) 2018-11-30 2022-09-30 株式会社かんでんエンジニアリング Deterioration Estimation Method of Heat Resistant Insulating Paper
KR20220011046A (en) * 2020-07-20 2022-01-27 주식회사 원프레딕트 Method for status prediction of transformer based on oil filtering and apparatus for using the method
KR102436080B1 (en) 2020-07-20 2022-08-25 주식회사 원프레딕트 Method for status prediction of transformer based on oil filtering and apparatus for using the method
CN114994147A (en) * 2022-08-05 2022-09-02 杭州电子科技大学 Oil-immersed transformer and monitoring sensor based on oil aging automatic monitoring

Also Published As

Publication number Publication date
JP5898597B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
Krause Power transformer insulation–history, technology and design
Lelekakis et al. A field study of aging in paper-oil insulation systems
CN110297167B (en) Transformer aging state evaluation method based on multi-source information fusion
Fofana et al. Characterization of aging transformer oil–pressboard insulation using some modern diagnostic techniques
Saha et al. Transformer ageing: monitoring and estimation techniques
Rao et al. Condition monitoring of in-service oil-filled transformers: Case studies and experience
Fofana et al. Aging of transformer insulating materials under selective conditions
Azis et al. Ageing assessment of transformer paper insulation through post mortem analysis
Cilliyuz et al. Measurements and performance evaluations of natural ester and mineral oil-immersed identical transformers
CN101726514A (en) Oil-immersed type transformer solid insulation moisture content assessment method based on return voltage
JP5898597B2 (en) Remaining life diagnosis method for oil-filled stationary induction devices
Wada et al. Method to evaluate the degradation condition of transformer insulating oil-establishment of the evaluation method and application to field transformer oil
JP4888402B2 (en) Remaining life diagnosis method for oil-filled transformers
Sumereder et al. Moisture determination and degradation of solid insulation system of power transformers
Fofana et al. Early stage detection of insulating oil decaying
Pukel et al. Transformer diagnostics: Common used and new methods
Liao et al. The investigation on thermal aging characteristics of oil-paper insulation in bushing
Imani et al. How Far are Furan Compounds Reliable Indicators for Thermal Aging of Oil Impregnated Cellulose Insulation?
JP2015072183A (en) Insulation diagnosis method between winding layers of winding device
Talib et al. Transformer ageing investigation and correlation of furanic compound and degree of polymerization for power transformer life assessment
JP2009168571A (en) Method for diagnosing degradation of oil-immersed transformer
Lai et al. Correlation between UV-vis spectral response and furan measurement of transformer oil
Pradhan et al. Criteria for estimation of end of life of power and station transformers in service
Joshi et al. Dielectric diagnosis of EHV current transformer using frequency domain spectroscopy (FDS) & polarization and depolarization current (PDC) techniques
Hadjadj et al. Assessing oil paper insulation conditions by poles computed from Frequency Domain Spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5898597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150