JP2013250124A - Inner shape measuring apparatus - Google Patents

Inner shape measuring apparatus Download PDF

Info

Publication number
JP2013250124A
JP2013250124A JP2012124348A JP2012124348A JP2013250124A JP 2013250124 A JP2013250124 A JP 2013250124A JP 2012124348 A JP2012124348 A JP 2012124348A JP 2012124348 A JP2012124348 A JP 2012124348A JP 2013250124 A JP2013250124 A JP 2013250124A
Authority
JP
Japan
Prior art keywords
laser
mirror
folding
measuring device
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012124348A
Other languages
Japanese (ja)
Other versions
JP5554372B2 (en
Inventor
Toshio Kumota
俊夫 雲田
Fujio Ikeda
富士雄 池田
Yuichi Sato
雄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUMOTA-SYOKAI CO Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
KUMOTA-SYOKAI CO Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUMOTA-SYOKAI CO Ltd, Institute of National Colleges of Technologies Japan filed Critical KUMOTA-SYOKAI CO Ltd
Priority to JP2012124348A priority Critical patent/JP5554372B2/en
Publication of JP2013250124A publication Critical patent/JP2013250124A/en
Application granted granted Critical
Publication of JP5554372B2 publication Critical patent/JP5554372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inner shape measuring apparatus capable of measuring not a relative numerical value but an actual measurement value as it is, and further capable of easily and flexibly performing prior adjustment such as distance adjustment between a laser measuring instrument and a rotary mirror in accordance with a site situation.SOLUTION: The inner shape measuring apparatus for measuring an inner shape of a pipe body 1 includes: a laser measurement part including a laser measuring instrument 2 capable of measuring an inner shape by triangulation by scanning a laser beam along an inner peripheral surface of the pipe body 1; and moving means for moving the laser measuring part in a pipe body axis direction. The laser measurement part includes: a folding/bending mirror 3 arranged opposite to the laser measuring instrument 2 to fold back and bend a laser beam irradiated from the laser measuring instrument 2 in the pipe body axis direction; and a rotary mirror 4 allowed to be rotated around the pipe body axis direction to bend the laser beam folded back and bent by the folding/bending mirror 3 to the inner peripheral surface of the pipe body 1.

Description

本発明は、地下に埋設された下水道管路等の管体の内形状を測定する内形状測定装置に関するものである。   The present invention relates to an inner shape measuring apparatus for measuring the inner shape of a pipe body such as a sewer pipe buried underground.

下水道は、雨水や生活排水等の汚水を公共用水域へと排出するための施設であり、住宅環境の改善や浸水被害の防除といった水質保全を図る上で最も重要な都市基盤整備の一つである。日本では、下水道の整備が1970年代の高度経済成長期より急激に進み、2010年の時点での下水道管路の総延長は43万kmを越えている。   The sewer is a facility for discharging sewage such as rainwater and domestic wastewater to public water areas, and is one of the most important urban infrastructure developments for water quality conservation, such as improvement of the housing environment and prevention of inundation damage. is there. In Japan, the development of sewerage has progressed rapidly since the period of high economic growth in the 1970s. As of 2010, the total length of sewerage pipes has exceeded 430,000 km.

ところで、地下に埋設された管路は、時間の経過と共に土圧力や車両の輪荷重によって当初の設計段階から断面形状の変形や歪みを生じる。形状変形や歪みが進行すると、ついには破損に至り道路陥没等を引き起こすことが知られている。   By the way, the pipe buried in the basement causes deformation and distortion of the cross-sectional shape from the initial design stage due to earth pressure and vehicle wheel load with the passage of time. It is known that when shape deformation or distortion progresses, it eventually leads to damage and causes road cave-in.

従って、異常箇所を早期発見するため、定期的な管内調査業務は必要不可欠とされている。現在埋設されている下水道管路の総延長のうち、約18%が埋設から30年以上、約2%が埋設から50年以上経過しており、定期調査業務の必要性は今後更に高まることが予測されている。   Therefore, regular in-house inspection work is indispensable for early detection of abnormal parts. Of the total length of sewer pipes that are currently buried, about 18% are over 30 years since burial and about 2% are over 50 years since burial, and the need for regular survey work will increase further in the future. It is predicted.

ここで、埋設されている下水道管路のおよそ9割は、人が入ることのできない管口径200mmから700mmの小口管である。   Here, about 90% of the buried sewer pipes are small pipes having a pipe diameter of 200 mm to 700 mm that cannot be entered by humans.

そのため、従来は、CCDカメラを備えた自走式車両によって撮影された動画映像を元に、作業者の目視によって管のたるみや滞水状態を確認する方法が取られてきた。   For this reason, conventionally, a method has been adopted in which the operator checks the slack of the pipe and the water-stagnation state based on a moving image captured by a self-propelled vehicle equipped with a CCD camera.

しかし、この方法では、作業者の負担が大きく、且つ、作業者の主観や熟練度によって検査結果の信頼性にばらつきが生じることが問題とされ、定量的な計測方法が望まれていた。   However, this method has a problem that the burden on the operator is large and the reliability of the inspection result varies depending on the subjectivity and skill level of the operator, and a quantitative measurement method has been desired.

そこで、近年では、管の断面形状(内形状)を画像解析から定量的に測定する方法が提案されている(特許文献1等参照)。   Therefore, in recent years, a method for quantitatively measuring the cross-sectional shape (inner shape) of a tube from image analysis has been proposed (see Patent Document 1 and the like).

しかし、これら従来の方法では、測定値の1次データではなく、CCDカメラにより記録された画像による2次情報であるため、測定データの信頼性に欠けること、3次元の画像データであるため高精度な測定を行うにはデータ量が膨大となり作業効率が悪いことが指摘されている。   However, these conventional methods are not primary data of measurement values, but secondary information based on images recorded by a CCD camera. Therefore, the reliability of the measurement data is lacking, and the three-dimensional image data is high. It is pointed out that the amount of data is enormous and the work efficiency is poor for accurate measurement.

特開2003−75138号公報JP 2003-75138 A

本発明は、上述のような現状に鑑みなされたもので、レーザを用いた三角測距により管内形状のスキャンを行い、相対的な数値ではなく実測値をそのまま測定でき、更に、現場状況に応じてレーザ測定器と回転鏡間の距離調整等の事前調整を容易に且つ柔軟に行える極めて実用性に優れた内形状測定装置を提供するものである。   The present invention has been made in view of the current situation as described above, and scans the shape of the inside of a tube by triangulation using a laser, and can measure actual values instead of relative numerical values. The present invention provides an inner shape measuring apparatus that is extremely practical and capable of easily and flexibly performing prior adjustment such as distance adjustment between a laser measuring instrument and a rotating mirror.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

管体1の内形状を測定する内形状測定装置であって、前記管体1の内周面に沿ってレーザを走査させて三角測距により内形状を測定可能なレーザ測定器2を有するレーザ測定部と、このレーザ測定部を管体軸方向に移動させる移動手段とを備え、前記レーザ測定部には、前記レーザ測定器2と対向状態に設けられ、このレーザ測定器2から照射されるレーザを、前記管体軸方向に沿って折り返し屈曲させる折返屈曲鏡3と、この折返屈曲鏡3で折り返し屈曲されたレーザを前記管体1の内周面へ向けて屈曲させる、管体軸方向を軸として回転可能な回転鏡4とを設けたことを特徴とする内形状測定装置に係るものである。   An internal shape measuring apparatus for measuring the internal shape of a tubular body 1, which has a laser measuring device 2 capable of measuring the internal shape by triangulation by scanning a laser along the inner peripheral surface of the tubular body 1. A measuring unit; and a moving unit that moves the laser measuring unit in the tube axis direction. The laser measuring unit is provided to face the laser measuring unit 2 and is irradiated from the laser measuring unit 2 A folding and bending mirror 3 for folding the laser along the tube axis direction, and a tube axis direction for bending the laser folded and bent by the folding and bending mirror 3 toward the inner peripheral surface of the tube 1 The present invention relates to an inner shape measuring apparatus provided with a rotating mirror 4 that can be rotated about the axis.

また、前記レーザ測定部を移動手段としての車輪5を備えた車体6内に収納したことを特徴とする請求項1記載の内形状測定装置に係るものである。   2. The inner shape measuring apparatus according to claim 1, wherein the laser measuring unit is housed in a vehicle body 6 having wheels 5 as moving means.

また、前記車体6にして前記回転鏡4の管体径方向壁部は透明部材で構成したことを特徴とする請求項2記載の内形状測定装置に係るものである。   3. The inner shape measuring apparatus according to claim 2, wherein the tubular body radial wall portion of the rotating mirror 4 is made of a transparent member.

また、前記レーザ測定器2は、レーザ光源7とこのレーザ光源から出射され前記管体1の内周面で反射された前記レーザを受光する受光部8とを同一の筐体9内に一体に設けて成ることを特徴とする請求項1〜3のいずれか1項に記載の内形状測定装置に係るものである。   Further, the laser measuring instrument 2 integrates a laser light source 7 and a light receiving portion 8 that receives the laser beam emitted from the laser light source and reflected by the inner peripheral surface of the tube body 1 in the same housing 9. It is provided, It concerns on the internal shape measuring apparatus of any one of Claims 1-3 characterized by the above-mentioned.

また、前記回転鏡4を回転駆動させる駆動部10を前記レーザ測定器2の上下方向位置に設けたことを特徴とする請求項4記載の内形状測定装置に係るものである。   5. The inner shape measuring apparatus according to claim 4, wherein a driving unit for rotating the rotating mirror is provided at a vertical position of the laser measuring device.

また、前記折返屈折鏡3は、対向する前記レーザ測定器2から離間するに従って間隔が互いに狭くなるように一対の反射鏡11・12を所定の傾き角度でハ字状に設けて構成したことを特徴とする請求項2〜5のいずれか1項に記載の内形状測定装置に係るものである。   In addition, the folding refracting mirror 3 is configured by providing a pair of reflecting mirrors 11 and 12 in a letter C shape at a predetermined inclination angle so that the distance between the reflecting refracting mirrors 3 decreases as the distance from the facing laser measuring device 2 increases. It concerns on the internal shape measuring apparatus of any one of Claims 2-5 characterized by the above-mentioned.

また、前記折返屈折鏡3の前記一対の反射鏡11・12を、この一対の反射鏡11・12を夫々所定の傾き角度でハ字状をなす状態で位置決め保持する位置決め保持部を有する位置決め保持体13に設け、この位置決め保持体13には、楔状の切欠部14を設けて前記所定の傾き角度の一対のテーパ部15を形成し、このテーパ部15に前記反射鏡を取付ける取付部16を設けて前記位置決め保持部を構成し、前記位置決め保持体13を、一方側の前記反射鏡11が前記レーザ測定器2と対向し、他方側の前記反射鏡12が前記回転鏡4と対向するように前記車体6内に取り付けたことを特徴とする請求項6記載の内形状測定装置に係るものである。   Further, the pair of reflecting mirrors 11 and 12 of the folding refracting mirror 3 are positioned and held with a positioning holding part for positioning and holding the pair of reflecting mirrors 11 and 12 in a state of forming a letter at a predetermined inclination angle. The positioning holding body 13 is provided with a wedge-shaped cutout portion 14 to form a pair of taper portions 15 having the predetermined inclination angle, and a mounting portion 16 for attaching the reflecting mirror to the taper portion 15 is provided. The positioning holding unit 13 is provided so that the reflecting mirror 11 on one side faces the laser measuring instrument 2 and the reflecting mirror 12 on the other side faces the rotating mirror 4. The internal shape measuring device according to claim 6, wherein the internal shape measuring device is attached to the inside of the vehicle body 6.

また、前記レーザ測定器2及び前記折返屈曲鏡3を2対設け、一の前記レーザ測定器2からのレーザは一の前記折返屈曲鏡3を介して前記回転鏡4の表面側で屈曲されて前記管体1の内周面に照射されるように構成し、他の前記レーザ測定器2からのレーザは他の前記折返屈曲鏡3を介して前記回転鏡4の裏面側で屈曲されて前記管体1の内周面に照射させるように構成し、前記管体1の内周面の対向する2点を同時に測距し得るように前記レーザ測定部を構成したことを特徴とする請求項1〜7のいずれか1項に記載の内形状測定装置に係るものである。   Further, two pairs of the laser measuring device 2 and the folding mirror 3 are provided, and the laser from one laser measuring device 2 is bent on the surface side of the rotating mirror 4 through the one folding mirror 3. It is configured to irradiate the inner peripheral surface of the tube 1, and the laser from the other laser measuring device 2 is bent on the back surface side of the rotating mirror 4 via the other folding mirror 3. The laser measuring unit is configured to irradiate the inner peripheral surface of the tubular body 1 and to measure the distance between two opposing points on the inner peripheral surface of the tubular body 1 at the same time. It concerns on the internal shape measuring apparatus of any one of 1-7.

本発明は上述のように構成したから、レーザを用いた三角測距により管内形状のスキャンを行い、相対的な数値ではなく実測値をそのまま測定でき、更に、現場状況に応じてレーザ測定器と回転鏡間の距離調整等の事前調整を容易に且つ柔軟に行える極めて実用性に優れた内形状測定装置となる。   Since the present invention is configured as described above, the shape of the tube is scanned by triangulation using a laser, and actual values can be measured as they are instead of relative numerical values. This is an extremely useful internal shape measuring apparatus that can easily and flexibly make prior adjustments such as distance adjustment between rotating mirrors.

本実施例の要部の構成概略説明斜視図である。It is a composition outline explanation perspective view of the important section of this example. 本実施例の回転鏡の拡大概略説明側面図である。It is an expansion outline explanatory side view of the rotary mirror of a present Example. 本実施例の回転鏡の拡大概略説明正面図である。It is an expansion schematic explanatory front view of the rotary mirror of a present Example. 本実施例の概略説明斜視図である。It is a schematic explanatory perspective view of a present Example. 本実施例の一部を切り欠いた概略説明側面図である。It is a schematic explanatory side view in which a part of the present embodiment is cut out. 本実施例の別例の構成概略説明図である。It is a structure schematic explanatory drawing of another example of a present Example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

回転鏡4を管体軸方向を軸として回転させてレーザを管体1の内周面に沿って360°走査することで、三角測距の原理を用いてレーザを反射した管体内周面の全周各点におけるレーザ測定器2からの距離を測定すると共に、移動手段によりレーザ測定部を管体軸方向に移動させ、例えば、測定した各点の三次元座標を求めてこれを元に三次元モデルを生成することで、下水道管等の管体の内形状(断面形状)を測定する。   The rotating mirror 4 is rotated around the tube axis direction and the laser is scanned 360 ° along the inner peripheral surface of the tube 1, so that the laser beam is reflected on the inner peripheral surface of the tube reflected by the principle of triangulation. The distance from the laser measuring instrument 2 at each point on the entire circumference is measured, and the laser measuring unit is moved in the tube axis direction by the moving means. For example, the three-dimensional coordinates of each measured point are obtained and the third order based on this. By generating the original model, the internal shape (cross-sectional shape) of a pipe body such as a sewer pipe is measured.

ここで、本発明は、レーザ測定器2からのレーザを、管体軸方向に沿って折り返し屈曲させる折返屈曲鏡3を介して回転鏡4に照射するように構成しているため、この折返屈曲鏡3の位置調整によって、レーザ測定器2から回転鏡4までの距離を(レーザ測定器2や回転鏡4を動かさずとも)容易に調整することが可能となり、それだけ現場環境に応じての調整設定が容易となる。また、折返屈曲鏡3を用いることで、レーザ測定器2と回転鏡4とを一直線上に配置する必要がなく、例えば上下方向位置に重ねるように配置すること等が可能となり、よりコンパクトでシステムの構成自由度が高いものとなる。   Here, the present invention is configured to irradiate the rotary mirror 4 with the laser from the laser measuring instrument 2 via the folding mirror 3 that is folded along the tube axis direction. By adjusting the position of the mirror 3, it is possible to easily adjust the distance from the laser measuring instrument 2 to the rotating mirror 4 (without moving the laser measuring instrument 2 and the rotating mirror 4). Setting is easy. Further, by using the folding and bending mirror 3, it is not necessary to arrange the laser measuring device 2 and the rotating mirror 4 on a straight line. The degree of configuration freedom is high.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、管体1の内形状を測定する内形状測定装置であって、前記管体1の内周面に沿ってレーザを走査させて三角測距により内形状を測定可能なレーザ測定器2を有するレーザ測定部と、このレーザ測定部を管体軸方向に移動させる移動手段とを備え、前記レーザ測定部には、前記レーザ測定器2と対向状態に設けられ、このレーザ測定器2から照射されるレーザを、前記管体軸方向に沿って折り返し屈曲させる折返屈曲鏡3と、この折返屈曲鏡3で折り返し屈曲されたレーザを前記管体1の内周面へ向けて屈曲させる、管体軸方向を軸として回転可能な回転鏡4とを設けたものである。   The present embodiment is an internal shape measuring apparatus for measuring the internal shape of the tubular body 1 and is capable of measuring the internal shape by triangulation by scanning a laser along the internal peripheral surface of the tubular body 1. And a moving means for moving the laser measuring unit in the tube axis direction. The laser measuring unit is provided in a state of being opposed to the laser measuring unit 2. The folding mirror 3 is configured to bend and bend the laser irradiated from 2 along the tube axis direction, and the laser folded and bent by the folding and bending mirror 3 is bent toward the inner peripheral surface of the tube 1. A rotating mirror 4 is provided that is rotatable about the axial direction of the tube body.

本実施例は、公知の三角測距の原理を用いて下水道管やトンネル等の管体内周面の各点を測距し(各点のレーザ測定器2からの距離を測定し)、測定した三次元データ(三次元座標)を用いて管体内形状を(コンピュータ等の演算手段により三次元モデルを生成するなどして)測定するものである。   In this example, each point on the peripheral surface of the pipe body such as a sewer pipe or a tunnel was measured using the known principle of triangulation (measured by measuring the distance from the laser measuring device 2 at each point). The shape of the tubular body is measured using three-dimensional data (three-dimensional coordinates) (for example, by generating a three-dimensional model by a computing means such as a computer).

各部を具体的に説明する。   Each part will be specifically described.

レーザ測定器2は、図1に図示したように、レーザ光源7とこのレーザ光源から出射され前記管体1の内周面で反射された前記レーザを受光する受光部8とを同一の筐体9内に一体に設けて成るものを採用している。   As shown in FIG. 1, the laser measuring instrument 2 includes a laser light source 7 and a light receiving unit 8 that receives the laser beam emitted from the laser light source and reflected by the inner peripheral surface of the tubular body 1. The one provided integrally in 9 is adopted.

具体的には、レーザ光源7のレーザ照射部と受光部8とが、折返屈曲鏡3と対向する面にして管体軸方向と直交する面に所定間隔をおいて並設されるように構成している。本実施例においては、レーザ光源7は、管体1の軸方向と平行にレーザを出射するように構成している。   Specifically, the laser irradiation unit and the light receiving unit 8 of the laser light source 7 are configured so as to be arranged in parallel at a predetermined interval on a surface that faces the folding mirror 3 and is orthogonal to the tube axis direction. doing. In this embodiment, the laser light source 7 is configured to emit a laser parallel to the axial direction of the tube 1.

折返屈折鏡3は、対向する前記レーザ測定器2から離間するに従って間隔が互いに狭くなるように上下一対の反射鏡(全反射ミラー)11・12を所定の傾き角度でハ字状に設けて構成している。具体的には、前記レーザ光源7からのレーザを180°屈折させるように前記所定の傾き角度(本実施例においては管体軸方向に対して±45°傾斜)を設定している。   The folding refracting mirror 3 is configured by providing a pair of upper and lower reflecting mirrors (total reflection mirrors) 11 and 12 in a letter C shape with a predetermined inclination angle so that the distance between the reflecting refracting mirrors 3 becomes narrower as the distance from the opposing laser measuring device 2 increases. doing. Specifically, the predetermined inclination angle (in this embodiment, an inclination of ± 45 ° with respect to the tube axis direction) is set so as to refract the laser from the laser light source 7 by 180 °.

また、本実施例においては、前記折返屈折鏡3の前記一対の反射鏡11・12を、この一対の反射鏡11・12を夫々前記所定の傾き角度でハ字状をなす状態で位置決め保持する位置決め保持部を有する位置決め保持体13に設けている。   Further, in this embodiment, the pair of reflecting mirrors 11 and 12 of the folding refracting mirror 3 are positioned and held in a state where the pair of reflecting mirrors 11 and 12 are in the shape of a letter at the predetermined inclination angle. The positioning holding body 13 having the positioning holding portion is provided.

この位置決め保持体13には、楔状の切欠部14を設けて前記所定の傾き角度の一対のテーパ部15を形成し、このテーパ部15に前記反射鏡を取付ける凹状の取付部16を設けて前記位置決め保持部を構成し、前記位置決め保持体13を、上方側の前記反射鏡11が前記レーザ測定器2と対向し、下方側の前記反射鏡12が前記回転鏡4と対向するように設けている。   The positioning holding body 13 is provided with a wedge-shaped cutout portion 14 to form a pair of tapered portions 15 having the predetermined inclination angle, and the tapered mounting portion 16 is provided with a concave mounting portion 16 for mounting the reflecting mirror. The positioning holding unit 13 is configured so that the reflecting mirror 11 on the upper side faces the laser measuring instrument 2 and the reflecting mirror 12 on the lower side faces the rotating mirror 4. Yes.

具体的には、本実施例においては、位置決め保持体13は左右一対の板状体として、夫々に取付部16を形成し、各板状体に架設状態に反射鏡11・12をネジ等の取付け部材で取り付けた構成としている。なお、位置決め保持体13は一対の板状体に限らず、1つのブロック状体から成るものを採用しても良い。   Specifically, in the present embodiment, the positioning holding body 13 is a pair of left and right plate-like bodies, each formed with an attachment portion 16, and the reflecting mirrors 11 and 12 are screwed to each plate-like body. It is set as the structure attached with the attachment member. The positioning holding body 13 is not limited to a pair of plate-like bodies, and may be a single block-like body.

従って、折返屈折鏡3は、ユニット化されてコンパクトとなり、しかも、位置調整を極めて容易に行えるなど、極めて扱い易いものとなる。また、レーザ測定器2からのレーザを180°折り返すことで、前記回転鏡4を回転駆動させる駆動部10を前記レーザ測定器2の上下方向位置に設けることが可能となり、装置全体のコンパクト化も図ることが可能となる。   Therefore, the folding refracting mirror 3 is unitized to be compact, and the position can be adjusted very easily, making it extremely easy to handle. Further, by turning back the laser from the laser measuring instrument 2 by 180 °, it becomes possible to provide a drive unit 10 for rotating the rotary mirror 4 at the vertical position of the laser measuring instrument 2, and the overall apparatus can be made compact. It becomes possible to plan.

回転鏡4は、図2,3に図示したように、反射鏡(全反射ミラー)20と、この反射鏡20を所定の傾き角度で保持する回転体21と、この回転体21を回転させる軸22及びモータ23(駆動部10)とで構成している。軸22の回転軸を回転体21及び反射鏡20の重心位置に合わせることで、360°高速回転させても振動しない構成とすることができる。   As shown in FIGS. 2 and 3, the rotating mirror 4 includes a reflecting mirror (total reflection mirror) 20, a rotating body 21 that holds the reflecting mirror 20 at a predetermined inclination angle, and an axis for rotating the rotating body 21. 22 and a motor 23 (drive unit 10). By aligning the rotational axis of the shaft 22 with the position of the center of gravity of the rotating body 21 and the reflecting mirror 20, it can be configured not to vibrate even when rotated at 360 °.

具体的には、回転体21には、反射鏡20をレーザの進行方向に対して90°屈折させて管体1の内周面へと照射する傾き角度(本実施例においては管体軸方向に対して−45°傾斜)で反射鏡20の端部を挟持固定する固定部24を設けている。また、回転体21にしてレーザが通過する面(折返屈折鏡3の反射鏡12との対向面及び管体1の内周面との対向面)には、レーザの通過を許容する開口部を夫々設けている。   Specifically, the rotator 21 is tilted at 90 ° with respect to the laser traveling direction to irradiate the reflecting mirror 20 to the inner peripheral surface of the tube 1 (in this embodiment, the tube axis direction). The fixing portion 24 is provided to clamp and fix the end portion of the reflecting mirror 20 at an angle of −45 ° with respect to the angle. Further, an opening for allowing the laser to pass is provided on the surface of the rotating body 21 through which the laser passes (the surface facing the reflecting mirror 12 of the folding refracting mirror 3 and the surface facing the inner peripheral surface of the tube 1). Each is provided.

従って、回転鏡4に入射したレーザは90°屈折して回転鏡4の回転軸に対して円周方向に進行し、管体1の内周面で反射したレーザ光は再び回転鏡4によって90°屈折してレーザ測定器2の受光部8に入射する。このレーザの往復が回転鏡4の回転に併せて繰り返されることで、連続して360°全周の測定を行うことが可能となる。   Accordingly, the laser incident on the rotary mirror 4 is refracted by 90 ° and travels in the circumferential direction with respect to the rotation axis of the rotary mirror 4, and the laser light reflected by the inner peripheral surface of the tube 1 is again 90% by the rotary mirror 4. ° Refracted and incident on the light receiving unit 8 of the laser measuring device 2 This reciprocation of the laser is repeated along with the rotation of the rotary mirror 4, so that it is possible to continuously measure the entire 360 ° circumference.

また、管体1の内周面の円周方向測定間隔及び軸方向間隔は適宜設定することができる。また、所定の軸方向位置で停止した状態で測定することを所定間隔で繰り返しても良いし、移動手段により移動させながら測定(螺旋状に走査)しても良い。   Moreover, the circumferential direction measurement interval and the axial direction interval of the inner peripheral surface of the tubular body 1 can be set as appropriate. Further, the measurement may be repeated at predetermined intervals while stopped at a predetermined axial position, or may be measured (scanned in a spiral manner) while being moved by the moving means.

本実施例においては、上記構成のレーザ測定部を移動手段としての車輪5を備えた車体6内に収納している。   In the present embodiment, the laser measuring unit having the above configuration is housed in a vehicle body 6 having wheels 5 as moving means.

車体6は、図4,5に図示したように、両端に牽引用車両等と連結されるジョイント部25を有する下部フレーム体28と、レーザ測定器2及び回転鏡4を回転駆動させる駆動部10を収納する第一ケース体17と、位置決め保持体13を収納する第二ケース体18と、この第一ケース体17と第二ケース体18とを連通状態に連結し回転鏡4が配置される連結部19とで構成している。なお、第一ケース体17内には、駆動部10やレーザ測定器2を制御する制御装置を収納している。   As shown in FIGS. 4 and 5, the vehicle body 6 includes a lower frame body 28 having joint portions 25 connected to a towing vehicle or the like at both ends, and a driving unit 10 that rotationally drives the laser measuring instrument 2 and the rotating mirror 4. The first case body 17 that houses the positioning body, the second case body 18 that houses the positioning holding body 13, the first case body 17 and the second case body 18 are connected in a communicating state, and the rotary mirror 4 is disposed. It is comprised with the connection part 19. FIG. In the first case body 17, a control device for controlling the drive unit 10 and the laser measuring device 2 is housed.

また、各ケース体17・18は、各ケース体17・18と下部フレーム体28とで、レーザ測定器2及び回転鏡4と位置決め保持体13とを夫々隠蔽し得る構成である。また、各ケース体17・18の天面部は開閉可能な蓋体としており、これら蓋体の上面には、内方にレーザ測定器2若しくは位置決め保持体13を逃げる逃げ部を形成する***部29を設けている。第一ケース体17の蓋体の***部29にしてレーザが通過する部位(折返屈曲鏡3との対向面26)は、アクリル等の透明部材で構成している。また、第二ケース体18の蓋体の***部29にしてレーザが通過する部位(折返屈折鏡3の反射鏡11との対向面27)も同様にアクリル等の透明部材で構成している。   Further, the case bodies 17 and 18 are configured such that the case measuring bodies 17 and 18 and the lower frame body 28 can conceal the laser measuring instrument 2, the rotary mirror 4, and the positioning holder 13 respectively. The top surface of each case body 17 and 18 is a lid that can be opened and closed. On the upper surface of these lids, a bulge 29 that forms an escape portion for escaping the laser measuring device 2 or positioning holder 13 inwardly. Is provided. The part through which the laser passes through the raised portion 29 of the lid of the first case body 17 (opposing surface 26 facing the folding mirror 3) is made of a transparent member such as acrylic. Similarly, the portion through which the laser passes through the raised portion 29 of the lid of the second case body 18 (the surface 27 facing the reflecting mirror 11 of the folding refracting mirror 3) is also made of a transparent member such as acrylic.

また、前記車体6にして前記回転鏡4の管体径方向壁部、即ち連結部19の周壁部は全てアクリル等の透明部材で構成している。従って、レーザを360°全周に遮られることなく照射することが可能となる。なお、車体6の下部フレーム体28にして回転鏡4の管体径方向に存する部分も同様の透明部材としても良いが、本実施例においては、当該部分は他部位より幅狭として可及的に測定を阻害しないように構成している。   Further, the tubular body radial wall portion of the rotating mirror 4 in the vehicle body 6, that is, the peripheral wall portion of the connecting portion 19 are all made of a transparent member such as acrylic. Therefore, it is possible to irradiate the laser without being blocked by the entire 360 ° circumference. In addition, although the part which exists in the pipe body radial direction of the rotary mirror 4 as the lower frame body 28 of the vehicle body 6 may be a similar transparent member, in this embodiment, the part is made narrower than other parts as much as possible. It is configured not to disturb the measurement.

従って、車体6に各構成要素を隠蔽状態で一体に設けることが可能となり、コンパクトで塵埃や水分の影響を受けにくく、取扱い容易な構成とすることができる。   Therefore, it is possible to integrally provide the constituent elements in the vehicle body 6 in a concealed state, and it is possible to achieve a compact and easy to handle configuration that is not easily affected by dust and moisture.

また、例えば、車体6(第二ケース体18)に、前記位置決め保持体13をレーザ測定器2及び回転鏡4に対して相対的にガイド移動させるガイドレール等の位置調整手段を設けた構成としても良い。この場合、一層レーザ測定器と回転鏡間の距離調整が容易となる。   Further, for example, the vehicle body 6 (second case body 18) is provided with position adjusting means such as a guide rail for guiding the positioning holder 13 relative to the laser measuring instrument 2 and the rotary mirror 4. Also good. In this case, it becomes easier to adjust the distance between the laser measuring instrument and the rotary mirror.

なお、例えば図6に図示した別例のように、前記レーザ測定器2及び前記折返屈曲鏡3を2対設け、一の前記レーザ測定器2からのレーザは一の前記折返屈曲鏡3を介して前記回転鏡4(の反射鏡20)の表面側で屈曲されて前記管体1の内周面に照射されるように構成し、他の前記レーザ測定器2からのレーザは他の前記折返屈曲鏡3を介して前記回転鏡4(の反射鏡20)の裏面側で屈曲されて前記管体1の内周面に照射させるように構成し、前記管体1の内周面の対向する2点を同時に測距し得るように前記レーザ測定部を構成しても良い。この場合、より効率的に管体の内形状の測定を行えるものとなる。   For example, as in another example shown in FIG. 6, two pairs of the laser measuring device 2 and the folding mirror 3 are provided, and the laser from one laser measuring device 2 passes through the one folding mirror 3. The rotating mirror 4 (the reflecting mirror 20) is bent on the surface side and irradiated to the inner peripheral surface of the tube body 1, and the laser from the other laser measuring device 2 is reflected on the other folding surface. It is configured to be bent on the back surface side of the rotating mirror 4 (the reflecting mirror 20) through the bending mirror 3 so as to irradiate the inner peripheral surface of the tubular body 1, and the inner peripheral surface of the tubular body 1 is opposed. The laser measurement unit may be configured so that two points can be measured simultaneously. In this case, the inner shape of the tube can be measured more efficiently.

本実施例は上述のように構成したから、回転鏡4を管体軸方向を軸として回転させてレーザを管体1の内周面に沿って360°走査することで、三角測距の原理を用いてレーザを反射した管体内周面の全周各点におけるレーザ測定器2からの距離を測定すると共に、移動手段によりレーザ測定部を管体軸方向に移動させ、例えば、測定した各点の三次元座標を求めてこれを元に三次元モデルを生成することで、下水道管等の管体の内形状(断面形状)を測定する際、以下の作用効果を奏する。   Since the present embodiment is configured as described above, the principle of the triangulation is obtained by rotating the rotary mirror 4 about the tube axis direction and scanning the laser along the inner peripheral surface of the tube 1 by 360 °. Is used to measure the distance from the laser measuring instrument 2 at each point on the entire circumference of the tube peripheral surface where the laser is reflected, and the laser measuring unit is moved in the tube axis direction by the moving means. When the internal shape (cross-sectional shape) of a pipe body such as a sewer pipe is measured, the following effects are obtained.

即ち、レーザ測定器2からのレーザを、管体軸方向に沿って折り返し屈曲させる折返屈曲鏡3を介して回転鏡4に照射するように構成しているため、この折返屈曲鏡3の位置調整によって、レーザ測定器2から回転鏡4までの距離を(レーザ測定器2や回転鏡4を動かさずとも)容易に調整することが可能となり、それだけ現場環境に応じての調整設定が容易となる。また、折返屈曲鏡3を用いることで、レーザ測定器2と回転鏡4とを一直線上に配置する必要がなく、例えば上下方向位置に重ねるように配置すること等が可能となり、よりコンパクトでシステムの構成自由度が高いものとなる。   That is, since the rotating mirror 4 is irradiated with the laser from the laser measuring instrument 2 through the folding mirror 3 that is folded along the tube axis direction, the position of the folding mirror 3 is adjusted. By this, it becomes possible to easily adjust the distance from the laser measuring instrument 2 to the rotating mirror 4 (without moving the laser measuring instrument 2 and the rotating mirror 4), and the adjustment setting according to the field environment becomes much easier. . Further, by using the folding and bending mirror 3, it is not necessary to arrange the laser measuring device 2 and the rotating mirror 4 on a straight line. The degree of configuration freedom is high.

よって、本実施例は、レーザを用いた三角測距により管内形状のスキャンを行い、相対的な数値ではなく実測値をそのまま測定でき、更に、現場状況に応じてレーザ測定器と回転鏡間の距離調整等の事前調整を容易に且つ柔軟に行える極めて実用性に優れたものとなる。   Therefore, in this embodiment, the internal shape of the tube is scanned by triangulation using a laser, and the actual measurement value can be measured as it is rather than a relative numerical value. Further, according to the field situation, between the laser measuring instrument and the rotating mirror can be measured. This makes it possible to easily and flexibly make prior adjustments such as distance adjustment, and is extremely practical.

1 管体
2 レーザ測定器
3 折返屈折鏡
4 回転鏡
5 車輪
6 車体
7 レーザ光源
8 受光部
9 筐体
10 駆動部
11・12 反射鏡
13 位置決め保持体
14 切欠部
15 テーパ部
16 取付部
DESCRIPTION OF SYMBOLS 1 Tube 2 Laser measuring device 3 Folding refracting mirror 4 Rotating mirror 5 Wheel 6 Car body 7 Laser light source 8 Light-receiving part 9 Case
10 Drive unit
11 ・ 12 Reflector
13 Positioning holder
14 Notch
15 Taper
16 Mounting part

Claims (8)

管体の内形状を測定する内形状測定装置であって、前記管体の内周面に沿ってレーザを走査させて三角測距により内形状を測定可能なレーザ測定器を有するレーザ測定部と、このレーザ測定部を管体軸方向に移動させる移動手段とを備え、前記レーザ測定部には、前記レーザ測定器と対向状態に設けられ、このレーザ測定器から照射されるレーザを、前記管体軸方向に沿って折り返し屈曲させる折返屈曲鏡と、この折返屈曲鏡で折り返し屈曲されたレーザを前記管体の内周面へ向けて屈曲させる、管体軸方向を軸として回転可能な回転鏡とを設けたことを特徴とする内形状測定装置。   An internal shape measuring device for measuring an internal shape of a tubular body, comprising: a laser measuring unit having a laser measuring instrument capable of measuring the internal shape by triangulation by scanning a laser along the inner peripheral surface of the tubular body; And a moving means for moving the laser measurement unit in the tube axis direction. The laser measurement unit is provided in a state of being opposed to the laser measurement unit, and the laser irradiated from the laser measurement unit is transmitted to the tube. A folding mirror that bends and bends along the body axis direction, and a rotating mirror that can be rotated about the tube axis direction to bend the laser folded and bent by the folding and bending mirror toward the inner peripheral surface of the tube body And an inner shape measuring device. 前記レーザ測定部を移動手段としての車輪を備えた車体内に収納したことを特徴とする請求項1記載の内形状測定装置。   2. The inner shape measuring apparatus according to claim 1, wherein the laser measuring unit is housed in a vehicle body having wheels as moving means. 前記車体にして前記回転鏡の管体径方向壁部は透明部材で構成したことを特徴とする請求項2記載の内形状測定装置。   3. The inner shape measuring apparatus according to claim 2, wherein the tubular body radial wall portion of the rotary mirror is made of a transparent member. 前記レーザ測定器は、レーザ光源とこのレーザ光源から出射され前記管体の内周面で反射された前記レーザを受光する受光部とを同一の筐体内に一体に設けて成ることを特徴とする請求項1〜3のいずれか1項に記載の内形状測定装置。   The laser measuring device is characterized in that a laser light source and a light receiving unit that receives the laser beam emitted from the laser light source and reflected by the inner peripheral surface of the tubular body are integrally provided in the same casing. The inner shape measuring apparatus according to claim 1. 前記回転鏡を回転駆動させる駆動部を前記レーザ測定器の上下方向位置に設けたことを特徴とする請求項4記載の内形状測定装置。   The inner shape measuring apparatus according to claim 4, wherein a driving unit that rotationally drives the rotating mirror is provided at a vertical position of the laser measuring device. 前記折返屈折鏡は、対向する前記レーザ測定器から離間するに従って間隔が互いに狭くなるように一対の反射鏡を所定の傾き角度でハ字状に設けて構成したことを特徴とする請求項2〜5のいずれか1項に記載の内形状測定装置。   The said folding refracting mirror is configured by providing a pair of reflecting mirrors in a C shape with a predetermined inclination angle so that the interval becomes narrower as the distance from the facing laser measuring device increases. The internal shape measuring apparatus according to any one of 5. 前記折返屈折鏡の前記一対の反射鏡を、この一対の反射鏡を夫々所定の傾き角度でハ字状をなす状態で位置決め保持する位置決め保持部を有する位置決め保持体に設け、この位置決め保持体には、楔状の切欠部を設けて前記所定の傾き角度の一対のテーパ部を形成し、このテーパ部に前記反射鏡を取付ける取付部を設けて前記位置決め保持部を構成し、前記位置決め保持体を、一方側の前記反射鏡が前記レーザ測定器と対向し、他方側の前記反射鏡が前記回転鏡と対向するように前記車体内に取り付けたことを特徴とする請求項6記載の内形状測定装置。   The pair of reflecting mirrors of the folding refracting mirror is provided on a positioning holder having a positioning holder that positions and holds the pair of reflecting mirrors in a state of forming a C shape at a predetermined inclination angle. Is provided with a wedge-shaped cutout portion to form a pair of tapered portions of the predetermined inclination angle, and an attachment portion for mounting the reflecting mirror is provided on the tapered portion to constitute the positioning holding portion, and the positioning holding body is The inner shape measurement according to claim 6, wherein the reflector is mounted in the vehicle body so that the reflecting mirror on one side faces the laser measuring device and the reflecting mirror on the other side faces the rotating mirror. apparatus. 前記レーザ測定器及び前記折返屈曲鏡を2対設け、一の前記レーザ測定器からのレーザは一の前記折返屈曲鏡を介して前記回転鏡の表面側で屈曲されて前記管体の内周面に照射されるように構成し、他の前記レーザ測定器からのレーザは他の前記折返屈曲鏡を介して前記回転鏡の裏面側で屈曲されて前記管体の内周面に照射させるように構成し、前記管体の内周面の対向する2点を同時に測距し得るように前記レーザ測定部を構成したことを特徴とする請求項1〜7のいずれか1項に記載の内形状測定装置。   Two pairs of the laser measuring device and the folding bending mirror are provided, and the laser from one laser measuring device is bent on the surface side of the rotating mirror via the one folding bending mirror, and the inner peripheral surface of the tubular body The laser from the other laser measuring device is bent on the back side of the rotary mirror via the other folding mirror and irradiated to the inner peripheral surface of the tubular body. The inner shape according to any one of claims 1 to 7, wherein the laser measuring unit is configured so that the two opposing points on the inner peripheral surface of the tubular body can be measured simultaneously. measuring device.
JP2012124348A 2012-05-31 2012-05-31 Internal shape measuring device Expired - Fee Related JP5554372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012124348A JP5554372B2 (en) 2012-05-31 2012-05-31 Internal shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124348A JP5554372B2 (en) 2012-05-31 2012-05-31 Internal shape measuring device

Publications (2)

Publication Number Publication Date
JP2013250124A true JP2013250124A (en) 2013-12-12
JP5554372B2 JP5554372B2 (en) 2014-07-23

Family

ID=49848960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124348A Expired - Fee Related JP5554372B2 (en) 2012-05-31 2012-05-31 Internal shape measuring device

Country Status (1)

Country Link
JP (1) JP5554372B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150613U (en) * 1986-03-18 1987-09-24
JPS6358136A (en) * 1986-08-28 1988-03-12 Mitsubishi Electric Corp Pipe inner surface shape measuring apparatus
JPS63129814U (en) * 1987-02-17 1988-08-24
JPH02193007A (en) * 1988-05-17 1990-07-30 Hispano Suiza Apparatus for optical inspection of internal contour of tube or bore
JPH0599631A (en) * 1991-10-09 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical measuring apparatus for hole configuration
JPH07324915A (en) * 1994-04-04 1995-12-12 Hitachi Metals Ltd Method and apparatus for measuring sectional shape
JPH07335962A (en) * 1994-06-13 1995-12-22 Nec Corp Light beam scanner
JP2001330418A (en) * 2000-05-24 2001-11-30 Nikon Corp Planar shape measuring apparatus
JP2006064690A (en) * 2004-07-26 2006-03-09 Univ Of Miyazaki In-tubing profile measuring device
JP2012013731A (en) * 2010-06-29 2012-01-19 Ricoh Co Ltd Optical scanner and image forming apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150613U (en) * 1986-03-18 1987-09-24
JPS6358136A (en) * 1986-08-28 1988-03-12 Mitsubishi Electric Corp Pipe inner surface shape measuring apparatus
JPS63129814U (en) * 1987-02-17 1988-08-24
JPH02193007A (en) * 1988-05-17 1990-07-30 Hispano Suiza Apparatus for optical inspection of internal contour of tube or bore
JPH0599631A (en) * 1991-10-09 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical measuring apparatus for hole configuration
JPH07324915A (en) * 1994-04-04 1995-12-12 Hitachi Metals Ltd Method and apparatus for measuring sectional shape
JPH07335962A (en) * 1994-06-13 1995-12-22 Nec Corp Light beam scanner
JP2001330418A (en) * 2000-05-24 2001-11-30 Nikon Corp Planar shape measuring apparatus
JP2006064690A (en) * 2004-07-26 2006-03-09 Univ Of Miyazaki In-tubing profile measuring device
JP2012013731A (en) * 2010-06-29 2012-01-19 Ricoh Co Ltd Optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JP5554372B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
CN103358018B (en) Laser beam axis calibration steps and the laser processing device that utilizes the method
JP5166087B2 (en) Surveying device and surveying system
US20170292916A1 (en) Surface defects evaluation system and method for spherical optical components
KR101311357B1 (en) Internal Exploration Equipment of Pipeline
JP2009236601A (en) Surveying device and surveying system
CN104833486B (en) Multiple reflections formula laser differential confocal Long focal length measurement method and apparatus
JP2009098046A (en) Three-dimensional shape measuring instrument
CN102721366A (en) Method and device for tracking and measuring welding seam
JP2017150902A (en) On-vehicle laser radar device
KR101080976B1 (en) self-propelled car for detecting pipe route
JP5554372B2 (en) Internal shape measuring device
CN110702070A (en) 2D/3D line laser measuring device for measuring tunnel section
JP7407994B2 (en) Pipe inner surface inspection method
CN100501220C (en) Appearance measuring and detecting method for inner surface of space curve type long-distance microtubule
JP2013024754A (en) Object diameter measurement method
KR20210002267A (en) apparatus for internal inspection of pipe
KR20200145182A (en) Apparatus for inspecting inside of manhole and method for inspecting manhole using the same
JP6709108B2 (en) Rehabilitation pipe drilling method and drilling device
JPS6358137A (en) Pipe inner surface shape measuring apparatus
JP2008256573A (en) Laser beam angle measurement method and device, optical repeating method, and optical repeater
KR100436878B1 (en) The method and apparatus to maintain the level of propelling steelpipes used in trenchless Ramming propulsion method of construction
JP3458075B2 (en) Surveying device and surveying method in propulsion method
JPS6358133A (en) Pipe inner surface shape measuring apparatus
JP2001304862A (en) Inspecting method and inspecting device for conduit
JPH03115912A (en) Optically measuring instrument for internal diameter of tube

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R150 Certificate of patent or registration of utility model

Ref document number: 5554372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees