JP2013094486A - Particle beam therapy system - Google Patents

Particle beam therapy system Download PDF

Info

Publication number
JP2013094486A
JP2013094486A JP2011241302A JP2011241302A JP2013094486A JP 2013094486 A JP2013094486 A JP 2013094486A JP 2011241302 A JP2011241302 A JP 2011241302A JP 2011241302 A JP2011241302 A JP 2011241302A JP 2013094486 A JP2013094486 A JP 2013094486A
Authority
JP
Japan
Prior art keywords
particle beam
charged particle
irradiation
extraction
frequency power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011241302A
Other languages
Japanese (ja)
Other versions
JP5781421B2 (en
Inventor
Kazuyoshi Saito
一義 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011241302A priority Critical patent/JP5781421B2/en
Publication of JP2013094486A publication Critical patent/JP2013094486A/en
Application granted granted Critical
Publication of JP5781421B2 publication Critical patent/JP5781421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive particle beam therapy system for facilitating the improvement of accuracy in a therapy with the use of spot scanning irradiation.SOLUTION: The particle beam therapy system 100 includes: a synchrotron 200 for intermittently emitting a charged particle beam; a beam transport system 300; and an irradiation device 500. A controller 600 turns on high frequency power to be applied to an emission device 26 in a period for supplying the charged particle beam to the irradiation device 500, turns off the high frequency power to be applied to the emission device 26 in a period for blocking the supply of the charged particle beam to the irradiation device 500, and changes the bandwidth center frequency of the high frequency power to be applied to the emission device 26 in a period for supplying the charged particle beam to the irradiation device 500.

Description

本発明は、高精度な治療照射が可能な粒子線治療システムに係り、特に、スポットスキャニング照射法を用いるのに好適な粒子線治療システムに関する。   The present invention relates to a particle beam therapy system capable of high-precision treatment irradiation, and more particularly to a particle beam therapy system suitable for using a spot scanning irradiation method.

近年の高齢化社会を反映し、がん治療法の一つとして、低侵襲で体に負担が少なく、治療後の生活の質が高く維持できる放射線治療が注目されている。その中でも、加速器で加速した陽子や炭素などの荷電粒子ビームを用いた粒子線治療システムが、患部への優れた線量集中性のため特に有望視されている。
粒子線治療システムは、イオン源で発生したビームを光速近くまで加速するシンクロトロンなどの加速器と、加速器の出射ビームを輸送するビーム輸送系と、患部の位置や形状に合わせてビームを患者に照射する照射装置から構成される。
Reflecting the recent aging society, as one of the cancer treatment methods, radiotherapy that is minimally invasive, has less burden on the body, and can maintain a high quality of life after treatment is attracting attention. Among them, a particle beam therapy system using a charged particle beam such as proton or carbon accelerated by an accelerator is particularly promising because of excellent dose concentration on the affected area.
The particle beam therapy system irradiates the patient with a beam according to the position and shape of the affected area, an accelerator such as a synchrotron that accelerates the beam generated by the ion source to near the speed of light, a beam transport system that transports the emitted beam of the accelerator It is comprised from the irradiation apparatus.

ところで、粒子線治療システムの照射装置では、従来、患部の形状に合わせてビームを照射する際、散乱体でビーム径を拡大したのちコリメータで周辺部を削ってビームを整形していた。ところが、その方法ではビーム利用効率が悪く、不必要な中性子が発生し易いこと、また患部形状との一致度にも限界がある。
そこで最近、より高精度な照射方法として、加速器からの細径ビームを電磁石で偏向し患部形状に合わせて走査するスキャニング照射法の市場ニーズが高まっている。
By the way, in the irradiation apparatus of the particle beam therapy system, conventionally, when irradiating a beam according to the shape of the affected part, the beam diameter is enlarged with a scatterer, and then the peripheral part is shaved with a collimator to shape the beam. However, in this method, the beam utilization efficiency is poor, unnecessary neutrons are easily generated, and the degree of coincidence with the shape of the affected area is limited.
Thus, recently, as a more accurate irradiation method, there is an increasing market need for a scanning irradiation method in which a thin beam from an accelerator is deflected by an electromagnet and scanned according to the shape of an affected area.

スキャニング照射法では、3次元的な患部形状を深さ方向の複数の層に分割し、各層を更に2次元的に分割して複数の照射スポットを設定する。深さ方向には照射ビームのエネルギーを変更して各層を選択的に照射し、各層内では電磁石で照射ビームを2次元的に走査して各照射スポットに所定の線量を与える。照射スポット間を移動中に照射ビームを連続的にONし続ける方法をラスタースキャニングと称し、一方、移動中に照射ビームをOFFする方法をスポットスキャニングと称する。   In the scanning irradiation method, a three-dimensional affected part shape is divided into a plurality of layers in the depth direction, and each layer is further divided two-dimensionally to set a plurality of irradiation spots. In the depth direction, the energy of the irradiation beam is changed to selectively irradiate each layer, and within each layer, the irradiation beam is two-dimensionally scanned with an electromagnet to give a predetermined dose to each irradiation spot. A method of continuously turning on the irradiation beam while moving between irradiation spots is referred to as raster scanning, and a method of turning off the irradiation beam during movement is referred to as spot scanning.

スポットスキャニング法ではビーム走査を停止した状態で各照射スポットに所定の線量を照射し、照射ビームをOFFしてから走査電磁石の励磁量を変更して次の照射スポットに移動する。したがって、スポットスキャニング法で高精度な治療照射を実現するためには、照射ビームの位置精度とともに高速ON/OFFが必須である。   In the spot scanning method, a predetermined dose is irradiated to each irradiation spot in a state where the beam scanning is stopped, and after the irradiation beam is turned off, the excitation amount of the scanning electromagnet is changed to move to the next irradiation spot. Therefore, in order to realize high-precision treatment irradiation by the spot scanning method, high-speed ON / OFF is indispensable together with the position accuracy of the irradiation beam.

照射ビームの位置精度の観点から、シンクロトロンからのビーム出射法として、高周波印加による共鳴現象で周回ビームを構成する粒子の振動振幅を増大させて、安定限界を超えた振動振幅が大きな粒子から出射するものが知られている。
この方法では、シンクロトロンの出射関連機器の運転パラメータを出射中に一定に設定できるため、出射ビームの軌道安定度が高く、スポットスキャニング法に要求される照射ビームの高い位置精度を達成できる。
From the viewpoint of position accuracy of the irradiation beam, the synchrotron beam extraction method increases the vibration amplitude of the particles that make up the orbiting beam by the resonance phenomenon caused by the application of high frequency, and emits from the particles whose vibration amplitude exceeds the stability limit. What to do is known.
In this method, the operating parameters of the synchrotron emission-related equipment can be set constant during the emission, so that the orbit stability of the emission beam is high and the high positional accuracy of the irradiation beam required for the spot scanning method can be achieved.

しかし、各スポットの照射終了時に出射用高周波をOFFしても、出射ビームが完全に遮断されるまでには時間がかかる。これは安定限界付近の振動振幅が大きなビーム粒子が、擾乱で安定限界を超えて出射されるためである。この遮断完了までの遅延時間中の照射を遅延照射と呼ぶ。この遅延照射量は治療精度の観点からスポットスキャニング法では極力低減すべきものである。   However, even if the emission high frequency is turned off at the end of irradiation of each spot, it takes time until the emission beam is completely blocked. This is because beam particles having a large oscillation amplitude near the stability limit are emitted beyond the stability limit due to disturbance. Irradiation during the delay time until the completion of blocking is called delayed irradiation. This delayed irradiation dose should be reduced as much as possible by the spot scanning method from the viewpoint of treatment accuracy.

その対策の一つめとして、出射用高周波をOFFするとともに、シンクロトロンに設置した四極電磁石の励磁量を高速で変化させて安定限界の大きさを広げ、出射ビームを照射スポット間で遮断する方法が知られている。
しかしながら、その方法ではビーム遮断時に広げた安定限界付近に存在する振動振幅の大きなビーム粒子は、次のスポット照射開始時に安定限界を狭めた際に、出射用高周波の強度とは無関係に急激に出射されスパイク状のビーム波形を生じる。そこで、従来は特許文献1,2に記載の対策が考えられた。
The first countermeasure is to turn off the high frequency for emission and change the excitation amount of the quadrupole electromagnet installed in the synchrotron at high speed to widen the stability limit and block the outgoing beam between the irradiation spots. Are known.
However, with this method, beam particles with a large vibration amplitude that exist near the stability limit that was expanded when the beam was interrupted are emitted suddenly when the stability limit is narrowed at the start of the next spot irradiation, regardless of the intensity of the output high frequency. This produces a spiked beam waveform. Therefore, conventionally, countermeasures described in Patent Documents 1 and 2 have been considered.

特許文献1に記載の公知技術では、安定限界より内側の振動振幅が小さなビーム粒子に共鳴する周波数成分と同時に、安定限界付近の振動振幅が大きなビーム粒子に共鳴する周波数成分を含む出射用高周波を、シンクロトロンの周回ビームに印加する。これにより、スパイク状の出射ビーム波形の原因となる安定限界付近の粒子密度を低減している。   In the known technology described in Patent Document 1, a high frequency for emission including a frequency component that resonates with beam particles having a small vibration amplitude inside the stability limit and a frequency component that resonates with beam particles having a large vibration amplitude near the stability limit is used. , Applied to the circulating beam of the synchrotron. As a result, the particle density near the stability limit that causes the spike-like outgoing beam waveform is reduced.

また、遅延照射量の低減対策の二つめとして、出射用高周波をOFFするとともに、ビーム輸送系に設置したビーム遮断用電磁石を高速で励磁して、シンクロトロンからの遅延出射ビームを廃棄する方法が知られている。その一例が特許文献2に記載されている。
この方法では遅延照射やスパイク状の出射ビーム波形の原因となる安定限界付近の振動振幅が大きな粒子は、照射スポット間の時間帯に出射されビーム輸送系の途中で廃棄される。
In addition, as a second countermeasure to reduce the delayed irradiation amount, there is a method of turning off the high frequency for emission and exciting the beam blocking electromagnet installed in the beam transport system at high speed to discard the delayed emission beam from the synchrotron. Are known. An example is described in Patent Document 2.
In this method, particles having a large vibration amplitude near the stability limit that cause delayed irradiation and spike-like emission beam waveforms are emitted in the time zone between irradiation spots and discarded in the middle of the beam transport system.

特開2010−227415号公報JP 2010-227415 A 特開2009−279046号公報JP 2009-279046 A

しかし、特許文献1に記載の公知技術では、安定限界の内側と境界付近のビーム粒子に同時に共鳴する、広帯域の周波数成分を有する高周波電力が必要となる。その上、スパイク状の出射ビーム波形の原因となる安定限界付近の粒子密度を低減するためには、振動振幅が大きくなって安定限界内側から安定限界付近まで到達したビーム粒子を高速度で出射する必要がある。したがって、安定限界の境界付近のビーム粒子に共鳴する高周波電力を大きくする必要性から、出射用高周波を生成する高周波電源のコストが増加し、高周波電源のコスト高は免れない。   However, the known technique described in Patent Document 1 requires high-frequency power having a broadband frequency component that resonates simultaneously with the beam particles inside and near the boundary of the stability limit. In addition, in order to reduce the particle density near the stability limit, which causes the spiked beam shape, the beam amplitude that reaches the stability limit from inside the stability limit is emitted at a high speed with a large vibration amplitude. There is a need. Therefore, since it is necessary to increase the high-frequency power resonating with the beam particles near the boundary of the stability limit, the cost of the high-frequency power source for generating the high frequency for emission increases, and the high cost of the high-frequency power source is inevitable.

また、特許文献1に記載の公知技術は、照射スポットの間隔が比較的狭い近接スポット照射時には大きな問題とはならないが、照射スポット間が離れている遠隔スポット照射時には、スパイク状の出射ビーム波形が発生する懸念がある。これは、照射スポット間の時間が延びてシンクロトロンの周回ビームが残留ガスとの散乱で振動振幅が増大する効果が大きくなり、次のスポット照射開始時には安定限界付近の粒子密度が高くなるためである。この状態で次のスポット照射開始時に安定限界を狭め、更に安定限界の境界付近のビーム粒子に共鳴する周波数成分を含む出射用高周波を印加すると、スパイク状の出射ビーム波形が発生する可能性が非常に高くなる。   In addition, the known technique described in Patent Document 1 does not pose a big problem at the time of irradiation of a near spot where the interval between irradiation spots is relatively narrow, but at the time of remote spot irradiation where the irradiation spots are separated from each other, a spike-like outgoing beam waveform is generated. There are concerns that arise. This is because the time between the irradiation spots is extended, and the oscillation amplitude increases due to scattering of the circulating beam of the synchrotron with the residual gas, and the particle density near the stability limit increases at the start of the next spot irradiation. is there. In this state, if the stability limit is narrowed at the start of the next spot irradiation and a high frequency for emission including a frequency component that resonates with beam particles near the boundary of the stability limit is applied, a spike-like emission beam waveform may be generated. To be high.

ここで、遠隔スポット照射は複雑な患部形状を高精度で照射する際には必須である。すなわち、スパイク状の出射ビーム波形は制御可能な照射スポット当りの最小線量を制限するため、照射ビームを更に細径化してスキャニング照射による治療精度を向上する際の障害になりうる。したがって、スパイク状の出射ビーム波形を抑制して治療精度を向上し、かつそれを低コストで実現することが従来技術の第1の課題である。   Here, remote spot irradiation is indispensable when irradiating a complicated affected part shape with high accuracy. That is, since the spiked outgoing beam waveform limits the minimum dose per controllable irradiation spot, it can be an obstacle when the diameter of the irradiation beam is further reduced to improve the treatment accuracy by scanning irradiation. Therefore, it is the first problem of the prior art to improve the treatment accuracy by suppressing the spike-like outgoing beam waveform and to realize it at low cost.

また特許文献2に記載の公知技術では、遅延照射やスパイク状の出射ビーム波形を十分抑制できるが、廃棄するビーム量が無視できないほど多くなりビーム利用効率が低下する問題がある。このビーム利用効率が低下すると、単位時間当たりに患部に照射できる線量(線量率)が減少し、治療スループットの低下につながる可能性がある。したがって、線量率の減少による治療スループットの低下を招くことなく治療精度を向上することが、従来技術の第2の課題である。   In the known technique described in Patent Document 2, delayed irradiation and spike-like outgoing beam waveform can be sufficiently suppressed, but there is a problem that the amount of beam to be discarded cannot be ignored and beam utilization efficiency is lowered. When this beam utilization efficiency is lowered, the dose (dose rate) that can be irradiated to the affected area per unit time is reduced, which may lead to a reduction in treatment throughput. Therefore, it is a second problem of the prior art to improve treatment accuracy without causing a reduction in treatment throughput due to a decrease in dose rate.

本発明の目的は、スポット照射開始時のスパイク状ビーム波形を抑制して制御可能な照射スポット当りの最小線量を十分小さく設定し、照射ビームを更に細径化して治療精度が向上できる粒子線治療システムを実現すること、その粒子線治療システムを線量率や治療スループットを犠牲にすることなく、低コストで提供することにある。   It is an object of the present invention to set a minimum dose per irradiation spot that can be controlled by suppressing a spike-like beam waveform at the start of spot irradiation, and to reduce the irradiation beam diameter further to improve treatment accuracy. To realize the system, to provide the particle beam therapy system at a low cost without sacrificing the dose rate or the treatment throughput.

上記目的を達成するために、本発明は、荷電粒子ビームを所定のエネルギーまで加速し、出射装置に高周波電力を印加して発生させた高周波電磁場で安定限界を超えさせて荷電粒子ビームを断続的に複数回に分けて出射するシンクロトロンと、前記シンクロトロンから断続的に出射された荷電粒子ビームを治療室まで導くビーム輸送系と、前記治療室で患者の患部形状に合わせて荷電粒子ビームを断続的に照射する照射装置から構成される粒子線治療システムにおいて、前記照射装置に荷電粒子ビームを供給する期間では前記出射装置に印加する高周波電力をONし、前記照射装置への荷電粒子ビームの供給を遮断する期間では前記出射装置に印加する高周波電力をOFFするとともに、前記照射装置に荷電粒子ビームを供給する期間内で前記出射装置に印加する高周波電力の帯域中心周波数を変化させる制御装置を備えるようにしたものである。   In order to achieve the above object, the present invention accelerates a charged particle beam to a predetermined energy and intermittently causes the charged particle beam to exceed a stability limit by a high frequency electromagnetic field generated by applying a high frequency power to an extraction device. A synchrotron that is emitted in multiple steps, a beam transport system that guides a charged particle beam intermittently emitted from the synchrotron to a treatment room, and a charged particle beam that matches the shape of the affected area of the patient in the treatment room In a particle beam therapy system including an irradiation device that irradiates intermittently, a high-frequency power applied to the extraction device is turned ON during a period in which a charged particle beam is supplied to the irradiation device, and the charged particle beam to the irradiation device is turned on. During the period when the supply is cut off, the high-frequency power applied to the extraction device is turned off, and the charged particle beam is supplied to the irradiation device before the period during which the charged particle beam is supplied. It is obtained by such a control device for varying the band center frequency of the high frequency power applied to the extraction device.

より具体的には、請求項1に記載の粒子線治療システムにおいて、前記制御装置は、前記照射装置に荷電粒子ビームを供給する期間の出射開始時において、前記出射装置に印加する高周波電力の帯域中心周波数を前記安定限界の内側の荷電粒子ビームと共鳴する第1の値に設定し、前記照射装置に荷電粒子ビームを供給する期間の後半の出射終了時までの間において、前記出射装置に印加する高周波電力の帯域中心周波数を前記安定限界の境界付近の荷電粒子ビームと共鳴する第2の値に設定するようにしたものである。   More specifically, in the particle beam therapy system according to claim 1, the control device has a high-frequency power band applied to the extraction device at the start of extraction in a period in which a charged particle beam is supplied to the irradiation device. The center frequency is set to a first value that resonates with the charged particle beam inside the stability limit, and is applied to the extraction device until the end of extraction in the latter half of the period during which the charged particle beam is supplied to the irradiation device. The center frequency of the high frequency power to be set is set to a second value that resonates with the charged particle beam near the boundary of the stability limit.

さらに具体的には、請求項2に記載の粒子線治療システムにおいて、前記制御装置は、前記照射装置に荷電粒子ビームを供給する期間の前記出射開始時を含む第1の期間において、前記出射装置に印加する高周波電力の帯域中心周波数を前記第1の値に設定し、前記照射装置に荷電粒子ビームを供給する期間の後半の前記出射終了時までの第2の期間において、前記出射装置に印加する高周波電力の帯域中心周波数を前記第2の値に設定するようにしたものである。   More specifically, in the particle beam therapy system according to claim 2, in the first period including the start of extraction of the period during which the control apparatus supplies a charged particle beam to the irradiation apparatus. The band center frequency of the high-frequency power applied to the irradiation device is set to the first value, and applied to the extraction device in the second period until the end of the extraction in the latter half of the period during which the charged particle beam is supplied to the irradiation device. The band center frequency of the high-frequency power to be set is set to the second value.

または、請求項2に記載の粒子線治療システムにおいて、前記制御装置は、前記照射装置に荷電粒子ビームを供給する期間の前記出射開始時と前記出射終了時の間において、前記出射装置に印加する高周波電力の帯域中心周波数を前記第1の値から前記第2の値に連続的に変化させるようにしたものである。   Alternatively, in the particle beam therapy system according to claim 2, the control device applies high-frequency power applied to the extraction device between the start of extraction and the end of extraction in a period in which a charged particle beam is supplied to the irradiation device. The band center frequency is continuously changed from the first value to the second value.

さらに、請求項1〜3のいずれか1項記載の粒子線治療システムにおいて、前記制御装置は、前記照射装置に荷電粒子ビームを供給する際には、前記出射装置に印加する高周波電力をONするとともに、前記シンクロトロンに設置した電磁石の励磁量を変化させて前記安定限界を狭めて荷電粒子ビームの出射を開始し、前記照射装置への荷電粒子ビームの供給を遮断する際には、前記出射装置に印加する高周波電力をOFFするとともに、前記シンクロトロンに設置した電磁石の励磁量を変化させて前記安定限界を広げて荷電粒子ビームの出射を停止するようにしたものである。   Furthermore, in the particle beam therapy system according to any one of claims 1 to 3, the control device turns on the high-frequency power applied to the emission device when supplying a charged particle beam to the irradiation device. At the same time, when an excitation amount of an electromagnet installed in the synchrotron is changed to narrow the stability limit to start emission of a charged particle beam, and when the supply of the charged particle beam to the irradiation device is cut off, The high-frequency power applied to the apparatus is turned off, and the excitation amount of the electromagnet installed in the synchrotron is changed to widen the stability limit and stop the emission of the charged particle beam.

または、請求項1〜3のいずれか1項記載の粒子線治療システムにおいて、前記制御装置は、前記照射装置に荷電粒子ビームを供給する際には、前記出射装置に印加する高周波電力をONするとともに、前記ビーム輸送系に設置した電磁石の励磁量を変化させて前記照射装置へのビーム軌道に合わせて荷電粒子ビームの輸送を開始し、前記照射装置への荷電粒子ビームの供給を遮断する際には前記出射装置に印加する高周波電力をOFFするとともに、前記ビーム輸送系に設置した電磁石の励磁量を変化させて前記照射装置へのビーム軌道から外して荷電粒子ビームの輸送を遮断するようにしたものである。   Alternatively, in the particle beam therapy system according to claim 1, when the charged particle beam is supplied to the irradiation device, the control device turns on the high-frequency power applied to the emission device. At the same time, the charged amount of the electromagnet installed in the beam transport system is changed to start transporting the charged particle beam in accordance with the beam trajectory to the irradiation device, and the supply of the charged particle beam to the irradiation device is shut off. The high-frequency power applied to the extraction device is turned off, and the excitation amount of the electromagnet installed in the beam transport system is changed so as to be removed from the beam trajectory to the irradiation device to block the transport of the charged particle beam. It is a thing.

本発明によれば、照射ビームを細径化してスポットスキャニング照射による治療精度を容易に向上でき、また、遠隔スポットを含む複雑な患部形状に対しても高精度でかつ線量率を改善した治療照射が可能な粒子線治療システムを低コストで提供することができる。   According to the present invention, it is possible to easily improve the treatment accuracy by spot scanning irradiation by reducing the diameter of the irradiation beam, and to perform treatment irradiation with high accuracy and improved dose rate even for complicated affected part shapes including remote spots. Can be provided at a low cost.

本発明の第1の実施形態による粒子線治療システムの構成を示すシステム構成図である。1 is a system configuration diagram showing a configuration of a particle beam therapy system according to a first embodiment of the present invention. 本発明の第1の実施形態による粒子線治療システムにおける、シンクロトロンからの荷電粒子ビームの出射方法の説明図である。It is explanatory drawing of the extraction method of the charged particle beam from a synchrotron in the particle beam therapy system by the 1st Embodiment of this invention. 本発明の第1の実施形態による粒子線治療システムに用いる照射装置の構成を示す図であり、(A)は正面図、(B)は照射ビームを上流側から見た説明図である。It is a figure which shows the structure of the irradiation apparatus used for the particle beam therapy system by the 1st Embodiment of this invention, (A) is a front view, (B) is explanatory drawing which looked at the irradiation beam from the upstream. 本発明の第1の実施形態による粒子線治療システムにおける、スポットスキャニング法の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the spot scanning method in the particle beam therapy system by the 1st Embodiment of this invention. 本発明の第1の実施形態による粒子線治療システムにおける、スポットスキャニング法の動作を示すタイミングチャートの他の態様を示した図である。It is the figure which showed the other aspect of the timing chart which shows the operation | movement of the spot scanning method in the particle beam therapy system by the 1st Embodiment of this invention. 本発明の第1の実施形態による粒子線治療システムにおける、スポットスキャニング法の動作を示すタイミングチャートの更に別の態様を示した図である。It is the figure which showed another aspect of the timing chart which shows operation | movement of the spot scanning method in the particle beam therapy system by the 1st Embodiment of this invention. 本発明の第1の実施形態による粒子線治療システムにおける、シンクロトロンの出射装置に関わる部分の制御装置と電源の構成図である。It is a block diagram of the control apparatus and power supply of the part in connection with the radiation | emission apparatus of a synchrotron in the particle beam therapy system by the 1st Embodiment of this invention. 本発明の第2の実施形態による粒子線治療システムの構成を示すシステム構成図である。It is a system block diagram which shows the structure of the particle beam therapy system by the 2nd Embodiment of this invention. 本発明の第2の実施形態による粒子線治療システムによるスポットスキャニング法の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the spot scanning method by the particle beam therapy system by the 2nd Embodiment of this invention.

以下に本発明の幾つかの実施の形態について、図面を用いて説明する。   Several embodiments of the present invention will be described below with reference to the drawings.

まず、図1〜図7を用いて、本発明の第1の実施形態による粒子線治療システムの構成及び動作について説明する。
図1は、本発明の第1の実施形態による粒子線治療システムの構成を示すシステム構成図である。
First, the configuration and operation of the particle beam therapy system according to the first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a system configuration diagram showing the configuration of the particle beam therapy system according to the first embodiment of the present invention.

粒子線治療システム100は、ライナックのような前段加速器11で予備加速した荷電粒子ビームを所定のエネルギーまで加速したのち出射するシンクロトロン200と、シンクロトロンから出射された荷電粒子ビームを治療室400まで導くビーム輸送系300と、治療室400で患者41の患部形状に合わせて荷電粒子ビームを照射する照射装置500と、制御装置600とから構成される。   The particle beam therapy system 100 includes a synchrotron 200 that emits after accelerating a charged particle beam preliminarily accelerated by a front accelerator 11 such as a linac to a predetermined energy, and a charged particle beam emitted from the synchrotron to a treatment room 400. It comprises a beam transport system 300 for guiding, an irradiation device 500 for irradiating a charged particle beam in accordance with the shape of the affected part of the patient 41 in the treatment room 400, and a control device 600.

シンクロトロン200は、前段加速器11で予備加速した荷電粒子ビームを入射する入射装置24と、荷電粒子ビームを偏向し一定の軌道上を周回させる偏向電磁石21と、荷電粒子ビームが広がらないように水平/垂直方向に収束力を与える収束/発散型の四極電磁石22と、高周波加速電圧で荷電粒子ビームを所定のエネルギーまで加速する加速空胴25と、加速空胴25に高周波加速電圧を供給する電源25Aと、周回する荷電粒子ビームの振動振幅に対して安定限界を形成する六極電磁石23と、高周波電力を印加して発生させた高周波電磁場(高周波の磁場及び電場)で荷電粒子ビームの振動振幅を増大させることで安定限界を超えさせて荷電粒子ビームを断続的に複数回に分けて外部に取り出すための出射装置26と、この出射装置26に出射用高周波電力を供給する電源26Aと、荷電粒子ビームを出射するために偏向する出射偏向装置27とから構成される。
なお、本実施例の図1では、安定限界の大きさを高速で制御する専用の高速四極電磁石28と、高速四極電磁石28に励磁電流を供給する電源28Aを別途設けているが、前記四極電磁石22を用いて安定限界の大きさを制御することも可能である。
The synchrotron 200 includes an incident device 24 that receives a charged particle beam preliminarily accelerated by the pre-accelerator 11, a deflecting electromagnet 21 that deflects the charged particle beam and circulates in a fixed orbit, and a horizontal so that the charged particle beam does not spread. A converging / diverging type quadrupole electromagnet 22 that gives a focusing force in the vertical direction, an acceleration cavity 25 that accelerates a charged particle beam to a predetermined energy with a high-frequency acceleration voltage, and a power source that supplies the acceleration cavity 25 with a high-frequency acceleration voltage 25A, the hexapole electromagnet 23 that forms a stability limit with respect to the vibration amplitude of the circulating charged particle beam, and the vibration amplitude of the charged particle beam by a high frequency electromagnetic field (high frequency magnetic field and electric field) generated by applying high frequency power. And the emission device 26 for taking out the charged particle beam intermittently in a plurality of times and taking it out to the outside by exceeding the stability limit. A power supply 26A supplies the extraction radiofrequency power to location 26, and a extraction deflecting device 27 for deflecting to emit a charged particle beam.
In FIG. 1 of this embodiment, a dedicated high-speed quadrupole electromagnet 28 for controlling the magnitude of the stability limit at high speed and a power supply 28A for supplying an excitation current to the high-speed quadrupole electromagnet 28 are separately provided. 22 can also be used to control the size of the stability limit.

次に、図2を用いて、本実施形態による粒子線治療システムにおけるシンクロトロンからの荷電粒子ビームの出射方法について説明する。
図2は、本発明の第1の実施形態による粒子線治療システムにおけるシンクロトロンからの荷電粒子ビームの出射方法の説明図である。
Next, a method for emitting a charged particle beam from the synchrotron in the particle beam therapy system according to the present embodiment will be described with reference to FIG.
FIG. 2 is an explanatory diagram of a method for emitting a charged particle beam from a synchrotron in the particle beam therapy system according to the first embodiment of the present invention.

図2では、シンクロトロンを周回する荷電粒子ビームの状態を、出射に関係する水平方向の位相空間内に示している。横軸は設計軌道からのずれ(位置P)で、縦軸は設計軌道に対する傾き(角度θ)である。
図2(A)は、シンクロトロンで荷電粒子ビームを加速終了後、出射開始前の水平方向の位相空間を示している。図2(B)は、出射開始後の出射中の水平方向の位相空間を示している。図2(C),(D)は後述する。
In FIG. 2, the state of the charged particle beam that goes around the synchrotron is shown in a horizontal phase space related to emission. The horizontal axis is the deviation (position P) from the design trajectory, and the vertical axis is the inclination (angle θ) with respect to the design trajectory.
FIG. 2A shows a horizontal phase space after the acceleration of the charged particle beam by the synchrotron and before the start of extraction. FIG. 2B shows a horizontal phase space during emission after the start of emission. 2C and 2D will be described later.

図2(A)に示すように、荷電粒子ビームを構成する各粒子は、設計軌道を中心にして水平方向に振動しながら、周回ビームBMとして周回する。ここで、図1に示した六極電磁石23を励磁することで、位相空間内に三角形状の安定限界とその内側の安定領域SAが形成される。安定領域内のビーム粒子はシンクロトロン内を安定に周回し続ける。   As shown in FIG. 2A, each particle constituting the charged particle beam circulates as a circular beam BM while vibrating in the horizontal direction around the design trajectory. Here, by exciting the hexapole electromagnet 23 shown in FIG. 1, a triangular stability limit and an inner stable region SA are formed in the phase space. Beam particles in the stable region continue to circulate stably in the synchrotron.

このとき、図1に示した出射装置26に、安定領域内のビーム粒子の振動に共鳴する周波数成分の出射用高周波を印加すると、図2(B)に示すように、ビーム粒子の振動振幅が増大し、位相空間内で周回ビームBMの面積が増加する。そして、安定限界の外側すなわち安定領域SAの外に出たビーム粒子は、出射ブランチEBに沿って急激に振動振幅が増大し、最終的に出射偏向装置27の開口部OPに飛び込んで、出射ビームBとしてシンクロトロンから取り出される。   At this time, when an extraction high frequency having a frequency component that resonates with the vibration of the beam particle in the stable region is applied to the emission device 26 shown in FIG. 1, the vibration amplitude of the beam particle is increased as shown in FIG. The area of the circular beam BM increases in the phase space. Then, the beam particle that has come out of the stability limit, that is, outside the stable region SA, has a vibration amplitude that suddenly increases along the outgoing branch EB, and finally jumps into the opening OP of the outgoing deflection device 27 to be the outgoing beam. B is taken out from the synchrotron.

ここで、安定限界(安定領域)の大きさは四極電磁石22や六極電磁石23の励磁量で決まる。この安定領域の大きさを、ビーム粒子の加速終了後で出射開始前の荷電粒子ビームのエミッタンス(位相空間で占める面積)より大きめに設定する。出射開始とともに出射用の高周波電力を印可して高周波電磁場を発生させて荷電粒子ビームのエミッタンスを大きくし(粒子の振動振幅を増大させ)、安定限界を超えた粒子から出射する。この状態で出射用の高周波電力をON/OFFすることで、出射ビームのON/OFFが制御できる。
この出射方法の特長は、出射中に電磁石励磁量が一定で安定領域や出射ブランチが不変なので、出射ビームの位置やサイズが安定であり、スキャニング法に好適な照射ビームが得られることにある。
Here, the magnitude of the stability limit (stable region) is determined by the amount of excitation of the quadrupole electromagnet 22 or the hexapole electromagnet 23. The size of the stable region is set larger than the emittance (area occupied by the phase space) of the charged particle beam after the acceleration of the beam particles and before the start of the extraction. At the start of extraction, a high-frequency electromagnetic field is applied to generate a high-frequency electromagnetic field to increase the emittance of the charged particle beam (increase the vibration amplitude of the particle) and emit from the particles exceeding the stability limit. In this state, by turning ON / OFF the high frequency power for emission, ON / OFF of the emission beam can be controlled.
The feature of this extraction method is that the position and size of the outgoing beam are stable because the amount of magnet excitation during the extraction is constant and the stable region and the outgoing branch are unchanged, and an irradiation beam suitable for the scanning method can be obtained.

再び、図1において、ビーム輸送系300は、シンクロトロンの出射ビームを磁場で偏向して所定の設計軌道に沿って治療室400に導く偏向電磁石31と、輸送中に荷電粒子ビームが広がらないように水平/垂直方向に収束力を与える収束/発散型の四極電磁石32とから構成され、治療室内の照射装置500へ荷電粒子ビームが供給される。   Referring again to FIG. 1, the beam transport system 300 includes a deflecting electromagnet 31 that deflects the synchrotron output beam with a magnetic field and guides it to the treatment room 400 along a predetermined design trajectory, and prevents the charged particle beam from spreading during transport. And a converging / diverging type quadrupole electromagnet 32 that applies a converging force in the horizontal / vertical direction, and a charged particle beam is supplied to the irradiation apparatus 500 in the treatment room.

ここで、図3を用いて、本実施形態による粒子線治療システムに用いる照射装置500の構成について説明する。
図3は、本発明の第1の実施形態による粒子線治療システムに用いる照射装置の構成を示した図であり、図3(A)は正面図で、図3(B)は照射ビームを上流側から見た説明図である。
Here, the configuration of the irradiation apparatus 500 used in the particle beam therapy system according to the present embodiment will be described with reference to FIG.
FIG. 3 is a diagram showing a configuration of an irradiation apparatus used in the particle beam therapy system according to the first embodiment of the present invention. FIG. 3 (A) is a front view, and FIG. 3 (B) is an irradiation beam upstream. It is explanatory drawing seen from the side.

照射装置500は、ビーム輸送系300で導かれた荷電粒子ビームを水平及び垂直方向に偏向させ患部42の断面形状に合わせて2次元的に走査する走査電磁石51と、走査電磁石51の電源500Aと、荷電粒子ビームの位置、サイズ(形状)、線量を監視する各種ビームモニタ52a,52bから構成される。   The irradiation apparatus 500 includes a scanning electromagnet 51 that deflects the charged particle beam guided by the beam transport system 300 in the horizontal and vertical directions and performs two-dimensional scanning in accordance with the cross-sectional shape of the affected part 42, and a power source 500 </ b> A of the scanning electromagnet 51. And various beam monitors 52a and 52b for monitoring the position, size (shape), and dose of the charged particle beam.

図3(A)に示すように、患者41の患部42に対して、その患部形状を3次元的な深さ方向の複数の層に分割し、各層を更に2次元的に分割して複数の照射スポットを設定する。深さ方向にはシンクロトロンの出射ビームのエネルギー変更などで照射ビームのエネルギーを変更して各層を選択的に照射する。各層内では、図3(B)に示すように、走査電磁石で照射ビームを2次元的に走査して各照射スポットSPに所定の線量を与える。
1つの照射スポットSPの線量が満了すると照射ビームを高速で遮断したのち、照射ビームをOFFした状態で次の照射スポットに移動し、同様に照射を進めていくことにより、スポットスキャニングを行える。
As shown in FIG. 3A, with respect to the affected part 42 of the patient 41, the affected part shape is divided into a plurality of layers in a three-dimensional depth direction, and each layer is further divided two-dimensionally to obtain a plurality of parts. Set the irradiation spot. In the depth direction, each layer is selectively irradiated by changing the energy of the irradiation beam by changing the energy of the emission beam of the synchrotron. In each layer, as shown in FIG. 3B, the irradiation beam is scanned two-dimensionally with a scanning electromagnet to give a predetermined dose to each irradiation spot SP.
When the dose of one irradiation spot SP expires, the irradiation beam is interrupted at a high speed, and then the irradiation beam is turned off to move to the next irradiation spot.

次に、図4を用いて、本実施形態による粒子線治療システムにおけるスポットスキャニング法の動作について説明する。
図4は、本発明の第1の実施形態による粒子線治療システムにおけるスポットスキャニング法の動作を示すタイミングチャートである。
Next, the operation of the spot scanning method in the particle beam therapy system according to the present embodiment will be described with reference to FIG.
FIG. 4 is a timing chart showing the operation of the spot scanning method in the particle beam therapy system according to the first embodiment of the present invention.

図4においては、横軸は時間tを示している。
図4の最上部には、制御装置600が出射期間(出射区間)中に用いるタイミング信号である、スポット照射開始と線量満了(出射停止)信号、及び出射用高周波の帯域中心周波数の切替信号を示している。
図4(A)の縦軸は、制御装置600から走査電磁石51の電源500Aに供給される走査指令信号に応じて、電源500Aから走査電磁石51に供給される励磁電流を示している。
図4(B)の縦軸は、制御装置600から出射装置26の電源26Aに供給される周波数制御信号に応じて、電源26Aから出射装置26に供給される出射用高周波の帯域中心周波数を示している。
図4(C)の縦軸は、制御装置600から出射装置26の電源26Aに供給される電力制御信号に応じて、電源26Aから出射装置26に供給される出射用高周波の電力を示している。
図4(D)の縦軸は、制御装置600から高速四極電磁石28の電源28Aに供給される励磁指令信号に応じて、電源28Aから高速四極電磁石28に供給される励磁電流を示している。
図4(E)の縦軸は、シンクロトロン200からビーム輸送系300に出射される出射ビーム電流を示している。
図4(G)の縦軸は、照射装置500から照射される照射ビーム電流のON/OFF状態を示している。照射ビームがONのとき、スポットS1,S2,S3,S4が形成される。
なお、各照射スポット位置に対して必要な走査電磁石励磁電流に静定した時点でスポット照射開始のタイミング信号が発生し、照射装置500のビームモニタ52からの伝送信号(図1で(H)と記載)に基づき線量を監視し、所定線量に到達した時点でスポット線量満了(出射停止)や出射用高周波の帯域中心周波数切替のタイミング信号が発生する。
また、図4(B),(C),(E),(G)において、比較のために、特許文献1に記載の公知技術をスポットスキャニング法に適用した場合の動作を破線で示している。
In FIG. 4, the horizontal axis indicates time t.
In the uppermost part of FIG. 4, a spot irradiation start and dose completion (extraction stop) signal and a switching signal for the band center frequency of the extraction high frequency, which are timing signals used by the control device 600 during the extraction period (extraction period), are displayed. Show.
The vertical axis in FIG. 4A indicates the excitation current supplied from the power supply 500A to the scanning electromagnet 51 in accordance with the scanning command signal supplied from the control device 600 to the power supply 500A of the scanning electromagnet 51.
The vertical axis in FIG. 4B indicates the band center frequency of the output high frequency supplied from the power supply 26A to the output device 26 in accordance with the frequency control signal supplied from the control device 600 to the power supply 26A of the output device 26. ing.
The vertical axis in FIG. 4C indicates the high frequency power for emission supplied from the power supply 26A to the emission device 26 in accordance with the power control signal supplied from the control device 600 to the power supply 26A of the emission device 26. .
The vertical axis in FIG. 4D represents the excitation current supplied from the power supply 28A to the high-speed quadrupole electromagnet 28 in accordance with the excitation command signal supplied from the control device 600 to the power supply 28A of the high-speed quadrupole electromagnet 28.
The vertical axis in FIG. 4 (E) indicates the outgoing beam current emitted from the synchrotron 200 to the beam transport system 300.
The vertical axis in FIG. 4G indicates the ON / OFF state of the irradiation beam current irradiated from the irradiation apparatus 500. When the irradiation beam is ON, spots S1, S2, S3 and S4 are formed.
A spot irradiation start timing signal is generated when the necessary scanning magnet excitation current is settled for each irradiation spot position, and a transmission signal ((H) in FIG. 1) is transmitted from the beam monitor 52 of the irradiation apparatus 500. The dose is monitored based on the description, and when the predetermined dose is reached, a timing signal for spot dose expiration (exit stop) or for switching the center frequency of the high frequency for emission is generated.
4 (B), (C), (E), and (G), the operation when the known technique described in Patent Document 1 is applied to the spot scanning method is indicated by a broken line for comparison. .

図4(A)に示すように、電源500Aから走査電磁石51に供給される走査電磁石電流を増加させることで、照射ビームの照射位置を走査し、電源500Aから走査電磁石51に供給される走査電磁石電流を一定とすることで、照射ビームの照射位置を一定とすることができる。
そして、スポットスキャニング法では、図4(A),(G)に示すように、ビーム走査を停止した状態で各照射スポットS1,S2,S3,S4に所定の線量を照射し、照射ビームをOFFしてから走査電磁石の励磁量を変更して次の照射スポットに移動する。
As shown in FIG. 4A, by increasing the scanning electromagnet current supplied from the power source 500A to the scanning electromagnet 51, the irradiation position of the irradiation beam is scanned, and the scanning electromagnet supplied from the power source 500A to the scanning electromagnet 51. By making the current constant, the irradiation position of the irradiation beam can be made constant.
In the spot scanning method, as shown in FIGS. 4A and 4G, the irradiation spots S1, S2, S3, and S4 are irradiated with a predetermined dose while the beam scanning is stopped, and the irradiation beam is turned off. Then, the amount of excitation of the scanning electromagnet is changed to move to the next irradiation spot.

照射装置500に荷電粒子ビームを供給する期間であるスポット照射時には、図4(C)に示すように、出射装置26に高周波電力を供給して出射装置26に印加する高周波電力をONにする。
また、照射装置500への荷電粒子ビームの供給を遮断する期間であるスポット間移動時には、出射装置26への高周波電力の供給を停止して出射装置26に印加する高周波電力をOFFにする。この照射装置500への荷電粒子ビームの供給を遮断する際には、図4(D)に示すように、同時にシンクロトロンに設置した高速四極電磁石28で安定限界の大きさを広げてビーム出射を停止する。
At the time of spot irradiation, which is a period during which a charged particle beam is supplied to the irradiation apparatus 500, as shown in FIG. 4C, high frequency power is supplied to the extraction apparatus 26 and the high frequency power applied to the extraction apparatus 26 is turned on.
In addition, when moving between spots, which is a period during which the supply of the charged particle beam to the irradiation device 500 is interrupted, the supply of the high frequency power to the extraction device 26 is stopped and the high frequency power applied to the extraction device 26 is turned off. When cutting off the supply of the charged particle beam to the irradiation device 500, as shown in FIG. 4 (D), the high-speed quadrupole magnet 28 installed at the synchrotron is used to widen the stability limit and emit the beam. Stop.

ここで、電源26Aから出射装置26に供給される出射用高周波の帯域中心周波数について見ると、図4(B)の破線に示すように、特許文献1に記載の公知技術では、安定限界より内側の振動振幅が小さなビーム粒子に共鳴する周波数成分f1(第1の値)と同時に、安定限界付近の振動振幅が大きなビーム粒子に共鳴する周波数成分f2(第2の値)を含む出射用高周波を、シンクロトロンの周回ビームに印加する。これにより安定限界付近の粒子密度を低減しているものの、スポットスキャニング、特には照射スポット間隔が離れている遠隔スポット照射の場合には、スポット照射開始時に安定限界を狭めた際、図4(E)破線に示すように出射用高周波の強度とは無関係にシンクロトロンから急激に荷電粒子ビームが出射され、図4(G)破線に示すようにスパイク状の照射ビーム波形を生じうる。   Here, looking at the band center frequency of the high frequency for emission supplied from the power source 26A to the emission device 26, as shown by the broken line in FIG. 4B, the known technique described in Patent Document 1 is inside the stability limit. A high frequency for emission including a frequency component f2 (second value) resonating with a beam particle having a large vibration amplitude near the stability limit at the same time as a frequency component f1 (first value) resonating with a beam particle having a small vibration amplitude. , Applied to the circulating beam of the synchrotron. This reduces the particle density in the vicinity of the stability limit, but in the case of spot scanning, particularly in the case of remote spot irradiation where the irradiation spot interval is far away, when the stability limit is narrowed at the start of spot irradiation, FIG. ) As shown by the broken line, the charged particle beam is suddenly emitted from the synchrotron irrespective of the intensity of the high frequency for emission, and a spike-shaped irradiation beam waveform can be generated as shown by the broken line in FIG.

図2(C),(D)は、この現象の原因と、本発明による対策の効果を、出射に関係する水平方向の位相空間内で説明したものである。
上記の従来技術では、図2(C)において、ビーム遮断時に安定限界を広げた際に、出射されずに、広がった安定領域SAに再捕獲された振動振幅の大きなビーム粒子は、図中の破線の三角形で囲んだ領域BM*の境界付近に存在することになる。また、照射スポット間隔が離れている遠隔スポット照射の場合は、照射スポット間の移動に長い時間を要し、この時間の間に、シンクロトロンの周回ビームが残留ガスとの散乱で振動振幅が増大する。そのため、図中の破線の三角形で囲んだ領域BM*の境界付近の粒子密度は高くなり、しかもそれらのビーム粒子は既に安定限界を超えているため、図2(D)において、次のスポット照射開始時に安定限界を狭めて図2(B)の出射中と同じ面積の安定領域に戻した際、出射用高周波の強度とは無関係に振動振幅の大きなビーム粒子が急激に出射されることになる。このスパイク状の出射ビーム波形は、次のスポット照射開始時に安定限界付近のビーム粒子に共鳴する周波数成分f2(第2の値)を含む出射用高周波を出射期間の最初から供給する上記従来技術(特許文献1)では更に顕著になる。
2C and 2D illustrate the cause of this phenomenon and the effect of the countermeasure according to the present invention in a horizontal phase space related to emission.
In the above-described prior art, in FIG. 2C, when the stability limit is widened when the beam is interrupted, the beam particle having a large vibration amplitude that is not emitted but is recaptured in the widened stable region SA is It exists in the vicinity of the boundary of the region BM * surrounded by the dashed triangle. Also, in the case of remote spot irradiation where the irradiation spot interval is far away, it takes a long time to move between irradiation spots, and during this time, the oscillation amplitude increases due to scattering of the circulating beam of the synchrotron with the residual gas. To do. For this reason, the particle density in the vicinity of the boundary of the region BM * surrounded by the broken-line triangle in the figure is high, and these beam particles already exceed the stability limit. Therefore, in FIG. When the stability limit is narrowed at the start and returned to the stable region having the same area as that during the emission in FIG. 2B, beam particles having a large vibration amplitude are suddenly emitted regardless of the intensity of the emission high frequency. . This spike-like outgoing beam waveform is the above-described conventional technique in which the high frequency for emission including the frequency component f2 (second value) resonating with the beam particles near the stability limit at the start of the next spot irradiation is supplied from the beginning of the emission period ( In Patent Document 1), it becomes more remarkable.

それに対して本実施形態では、図4(B)の実線で示すように、照射装置500に荷電粒子ビームを供給するスポット照射期間の前半となる出射開始時を含む第1の期間では、出射装置26に印加する高周波電力の帯域中心周波数を安定限界の内側の荷電粒子ビームと共鳴する値f1(第1の値)に設定し、スポット照射期間の後半となる第2の期間では帯域中心周波数を安定限界の境界付近の荷電粒子ビームと共鳴する値f2(第2の値)に設定している。
本実施形態により、スポット照射期間の後半の第2の期間では安定限界の境界付近の荷電粒子ビームと共鳴するため、安定限界の境界付近のビーム粒子を選択的に効率良く出射でき、スポット照射開始時のスパイク状ビーム波形の原因となる安定限界の境界付近の粒子密度を十分に低減できる。同時に、スポット照射開始(出射開始)時には安定限界の内側のビーム粒子を選択的に効率よく出射させるため、たとえ遠隔スポット照射の場合でも、スポット照射開始時のスパイク状ビーム波形の原因となる安定限界の境界付近のビーム粒子の出射を抑制でき、より効果的にスパイク状ビーム波形の抑制を図ることができる。
On the other hand, in this embodiment, as shown by the solid line in FIG. 4B, in the first period including the start of extraction, which is the first half of the spot irradiation period for supplying the charged particle beam to the irradiation apparatus 500, the extraction apparatus 26 is set to a value f1 (first value) that resonates with the charged particle beam inside the stability limit, and the band center frequency is set to a second period that is the second half of the spot irradiation period. The value f2 (second value) that resonates with the charged particle beam near the boundary of the stability limit is set.
According to the present embodiment, in the second period of the second half of the spot irradiation period, resonance with the charged particle beam near the boundary of the stability limit, the beam particles near the boundary of the stability limit can be selectively and efficiently emitted, and spot irradiation starts. It is possible to sufficiently reduce the particle density near the boundary of the stability limit that causes the spike beam waveform at the time. At the same time, in order to selectively and efficiently emit the beam particles inside the stability limit at the start of spot irradiation (start of extraction), even in the case of remote spot irradiation, the stability limit that causes the spiked beam waveform at the start of spot irradiation The emission of beam particles in the vicinity of the boundary can be suppressed, and the spiked beam waveform can be more effectively suppressed.

これを図2に示す水平方向の位相空間内で説明する。
本実施形態では、スポット照射期間の後半の第2の期間では安定限界の境界付近のビーム粒子が選択的に出射されるため、図2(C)において、スポット照射終了時には安定限界付近の粒子密度が減少して、実質的に周回ビームのコア部分は図中の実線の三角形で囲んだ領域BMに縮小する。その結果、本実施形態では、遠隔スポット照射の場合であっても、周回ビームが残留ガスとの散乱で振動振幅が増大しても、図2(D)に示すように、周回ビームのコア部分の領域BMは次のスポット照射開始時の安定限界の内側に収まる。
This will be described in the horizontal phase space shown in FIG.
In this embodiment, since the beam particles near the boundary of the stability limit are selectively emitted in the second period of the second half of the spot irradiation period, in FIG. 2C, the particle density near the stability limit at the end of the spot irradiation in FIG. Decreases, and the core portion of the orbiting beam is substantially reduced to a region BM surrounded by a solid triangle in the figure. As a result, in this embodiment, even in the case of remote spot irradiation, even if the vibration amplitude increases due to scattering of the circulating beam with the residual gas, as shown in FIG. The region BM falls within the stability limit at the start of the next spot irradiation.

さらに、本実施形態では、スポット照射期間の前半の第1の期間では安定限界の内側の荷電粒子ビームと共鳴するため、スポット照射開始時に安定限界の境界付近の荷電粒子ビームが急激に出射されることを抑制できる。
以上の効果によって、図4(E)実線、図4(G)実線に示すように、スパイクの無い理想的な出射ビーム波形と照射ビーム波形が本実施形態では得られる。
Further, in the present embodiment, in the first period of the first half of the spot irradiation period, the charged particle beam near the boundary of the stability limit is suddenly emitted at the start of spot irradiation because it resonates with the charged particle beam inside the stability limit. This can be suppressed.
Due to the above effects, as shown in the solid line in FIG. 4E and the solid line in FIG. 4G, an ideal emission beam waveform and irradiation beam waveform without spikes can be obtained in this embodiment.

ここで、出射装置26に供給する出射用高周波の帯域中心周波数を切替えるタイミングであるが、例えば、スポット照射期間でスポット照射線量が所定量の70%に到達した時点に選定し、制御装置600で出射装置26の電源26Aをタイミング制御すればよい。本実施形態では上記タイミング信号を境にスポット照射期間の帯域中心周波数をf1(第1の値)からf2(第2の値)に切り替えるよう制御している。
しかしながら、タイミング信号を用いて帯域中心周波数を切替えることは必須ではなく、スポット照射期間内で変化させる、特に出射開始時はf1(第1の値)に設定し、出射終了時までの間においてf2(第2の値)に設定すれば、その間で帯域中心周波数fがf1(第1の値)からf2(第2の値)まで時間的に連続的に変化したり、直線的に変化しても同様な効果がある。
その場合の出射用高周波の帯域中心周波数の制御方法の例を図5と図6に示す。図5ではスポット照射開始時のf1(第1の値)からスポット線量満了時のf2(第2の値)までの間、帯域中心周波数を連続的に滑らかに変化させている。一方、図6では帯域中心周波数の切替指示タイミングに基づき、切替指示タイミングを受信後に帯域中心周波数をf1からスポット線量満了時のf2まで直線的に変化させている。この他にも、スポット照射開始時のf1から終了時のf2まで直線的に変化させてもよい。
Here, the timing of switching the band center frequency of the high frequency for emission supplied to the emission device 26 is selected, for example, when the spot irradiation dose reaches 70% of the predetermined amount in the spot irradiation period, and the control device 600 What is necessary is just to control the power supply 26A of the emission device 26. In the present embodiment, control is performed so that the band center frequency of the spot irradiation period is switched from f1 (first value) to f2 (second value) with the timing signal as a boundary.
However, it is not essential to switch the band center frequency using the timing signal, and it is changed within the spot irradiation period. In particular, it is set to f1 (first value) at the start of extraction and f2 until the end of extraction. If it is set to (second value), the band center frequency f will change continuously in time from f1 (first value) to f2 (second value) during that time, or change linearly. Has the same effect.
An example of a method for controlling the band center frequency of the outgoing high frequency in that case is shown in FIGS. In FIG. 5, the band center frequency is continuously and smoothly changed from f1 (first value) at the start of spot irradiation to f2 (second value) when the spot dose expires. On the other hand, in FIG. 6, based on the switching instruction timing of the band center frequency, the band center frequency is linearly changed from f1 to f2 when the spot dose expires after receiving the switching instruction timing. In addition, it may be changed linearly from f1 at the start of spot irradiation to f2 at the end.

再び、図4(C)を見ると、本実施形態の電源26Aから出射装置26に供給すべき出射用高周波の電力は、破線で示した従来技術の場合に比較し、本実施形態では実線で示すように小さくなる。これは出射装置26に印加する高周波電力に必要な各時刻での帯域幅を狭めたためである。
破線で示した従来技術では、安定限界より内側の振動振幅が小さなビーム粒子に共鳴する周波数成分(第1の値f1)と安定限界付近の振動振幅が大きなビーム粒子に共鳴する周波数成分(第2の値f2)を含む出射用高周波を同時に印加するために、高周波電源は高電圧で且つ大電流出力が必要であった。
しかし、本発明では、スポット照射期間の後半の第2の期間では、安定限界の境界付近の荷電粒子ビームと共鳴するため、安定限界の境界付近のビーム粒子を選択的に効率良く出射できる。これにより、スパイク状の出射ビーム波形の原因となる安定限界の境界付近の粒子密度を、小さな高周波電力、すなわち小型の高周波電源で十分に低減可能となる。また、本発明では、第1の値f1と第2の値f2とを同時に印加せずに、スポット照射期間内で高周波電力の帯域中心周波数を変化させているため、印加する電力を大幅に低減でき、高周波電源を必要以上に大型化させる必要がない。
以上の効果で本実施形態では高周波電源回りのコストを低減できる。
Referring again to FIG. 4C, the output high-frequency power to be supplied from the power source 26A of the present embodiment to the output device 26 is a solid line in the present embodiment as compared to the conventional technique indicated by the broken line. Smaller as shown. This is because the bandwidth at each time required for the high-frequency power applied to the emission device 26 is narrowed.
In the conventional technique indicated by the broken line, a frequency component (first value f1) that resonates with a beam particle having a small vibration amplitude inside the stability limit and a frequency component (second value) that resonates with a beam particle having a large vibration amplitude near the stability limit. In order to simultaneously apply a high frequency for emission including the value f2), the high frequency power source needs a high voltage and a large current output.
However, in the present invention, in the second period, which is the latter half of the spot irradiation period, resonance with the charged particle beam near the boundary of the stability limit, the beam particles near the boundary of the stability limit can be selectively and efficiently emitted. As a result, the particle density near the boundary of the stability limit that causes the spike-like outgoing beam waveform can be sufficiently reduced with a small high-frequency power, that is, a small high-frequency power source. In the present invention, since the band center frequency of the high frequency power is changed within the spot irradiation period without simultaneously applying the first value f1 and the second value f2, the applied power is greatly reduced. It is not necessary to increase the size of the high frequency power supply more than necessary.
With the above effects, the cost around the high-frequency power source can be reduced in this embodiment.

次に、図7を用いて、本実施形態の粒子線治療システムに必要なシンクロトロンの出射制御を実現する機器構成の例を説明する。
図7は、本発明の第1の実施形態による粒子線治療システムにおける、シンクロトロンの出射制御に関わる部分の制御装置と電源の構成図である。
Next, an example of a device configuration that realizes synchrotron emission control necessary for the particle beam therapy system according to the present embodiment will be described with reference to FIG.
FIG. 7 is a configuration diagram of a control device and a power supply for a part related to synchrotron emission control in the particle beam therapy system according to the first embodiment of the present invention.

制御装置600は、粒子線治療システムを構成する各装置に運転パラメータを送信する運転データ生成部61、各装置の運転に必要なタイミング信号を発生するタイミング信号生成部62、照射装置500のビームモニタ52からの伝送信号に基づき線量を測定する線量監視部63等から構成される。
ここで、線量監視部63で測定した線量が所定値に到達した時点で、スポット線量満了や出射用高周波の帯域中心周波数の切替指示のタイミング信号が生成される。
The control device 600 includes an operation data generation unit 61 that transmits an operation parameter to each device constituting the particle beam therapy system, a timing signal generation unit 62 that generates a timing signal necessary for the operation of each device, and a beam monitor of the irradiation device 500. And a dose monitoring unit 63 that measures a dose based on a transmission signal from 52.
Here, when the dose measured by the dose monitoring unit 63 reaches a predetermined value, a timing signal for instructing the spot dose to expire or switching the center frequency of the emission high frequency band is generated.

出射装置26に高周波電力を供給する電源26Aは、周波数f1(第1の値)の高周波信号を発生する発振器64a、周波数f2(第2の値)の高周波信号を発生する発振器64b、それら2つの高周波信号を切替える高周波切替器65、直流から数10kHz程度の帯域信号を生成する帯域信号発生器66、高周波信号に帯域信号を乗算して中心周波数(f1やf2)に対して数10kHz程度の帯域幅を有する帯域高周波信号を生成する乗算器67、帯域高周波信号の振幅(電力)を調整する振幅変調器68、帯域高周波信号を電力増幅して出射装置26に供給する高周波電力増幅器69から構成される。   A power source 26A that supplies high-frequency power to the emission device 26 includes an oscillator 64a that generates a high-frequency signal having a frequency f1 (first value), an oscillator 64b that generates a high-frequency signal having a frequency f2 (second value), and two of them. A high-frequency switch 65 for switching a high-frequency signal, a band signal generator 66 for generating a band signal of about several tens of kHz from direct current, a band of about several tens of kHz with respect to the center frequency (f1 or f2) by multiplying the high-frequency signal by the band signal A multiplier 67 that generates a band high-frequency signal having a width, an amplitude modulator 68 that adjusts the amplitude (power) of the band high-frequency signal, and a high-frequency power amplifier 69 that amplifies the band high-frequency signal and supplies the amplified signal to the output device 26. The

電源26Aでは、制御装置600のタイミング信号生成部62からの帯域中心周波数の切替タイミング信号やスポット線量満了信号に基づき、高周波切替器65が動作して発振器64aと64bの高周波信号の切替(f1→f2、f2→f1)を実施する。また、制御装置600の運転データ生成部61からの周波数制御信号に基づき、発振器64aと64bにそれぞれ周波数f1とf2の値が設定される。さらに、制御装置600の運転データ生成部61からの電力制御信号に基づき、振幅変調器68が動作して所定の高周波電力が出射装置26に供給される。   In the power supply 26A, based on the switching timing signal of the band center frequency and the spot dose expiration signal from the timing signal generation unit 62 of the control device 600, the high frequency switch 65 operates to switch the high frequency signals of the oscillators 64a and 64b (f1 → f2, f2 → f1). Further, based on the frequency control signal from the operation data generation unit 61 of the control device 600, the values of the frequencies f1 and f2 are set in the oscillators 64a and 64b, respectively. Further, based on the power control signal from the operation data generation unit 61 of the control device 600, the amplitude modulator 68 operates to supply a predetermined high frequency power to the emission device 26.

以上説明した本実施形態によれば、スポット照射開始時のスパイク状ビーム波形を抑制して制御可能な照射スポット当りの最小線量を十分小さく設定でき、照射ビームを更に細径化して治療精度が向上できる粒子線治療システムを低コストで実現できる。   According to the present embodiment described above, the minimum dose per irradiation spot that can be controlled by suppressing the spike-like beam waveform at the start of spot irradiation can be set sufficiently small, and the treatment accuracy is improved by further reducing the diameter of the irradiation beam. Can be realized at low cost.

なお、本実施形態の図4では、高速四極電磁石28の励磁ONで安定限界の大きさを広げてビーム出射を停止する場合を示しているが、高速四極電磁石28の励磁OFFで安定限界の大きさを広げビーム出射を停止する動作論理に設計することも可能である。
また、シンクロトロンに設置した六極電磁石の励磁量の制御で、高速四極電磁石と同様に安定限界の大きさを制御することも可能である。
もちろんこれらの場合でも本発明は適用でき、同様の効果が得られる。
In FIG. 4 of the present embodiment, the case where the beam emission is stopped by widening the stability limit when the high-speed quadrupole electromagnet 28 is excited is shown. However, the stability limit is large when the high-speed quadrupole electromagnet 28 is excited. It is also possible to design the operation logic to widen the beam and stop the beam emission.
In addition, by controlling the excitation amount of the hexapole electromagnet installed in the synchrotron, it is possible to control the magnitude of the stability limit as in the case of the high speed quadrupole electromagnet.
Of course, the present invention can be applied to these cases, and the same effect can be obtained.

次に、図8〜図9を用いて、本発明の第2の実施形態による粒子線治療システムの構成及び動作について説明する。
図8は、本発明の第2の実施形態による粒子線治療システムの構成を示すシステム構成図である。以下、第1の実施形態との相違点に関して説明する。
Next, the configuration and operation of the particle beam therapy system according to the second embodiment of the present invention will be described with reference to FIGS.
FIG. 8 is a system configuration diagram showing the configuration of the particle beam therapy system according to the second embodiment of the present invention. Hereinafter, differences from the first embodiment will be described.

前実施形態では、シンクロトロン200に安定限界の大きさを高速で制御する高速四極電磁石28と、高速四極電磁石28に励磁電流を供給する電源28Aを設けているが、本実施形態ではシンクロトロンの出射期間中に安定限界の大きさを制御する必要が無いため、高速四極電磁石とその電源は設けていない。
その代わりに、ビーム輸送系300には、治療室内の照射装置500への荷電粒子ビームの供給をON/OFFするビーム遮断用電磁石33と、ビーム遮断用電磁石33に励磁電流を供給する電源33Aと、ビーム遮断用電磁石33で除去したビーム成分を廃棄するビームダンプ34が設けられている。
In the previous embodiment, the synchrotron 200 is provided with the high-speed quadrupole electromagnet 28 that controls the magnitude of the stability limit at high speed and the power supply 28A that supplies the exciting current to the high-speed quadrupole electromagnet 28. Since it is not necessary to control the magnitude of the stability limit during the emission period, a high-speed quadrupole electromagnet and its power source are not provided.
Instead, the beam transport system 300 includes a beam blocking electromagnet 33 for turning on / off the supply of the charged particle beam to the irradiation apparatus 500 in the treatment room, and a power supply 33A for supplying an excitation current to the beam blocking electromagnet 33. A beam dump 34 for discarding the beam component removed by the beam blocking electromagnet 33 is provided.

このうち、ビーム遮断用電磁石33としては、励磁した際の2極磁場で不要ビーム成分を偏向させて照射装置500へのビーム軌道から外しビームダンプ34で廃棄する方法と、励磁した際の2極磁場で偏向したビーム成分のみ照射装置500へのビーム軌道に乗せ供給する方法がある。前者はビーム輸送系の調整が簡単であり、後者は機器の異常時に照射装置への荷電粒子ビームの供給が遮断されるので安全性が高い。以下では、前者の場合についてのみ記述している。なお、本発明はもちろん後者の方法にも適用でき、同様の効果が得られる。   Among them, as the beam blocking electromagnet 33, a method of deflecting an unnecessary beam component with a dipole magnetic field when excited and removing it from the beam trajectory to the irradiation device 500 and discarding it with a beam dump 34, or a dipole when excited is used. There is a method in which only a beam component deflected by a magnetic field is supplied on a beam trajectory to the irradiation device 500. The former is easy to adjust the beam transport system, and the latter is highly safe because the supply of the charged particle beam to the irradiation device is interrupted when the equipment is abnormal. In the following, only the former case is described. The present invention can be applied to the latter method as a matter of course, and the same effect can be obtained.

図9は、本発明の第2の実施形態による粒子線治療システムにおけるスポットスキャニング法の動作を示すタイミングチャートである。
図9において横軸は時間tを示している。
図9(A)(B)(C)(E)(G)の縦軸は、図4(A)(B)(C)(E)(G)の縦軸と同じである。
図9(F)の縦軸は、制御装置600からビーム遮断用電磁石33の電源33Aに供給されるビーム遮断制御信号に応じて、電源33Aからビーム遮断用電磁石33に供給される励磁電流のON/OFF状態を示している。
FIG. 9 is a timing chart showing the operation of the spot scanning method in the particle beam therapy system according to the second embodiment of the present invention.
In FIG. 9, the horizontal axis indicates time t.
9A, 9B, 9C, 9E, and 9G are the same as those in FIGS. 4A, 4B, 4C, 4E, and 4G.
In FIG. 9F, the vertical axis indicates ON of the excitation current supplied from the power supply 33A to the beam blocking electromagnet 33 in accordance with the beam blocking control signal supplied from the control device 600 to the power supply 33A of the beam blocking electromagnet 33. / OFF state.

前実施形態の図4(C)と同様に、図9(C)では、照射装置に荷電粒子ビームを供給する期間であるスポット照射時には出射装置に印加する高周波電力をONする。また照射装置への荷電粒子ビームの供給を遮断する期間であるスポット間移動時には、出射装置に印加する高周波電力をOFFする。
ここで、前実施形態との相違は、各照射スポットで所定線量が満了したタイミングで照射装置への荷電粒子ビームの供給を遮断する際に、出射装置26に印加する高周波電力をOFFするとともに、図9(F)に示すように、ビーム輸送系300に設置したビーム遮断用電磁石33を高速で励磁して照射装置500へのビーム軌道から外して荷電粒子ビームの輸送を遮断している点である。また、照射装置500に荷電粒子ビームを供給する際には出射装置26に印加する高周波電力をONするとともに、ビーム輸送系300に設置したビーム遮断用電磁石33の励磁を高速で停止して照射装置500へのビーム軌道に合わせ荷電粒子ビームの輸送を開始する点である。
As in FIG. 4C of the previous embodiment, in FIG. 9C, the high-frequency power applied to the emission device is turned on during spot irradiation, which is a period during which a charged particle beam is supplied to the irradiation device. Further, when moving between spots, which is a period during which the supply of the charged particle beam to the irradiation apparatus is interrupted, the high-frequency power applied to the emission apparatus is turned off.
Here, the difference from the previous embodiment is that when the supply of the charged particle beam to the irradiation device is cut off at the timing when the predetermined dose has expired at each irradiation spot, the high-frequency power applied to the emission device 26 is turned off, As shown in FIG. 9 (F), the beam blocking electromagnet 33 installed in the beam transport system 300 is excited at a high speed to be removed from the beam trajectory to the irradiation device 500, thereby blocking the transport of the charged particle beam. is there. Further, when supplying the charged particle beam to the irradiation device 500, the high-frequency power applied to the emission device 26 is turned on, and the excitation of the beam blocking electromagnet 33 installed in the beam transport system 300 is stopped at high speed. The point is that the charged particle beam starts to be transported in accordance with the beam trajectory to 500.

ここで、特許文献2に記載の公知技術をスポットスキャニング法に適用した場合と比較するため、図9(B)(E)にその場合の動作を破線で示す。
図9(B)の破線で示すように、特許文献2の従来技術では、照射装置に荷電粒子ビームを供給するスポット照射期間で、出射装置に印加する高周波電力の帯域中心周波数を安定限界の内側の荷電粒子ビームと共鳴する値f1(第1の値)に固定している。そのため、安定限界の内側の荷電粒子ビームは振動振幅が大きくなり常に安定限界付近に供給されるため、スポット線量が満了して出射ビームを停止するタイミングで安定限界付近のビーム粒子の密度が高くなっている。その結果、図9(E)の破線に示すように、スポット線量満了直後の遅延出射ビーム量が大きく、その後も振動振幅が大きなビーム粒子は照射スポット間の時間に漏れビームとして出射される。それら遅延照射やスポット照射開始時にスパイク状ビーム波形の原因となる振動振幅が大きなビーム粒子は、ビーム輸送系に設置したビーム遮断電磁石で廃棄されるので、従来技術ではビーム利用効率の低下の問題があった。
Here, in order to compare with the case where the well-known technique of patent document 2 is applied to the spot scanning method, the operation | movement in that case is shown with a broken line in FIG.9 (B) (E).
As shown by the broken line in FIG. 9B, in the prior art of Patent Document 2, the band center frequency of the high-frequency power applied to the emission device is within the stability limit in the spot irradiation period in which the charged particle beam is supplied to the irradiation device. The value f1 (first value) that resonates with the charged particle beam is fixed. Therefore, the charged particle beam inside the stability limit has a large vibration amplitude and is always supplied near the stability limit. Therefore, the density of beam particles near the stability limit increases at the timing when the spot dose expires and the exit beam is stopped. ing. As a result, as shown by a broken line in FIG. 9E, the beam particle having a large delayed emission beam amount immediately after the spot dose expires and having a large vibration amplitude is emitted as a leak beam at the time between the irradiation spots. Beam particles with large vibration amplitude that cause spike-shaped beam waveforms at the start of delayed irradiation or spot irradiation are discarded by the beam-blocking electromagnet installed in the beam transport system. there were.

それに対して本実施形態では、図9(B)の実線で示すように、照射装置500に荷電粒子ビームを供給するスポット照射期間の前半の第1の期間では、出射装置26に印加する高周波電力の帯域中心周波数を安定限界の内側の荷電粒子ビームと共鳴する値f1(第1の値)に設定し、スポット照射期間の後半の第2の期間では帯域中心周波数を安定限界の境界付近の荷電粒子ビームと共鳴する値f2(第2の値)に設定している。
本実施形態により、スポット照射期間の後半の第2の期間では安定限界の境界付近の荷電粒子ビームと共鳴するため、安定限界の境界付近のビーム粒子を選択的に効率良く出射でき、安定限界の境界付近の粒子密度を十分に低減できる。したがって、従来技術ではビーム輸送系に設置したビーム遮断電磁石で廃棄する必要のあった遅延照射やスポット照射開始時にスパイク状ビーム波形の原因となる振動振幅が大きなビーム粒子は、本実施形態ではスポット照射期間の後半の第2の期間で出射されて治療照射に有効に利用されるため、ビーム利用効率の低下を抑制することができる。
On the other hand, in the present embodiment, as indicated by the solid line in FIG. 9B, in the first period of the first half of the spot irradiation period in which the charged particle beam is supplied to the irradiation device 500, the high-frequency power applied to the emission device 26 Is set to a value f1 (first value) that resonates with the charged particle beam inside the stability limit, and the band center frequency is charged near the boundary of the stability limit in the second period of the second half of the spot irradiation period. The value f2 (second value) that resonates with the particle beam is set.
According to the present embodiment, in the second period of the second half of the spot irradiation period, since it resonates with the charged particle beam near the boundary of the stability limit, the beam particles near the boundary of the stability limit can be selectively and efficiently emitted. The particle density near the boundary can be sufficiently reduced. Therefore, in the present embodiment, the beam particle having a large vibration amplitude causing the spiked beam waveform at the start of delayed irradiation or spot irradiation, which had to be discarded by the beam breaker magnet installed in the beam transport system in the prior art, is spot irradiation in this embodiment. Since it is emitted in the second period in the latter half of the period and is effectively used for therapeutic irradiation, it is possible to suppress a decrease in beam utilization efficiency.

さらに、本実施形態により、スポット照射期間の前半の第1の期間では安定限界の内側の荷電粒子ビームと共鳴するため、スポット照射開始時に安定限界の境界付近の荷電粒子ビームが急激に出射されることを抑制できる。   Furthermore, according to the present embodiment, in the first period of the first half of the spot irradiation period, it resonates with the charged particle beam inside the stability limit, so that the charged particle beam near the boundary of the stability limit is suddenly emitted at the start of spot irradiation. This can be suppressed.

ここで、出射装置に供給する出射用高周波の帯域中心周波数を切替えるタイミングであるが、例えば、スポット照射期間でスポット照射線量が所定量の70%に到達した時点に選定し、制御装置600において照射装置500のビームモニタ52からの伝送信号(図1で(H)と記載)に基づき線量を監視しながら出射装置26の電源26Aをタイミング制御すればよい。本実施形態では上記タイミング信号を境にスポット照射期間の前半の第1の期間の帯域中心周波数をf1(第1の値)、後半の第2の期間の帯域中心周波数をf2(第2の値)と設定している。
しかしながら、それは必須ではなく、前実施形態の場合と同様に、スポット照射期間の出射開始時がf1(第1の値)で、出射終了時までの間においてf2(第2の値)に設定されていれば、図5,6に示すようなスポット照射期間の間で帯域中心周波数fがf1(第1の値)からf2(第2の値)まで時間的に連続的に変化しても同様な効果がある。
Here, the timing of switching the band center frequency of the high frequency for emission supplied to the emission device is selected, for example, when the spot irradiation dose reaches 70% of the predetermined amount in the spot irradiation period, and the control device 600 performs irradiation. The power supply 26A of the extraction device 26 may be timing-controlled while monitoring the dose based on the transmission signal from the beam monitor 52 of the device 500 (described as (H) in FIG. 1). In this embodiment, the band center frequency in the first period of the first half of the spot irradiation period is f1 (first value) and the band center frequency of the second period in the second half is f2 (second value) with the timing signal as a boundary. ) Is set.
However, this is not essential, and as in the case of the previous embodiment, f1 (first value) at the start of extraction in the spot irradiation period is set to f2 (second value) until the end of extraction. 5 and 6, even if the band center frequency f continuously changes in time from f1 (first value) to f2 (second value) during the spot irradiation period as shown in FIGS. There is a great effect.

本実施形態における照射装置500と、出射装置26に高周波電力を供給する電源26Aの構成と動作原理は、前実施形態と同様のため説明を省略する。   Since the configuration and operation principle of the irradiation apparatus 500 and the power supply 26A that supplies high-frequency power to the emission apparatus 26 in the present embodiment are the same as those in the previous embodiment, the description thereof is omitted.

以上説明した本実施形態によれば、ビーム遮断時の安定限界の境界付近の粒子密度を低減できるため、遅延照射やスパイク状の出射ビーム波形を抑制する目的でビーム輸送系の遮断用電磁石を用いて廃棄するビーム量が低減でき、ビーム利用効率の低下を緩和できる。これにより、線量率の低下に伴う治療スループットの悪化を回避しながら、治療精度を向上できる。   According to the present embodiment described above, since the particle density near the boundary of the stability limit at the time of beam interruption can be reduced, an interruption magnet of the beam transport system is used for the purpose of suppressing delayed irradiation and spike-like outgoing beam waveform. Therefore, the amount of beam to be discarded can be reduced, and the decrease in beam utilization efficiency can be mitigated. Thereby, the treatment accuracy can be improved while avoiding the deterioration of the treatment throughput due to the decrease in the dose rate.

11…前段加速器、
21…偏向電磁石(シンクロトロン)、
22…収束/発散型四極電磁石(シンクロトロン)、
23…六極電磁石、
24…入射装置、
25…加速空胴、
26…出射装置、
27…出射偏向装置、
28…高速四極電磁石、
31…偏向電磁石(ビーム輸送系)、
32…収束/発散型四極電磁石(ビーム輸送系)、
33…ビーム遮断用電磁石、
34…ビームダンプ、
41…患者、
42…患部、
51…走査電磁石、
52…ビームモニタ、
61…運転データ生成部、
62…タイミング信号生成部、
63…線量監視部、
64…高周波発振器、
65…高周波切替器、
66…帯域信号発生器、
67…乗算器、
68…振幅変調器、
69…高周波電力増幅器、
100…粒子線治療システム、
200…シンクロトロン、
300…ビーム輸送系、
400…治療室、
500…照射装置、
600…制御装置、
25A,26A,28A,33A,500A…電源。
11 ... Pre-accelerator,
21 ... Bending electromagnet (synchrotron),
22 ... Convergent / divergent quadrupole magnet (synchrotron),
23. Hexapole electromagnet,
24 ... Injection device,
25 ... Acceleration cavity,
26: Ejector,
27. Output deflection device,
28 ... High-speed quadrupole magnet,
31: Bending electromagnet (beam transport system),
32 ... Convergence / divergence type quadrupole magnet (beam transport system),
33 ... Electromagnet for beam blocking,
34 ... Beam dump,
41 ... Patient,
42 ... affected area,
51 ... Scanning magnet,
52 ... Beam monitor,
61 ... Driving data generation unit,
62 ... Timing signal generator,
63 ... Dose monitoring unit,
64. High frequency oscillator,
65 ... high frequency switch,
66 ... band signal generator,
67 ... multiplier,
68. Amplitude modulator,
69 ... high frequency power amplifier,
100: Particle beam therapy system,
200 ... Synchrotron,
300 ... Beam transportation system,
400 ... treatment room,
500 ... Irradiation device,
600 ... control device,
25A, 26A, 28A, 33A, 500A ... power source.

Claims (6)

荷電粒子ビームを所定のエネルギーまで加速し、出射装置に高周波電力を印加して発生させた高周波電磁場で安定限界を超えさせて荷電粒子ビームを断続的に複数回に分けて出射するシンクロトロンと、前記シンクロトロンから断続的に出射された荷電粒子ビームを治療室まで導くビーム輸送系と、前記治療室で患者の患部形状に合わせて荷電粒子ビームを断続的に照射する照射装置から構成される粒子線治療システムにおいて、
前記照射装置に荷電粒子ビームを供給する期間では前記出射装置に印加する高周波電力をONし、前記照射装置への荷電粒子ビームの供給を遮断する期間では前記出射装置に印加する高周波電力をOFFするとともに、前記照射装置に荷電粒子ビームを供給する期間内で前記出射装置に印加する高周波電力の帯域中心周波数を変化させる制御装置を備えることを特徴とする粒子線治療システム。
A synchrotron for accelerating the charged particle beam to a predetermined energy and emitting the charged particle beam intermittently in a plurality of times by exceeding a stability limit in a high frequency electromagnetic field generated by applying a high frequency power to the extraction device; Particles comprising a beam transport system that guides a charged particle beam intermittently emitted from the synchrotron to a treatment room, and an irradiation device that irradiates the charged particle beam intermittently in accordance with the shape of the affected part of the patient in the treatment room In the line therapy system,
The high frequency power applied to the extraction device is turned on during the period during which the charged particle beam is supplied to the irradiation device, and the high frequency power applied to the extraction device is turned off during the period during which the supply of the charged particle beam to the irradiation device is cut off. In addition, a particle beam therapy system comprising: a control device that changes a band center frequency of a high-frequency power applied to the extraction device within a period during which a charged particle beam is supplied to the irradiation device.
請求項1に記載の粒子線治療システムにおいて、
前記制御装置は、
前記照射装置に荷電粒子ビームを供給する期間の出射開始時において、前記出射装置に印加する高周波電力の帯域中心周波数を前記安定限界の内側の荷電粒子ビームと共鳴する第1の値に設定し、
前記照射装置に荷電粒子ビームを供給する期間の後半の出射終了時までの間において、前記出射装置に印加する高周波電力の帯域中心周波数を前記安定限界の境界付近の荷電粒子ビームと共鳴する第2の値に設定することを特徴とする粒子線治療システム。
The particle beam therapy system according to claim 1, wherein
The controller is
At the start of extraction during the period of supplying the charged particle beam to the irradiation device, the band center frequency of the high frequency power applied to the extraction device is set to a first value that resonates with the charged particle beam inside the stability limit,
During the period until the end of extraction in the latter half of the period during which the charged particle beam is supplied to the irradiation device, a second frequency band resonance frequency of the high frequency power applied to the extraction device resonates with the charged particle beam near the boundary of the stability limit. A particle beam therapy system, characterized by being set to a value of.
請求項2に記載の粒子線治療システムにおいて、
前記制御装置は、
前記照射装置に荷電粒子ビームを供給する期間の前記出射開始時を含む第1の期間において、前記出射装置に印加する高周波電力の帯域中心周波数を前記第1の値に設定し、
前記照射装置に荷電粒子ビームを供給する期間の後半の前記出射終了時までの第2の期間において、前記出射装置に印加する高周波電力の帯域中心周波数を前記第2の値に設定することを特徴とする粒子線治療システム。
The particle beam therapy system according to claim 2,
The controller is
In a first period including the start of extraction of a period during which a charged particle beam is supplied to the irradiation device, a band center frequency of high-frequency power applied to the extraction device is set to the first value,
In the second period until the end of the extraction in the latter half of the period during which the charged particle beam is supplied to the irradiation apparatus, the band center frequency of the high-frequency power applied to the extraction apparatus is set to the second value. A particle beam therapy system.
請求項2に記載の粒子線治療システムにおいて、
前記制御装置は、
前記照射装置に荷電粒子ビームを供給する期間の前記出射開始時と前記出射終了時の間において、前記出射装置に印加する高周波電力の帯域中心周波数を前記第1の値から前記第2の値に連続的に変化させることを特徴とする粒子線治療システム。
The particle beam therapy system according to claim 2,
The controller is
The band center frequency of the high-frequency power applied to the extraction device is continuously changed from the first value to the second value between the start of extraction and the end of extraction during the period of supplying the charged particle beam to the irradiation device. A particle beam therapy system characterized in that
請求項1〜4のいずれか1項記載の粒子線治療システムにおいて、
前記制御装置は、
前記照射装置に荷電粒子ビームを供給する際には、前記出射装置に印加する高周波電力をONするとともに、前記シンクロトロンに設置した電磁石の励磁量を変化させて前記安定限界を狭めて荷電粒子ビームの出射を開始し、
前記照射装置への荷電粒子ビームの供給を遮断する際には、前記出射装置に印加する高周波電力をOFFするとともに、前記シンクロトロンに設置した電磁石の励磁量を変化させて前記安定限界を広げて荷電粒子ビームの出射を停止することを特徴とする粒子線治療システム。
In the particle beam therapy system according to any one of claims 1 to 4,
The controller is
When supplying a charged particle beam to the irradiation device, the charged particle beam is turned on by turning on the high-frequency power applied to the extraction device and changing the excitation amount of an electromagnet installed in the synchrotron to narrow the stability limit. Starts to emit,
When cutting off the supply of the charged particle beam to the irradiation device, the high frequency power applied to the extraction device is turned off and the excitation limit of the electromagnet installed in the synchrotron is changed to widen the stability limit. A particle beam therapy system which stops emission of a charged particle beam.
請求項1〜4のいずれか1項記載の粒子線治療システムにおいて、
前記制御装置は、
前記照射装置に荷電粒子ビームを供給する際には、前記出射装置に印加する高周波電力をONするとともに、前記ビーム輸送系に設置した電磁石の励磁量を変化させて前記照射装置へのビーム軌道に合わせて荷電粒子ビームの輸送を開始し、
前記照射装置への荷電粒子ビームの供給を遮断する際には前記出射装置に印加する高周波電力をOFFするとともに、前記ビーム輸送系に設置した電磁石の励磁量を変化させて前記照射装置へのビーム軌道から外して荷電粒子ビームの輸送を遮断することを特徴とする粒子線治療システム。
In the particle beam therapy system according to any one of claims 1 to 4,
The controller is
When supplying a charged particle beam to the irradiation device, the high frequency power applied to the extraction device is turned on, and the excitation amount of an electromagnet installed in the beam transport system is changed to change the beam trajectory to the irradiation device. At the same time, the transport of the charged particle beam is started.
When the supply of the charged particle beam to the irradiation device is cut off, the high frequency power applied to the extraction device is turned off, and the excitation amount of an electromagnet installed in the beam transport system is changed to change the beam to the irradiation device. A particle beam therapy system characterized in that the transport of the charged particle beam is cut off from the orbit.
JP2011241302A 2011-11-02 2011-11-02 Particle beam therapy system Active JP5781421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241302A JP5781421B2 (en) 2011-11-02 2011-11-02 Particle beam therapy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241302A JP5781421B2 (en) 2011-11-02 2011-11-02 Particle beam therapy system

Publications (2)

Publication Number Publication Date
JP2013094486A true JP2013094486A (en) 2013-05-20
JP5781421B2 JP5781421B2 (en) 2015-09-24

Family

ID=48617069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241302A Active JP5781421B2 (en) 2011-11-02 2011-11-02 Particle beam therapy system

Country Status (1)

Country Link
JP (1) JP5781421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207852A1 (en) * 2013-06-26 2014-12-31 株式会社日立製作所 Charged particle beam radiation system and beam emission method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332794A (en) * 2004-04-19 2005-12-02 Mitsubishi Electric Corp Charged-particle beam accelerator, particle beam radiation therapy system using it, and method of operating particle beam radiation therapy system
JP2011034823A (en) * 2009-08-03 2011-02-17 Hitachi Ltd Particle beam therapy system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332794A (en) * 2004-04-19 2005-12-02 Mitsubishi Electric Corp Charged-particle beam accelerator, particle beam radiation therapy system using it, and method of operating particle beam radiation therapy system
JP2011034823A (en) * 2009-08-03 2011-02-17 Hitachi Ltd Particle beam therapy system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207852A1 (en) * 2013-06-26 2014-12-31 株式会社日立製作所 Charged particle beam radiation system and beam emission method

Also Published As

Publication number Publication date
JP5781421B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP4339904B2 (en) Particle beam therapy system
JP4691576B2 (en) Particle beam therapy system
JP4988516B2 (en) Particle beam therapy system
JP4257741B2 (en) Charged particle beam accelerator, particle beam irradiation medical system using charged particle beam accelerator, and method of operating particle beam irradiation medical system
JP4982535B2 (en) Particle beam therapy system
JP5978125B2 (en) Particle beam therapy system
JP5002612B2 (en) Charged particle beam irradiation equipment
JP6200368B2 (en) Charged particle irradiation system and control method of charged particle beam irradiation system
JP5159688B2 (en) Particle beam therapy system
JP2015047260A (en) Particle beam irradiation system and operation method for the same
US8525449B2 (en) Charged particle beam extraction method using pulse voltage
JP5542703B2 (en) Charged particle beam irradiation system and operation method of circular accelerator
JP5998089B2 (en) Particle beam irradiation system and its operation method
JP2014028061A (en) Corpuscular ray irradiation system and operation method therefor
JP5781421B2 (en) Particle beam therapy system
JP2008071494A (en) Charged particle beam accelerator, and particle beam irradiation system using the same
JP5011335B2 (en) Particle beam therapy system and synchrotron operation method
JP5111233B2 (en) Particle beam therapy system
JP5340131B2 (en) Circular accelerator and operation method of circular accelerator
JP6007133B2 (en) Synchrotron and particle beam therapy system using the same
JP6279036B2 (en) Particle beam irradiation system and its operation method
WO2014207852A1 (en) Charged particle beam radiation system and beam emission method
JP2014079300A (en) Charged particle beam irradiation system
KR101152723B1 (en) Irradiation control apparatus of charged particle ray and irradiation method of charged particle ray
JP2011076819A (en) Annular accelerator and particle beam therapy system employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140814

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150715

R150 Certificate of patent or registration of utility model

Ref document number: 5781421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150