JP2013079423A - Facility and method for producing reduced iron powder - Google Patents

Facility and method for producing reduced iron powder Download PDF

Info

Publication number
JP2013079423A
JP2013079423A JP2011219727A JP2011219727A JP2013079423A JP 2013079423 A JP2013079423 A JP 2013079423A JP 2011219727 A JP2011219727 A JP 2011219727A JP 2011219727 A JP2011219727 A JP 2011219727A JP 2013079423 A JP2013079423 A JP 2013079423A
Authority
JP
Japan
Prior art keywords
iron powder
reduced iron
hopper
facility
producing reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011219727A
Other languages
Japanese (ja)
Inventor
Yasuhiko Sakaguchi
泰彦 阪口
Kazuo Higuchi
和男 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011219727A priority Critical patent/JP2013079423A/en
Publication of JP2013079423A publication Critical patent/JP2013079423A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a facility and method for producing reduced iron powder which efficiently performs finish reduction processing of crude iron powder such as rough-reduced iron powder and atomized iron powder.SOLUTION: The facility for producing reduced iron powder includes: a hopper for storing and supplying the crude iron powder such as rough-reduced iron powder and atomized iron powder; and a continuous movable bed furnace for applying at least one finish reduction processing of decarburization, deoxidation and denitrification to the crude iron powder. In the facility for producing reduced iron powder, a heating pipe through which a heating medium gas can circulate, and a straightening plate having an isosceles triangle shape with a base angle of 45° or more are provided in a position inside the hopper upper than the position of a supply port part of the hopper, wherein the supply port part of the hopper is a part having the same cross-sectional shape as a supply port positioned at a lower end of the hopper.

Description

本発明は、粗還元鉄粉、アトマイズ鉄粉などの粗製鉄粉に仕上還元処理を施すための還元鉄粉の製造設備および製造方法に関する。   The present invention relates to a production facility and a production method for reduced iron powder for subjecting coarse iron powder such as coarsely reduced iron powder and atomized iron powder to a finish reduction treatment.

一般に、ミルスケールを用いた粗還元鉄粉やアトマイズ鉄粉などの粗製鉄粉には、その用途に応じて、図1に示すような還元鉄粉の製造設備を用いて、脱炭、脱酸、脱窒のような仕上還元処理が施される。すなわち、ホッパ8aからガイドダクト8bを介してホイール10で駆動された移動床(例えば、スチールベルト)9上に連続的に供給される粗製鉄粉7は、ラジアントチューブ11により所定の温度に加熱された連続式移動床炉30内を水平移動し、雰囲気中の水素や水蒸気と反応して、下記の反応式(1)〜(3)にしたがって脱炭、脱酸、脱窒の仕上還元処理を受ける。
C (in Fe) + H2O = CO + H2・・・(1)
FeO + H2 = Fe + H2O ・・・(2)
N (in Fe) + (3/2)H2 = NH3・・・(3)
このとき、脱炭は露点30〜60℃の水素ガス雰囲気中、温度600〜1100℃で、脱酸は露点40℃以下の水素ガス雰囲気中、温度700〜1100℃で、脱窒は露点40℃以下の水素ガス雰囲気中、温度450〜750℃で行われる。そのため、連続式移動床炉30内は炉長方向に沿って入口側から第一室2、第二室3、第三室4の3室に仕切り壁1によって区分され、例えば第一室2では脱炭、第二室3では脱酸、第三室4では脱窒の処理が施されるように、各室の雰囲気ガスや温度が制御される。
In general, for coarse iron powder such as coarse reduced iron powder and atomized iron powder using a mill scale, depending on the application, using reduced iron powder manufacturing equipment as shown in Fig. 1, decarburization, deoxidation A finish reduction treatment such as denitrification is performed. That is, the crude iron powder 7 continuously supplied from the hopper 8a to the moving bed (for example, steel belt) 9 driven by the wheel 10 through the guide duct 8b is heated to a predetermined temperature by the radiant tube 11. In the continuous moving bed furnace 30, it moves horizontally and reacts with hydrogen and steam in the atmosphere, and finish reduction treatment of decarburization, deoxidation, denitrification according to the following reaction formulas (1) to (3) receive.
C (in Fe) + H 2 O = CO + H 2 ... (1)
FeO + H 2 = Fe + H 2 O (2)
N (in Fe) + (3/2) H 2 = NH 3 ... (3)
At this time, decarburization is performed in a hydrogen gas atmosphere having a dew point of 30 to 60 ° C. at a temperature of 600 to 1100 ° C., deoxidation is performed in a hydrogen gas atmosphere having a dew point of 40 ° C. or less, a temperature of 700 to 1100 ° C., and denitrification is performed at a dew point of 40 ° C. The following hydrogen gas atmosphere is performed at a temperature of 450 to 750 ° C. Therefore, the continuous moving bed furnace 30 is divided by the partition wall 1 into the first chamber 2, the second chamber 3, and the third chamber 4 from the inlet side along the furnace length direction, for example, in the first chamber 2. The atmosphere gas and temperature of each chamber are controlled so that decarburization, deoxidation in the second chamber 3, and denitrification in the third chamber 4 are performed.

また、雰囲気ガスは、連続式移動床炉30出口側の雰囲気ガス導入口5から炉内に導入され、連続式移動床炉30入口側の雰囲気ガス排出口6から炉外に排出され、雰囲気ガス排気管13を介して排気ダクト14へ送られる。また、ラジアントチューブ11内の燃焼排ガスも燃焼ガス排気管12を介して排気ダクト14へ送られる。   In addition, the atmospheric gas is introduced into the furnace from the atmospheric gas inlet 5 at the outlet side of the continuous moving bed furnace 30 and discharged from the atmospheric gas outlet 6 at the inlet side of the continuous moving bed furnace 30 to the atmosphere gas. It is sent to the exhaust duct 14 via the exhaust pipe 13. Further, the combustion exhaust gas in the radiant tube 11 is also sent to the exhaust duct 14 via the combustion gas exhaust pipe 12.

こうした連続式移動床炉30において、効率よく仕上還元処理を行うためには、各室での温度管理が重要である。しかし、通常は、粗製鉄粉7が連続式移動床炉30内に入るときには室温で、粗製鉄粉7全体が所定の温度に到達するのは第一室2の出口付近となるため、移動床9の移動速度を速くしたり、移動床9上の粗製鉄粉7の堆積量を増加して生産性の向上を図ろうとすると、粗製鉄粉7全体を所定の温度まで加熱することが困難になり、仕上還元処理の効率化に対して大きな障壁となっていた。   In such a continuous moving bed furnace 30, temperature control in each chamber is important in order to perform finish reduction processing efficiently. However, normally, when the coarse iron powder 7 enters the continuous moving bed furnace 30, it is room temperature, and the entire coarse iron powder 7 reaches a predetermined temperature near the outlet of the first chamber 2, so that the moving bed When trying to improve the productivity by increasing the moving speed of 9 or increasing the amount of accumulated coarse iron powder 7 on the moving bed 9, it becomes difficult to heat the entire coarse iron powder 7 to a predetermined temperature. Therefore, it was a big barrier to the efficiency of the finishing reduction process.

そこで、特許文献1や2には、図1に示すように、ホッパ8aの供給口部に間接加熱方式の熱交換器である予熱器15を設けて粗製鉄粉7を加熱する方法が提案されている。また、予熱器15は、図2にその一例を示すように、粗製鉄粉7の流れに直交するように排気ダクト14から出ている複数の熱交換パイプ16が挿入されたものであり、粗製鉄粉7は、燃焼排ガスが流れている熱交換用パイプ16の間を通り抜けるときに加熱される。ここで、ホッパ8aの供給口部17とは、図2に示すように、下端にある供給口18と同じ断面形状を有する部位のことをいう。   Therefore, Patent Documents 1 and 2 propose a method of heating the crude iron powder 7 by providing a preheater 15 that is a heat exchanger of an indirect heating method at the supply port portion of the hopper 8a as shown in FIG. ing. In addition, as shown in FIG. 2, the preheater 15 has a plurality of heat exchange pipes 16 extending from the exhaust duct 14 inserted so as to be orthogonal to the flow of the coarse iron powder 7. The iron powder 7 is heated when passing through between the heat exchange pipes 16 through which the combustion exhaust gas flows. Here, the supply port portion 17 of the hopper 8a refers to a portion having the same cross-sectional shape as the supply port 18 at the lower end, as shown in FIG.

特開昭62-235401号公報JP-A-62-235401 特開昭63-153204号公報JP 63-153204 A

しかしながら、特許文献1、2に記載の予熱器を用いた加熱方法では、粗製鉄粉を100〜200℃程度にしか加熱できず、仕上還元処理の効率化を十分に図ることができない。   However, in the heating method using the preheater described in Patent Documents 1 and 2, the crude iron powder can be heated only to about 100 to 200 ° C., and the efficiency of the finish reduction treatment cannot be sufficiently improved.

本発明は、粗還元鉄粉、アトマイズ鉄粉などの粗製鉄粉を効率よく仕上還元処理できる還元鉄粉の製造設備および製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing equipment and manufacturing method of reduced iron powder which can carry out finish reduction processing of coarse iron powder, such as rough reduced iron powder and atomized iron powder, efficiently.

本発明者等は、上記の目的を達成すべく鋭意検討を行った結果、以下の知見を得た。   As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.

i) ホッパの供給口部において粗製鉄粉を加熱しても、高々200℃程度までしか加熱できない理由は、供給口部の構造上加熱時間を十分に確保できないためである。   i) Even if the crude iron powder is heated at the supply port of the hopper, it can only be heated up to about 200 ° C. because the heating time cannot be sufficiently secured due to the structure of the supply port.

ii) ホッパの供給口部より上部にあるホッパ内の位置に、熱媒体ガスが流通可能な加熱用パイプと底角が45°以上である二等辺三角形状の整流板を設けて、粗製鉄粉を加熱すれば、200℃を超える温度に均一加熱でき、仕上還元処理の効率化を図ることができる。   ii) At the position inside the hopper above the hopper supply port, a heating pipe through which the heat medium gas can circulate and an isosceles triangle rectifying plate with a base angle of 45 ° or more are provided, and the coarse iron powder Can be heated uniformly to a temperature exceeding 200 ° C., and the efficiency of the finish reduction treatment can be improved.

本発明は、このような知見に基づきなされたもので、粗還元鉄粉、アトマイズ鉄粉などの粗製鉄粉を貯蔵し、供給するためのホッパと、前記粗製鉄粉に脱炭、脱酸、脱窒のうちの少なくとも一つの仕上還元処理を施すための連続式移動床炉とを有する還元鉄粉の製造設備において、前記ホッパの供給口部より上部にあるホッパ内の位置に、熱媒体ガスが流通可能な加熱用パイプと底角が45°以上である二等辺三角形状の整流板とを設けたことを特徴とする還元鉄粉の製造設備を提供する。ここで、ホッパの供給口部とはホッパ下端にある供給口と同じ断面形状を有する部位のことをいう。   The present invention was made on the basis of such knowledge, and stores and supplies crude iron powder such as coarsely reduced iron powder and atomized iron powder, and decarburization, deoxidation, and the like to the crude iron powder. In a reduced iron powder production facility having a continuous moving bed furnace for performing at least one finish reduction treatment of denitrification, a heating medium gas is located at a position in the hopper above the supply port of the hopper. A reduced iron powder manufacturing facility is provided, which is provided with a heating pipe that can circulate and an isosceles triangular rectifying plate having a base angle of 45 ° or more. Here, the supply port portion of the hopper refers to a portion having the same cross-sectional shape as the supply port at the lower end of the hopper.

本発明である還元鉄粉の製造設備では、整流板が、熱媒体ガスが流通可能な整流板であったり、加熱用パイプを設けた位置に、不活性ガス吹き込み手段を設けることが好ましい。   In the facility for producing reduced iron powder according to the present invention, it is preferable that the rectifying plate is a rectifying plate through which a heat medium gas can flow or an inert gas blowing means is provided at a position where a heating pipe is provided.

本発明は、また、上記の還元鉄粉の製造設備を用い、加熱用パイプに熱媒体ガスを流通させて粗製鉄粉を200℃超え300℃以下の温度範囲に加熱後、連続式移動床炉で脱炭、脱酸、脱窒のうちの少なくとも一つの仕上還元処理を施すことを特徴とする還元鉄粉の製造方法を提供する。   The present invention also uses the above-described reduced iron powder production facility, and circulates the heating medium gas through a heating pipe to heat the crude iron powder to a temperature range of 200 ° C. to 300 ° C. A method for producing reduced iron powder, characterized in that at least one finish reduction treatment among decarburization, deoxidation, and denitrification is performed.

本発明は、さらに、上記の還元鉄粉の製造設備を用い、不活性ガス吹き込み手段から不活性ガスを吹き込みながら、加熱用パイプに熱媒体ガスを流通させて粗製鉄粉を200℃超え350℃以下の温度範囲に加熱後、連続式移動床炉で脱炭、脱酸、脱窒のうちの少なくとも一つの仕上還元処理を施すことを特徴とする還元鉄粉の製造方法を提供する。   The present invention further uses the above-described reduced iron powder production facility, while blowing the inert gas from the inert gas blowing means, while circulating the heating medium gas through the heating pipe, the crude iron powder exceeds 200 ° C. and 350 ° C. Provided is a method for producing reduced iron powder, characterized by performing at least one finish reduction treatment of decarburization, deoxidation, and denitrification in a continuous moving bed furnace after heating to the following temperature range.

これらの還元鉄粉の製造方法では、熱媒体ガスの熱源として、仕上還元処理時の排ガスを用いることができる。   In these methods for producing reduced iron powder, exhaust gas during the finish reduction treatment can be used as a heat source for the heat medium gas.

本発明により、粗還元鉄粉、アトマイズ鉄粉などの粗製鉄粉を効率よく仕上還元処理できるようになった。本発明の製造方法で製造された還元鉄粉は、焼結機械部品、焼結磁性部品、磁性鉄粉などに好適である。   According to the present invention, it is possible to efficiently perform a finish reduction treatment of crude iron powder such as coarsely reduced iron powder and atomized iron powder. The reduced iron powder produced by the production method of the present invention is suitable for sintered machine parts, sintered magnetic parts, magnetic iron powders and the like.

従来の還元鉄粉の製造設備の一例を模式的に示す図である。It is a figure which shows typically an example of the manufacturing equipment of the conventional reduced iron powder. 図1の予熱器15の一例を模式的に示す図である。FIG. 2 is a diagram schematically showing an example of a preheater 15 in FIG. 本発明の還元鉄粉の製造設備の特徴であるホッパの一例を模式的に示す図である。It is a figure which shows typically an example of the hopper which is the characteristics of the manufacturing equipment of the reduced iron powder of this invention. ホッパ内における粗製鉄粉の流出挙動を模式的に示す図である。It is a figure which shows typically the outflow behavior of the crude iron powder in a hopper. ホッパから移動床に供給された直後における粗還元鉄粉の温度の経時変化を示す図である。It is a figure which shows the time-dependent change of the temperature of the coarse reduced iron powder immediately after being supplied to the moving bed from the hopper. ホッパから移動床に供給された直後における粗還元鉄粉の粒径の経時変化を示す図である。It is a figure which shows the time-dependent change of the particle size of the rough reduced iron powder immediately after being supplied from the hopper to the moving bed.

上述したように、ホッパの供給口部において粗製鉄粉を加熱しても、供給口部の構造上加熱時間を十分に確保できないため、高々200℃程度までしか加熱できない。そのため、粗製鉄粉を200℃を超える温度に加熱するには、加熱時間を確保できるホッパの排出口部より上部にある位置で加熱する必要がある。しかし、ホッパの外部から加熱すると、ホッパ内の中心部と外壁近傍部にある粗製鉄粉を均一加熱することができず、そのために還元鉄粉の粒径のバラツキも大きくなりやすい。   As described above, even when the crude iron powder is heated at the supply port portion of the hopper, the heating time cannot be sufficiently ensured due to the structure of the supply port portion, so that it can be heated only up to about 200 ° C. Therefore, in order to heat the crude iron powder to a temperature exceeding 200 ° C., it is necessary to heat it at a position above the outlet of the hopper that can ensure the heating time. However, when heated from the outside of the hopper, the crude iron powder in the central portion of the hopper and in the vicinity of the outer wall cannot be heated uniformly, so that the variation in the particle size of the reduced iron powder tends to increase.

そこで、本発明では、ホッパの供給口部より上部にある位置に、熱媒体ガスが流通可能な加熱用パイプを設け、ホッパ内で粗製鉄粉を200℃を超える温度に均一加熱できるようにした。以下に、その詳細を説明する。   Therefore, in the present invention, a heating pipe through which the heat medium gas can flow is provided at a position above the supply port of the hopper so that the crude iron powder can be uniformly heated to a temperature exceeding 200 ° C. in the hopper. . The details will be described below.

図3に、本発明の還元鉄粉の製造設備の特徴であるホッパの一例を模式的に示す。ホッパ8aの供給口部17より上部にあるホッパ8a内の位置に、熱媒体ガスが流通可能な加熱用パイプ21を這わせ、この加熱用パイプ21に熱媒体ガスを流通させて粗製鉄粉7を加熱する必要がある。このとき、粗製鉄粉7の加熱温度は200℃超え300℃以下とする。これは、200℃以下では仕上還元処理の効率化が図れず、300℃を超えると酸化により加熱用パイプ21表面に粗製鉄粉7が付着・固化し、熱伝導を悪化させるとともに、粗製鉄粉7の円滑な流出を阻害するためである。しかし、加熱用パイプ21を設けた位置に、不活性ガス吹き込み手段23を設け、不活性ガスを吹き込みながら加熱すれば、350℃までは酸化による加熱用パイプ21表面における粗製鉄粉7の付着・固化は起こらず、仕上還元処理の効率化を促進できる。なお、加熱用パイプ21の配置の仕方は、ホッパ8aの大きさに依存するので、所望の温度に粗製鉄粉を均一加熱できるように適宜決定すればよい。また、本発明では、特許文献1や2にあるようにホッパ8aの供給口部17に予熱器15を設ける必要はないが、設けても本発明の効果が損なわれることはない。   FIG. 3 schematically shows an example of a hopper, which is a feature of the reduced iron powder production facility of the present invention. A heating pipe 21 through which the heat medium gas can flow is placed at a position in the hopper 8a above the supply port portion 17 of the hopper 8a, and the heat iron gas is circulated through the heating pipe 21 so that the crude iron powder 7 Need to be heated. At this time, the heating temperature of the crude iron powder 7 is more than 200 ° C. and 300 ° C. or less. This is because the efficiency of the finish reduction treatment cannot be improved at 200 ° C. or lower. This is to prevent the smooth outflow of 7. However, if the inert gas blowing means 23 is provided at the position where the heating pipe 21 is provided and heated while blowing the inert gas, adhesion of the crude iron powder 7 on the surface of the heating pipe 21 due to oxidation up to 350 ° C. Solidification does not occur, and the efficiency of the finishing reduction process can be promoted. Note that the arrangement of the heating pipe 21 depends on the size of the hopper 8a, and therefore may be determined as appropriate so that the crude iron powder can be uniformly heated to a desired temperature. Further, in the present invention, it is not necessary to provide the preheater 15 in the supply port portion 17 of the hopper 8a as described in Patent Documents 1 and 2, but even if provided, the effect of the present invention is not impaired.

熱媒体ガスには、窒素ガス等の不活性ガスを用いることが好ましいが、その熱源には、図3に示すように、仕上還元処理で排出される燃焼排ガスや雰囲気ガスなどの排ガスを用いることができ、熱交換器20を設けて熱媒体ガスを加熱できる。   As the heat medium gas, it is preferable to use an inert gas such as nitrogen gas, but as the heat source, as shown in FIG. 3, exhaust gas such as combustion exhaust gas or atmospheric gas discharged in the finish reduction treatment is used. It is possible to heat the heat medium gas by providing the heat exchanger 20.

また、図4に示すように、一般に、ホッパ8a内の粗製鉄粉7は(1)→(2)→(3)→(4)の位置にある粗製鉄粉7から順に移動床へ流出するので、粗製鉄粉7がホッパ内に装入された位置により粗製鉄粉7のホッパ内での滞留時間が変わり、粗製鉄粉7を均一加熱できない。そのため、粗製鉄粉7をホッパ8a内に装入された順序で流出させる、いわゆるピストン・フローを形成させる必要があるが、それには、図3に示すように、ホッパ8a内に整流板22を設けることが効果的である。本発明者等が粗製鉄粉の安息角を調査したところ、30〜40°であることがわかったので、底角が45°以上である二等辺三角形状の整流板22を設ければ、整流板22上における粗製鉄粉7の滞留を防止でき、粗製鉄粉7を均一加熱できることになる。なお、整流板22の数やその配置は、ホッパ8aの大きさに依存するので、粗製鉄粉7のピストン・フローを形成できるように適宜決定すればよい。また、整流板22自体を、熱媒体ガスが流通可能な構造とすれば、粗製鉄粉7を所望の温度に短時間で加熱でき、仕上還元処理の効率化を図る上で好ましい。それには、図3に示すように、整流板22を中空構造とし、加熱用パイプ21に付随するように設けることが簡便である。   Also, as shown in FIG. 4, generally, the coarse iron powder 7 in the hopper 8a flows out from the coarse iron powder 7 at the position of (1) → (2) → (3) → (4) in order to the moving bed. Therefore, the residence time of the coarse iron powder 7 in the hopper varies depending on the position where the coarse iron powder 7 is charged in the hopper, and the coarse iron powder 7 cannot be heated uniformly. Therefore, it is necessary to form a so-called piston flow that causes the crude iron powder 7 to flow out in the order in which it is inserted into the hopper 8a.To that end, as shown in FIG. It is effective to provide. When the present inventors investigated the angle of repose of the crude iron powder, it was found that it was 30 to 40 °, so if the isosceles triangle-shaped rectifying plate 22 having a base angle of 45 ° or more was provided, The retention of the crude iron powder 7 on the plate 22 can be prevented, and the crude iron powder 7 can be heated uniformly. Note that the number and arrangement of the rectifying plates 22 depend on the size of the hopper 8a, and therefore may be determined as appropriate so that the piston flow of the coarse iron powder 7 can be formed. Further, if the rectifying plate 22 itself has a structure through which the heat medium gas can flow, the crude iron powder 7 can be heated to a desired temperature in a short time, which is preferable in terms of improving the efficiency of the finishing reduction treatment. For this purpose, as shown in FIG. 3, it is easy to provide the rectifying plate 22 to have a hollow structure and to accompany the heating pipe 21.

炭素量が0.5質量%、酸素量が0.8質量%で、粒径が100μmの粗還元鉄粉を、図3に示す本発明の還元鉄粉の製造設備に設けたホッパと図2に示す従来の還元鉄粉の製造設備に設けたホッパを用いて、加熱しながら連続式移動床炉の移動床に堆積高さが40mmとなるように供給し、連続式移動床炉内で導入量150m3/hrの露点35℃の水素ガス雰囲気中、温度950℃で脱炭および脱酸の仕上還元処理を行った。 Roughly reduced iron powder having a carbon content of 0.5% by mass, an oxygen content of 0.8% by mass, and a particle size of 100 μm is a hopper provided in the reduced iron powder production facility of the present invention shown in FIG. 3 and the conventional one shown in FIG. Using a hopper provided in the production facility for reduced iron powder, supply the moving bed of a continuous moving bed furnace to a moving height of 40 mm while heating, and the amount introduced is 150 m 3 / in the continuous moving bed furnace. Finish reduction treatment of decarburization and deoxidation was performed at a temperature of 950 ° C in a hydrogen gas atmosphere with a dew point of 35 ° C for hr.

そして、ホッパから移動床に供給された直後における粗還元鉄粉の温度と粒径の経時変化と、仕上還元処理後の炭素および酸素の含有量を調査した。   Then, the temperature and particle size change of the coarsely reduced iron powder immediately after being supplied from the hopper to the moving bed, and the carbon and oxygen contents after the finish reduction treatment were investigated.

ホッパから移動床に供給された直後における粗還元鉄粉の温度と粒径の経時変化を、図5、6に示す。本発明の還元鉄粉の製造設備に設けたホッパを用いた場合(実施例)には、粗還元鉄粉の温度が250〜280℃、粒径が92〜98μmで、従来の還元鉄粉の製造設備に設けたホッパを用いた場合(比較例)の粗還元鉄粉の温度120〜200℃、粒径83〜105μmに比べ、温度や粒径の経時変化が小さく、より高温に均一加熱されており、粒径も均一であることがわかる。   FIGS. 5 and 6 show temporal changes in the temperature and particle size of the coarsely reduced iron powder immediately after being supplied from the hopper to the moving bed. When using the hopper provided in the reduced iron powder production facility of the present invention (Example), the temperature of the coarse reduced iron powder is 250-280 ° C., the particle size is 92-98 μm, When the hopper provided in the manufacturing facility is used (comparative example), the temperature and particle size change over time is small compared to the temperature of the coarsely reduced iron powder of 120 to 200 ° C and the particle size of 83 to 105 μm. It can be seen that the particle size is uniform.

そのため、処理後の炭素量は0.01質量%以下、酸素量が0.3質量%以下で、両者の場合で変わりはなかったが、処理量は、本発明の還元鉄粉の製造設備に設けたホッパを用いた場合は8.1ton/hrで、従来の還元鉄粉の製造設備に設けたホッパを用いた場合の7.7ton/hrに比べ、増加しており、仕上還元処理の効率化が図られていることがわかる。   Therefore, the amount of carbon after treatment was 0.01% by mass or less and the amount of oxygen was 0.3% by mass or less, and there was no change in both cases, but the treatment amount was the same as the hopper provided in the reduced iron powder production facility of the present invention. When used, it is 8.1 ton / hr, an increase compared to 7.7 ton / hr when using the hopper provided in the conventional reduced iron powder production facility, and the efficiency of the finishing reduction process is improved. I understand that.

1 仕切り壁
2 第一室
3 第二室
4 第三室
5 雰囲気ガス導入口
6 雰囲気ガス排出口
7 粗製鉄粉
8a ホッパ
8b ガイドダクト
9 移動床(スチールベルト)
10 ホイール
11 ラジアントチューブ
12 燃焼ガス排気管
13 雰囲気ガス排気管
14 排気ダクト
15 予熱器
16 熱交換パイプ
17 供給口部
18 供給口
20 熱交換器
21 加熱用パイプ
22 整流板
23 不活性ガス吹き込み手段
30 連続式移動床炉
1 partition wall
2 Room 1
3 Second room
4 Third room
5 Atmospheric gas inlet
6 Atmospheric gas outlet
7 Crude iron powder
8a Hopper
8b Guide duct
9 Moving floor (steel belt)
10 wheels
11 Radiant tube
12 Combustion gas exhaust pipe
13 Atmospheric gas exhaust pipe
14 Exhaust duct
15 Preheater
16 Heat exchange pipe
17 Supply port
18 Supply port
20 heat exchanger
21 Heating pipe
22 Rectifier plate
23 Inert gas blowing means
30 Continuous moving bed furnace

Claims (6)

粗還元鉄粉、アトマイズ鉄粉などの粗製鉄粉を貯蔵し、供給するためのホッパと、前記粗製鉄粉に脱炭、脱酸、脱窒のうちの少なくとも一つの仕上還元処理を施すための連続式移動床炉とを有する還元鉄粉の製造設備において、前記ホッパの供給口部より上部にあるホッパ内の位置に、熱媒体ガスが流通可能な加熱用パイプと底角が45°以上である二等辺三角形状の整流板とを設けたことを特徴とする還元鉄粉の製造設備;ここで、ホッパの供給口部とはホッパ下端にある供給口と同じ断面形状を有する部位のことをいう。   A hopper for storing and supplying crude iron powder such as coarsely reduced iron powder and atomized iron powder, and for subjecting the crude iron powder to a finish reduction treatment of at least one of decarburization, deoxidation, and denitrification. In a production facility for reduced iron powder having a continuous moving bed furnace, a heating pipe through which a heat medium gas can flow and a bottom angle of 45 ° or more at a position in the hopper above the supply port of the hopper. A facility for producing reduced iron powder characterized by providing a certain isosceles triangle-shaped rectifying plate; Here, the supply port portion of the hopper is a portion having the same cross-sectional shape as the supply port at the lower end of the hopper Say. 整流板が、熱媒体ガスが流通可能な整流板であることを特徴とする請求項1に記載の還元鉄粉の製造設備。   2. The facility for producing reduced iron powder according to claim 1, wherein the rectifying plate is a rectifying plate through which the heat medium gas can flow. 加熱用パイプを設けた位置に、不活性ガス吹き込み手段を設けたことを特徴とする請求項1または2に記載の還元鉄粉の製造設備。   3. The facility for producing reduced iron powder according to claim 1, wherein an inert gas blowing means is provided at a position where the heating pipe is provided. 請求項1または2に記載の還元鉄粉の製造設備を用い、加熱用パイプに熱媒体ガスを流通させて粗製鉄粉を200℃超え300℃以下の温度範囲に加熱後、連続式移動床炉で脱炭、脱酸、脱窒のうちの少なくとも一つの仕上還元処理を施すことを特徴とする還元鉄粉の製造方法。   A continuous moving bed furnace using the facility for producing reduced iron powder according to claim 1 or 2, wherein the heating medium gas is circulated through a heating pipe and the crude iron powder is heated to a temperature range of 200 ° C to 300 ° C and below. A method for producing reduced iron powder, comprising performing at least one finish reduction treatment among decarburization, deoxidation, and denitrification. 請求項3に記載の還元鉄粉の製造設備を用い、不活性ガス吹き込み手段から不活性ガスを吹き込みながら、加熱用パイプに熱媒体ガスを流通させて粗製鉄粉を200℃超え350℃以下の温度範囲に加熱後、連続式移動床炉で脱炭、脱酸、脱窒のうちの少なくとも一つの仕上還元処理を施すことを特徴とする還元鉄粉の製造方法。   Using the reduced iron powder production facility according to claim 3, while blowing an inert gas from the inert gas blowing means, the heating medium gas is circulated through the heating pipe to make the crude iron powder more than 200 ° C and 350 ° C or less. A method for producing reduced iron powder, wherein after the heating to a temperature range, at least one finish reduction treatment among decarburization, deoxidation, and denitrification is performed in a continuous moving bed furnace. 熱媒体ガスの熱源として、仕上還元処理時の排ガスを用いることを特徴とする請求項4または5に記載の還元鉄粉の製造方法。   6. The method for producing reduced iron powder according to claim 4, wherein the exhaust gas used in the final reduction treatment is used as a heat source for the heat medium gas.
JP2011219727A 2011-10-04 2011-10-04 Facility and method for producing reduced iron powder Pending JP2013079423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219727A JP2013079423A (en) 2011-10-04 2011-10-04 Facility and method for producing reduced iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219727A JP2013079423A (en) 2011-10-04 2011-10-04 Facility and method for producing reduced iron powder

Publications (1)

Publication Number Publication Date
JP2013079423A true JP2013079423A (en) 2013-05-02

Family

ID=48526024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219727A Pending JP2013079423A (en) 2011-10-04 2011-10-04 Facility and method for producing reduced iron powder

Country Status (1)

Country Link
JP (1) JP2013079423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103658089A (en) * 2013-12-16 2014-03-26 新余钢铁集团有限公司 Steam cleaner for mixture trough of sintering machine
CN111504046A (en) * 2019-01-30 2020-08-07 新疆八一钢铁股份有限公司 Hot flue gas drying device for storage bin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103658089A (en) * 2013-12-16 2014-03-26 新余钢铁集团有限公司 Steam cleaner for mixture trough of sintering machine
CN111504046A (en) * 2019-01-30 2020-08-07 新疆八一钢铁股份有限公司 Hot flue gas drying device for storage bin
CN111504046B (en) * 2019-01-30 2023-04-07 新疆八一钢铁股份有限公司 Hot flue gas drying device for storage bin

Similar Documents

Publication Publication Date Title
CN106702119B (en) A kind of spring steel bar production method without full decarburization
CN106544485B (en) The manufacturing method of thin slab continuous casting and rolling great surface quality medium and high carbon steel
JP2013079423A (en) Facility and method for producing reduced iron powder
CN102560071A (en) Method for grinding hearth roll of continuous annealing unit on line
JP6477532B2 (en) Nitrogen treatment method
JP6583638B2 (en) Technology to diffuse aluminum silicon into the steel plate surface
JP2006043754A (en) Metal wire with large strain introduced by controlled warm rolling, and manufacturing method and apparatus for the same
US9815115B2 (en) Finish heat treatment method and finish heat treatment apparatus for iron powder
JPS58481B2 (en) Method and apparatus for producing low-oxygen iron-based metal powder
JP4839869B2 (en) Finishing heat treatment method and finishing heat treatment apparatus for iron powder
JP6237459B2 (en) Heat treatment method for steel pipe and method for producing steel pipe for bearing using the same
Lu et al. Effect of carbon on isothermal reduction of high-strength steel oxide scale in 30% H2–N2 atmosphere
JP6112280B1 (en) Method for producing alloy steel powder for powder metallurgy
JP2014214327A (en) Iron dust finishing heat treatment method and finishing heat treatment device
RU2598021C1 (en) Method of thermal treatment of cast products from low-carbon alloyed steels, device for implementing the method of heat treatment
JP2018070952A (en) Method of blast furnace operation and blast furnace apparatus
JP6112281B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6112277B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6531918B2 (en) Blast furnace
JP6112282B1 (en) Method for producing alloy steel powder for powder metallurgy
WO2017056512A1 (en) Production method for alloy steel powder for powder metallurgy
EP1010766A2 (en) Process for continuous heating and cleaning of wire and strip products in a stratified fluidized bed
JP2006009138A (en) Finish heat treatment method for iron powder and device therefor
JP2008214655A (en) Upleg snorkel of rh vacuum degassing apparatus
El Mehtedi et al. ASPETTI METALLURGICI SULLE TECNICHE DI AFFINAMENTO DEL GRANO CRISTALLINO NEGLI ACCIAI