JP2011173135A - Method for manufacturing hot pressed part and hot pressed part - Google Patents

Method for manufacturing hot pressed part and hot pressed part Download PDF

Info

Publication number
JP2011173135A
JP2011173135A JP2010037372A JP2010037372A JP2011173135A JP 2011173135 A JP2011173135 A JP 2011173135A JP 2010037372 A JP2010037372 A JP 2010037372A JP 2010037372 A JP2010037372 A JP 2010037372A JP 2011173135 A JP2011173135 A JP 2011173135A
Authority
JP
Japan
Prior art keywords
hot
less
steel sheet
temperature
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037372A
Other languages
Japanese (ja)
Other versions
JP5549921B2 (en
Inventor
Kunio Hayashi
邦夫 林
Toshimitsu Aso
敏光 麻生
Toshimasa Tomokiyo
寿雅 友清
Tadaaki Ochiai
忠昭 落合
Shinichi Suzuki
眞一 鈴木
Nobuhiro Fujita
展弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010037372A priority Critical patent/JP5549921B2/en
Publication of JP2011173135A publication Critical patent/JP2011173135A/en
Application granted granted Critical
Publication of JP5549921B2 publication Critical patent/JP5549921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of improving a molding property by improvement of a lubrication property of a low-temperature heated or non-heated part and manufacturing a press molding part with a partially different strength in a hot pressed part using a zinc-coated steel plate. <P>SOLUTION: An inorganic amorphous covering layer of 2-1,000 mg/m<SP>2</SP>(as a metal) is formed on a surface of the zinc-coated steel plate, and thereafter the steel plate is pressed while still having a part non-heated or heated at a low temperature below an Ac1 point and a part heated to be equal to or higher than the Ac1 point, so that the press molding part is made to have an inclination of materials. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱間でのプレス成形により成形と同時に焼入れを行う部品であり、主に自動車ボデーの骨格部品、補強部品や足回り部品などに適用される部品とその製造方法に関する。   The present invention relates to a part that is quenched at the same time as molding by hot press molding, and relates to a part that is mainly applied to a framework part, a reinforcing part, an undercarriage part, and the like of an automobile body and a manufacturing method thereof.

近年、自動車の軽量化、安全性向上を目的として自動車部品およびそれに使用される素材の高強度化が進められており、その代表的な素材である鋼板も高強度鋼板の使用比率が高まってきている。しかしながら、高強度鋼板は一般に、高強度で硬いが故に、プレスでの成形自由度が小さく、またプレス製品の形状凍結性が悪く成形品の寸法精度が不良となる事や、プレス金型の寿命が短いなどの課題がある。これらの課題に対して素材からの改善も進められているが、近年より1180MPa級以上の高強度部品を寸法精度良く得ることを目的に、鋼板をAc3点以上に加熱して柔らかくし、プレス成形と同時に急速に冷却し、焼き入れして高強度の部品とする、熱間プレス技術が普及してきている。また、冷間で加工後に、同様に焼入れ行い高強度の部品とする冷間加工−焼き入れ技術も工業技術として使用されるようになってきた。   In recent years, the strength of automobile parts and materials used for them has been increased for the purpose of reducing the weight and safety of automobiles, and the use ratio of high-strength steel sheets is increasing for steel plates that are representative materials. Yes. However, high-strength steel sheets are generally high-strength and hard, so the degree of freedom of forming in the press is small, the shape freezeability of the pressed product is poor, the dimensional accuracy of the molded product is poor, and the life of the press die There are problems such as short. In order to obtain high-strength parts of 1180MPa class or higher with high dimensional accuracy, the steel sheet is heated to Ac3 point or higher to make it softer and press forming. At the same time, hot press technology that rapidly cools and quenches to form high-strength parts is becoming popular. Further, after cold working, a cold working-quenching technique in which a high-strength part is similarly hardened is also used as an industrial technique.

現在、広く利用されている技術として、炉加熱による昇温後、プレス加工時に焼入れを行うのが一般的であるが、加熱時間が長時間である事から生産性が悪いという課題がある。この課題を解決するため、通電加熱方式による短時間加熱方法が、例えば特許文献1に記載されている。この方法を用いる事で、炉加熱方式に比べ大幅な生産性の改善が成される。   Currently, as a widely used technique, it is common to perform quenching at the time of press working after temperature rise by furnace heating, but there is a problem that productivity is poor because the heating time is long. In order to solve this problem, for example, Patent Document 1 discloses a short-time heating method using an electric heating method. By using this method, the productivity is greatly improved as compared with the furnace heating method.

一方、熱間プレスの課題として、加熱時に発生するスケールが、化成処理性や耐食性を阻害する事から、熱間プレス後にショットブラストを行ったり、スケール抑制を目的にめっき鋼板を使用したりする場合が多い。中でも熱間プレス用途の亜鉛メッキ鋼板に関しては、例えば文献2に記載されている。   On the other hand, as a hot pressing issue, the scale generated during heating inhibits chemical conversion properties and corrosion resistance, so when shot blasting is performed after hot pressing or plated steel sheets are used for the purpose of scale control There are many. Among them, a galvanized steel sheet for hot pressing is described in Document 2, for example.

特開2009-274122 公報JP 2009-274122 JP 特許第3591501号 公報Japanese Patent No.3591501

上記技術背景の下で、亜鉛めっき鋼板を用いた熱間プレス部品において、低温加熱あるいは未加熱部の潤滑性の改善により成形性を向上し、部分的に強度の異なるプレス成形部品を製造するための方法を提供するものである。   Based on the above technical background, in hot-pressed parts using galvanized steel sheets, to improve the formability by improving the lubricity of low-temperature heating or unheated parts, and to produce press-formed parts with partially different strength This method is provided.

本発明は、上記新知見に基づきなされたものであり、その要旨とするところは、以下の通りである。
(1)亜鉛めっき鋼板の表面に、無機系非晶質被覆層を形成させた後、Ac1点未満の未加熱あるいは低温加熱とした部分とAc1点以上に加熱した部分とを有したまま鋼板をプレスする事で材質の差を有するようにする熱間プレス部品の製造方法であって、前記無機系非晶質被覆層がプレス成形時にめっき層表面に密着し、その変形に追随して皮膜を維持する凝着防止機能を有する成分としてMn,Mo,Co,Ni,Ca,Cr,V,W,Ti,Al,Znの1種または2種以上の金属酸化物および/または水酸化物と、金型とめっき層間のコロガリ潤滑機能を有する成分としてP、Bの1種または2種の酸化物および/またはSi,Al,Tiの1種または2種以上の酸化物コロイドを併せ持つものとし、前記凝着防止機能を有する成分を1〜500mg/m(金属として)、コロガリ潤滑機能を有する成分を1〜500mg/m(金属として)、無機系非晶質被覆層を2〜1000mg/m(金属として)としたことを特徴とする熱間プレス部品の製造方法。
(2)未加熱あるいは低温加熱とした部分は700℃以下とすることを特徴とする(1)記載の熱間プレス部品の製造方法。
(3)亜鉛めっき鋼板の鋼板母材の成分は、質量%にて、C :0.10%以上、0.35%以下、Si:0.01以上、3.0%以下、Al:0.01以上、3.0%以下、Mn:1.0%以上、3.5%以下、P :0.1%以下、S :0.01%以下、N :0.01%以下、を含有し、残部が鉄及び不可避的不純物からなることを特徴とする(1)または(2)のいずれか1項に記載の熱間プレス部品の製造方法。
(4)亜鉛めっき鋼板の鋼板母材の成分は、さらに質量%で、Ti:0.2%以下、Nb:0.2%以下、Mo:1.0%以下、Cr:1.0%以下、V :1.0%以下、Ni:3.0%以下、B :0.0002〜0.005%、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、の1種または2種以上を含有する事を特徴とする(3)に記載の熱間プレス部品の製造方法。
(5)亜鉛めっき鋼板が、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板のいずれかである(1)乃至(4)のいずれかに記載の熱間プレス部品の製造方法。
(6)(1)乃至(5)のいずれか1項の熱間プレス部品の製造方法によって製造された熱間プレス部品であって、熱間プレス部品の表面で400℃以下の加熱後成形された部分では前記無機系非晶質皮膜が未加熱ままの状態で残存し、400℃超700℃以下の加熱温度で成形した部分では、Mn,Mo,Co,Ni,Ca,Cr,V,W,Ti,Alの1種または2種以上の金属酸化物と、P、Bの1種または2種の酸化物および/またはSi,Al,Tiの1種または2種以上の酸化物が10nm以上の厚みで存在することを特徴とする熱間プレス部品。
This invention is made | formed based on the said new knowledge, The place made into the summary is as follows.
(1) After the inorganic amorphous coating layer is formed on the surface of the galvanized steel sheet, the steel sheet is kept with an unheated or low-temperature heated part below the Ac1 point and a part heated above the Ac1 point. A method of manufacturing a hot-pressed part that has a difference in material by pressing, wherein the inorganic amorphous coating layer adheres to the surface of the plating layer during press molding, and a film is formed following the deformation. One or more metal oxides and / or hydroxides of Mn, Mo, Co, Ni, Ca, Cr, V, W, Ti, Al, Zn as components having an anti-adhesion function to be maintained; As a component having the function of lubricating lubrication between the mold and the plating layer, one or two kinds of oxides of P and B and / or one or more kinds of oxide colloids of Si, Al and Ti are combined, 1-50 ingredients having an anti-adhesion function mg / m 2 (as metal), wherein the components with rolling lubricating function (as the metal) 1-500 mg / m 2, where the inorganic amorphous coating layer and 2~1000mg / m 2 (as metal) A manufacturing method of hot pressed parts.
(2) The method for producing a hot-pressed part according to (1), wherein the portion that is not heated or is heated at a low temperature is 700 ° C. or lower.
(3) The components of the steel plate base material of the galvanized steel plate are in mass%, C: 0.10% or more, 0.35% or less, Si: 0.01 or more, 3.0% or less, Al: 0.00. 01 or more, 3.0% or less, Mn: 1.0% or more, 3.5% or less, P: 0.1% or less, S: 0.01% or less, N: 0.01% or less The method for producing a hot-pressed part according to any one of (1) and (2), wherein the balance is made of iron and inevitable impurities.
(4) The components of the steel plate base material of the galvanized steel plate are further mass%, Ti: 0.2% or less, Nb: 0.2% or less, Mo: 1.0% or less, Cr: 1.0% or less V: 1.0% or less, Ni: 3.0% or less, B: 0.0002 to 0.005%, Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, 1 or 2 types or more are contained, The manufacturing method of the hot press part as described in (3) characterized by the above-mentioned.
(5) The hot-pressed part manufacturing method according to any one of (1) to (4), wherein the galvanized steel sheet is any one of a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, and an electrogalvanized steel sheet.
(6) A hot-pressed part manufactured by the method for manufacturing a hot-pressed part according to any one of (1) to (5), wherein the hot-pressed part is molded after heating at a temperature of 400 ° C. or less on the surface of the hot-pressed part. In the part where the inorganic amorphous film remains unheated, the part formed at a heating temperature of more than 400 ° C. and 700 ° C. or less is Mn, Mo, Co, Ni, Ca, Cr, V, W. , Ti, Al, one or more metal oxides, P, B, one or two oxides and / or Si, Al, Ti, one or more oxides of 10 nm or more Hot-pressed parts characterized by being present at

本発明の適用により、熱間プレス前の鋼板がAc1点以上に加熱された部分とAc1点未満の未加熱あるいは低温加熱とした部分とAc1点以上に加熱した部分を有したままプレスされることで、単一のプレス部品に強度差を持たせた熱間プレス部品の製造方法であって、Ac1点未満の未加熱又は低温加熱部の潤滑性を改善する事で、成形性を向上させた熱間プレス部品を製造する事が可能となる。   By applying the present invention, the steel plate before hot pressing is pressed with a portion heated to the Ac1 point or higher, an unheated or low-temperature heated portion below the Ac1 point, and a portion heated to the Ac1 point or higher. This is a method for manufacturing a hot-pressed part in which a single pressed part has a difference in strength, and improved formability by improving the lubricity of unheated or low-temperature heated parts below the Ac1 point. It is possible to manufacture hot pressed parts.

加熱温度に対する表面のMn、Pの存在量をESCAを用いて測定したものであり、700℃程度までは無機系非晶質皮膜が存在していることが確認できる。The abundance of Mn and P on the surface with respect to the heating temperature was measured using ESCA, and it can be confirmed that an inorganic amorphous film is present up to about 700 ° C. 加熱温度に対する0.2%C−1.3%Mnの材料の機械的性質を表した図で、700℃以下では加工性の指標の一つである延性が不足している事が確認できる。It is a figure showing the mechanical properties of 0.2% C-1.3% Mn material with respect to the heating temperature, and it can be confirmed that the ductility which is one of the indexes of workability is insufficient at 700 ° C or lower. 実施例で成形したハット型を示す図である。It is a figure which shows the hat type | mold shape | molded in the Example. 図3のハット型成形するに際し、冷却媒体の通った通電加熱電極部を備えた通電加熱にて加熱を行い、通電加熱電極部の冷却媒体を制御して低温部を発生させ、鋼板に温度差をつけてプレスした場合の概略図である。When forming the hat mold of FIG. 3, heating is performed by energization heating provided with an energization heating electrode portion through which a cooling medium passes, and the low temperature portion is generated by controlling the cooling medium of the energization heating electrode portion, and the temperature difference in the steel plate It is the schematic at the time of attaching and pressing.

本発明の詳細について、以下に説明する。
本発明者は、Ac1点以上の高温加熱部を有し、更にAc1点未満の未加熱又は低温加熱部を有する加熱鋼板をプレス成形行った結果、プレス後の成形部品において、部品内部に強度差を有した熱間プレス部品を製造する事が出来た。これは、Ac1点以上の加熱温度部分は、加熱時にオーステナイト(以下γ)が存在した状態から冷却されるため、焼入れによりマルテンサイトが生成し強度が上昇する。一方、Ac1点未満の温度までしか加熱されない、あるいは未加熱部分では、素材ままの強度と大きく変化しないため、プレス成形後の部品において強度差が生じる。この特性を積極的に活用する事で、異強度を有した熱間プレス成形部品を製造する事が可能となるが、この際、Ac1点未満の温度部では、低温でのプレスとなるため複雑形状を成形するためには素材の成形性を改善するか、表面の潤滑性の改善が必要となる。これは、図2から明らかなように、一般に高温での機械的特性は、温度上昇に従って軟質かつ高延性となるが、700℃以下ではその現象は顕著とは言えない。従って、高温に加熱された部分に関しては、成形性に富んでいるため複雑な形状でも作り込む事が可能となるが、未加熱部あるいは低温加熱部では成形性が不十分であり、割れを生じる場合がある。
Details of the present invention will be described below.
As a result of press forming a heated steel sheet having a high-temperature heating part with an Ac1 point or higher and further having an unheated or low-temperature heating part less than the Ac1 point, the inventor found that there was a difference in strength inside the part in the molded part after pressing. We were able to manufacture hot-pressed parts with This is because the heating temperature portion above the Ac1 point is cooled from the state in which austenite (hereinafter referred to as γ) is present during heating, so that martensite is generated by quenching and the strength is increased. On the other hand, since the material is heated only to a temperature below the Ac1 point, or in the unheated part, it does not change greatly from the strength as it is, so that a difference in strength occurs in the parts after press molding. By actively utilizing this property, it is possible to manufacture hot-pressed parts with different strengths. However, at this time, the temperature part below the Ac1 point is pressed at a low temperature, making it complicated. In order to mold the shape, it is necessary to improve the moldability of the material or improve the lubricity of the surface. As is apparent from FIG. 2, the mechanical properties at high temperatures generally become soft and highly ductile as the temperature rises, but the phenomenon is not remarkable at 700 ° C. or lower. Therefore, the part heated to a high temperature can be made even in a complicated shape because of its high formability, but the formability is insufficient in the unheated part or the low-temperature heated part, resulting in cracks. There is a case.

素材の成形性は、ミクロ組織制御により改善する方法があるが、熱間プレス素材は焼入れ後に高強度を得る事を目的としていため、一般に高炭素成分かつ焼入れ性の高い成分設計となっている。従って、ミクロ組織制御により成形性を改善する事は容易ではない。そこで、成形性の向上のため、鋼板表面の潤滑性改善に着目し鋭意検討を行った。   Although there is a method of improving the formability of the material by controlling the microstructure, since the hot press material is intended to obtain high strength after quenching, it is generally designed with a high carbon component and a high quenchability. Therefore, it is not easy to improve moldability by controlling the microstructure. Therefore, in order to improve formability, attention was focused on improving the lubricity of the steel sheet surface, and extensive studies were conducted.

種々の潤滑皮膜を検討した結果、熱間プレス前の鋼板の加熱に晒されても、安定的な潤滑機能を有する無機系非晶質皮膜を、鋼板表面に形成させるに至った。この無機系非晶質皮膜は、亜鉛めっき表面に、1〜500mg/m(金属として)の主として金属酸化物および/または水酸化物から構成される凝着防止機能を有する皮膜と、1〜500mg/m(金属として)の主として酸化物および/または金属酸化物コロイドから構成されるコロガリ潤滑機能を有する皮膜を形成させるものである。この皮膜は金属-酸素結合体を主体として構成される非晶質構造であって、凝着防止機能を有する皮膜構造とコロガリ潤滑機能を有する皮膜構造は酸素結合を介して互いに混在しているものであって、層構造として分離できるものではなく、プレス成形に際して機能として識別できるものである。 As a result of studying various lubricating films, an inorganic amorphous film having a stable lubricating function was formed on the steel sheet surface even when exposed to the heating of the steel sheet before hot pressing. This inorganic amorphous film has a film having an anti-adhesion function composed mainly of metal oxide and / or hydroxide of 1 to 500 mg / m 2 (as metal) on the surface of galvanizing, A film having a lubrication function composed mainly of an oxide and / or a metal oxide colloid of 500 mg / m 2 (as a metal) is formed. This film has an amorphous structure mainly composed of a metal-oxygen bond, and the film structure having an anti-adhesion function and the film structure having a roller lubrication function are mixed with each other through oxygen bonds. However, it cannot be separated as a layer structure, but can be identified as a function during press molding.

ここでの酸化物とは広義に酸素との化合物を意味し、酸素酸や鋼板加熱時に生じる酸化物なども含む。また非晶質とは、透過型電子顕微鏡(TEM)により皮膜の電子線回折パターンを調査する事により判断できる。結晶構造を有する物質の電子線回折パターンは、規則的な格子状のパターンになるのに対し、非晶質の場合はハローパターンと呼ばれる1点の回線点のみ観察される。この様に、TEMにより鋼板表面の皮膜観察を行う事で、非晶質であるか判断する事ができる。   The oxide here means a compound with oxygen in a broad sense, and also includes an oxygen acid and an oxide generated when heating the steel sheet. Amorphous can be determined by examining the electron diffraction pattern of the film with a transmission electron microscope (TEM). The electron diffraction pattern of a substance having a crystal structure is a regular lattice pattern, whereas in the case of an amorphous material, only one line point called a halo pattern is observed. Thus, it can be judged whether it is amorphous by observing the film of the steel plate surface by TEM.

この無機系非晶質皮膜は、加熱により亜鉛めっき内部に拡散していくが、400℃以下の加熱温度では未加熱の状態と何ら変わりなく存在し、400℃超700℃以下の加熱温度では、Mn,Mo,Co,Ni,Ca,Cr,V,W,Ti,Alの1種または2種以上の酸化物が10nm以上の厚みで存在している。ここで、Znに関しては、Znめっき中のZnが常に測定されるため、常に存在する事になる。ただし、凝着防止皮膜成分中にZnを含むことは問題ない。この様に、加熱によっても無機系非晶質皮膜は存在しており、Ac1点未満の未加熱または低温加熱部のプレスに際し、潤滑効果が得られる事が解った。一例として、溶融亜鉛めっきの表面に、Mn:52mg/m、P:15mg/mからなる無機系非晶質皮膜を形成させた鋼板を、種々の温度に加熱後、亜鉛めっき鋼板表面に残存する酸化皮膜の状態を調査した結果を図1に示す。亜鉛めっき表面の酸化皮膜の測定は、ESCA(Electron Spectroscopy for Chemical Analysis)により、表面をイオンスパッタリングで除去しながら、連続的に深さ方向の元素比が求められ、測定された強度比から定量的に成分値を求める事が出来る。この結果、表面10nmにおける酸化物であるPのピーク値は、400℃以下では未加熱の状態と変化無く、加熱温度の上昇に従い、P酸化物の量は減少していく。700℃以下の加熱温度においては、依然としてP酸化物の存在を確認できており、これと対応するように表1に示すように、無機系非晶質皮膜の存在する本件では、ハット型成形時の割れが発生しない。尚、図1および後述の実施例で成形したハット型は図3に示すとおりである。
尚、高温部がAc1点以上で、未加熱部あるいは低温部が700℃以下とする場合、当該高温部の温度と当該未加熱部あるいは低温部の温度との間が温度的に不連続ということはあり得ないので、部品の形状、加工の程度に合わせてある程度は許容する。
This inorganic amorphous film diffuses inside the galvanized layer by heating, but at a heating temperature of 400 ° C. or lower, there is no difference from the unheated state. At a heating temperature of 400 ° C. or higher and 700 ° C. or lower, One or more oxides of Mn, Mo, Co, Ni, Ca, Cr, V, W, Ti, and Al are present in a thickness of 10 nm or more. Here, Zn is always present because Zn in the Zn plating is always measured. However, it is not a problem that Zn is contained in the anti-adhesion film component. As described above, it was found that an inorganic amorphous film was present even by heating, and that a lubricating effect was obtained when pressing an unheated or low-temperature heated portion below the Ac1 point. As an example, a steel sheet in which an inorganic amorphous film composed of Mn: 52 mg / m 2 and P: 15 mg / m 2 is formed on the surface of hot dip galvanizing is heated to various temperatures, and then applied to the surface of the galvanized steel sheet. The result of investigating the state of the remaining oxide film is shown in FIG. The oxide film on the surface of the galvanized surface is measured quantitatively based on the measured intensity ratio by continuously obtaining the element ratio in the depth direction while removing the surface by ion sputtering using ESCA (Electron Spectroscopy for Chemical Analysis). The component value can be obtained. As a result, the peak value of P which is an oxide at the surface of 10 nm does not change from the unheated state at 400 ° C. or lower, and the amount of P oxide decreases as the heating temperature increases. At the heating temperature of 700 ° C. or lower, the presence of P oxide was still confirmed, and as shown in Table 1, in this case where an inorganic amorphous film was present, No cracking occurs. The hat mold formed in FIG. 1 and the examples described later is as shown in FIG.
In addition, when the high temperature part is Ac1 point or more and the unheated part or the low temperature part is 700 ° C. or less, the temperature between the high temperature part and the unheated part or the low temperature part is discontinuous in temperature. Since there is no possibility, it is allowed to some extent according to the shape of the part and the degree of processing.

次に本発明の熱間プレス部品の製造のために、亜鉛めっき鋼板を加熱し、かつ未加熱あるいは低温加熱とした部分をつくり分ける方法について説明する。
加熱手段は通電加熱、誘導加熱、赤外線や電気ヒーターや輻射管などによる輻射加熱、バーナー直火加熱などが使用できるが、温度の制御や未加熱あるいは低温加熱とした部分を同時につくるには通電加熱が好ましい。
また未加熱あるいは低温加熱とした部分を同時につくるには、その部分に何らかの冷却を行う必要があり、その冷却手段としては、ガス吹付け冷却、水吹付け冷却、水冷などの冷媒を通した冷却手段を接触させる接触冷却などがあげられるが、部品の形状、用途や必要な温度差に応じて適宜好ましい冷却手段を用いて構わない。
Next, in order to manufacture the hot-pressed part of the present invention, a method for separately producing a part that is heated and is not heated or is subjected to low temperature heating will be described.
Heating means can be energized heating, induction heating, radiant heating with infrared rays, electric heaters, radiation tubes, etc., burner direct fire heating, etc. Is preferred.
In addition, in order to simultaneously create an unheated or low-temperature heated part, it is necessary to perform some kind of cooling on the part. As a cooling means, cooling through a refrigerant such as gas blowing cooling, water blowing cooling, water cooling, etc. Although contact cooling etc. which make a means contact is mention | raise | lifted, according to the shape of a component, a use, and a required temperature difference, you may use a preferable cooling means suitably.

次に、亜鉛めっき表面に形成させる無機系非晶質皮膜について説明する。
皮膜の生成方法は、凝着防止機能を有する皮膜成分と、コロガリ潤滑機能を有する皮膜成分を含有する、酸性水溶液に亜鉛めっき鋼板を浸漬するか、あるいは陰極電解処理する事により、確実に皮膜形成させる事ができる。浸漬処理においては、Znが溶解する際に界面のpHが上昇し、その結果皮膜成分が水酸化物あるいは酸化物となって析出する。
Next, the inorganic amorphous film formed on the galvanized surface will be described.
The method of film formation is to ensure film formation by immersing a galvanized steel sheet in an acidic aqueous solution containing a film component having an anti-adhesion function and a film component having a roller lubrication function, or by cathodic electrolysis. You can make it. In the immersion treatment, the pH of the interface rises when Zn is dissolved, and as a result, the film component is precipitated as a hydroxide or an oxide.

凝着防止機能とコロガリ潤滑機能を併せ持つ皮膜量は、金属として2〜1000mg/mが適当である。これは、凝着防止機能とコロガリ潤滑機能有する皮膜成分のいずれにおいても、金属として1mg/m2未満ではその効果が発揮されず、また500mg/m2を超えると皮膜が塊状となり剥離する危険性が高くなる事や、化成処理性に影響が出る場合が有るためである。このため、無機系非晶質皮膜である凝着防止機能とコロガリ潤滑機能を併せ持つ皮膜量は、2mg/m2以上1000mg/m以下が適当な範囲である。凝着防止機能を有する金属酸化物および/または水酸化物は、Mn,Mo,Co,Ni,Ca,Cr,V,W,Ti,Al,Zn等を主体とした非晶質構造からなり、一方、コロガリ潤滑機能を有する皮膜としては、P,Bからなる酸化物および/またはSi,Al,Ti等からなる酸化物コロイドが、上記非晶質構造に酸素結合を媒介として結合している構造であると考えられる。これら2つ機能は、それぞれ、1〜500mg/m(金属として)の皮膜量を有する事で、潤滑機能を発揮する。これら皮膜の生成方法をそれぞれ説明する。無機系非晶質皮膜の中で、凝着防止機能を有するMn,Mo,Co,Ni,Ca,Cr,V,W,Ti,Al,Zn金属酸化物およびコロガリ潤滑機能を有するP、Bの1種または2種からなる酸化物および/またはSi,Al,Ti等からなる酸化物コロイドは、イオン濃度や流速、溶液温度により適宜調整し、亜鉛めっき鋼板を陰極とする陰極電解処理の場合には、適宜電流密度を調整する。一例として、Mn、P系の皮膜の場合には、処理溶液に過マンガン酸カリウム、リン酸、硫酸を配合し、亜鉛めっき鋼板を溶液中に浸漬させる事によって形成させる事が出来る。 The amount of the film having both an adhesion preventing function and a roller lubrication function is suitably 2 to 1000 mg / m 2 as a metal. This is because the film component having an anti-adhesion function and a roller lubrication function does not exert its effect if it is less than 1 mg / m 2 as a metal, and if it exceeds 500 mg / m 2 , there is a risk that the film becomes agglomerated and peels off. This is because there is a case where it becomes higher and the chemical conversion processability is affected. Therefore, amount of the coating film having both adhesion preventing function is inorganic amorphous film and rolling lubricating function, 2 mg / m 2 or more 1000 mg / m 2 or less is a proper range. The metal oxide and / or hydroxide having an anti-adhesion function has an amorphous structure mainly composed of Mn, Mo, Co, Ni, Ca, Cr, V, W, Ti, Al, Zn, and the like. On the other hand, as a film having a roller lubrication function, an oxide composed of P, B and / or an oxide colloid composed of Si, Al, Ti, etc. is bonded to the above amorphous structure through an oxygen bond. It is thought that. Each of these two functions exhibits a lubricating function by having a coating amount of 1 to 500 mg / m 2 (as a metal). Each method for generating these films will be described. Among inorganic amorphous coatings, Mn, Mo, Co, Ni, Ca, Cr, V, W, Ti, Al, Zn metal oxides having an anti-adhesion function, and P and B having a corrugated lubrication function One or two kinds of oxides and / or oxide colloids made of Si, Al, Ti, etc. are appropriately adjusted according to ion concentration, flow rate, and solution temperature, and in the case of cathodic electrolysis using a galvanized steel sheet as a cathode. Appropriately adjust the current density. As an example, in the case of a Mn, P-based film, it can be formed by blending potassium permanganate, phosphoric acid, and sulfuric acid in the treatment solution and immersing the galvanized steel sheet in the solution.

次に、本発明に用いる亜鉛めっき鋼板、主に溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板の鋼板母材の成分として好ましい範囲を以下に示す。これら鋼板母材の成分の限定理由は、一般的に熱間プレス用素材として焼入れ後に高強度を得るため、めっき密着性を得るためである。   Next, preferable ranges as the components of the galvanized steel sheet used in the present invention, mainly a galvanized steel sheet, an alloyed galvanized steel sheet, and an electrogalvanized steel sheet are shown below. The reason for limiting the components of these steel plate base materials is to obtain plating adhesion in order to obtain high strength after quenching as a raw material for hot pressing.

次に、鋼板成分の限定理由について説明する。
本発明は、熱間プレス後の部品に強度差を持たせる事を目的としているため、Ac1以上の加熱温度から熱間プレスにより焼き入れた際に、未加熱部または低温加熱部と、Ac1以上に加熱された高温加熱部とで、強度差が生じなければならない。この強度差は、ビッカース硬度でHv100以上の差が有る事が好ましいが、部品の要求特性に応じて硬度差を選択すれば良い。
従って、下記に示す成分の限定理由は、成形部品の強度差として好ましいHv100以上の強度差を生じさせるための鋼材成分の限定理由である。
Next, the reason for limiting the steel plate components will be described.
Since the present invention is intended to give a difference in strength to parts after hot pressing, when quenched with a hot press from a heating temperature of Ac1 or higher, an unheated part or a low-temperature heating part, and Ac1 or higher There must be a difference in strength between the heated part and the high temperature heating part. The difference in strength is preferably a difference of Hv100 or more in terms of Vickers hardness, but the hardness difference may be selected according to the required characteristics of the parts.
Therefore, the reasons for limiting the components shown below are the reasons for limiting the steel material components for producing a strength difference of Hv100 or more which is preferable as the strength difference of the molded part.

Cは、0.10〜0.35%とする。C含有量を0.10%以上としたのは、0.10%未満では熱間プレス後の強度が低くなり、異強度部品を作る事が困難なためであり、一方、C含有量を0.35%以下としたのは、0.35%を超える炭素濃度では、Ac1点以下の未加熱部または低温加熱部の成形性が著しく低下するためこれを上限とした。
Siは、固溶強化元素として強度上昇に有効であるため、その添加量が多いほど引張強度が上昇するが、3.0%を超える添加では鋼板が著しく脆化し、鋼板を製造する事が困難となるためこれを上限とし、脱酸などでSiを使用した場合や、不可避的に混入する事が避けられない事があるため、0.01%を下限とした。
Alは、3.0%以下とする。3.0%を超える添加で鋼板が著しく脆化し、鋼板を製造する事が困難となるためこれを上限とし、脱酸などでAlを使用した場合や、不可避的に混入する事が避けられない事があるため、0.01%を下限とした。
Mnは、1.0〜3.5%とする。Mn含有量を1.0%以上としたのは、熱間プレス時の焼入れ性を確保するためであり、一方、Mn含有量が3.5%を超えると、Mn偏析が生じ易くなり熱間圧延時に割れ易くなるためこれを上限とする。
Pは、固溶強化元素として作用し、鋼板の強度を上昇させるが、その含有量が高くなると、鋼板の加工性や溶接性が低下するので、好ましくない。特に、P含有量が0.1% を超えると、鋼板の加工性や溶接性の低下が顕著となるので、P含有量は0.1%以下に制限するのが好ましい。
Sは、含有量が多すぎるとMnSなどの介在物を形成し伸びフランジ性を劣化させ、さらに、熱間圧延時に割れを引き起こすので、極力、低減するのが好ましい。特に、熱間圧延時に割れを防止し、加工性を良好にするためには、S含有量を0.01%以下に制限するのが好ましい。
Nは、AlN等の介在物を形成し鋼板の吸収エネルギーを低下させるので、可能な限り少ないほうが好ましいことから、その上限を0.01%以下とする。
Ti、Nbは、結晶粒径の細粒化の効果が有るが、0.2%を超えると鋼板製造時の熱間変形抵抗が過度上昇し、鋼板の製造が困難となるためこれを上限とする。
Moは、焼入れ性を向上させる元素であるが、1.0%を超える添加では、その効果が飽和するためこれを上限とする。
Crは、焼入れ性を向上させる元素であるが、1.0%を超える添加では、Crが亜鉛めっき性を悪化させることから、これを上限とする。
Vは、結晶粒径の細粒化の効果が有るが、添加量が多くなると、連続鋳造時のスラブ割れを引き起こし製造が困難となるため1.0%を上限とする。
Niは、変態点を大幅に低下させる元素であるが、3.0%を超える添加では合金コストが非常に高くなるため、これを上限とした。
Bは、焼入れ性を向上させるため、0.0002%以上添加する。また、0.005%を超えると、その効果が飽和する事から、これを上限とする。
Ca、Mgは、介在物制御のため、添加する。0.0002%未満の添加量ではその効果が十分に得られないためこれを下限とし、0.005%を超えると、合金コストが非常に高くなるため、これを上限とする。
C is 0.10 to 0.35%. The reason why the C content is 0.10% or more is that if it is less than 0.10%, the strength after hot pressing becomes low and it is difficult to make parts with different strength, while the C content is 0%. .35% or less was made the upper limit because, at a carbon concentration exceeding 0.35%, the moldability of the unheated part or the low-temperature heated part below the Ac1 point was remarkably lowered.
Since Si is effective for increasing strength as a solid solution strengthening element, the tensile strength increases as the amount added increases, but if added over 3.0%, the steel plate becomes extremely brittle and it is difficult to manufacture the steel plate. Therefore, this is made the upper limit, and when Si is used for deoxidation or inevitable mixing may be unavoidable, 0.01% was made the lower limit.
Al is 3.0% or less. Addition exceeding 3.0% makes the steel plate extremely brittle and makes it difficult to manufacture the steel plate, so this is the upper limit. When Al is used for deoxidation or the like, it is inevitable that it will be mixed. Therefore, 0.01% was made the lower limit.
Mn is set to 1.0 to 3.5%. The reason why the Mn content is set to 1.0% or more is to ensure the hardenability during hot pressing. On the other hand, if the Mn content exceeds 3.5%, Mn segregation is likely to occur and hot. Since it becomes easy to crack at the time of rolling, this is made an upper limit.
P acts as a solid solution strengthening element and increases the strength of the steel sheet. However, if its content is increased, the workability and weldability of the steel sheet are deteriorated, which is not preferable. In particular, when the P content exceeds 0.1%, the workability and weldability of the steel sheet are significantly deteriorated. Therefore, the P content is preferably limited to 0.1% or less.
If the content of S is too large, inclusions such as MnS are formed, the stretch flangeability is deteriorated, and further, cracks are caused during hot rolling. Therefore, it is preferable to reduce S as much as possible. In particular, in order to prevent cracking during hot rolling and improve workability, it is preferable to limit the S content to 0.01% or less.
Since N forms inclusions such as AlN and lowers the absorbed energy of the steel sheet, it is preferably as small as possible, so the upper limit is made 0.01% or less.
Ti and Nb have the effect of refining the crystal grain size, but if over 0.2%, the hot deformation resistance at the time of steel plate production rises excessively and it becomes difficult to produce the steel plate, so this is the upper limit. To do.
Mo is an element that improves hardenability, but if added over 1.0%, the effect is saturated, so this is the upper limit.
Cr is an element that improves hardenability, but if added over 1.0%, Cr deteriorates galvanizing properties, so this is the upper limit.
V has the effect of reducing the crystal grain size, but if the amount added is large, it causes slab cracking during continuous casting, making it difficult to produce, so the upper limit is 1.0%.
Ni is an element that significantly lowers the transformation point. However, the addition of more than 3.0% makes the alloy cost very high, so this was made the upper limit.
B is added in an amount of 0.0002% or more in order to improve the hardenability. Moreover, since the effect will be saturated when it exceeds 0.005%, this is made an upper limit.
Ca and Mg are added for inclusion control. If the addition amount is less than 0.0002%, the effect cannot be obtained sufficiently, so this is set as the lower limit, and if it exceeds 0.005%, the alloy cost becomes very high, so this is set as the upper limit.

次に、本発明の鋼板のミクロ組織について説明する。
本発明では、鋼板のミクロ組織は特に限定しない。未加熱部に必要な特性に応じて、鋼板素材のミクロ組織を制御すれば良い。実質的にフェライト、ベイナイト、マルテンサイト、パーライトの単独あるいは複合組織を呈するが、各相の面積率は任意で構わない。
Next, the microstructure of the steel sheet of the present invention will be described.
In the present invention, the microstructure of the steel sheet is not particularly limited. What is necessary is just to control the microstructure of a steel plate raw material according to a characteristic required for an unheated part. Substantially ferrite, bainite, martensite, pearlite or a composite structure is exhibited, but the area ratio of each phase may be arbitrary.

次に、本発明の亜鉛めっき鋼板を製造する製造方法について説明する。
好ましくは上記成分組成を有する鋼片を用い、その鋼片を1100℃以上の温度に再加熱する。鋼片は、連続鋳造設備で製造した直後のスラブであってもよいし、電気炉で製造したものでもよい。
1100℃以上と規定している理由は、炭化物形成元素と炭素を、鋼材中に、十分に分解溶解させるためである。析出炭窒化物溶解させるためには、1200℃以上とする事が好ましい。ただし、加熱温度1280℃超とする事は、生産コスト上好ましくないため、これを上限とする。
熱間圧延における仕上げ温度は、Ar3点未満では、表層における合金炭窒化物の析出や粒径の粗大化が進行し、表層強度低下が著しくなる事による疲労特性の劣化を防ぐため、これを下限とする。仕上げ温度の上限は特に設けないが、実質的には1050℃程度が上限となる。次に、熱間圧延における仕上げ温度から捲取までの冷却履歴について説明する。冷却履歴は、任意の冷却履歴で構わない。ただし、熱間圧延の後に、酸洗後、冷間圧延施す場合は、その圧延荷重を考慮して熱間圧延の捲取温度を選択すれば良い。
Next, the manufacturing method which manufactures the galvanized steel plate of this invention is demonstrated.
Preferably, a steel slab having the above composition is used, and the steel slab is reheated to a temperature of 1100 ° C. or higher. The slab may be a slab immediately after being manufactured in a continuous casting facility, or may be manufactured in an electric furnace.
The reason why the temperature is defined as 1100 ° C. or higher is to sufficiently decompose and dissolve the carbide forming element and carbon in the steel material. In order to dissolve the precipitated carbonitride, the temperature is preferably 1200 ° C. or higher. However, since heating temperature exceeding 1280 ° C. is not preferable in terms of production cost, this is the upper limit.
If the finishing temperature in hot rolling is less than the Ar3 point, precipitation of alloy carbonitrides on the surface layer and coarsening of the particle size will proceed, and deterioration of the fatigue properties due to significant reduction in surface layer strength will be prevented. And Although there is no particular upper limit for the finishing temperature, the upper limit is substantially about 1050 ° C. Next, the cooling history from the finishing temperature to hot cutting in hot rolling will be described. The cooling history may be any cooling history. However, when hot rolling is performed after pickling and then cold rolling, the rolling temperature for hot rolling may be selected in consideration of the rolling load.

上記の如く製造された熱延鋼板を用い、溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板を製造し、その亜鉛めっきの表面に無機系非晶質皮膜を形成させれば良い。亜鉛めっきに先立ち、熱延鋼板を酸洗し、更に冷間圧延後に焼鈍を行っても良い。焼鈍温度は、鋼板強度を上昇させないためにもAc1点付近で焼鈍する事が望ましいが、特に限定はしない。また、亜鉛めっきの組成としては、純Znの他、ZnとFe、ZnとNi、ZnとAl、ZnとMn、ZnとCr、ZnとTi、ZnとMgなど、Znを主成分として、耐食性などの諸機能を改善するためにFe,Ni,Co,Al,Pb,Sn,Sb,Cu,Ti,Si,B,P,N,S,O等の1種ないし2種以上の合金元素を含んでいても良い。また溶融亜鉛めっきの場合は、めっきの密着性を向上させるために溶融亜鉛めっき前にFeやNiなどのめっき密着性を向上させる元素をプレメッキすることも構わない。   Using the hot-rolled steel sheet manufactured as described above, a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, or an electrogalvanized steel sheet may be manufactured, and an inorganic amorphous film may be formed on the galvanized surface. . Prior to galvanization, the hot-rolled steel sheet may be pickled and further annealed after cold rolling. The annealing temperature is preferably annealed near the Ac1 point so as not to increase the steel sheet strength, but is not particularly limited. In addition to pure Zn, the composition of galvanizing is Zn and Fe, Zn and Ni, Zn and Al, Zn and Mn, Zn and Cr, Zn and Ti, Zn and Mg, etc. In order to improve various functions such as Fe, Ni, Co, Al, Pb, Sn, Sb, Cu, Ti, Si, B, P, N, S, O, etc. It may be included. In the case of hot dip galvanization, an element that improves plating adhesion such as Fe or Ni may be pre-plated before hot dip galvanization in order to improve plating adhesion.

次に本発明の実施例を示す。
表2に示すA〜Lまでの鋼塊を溶製し、以下の熱間圧延条件にて、熱延鋼板を製造した。熱延条件は、加熱温度を1210℃、仕上げ圧延温度を900℃、捲取温度を650℃とした。その後、冷間圧延および焼鈍を施した鋼板に関しては、表3にその条件を示しており、これら冷間圧延及び焼鈍を施していない鋼板に関しては、数値を記入していない。J及びLの鋼は、熱間圧延中に割れが発生したため、製造を中止した。この様に製造した鋼板に対し、溶融亜鉛めっき、または合金化溶融亜鉛めっき、または電気亜鉛めっきを施し、さらにそれら亜鉛めっき表面に、無機系非晶質皮膜を生成させた。このとき、最終的な鋼板の板厚は、全て2.0mmとなるようにした。それぞれ亜鉛めっきの組成は、溶融亜鉛めっき(Al:0.3%,Fe:0.8%,Pb:0.1%,残Zn)、合金化溶融亜鉛めっき(Fe:10%,Al:10%,残Zn)、電気亜鉛めっき(純Zn)とした。無機系非晶質皮膜は、凝着防止機能皮膜であるMn,Mo,Co,Ni,Ca,Cr,V,W,Ti,Al,Znの金属酸化物およびコロガリ潤滑機能皮膜であるP、B系酸化物および/またはSi,Al,Ti等からなる酸化コロイドからなる。
Next, examples of the present invention will be described.
Steel ingots from A to L shown in Table 2 were melted, and hot-rolled steel sheets were produced under the following hot rolling conditions. The hot rolling conditions were a heating temperature of 1210 ° C, a finish rolling temperature of 900 ° C, and a scraping temperature of 650 ° C. Thereafter, the conditions are shown in Table 3 for steel sheets subjected to cold rolling and annealing, and numerical values are not entered for the steel sheets not subjected to cold rolling and annealing. J and L steels were discontinued because cracks occurred during hot rolling. The steel sheet thus produced was subjected to hot dip galvanizing, alloying hot dip galvanizing, or electrogalvanizing, and an inorganic amorphous film was formed on the galvanized surface. At this time, the final plate thicknesses of the steel plates were all set to 2.0 mm. The composition of each galvanizing is as follows: hot dip galvanizing (Al: 0.3%, Fe: 0.8%, Pb: 0.1%, remaining Zn), alloyed hot dip galvanizing (Fe: 10%, Al: 10) %, Remaining Zn) and electrogalvanized (pure Zn). The inorganic amorphous coatings are Mn, Mo, Co, Ni, Ca, Cr, V, W, Ti, Al, and Zn metal oxides which are anti-adhesion functional coatings, and P and B which are corrugated lubricating functional coatings. It consists of an oxide colloid made of a system oxide and / or Si, Al, Ti or the like.

この様にして製造した鋼板を、表4に示す熱間プレス条件で熱間プレスを行ったが、この際、最高加熱温度に対し、鋼板の場所によって容易に温度差が起こるように、図4のように冷却媒体の通った通電加熱電極部を備えた通電加熱にて加熱を行ったものをプレスに用いた。この通電加熱により鋼板を加熱することで、通電加熱電極部の冷却媒体を制御して低温部を発生させ、容易に鋼板に温度差をつけることが出来るからである。通電加熱電流と冷却媒体を調整し、表4に示す熱間プレス条件での加熱速度および最高加熱温度で試験を行った。ここで最高加熱温度とは、図4の様に加熱を行った際の、プレス部品中心部の温度であり、端部に行くに従って温度が低下していく。この温度差の生じた加熱後の鋼板を、図3に示す形状となる様金型でプレス成形を行ったが、この際プレス直前の鋼板温度をサーモグラフィーで測定して熱間プレスを実施した。熱間プレス後の割れ発生の状況に関し、熱間プレス直前の温度分布からそれぞれ30℃、250℃、400℃、650℃、750℃、800℃の場所を特定し、それぞれの部分でのの割れの有無、ビッカース硬度を測定した。更に、亜鉛めっき表面の酸化皮膜の測定を行うため、ESCAより表層10nm位置での金属酸化物の有無を確認した。   The steel plate thus manufactured was hot-pressed under the hot press conditions shown in Table 4. At this time, the temperature difference easily occurs depending on the location of the steel plate with respect to the maximum heating temperature. As described above, the one heated by energization heating provided with the energization heating electrode portion through which the cooling medium passed was used for the press. This is because by heating the steel sheet by this energization heating, the cooling medium of the energization heating electrode part is controlled to generate a low temperature part, and a temperature difference can be easily given to the steel sheet. The test was performed at the heating rate and the maximum heating temperature under the hot press conditions shown in Table 4 by adjusting the energization heating current and the cooling medium. Here, the maximum heating temperature is the temperature at the center of the pressed part when heating is performed as shown in FIG. 4, and the temperature decreases as it goes to the end. The heated steel plate with the temperature difference was press-formed with a mold so as to have the shape shown in FIG. 3, and at this time, the temperature of the steel plate immediately before pressing was measured by thermography to perform hot pressing. Regarding the occurrence of cracks after hot pressing, the locations of 30 ° C, 250 ° C, 400 ° C, 650 ° C, 750 ° C, and 800 ° C are specified from the temperature distribution immediately before hot pressing, and cracks occur at each part. The presence or absence of Vickers hardness was measured. Furthermore, in order to measure the oxide film on the surface of the galvanized surface, the presence or absence of the metal oxide at the surface layer 10 nm position was confirmed from ESCA.

プレスに用いた金型は、ハット型の金型であり、パンチ及びダイスの型Rは5Rとした。また、ハットの縦壁部の高さは50mmであり、しわ押さえ力を10tonとした。
ビッカース硬度は、 (株)明石製作所製MVK-Eマイクロビッカース硬度計を用いて1/4厚さの位置で荷重1kgfでの3点の平均値とした。
The mold used for the press was a hat mold, and the punch and die mold R was 5R. Further, the height of the vertical wall portion of the hat was 50 mm, and the wrinkle pressing force was 10 tons.
The Vickers hardness was an average value of three points at a thickness of 1/4 at a load of 1 kgf using an MVK-E micro Vickers hardness meter manufactured by Akashi Seisakusho Co., Ltd.

鋼塊I、Kは、本発明の範囲外であるため、熱間プレス後の硬度差が高くならず、強度差として好ましいHv100以上の硬度差を生じさせる事が出来なかった。
鋼板表面に、無機系非晶質皮膜を生成させなかった、A-d,B-dは、鋼板の加工性の低い650℃以下の温度の部分において割れが発生した。鋼板表面の凝着防止機能皮膜を生成させなかったB-e,C-d,F-eは、650℃以下の温度の部分において割れが発生した。
鋼板表面の凝着防止機能皮膜のみ本発明の範囲外であるD-e,E-eは、650℃以下の温度の部分において割れが発生した。熱間プレス後の酸化物が、測定箇所によって確認されない場合があり、部分的に剥離したため割れが発生したと考えられる。
鋼板表面のコロガリ潤滑機能皮膜を生成させなかったA-e,D-d,H-eは、650℃以下の温度の部分において割れが発生した。
鋼板表面のコロガリ潤滑機能皮膜のみ本発明の範囲外であるC-e,G-eは、650℃以下の温度の部分において割れが発生した。熱間プレス後の酸化物が、測定箇所によって確認されない場合があり、部分的に剥離したため割れが発生したと考えられる。
鋼板表面の、無機系非晶質皮膜が本発明の範囲外であるE-d,F-d,H-dは、650℃以下の温度の部分において割れが発生した。熱間プレス後の酸化物が、測定箇所によって確認されない場合があり、部分的に剥離したため割れが発生したと考えられる。
Since the steel ingots I and K are outside the scope of the present invention, the hardness difference after hot pressing does not increase, and a hardness difference of Hv 100 or more which is preferable as a strength difference cannot be generated.
In Ad and Bd, which did not produce an inorganic amorphous film on the surface of the steel plate, cracks occurred at a temperature of 650 ° C. or lower where the workability of the steel plate was low. In Be, Cd, and Fe that did not produce an anti-adhesion functional film on the surface of the steel plate, cracking occurred at a temperature of 650 ° C. or lower.
In De and Ee, where only the anti-adhesion functional film on the surface of the steel sheet is outside the scope of the present invention, cracking occurred at a temperature of 650 ° C. or lower. The oxide after hot pressing may not be confirmed depending on the measurement location, and it is considered that cracking occurred due to partial peeling.
In Ae, Dd, and He that did not generate a roller lubrication functional film on the surface of the steel plate, cracking occurred at a temperature of 650 ° C. or lower.
In Ce and Ge, which are outside the scope of the present invention, only the roller lubrication functional film on the surface of the steel plate was cracked at a temperature of 650 ° C. or lower. The oxide after hot pressing may not be confirmed depending on the measurement location, and it is considered that cracking occurred due to partial peeling.
Ed, Fd, and Hd on the surface of the steel sheet where the inorganic amorphous film was outside the scope of the present invention were cracked at a temperature of 650 ° C. or lower. The oxide after hot pressing may not be confirmed depending on the measurement location, and it is considered that cracking occurred due to partial peeling.

1 熱間プレスを行う鋼板
1−a 熱間プレスを行う鋼板の高温加熱部
1−b 熱間プレスを行う鋼板の低温加熱部
2 冷却媒体の通った通電加熱電極部
DESCRIPTION OF SYMBOLS 1 Steel plate which performs hot pressing 1-a High temperature heating part of steel plate which performs hot pressing 1-b Low temperature heating part of steel plate which performs hot pressing 2 Electric heating electrode part through which cooling medium has passed

Claims (6)

亜鉛めっき鋼板の表面に、無機系非晶質被覆層を形成させた後、Ac1点未満の未加熱あるいは低温加熱とした部分とAc1点以上に加熱した部分とを有したまま鋼板をプレスする事で材質の差を有するようにする熱間プレス部品の製造方法であって、前記無機系非晶質被覆層がプレス成形時にめっき層表面に密着し、その変形に追随して皮膜を維持する凝着防止機能を有する成分としてMn,Mo,Co,Ni,Ca,Cr,V,W,Ti,Al,Znの1種または2種以上の金属酸化物および/または水酸化物と、金型とめっき層間のコロガリ潤滑機能を有する成分としてP、Bの1種または2種の酸化物および/またはSi,Al,Tiの1種または2種以上の酸化物コロイドを併せ持つものとし、前記凝着防止機能を有する成分を1〜500mg/m(金属として)、コロガリ潤滑機能を有する成分を1〜500mg/m(金属として)、無機系非晶質被覆層を2〜1000mg/m(金属として)としたことを特徴とする熱間プレス部品の製造方法。 After the inorganic amorphous coating layer is formed on the surface of the galvanized steel sheet, the steel sheet is pressed with an unheated or low-temperature heated part below the Ac1 point and a part heated above the Ac1 point. The method of manufacturing a hot-pressed part in which the material has a difference in material, wherein the inorganic amorphous coating layer adheres to the surface of the plating layer during press molding and maintains the film following the deformation. As a component having an adhesion prevention function, one or more metal oxides and / or hydroxides of Mn, Mo, Co, Ni, Ca, Cr, V, W, Ti, Al, and Zn, a mold, As an ingredient having a function of lubrication between plating layers, it has one or two kinds of oxides of P and B and / or one or more kinds of oxide colloids of Si, Al and Ti, and prevents the adhesion. 1 to 500 mg of functional ingredients m (as the metal) 2, a component having a rolling lubricating function (as the metal) 1-500 mg / m 2, characterized in that the 2~1000mg / m 2 inorganic amorphous coating layer (as the metal) Manufacturing method for hot pressed parts. 未加熱あるいは低温加熱とした部分は700℃以下とすることを特徴とする請求項1記載の熱間プレス部品の製造方法。   2. The method for manufacturing a hot-pressed part according to claim 1, wherein the portion which is not heated or is heated at a low temperature is set to 700 ° C. or lower. 亜鉛めっき鋼板の鋼板母材の成分は、質量%にて、
C :0.10%以上、0.35%以下、
Si:0.01以上、3.0%以下、
Al:0.01以上、3.0%以下、
Mn:1.0%以上、3.5%以下、
P :0.1%以下、
S :0.01%以下、
N :0.01%以下、
を含有し、残部が鉄及び不可避的不純物からなることを特徴とする請求項1または2に記載の熱間プレス部品の製造方法。
The component of the galvanized steel sheet base material is in mass%,
C: 0.10% or more, 0.35% or less,
Si: 0.01 or more and 3.0% or less,
Al: 0.01 or more and 3.0% or less,
Mn: 1.0% or more, 3.5% or less,
P: 0.1% or less,
S: 0.01% or less,
N: 0.01% or less,
The method for producing a hot-pressed part according to claim 1 or 2, wherein the balance is made of iron and inevitable impurities.
亜鉛めっき鋼板の鋼板母材の成分は、さらに質量%で、
Ti:0.2%以下、
Nb:0.2%以下、
Mo:1.0%以下、
Cr:1.0%以下、
V :1.0%以下、
Ni:3.0%以下、
B :0.0002〜0.005%、
Ca:0.0002〜0.005%、
Mg:0.0002〜0.005%、
の1種または2種以上を含有する事を特徴とする請求項3に記載の熱間プレス部品の製造方法。
The component of the galvanized steel sheet base material is further mass%,
Ti: 0.2% or less,
Nb: 0.2% or less,
Mo: 1.0% or less,
Cr: 1.0% or less,
V: 1.0% or less,
Ni: 3.0% or less,
B: 0.0002 to 0.005%,
Ca: 0.0002 to 0.005%,
Mg: 0.0002 to 0.005%,
The manufacturing method of the hot press part of Claim 3 characterized by including 1 type (s) or 2 or more types of these.
亜鉛めっき鋼板が、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板のいずれかである請求項1乃至4のいずれかに記載の熱間プレス部品の製造方法。   The method for producing a hot-pressed part according to any one of claims 1 to 4, wherein the galvanized steel sheet is any one of a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, and an electrogalvanized steel sheet. 請求項1乃至5のいずれか1項の熱間プレス部品の製造方法によって製造された熱間プレス部品であって、熱間プレス部品の表面で400℃以下の加熱後成形された部分では前期無機系非晶質皮膜が未加熱ままの状態で残存し、400℃超700℃以下の加熱温度で成形した部分では、Mn,Mo,Co,Ni,Ca,Cr,V,W,Ti,Alの1種または2種以上の金属酸化物と、P、Bの1種または2種の酸化物および/またはSi,Al,Tiの1種または2種以上の酸化物が10nm以上の厚みで存在することを特徴とする熱間プレス部品。
A hot-pressed part manufactured by the method for manufacturing a hot-pressed part according to any one of claims 1 to 5, wherein a portion formed after heating at 400 ° C or lower on the surface of the hot-pressed part is inorganic in the previous period. In the portion where the amorphous amorphous film remains in an unheated state and is molded at a heating temperature of more than 400 ° C. and 700 ° C. or less, Mn, Mo, Co, Ni, Ca, Cr, V, W, Ti, Al One or more metal oxides and one or two oxides of P and B and / or one or more oxides of Si, Al and Ti are present in a thickness of 10 nm or more. Hot-pressed parts characterized by that.
JP2010037372A 2010-02-23 2010-02-23 Manufacturing method of hot pressed parts and hot pressed parts Active JP5549921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037372A JP5549921B2 (en) 2010-02-23 2010-02-23 Manufacturing method of hot pressed parts and hot pressed parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037372A JP5549921B2 (en) 2010-02-23 2010-02-23 Manufacturing method of hot pressed parts and hot pressed parts

Publications (2)

Publication Number Publication Date
JP2011173135A true JP2011173135A (en) 2011-09-08
JP5549921B2 JP5549921B2 (en) 2014-07-16

Family

ID=44686513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037372A Active JP5549921B2 (en) 2010-02-23 2010-02-23 Manufacturing method of hot pressed parts and hot pressed parts

Country Status (1)

Country Link
JP (1) JP5549921B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199923A1 (en) * 2013-06-11 2014-12-18 新日鐵住金株式会社 Hot-stamped product and process for producing hot-stamped product
JP2016089274A (en) * 2014-11-04 2016-05-23 株式会社神戸製鋼所 Plating steel sheet for hot stamp
JP2016518256A (en) * 2013-04-19 2016-06-23 ポスコ Hot press forming apparatus for plated steel and forming method using the same
WO2019003541A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
WO2019003540A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-press member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
JP2020032434A (en) * 2018-08-28 2020-03-05 株式会社キーレックス Hot press molding method
JP2020041177A (en) * 2018-09-07 2020-03-19 Jfeスチール株式会社 Steel plate for hot pressing
CN115595025A (en) * 2021-07-08 2023-01-13 武汉苏泊尔炊具有限公司(Cn) Non-stick material, preparation method thereof, non-stick coating and cooking utensil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296058A (en) * 1995-04-26 1996-11-12 Nippon Steel Corp Production of galvanized steel sheet excellent in pressability, chemical convertibility and adhesive compatibility
JP2005193287A (en) * 2004-01-09 2005-07-21 Nippon Steel Corp Method for manufacturing high-strength component having excellent shape accuracy
JP2008284610A (en) * 2007-04-20 2008-11-27 Nippon Steel Corp Method for manufacturing high strength component, and high strength component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296058A (en) * 1995-04-26 1996-11-12 Nippon Steel Corp Production of galvanized steel sheet excellent in pressability, chemical convertibility and adhesive compatibility
JP2005193287A (en) * 2004-01-09 2005-07-21 Nippon Steel Corp Method for manufacturing high-strength component having excellent shape accuracy
JP2008284610A (en) * 2007-04-20 2008-11-27 Nippon Steel Corp Method for manufacturing high strength component, and high strength component

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518256A (en) * 2013-04-19 2016-06-23 ポスコ Hot press forming apparatus for plated steel and forming method using the same
WO2014199923A1 (en) * 2013-06-11 2014-12-18 新日鐵住金株式会社 Hot-stamped product and process for producing hot-stamped product
TWI500822B (en) * 2013-06-11 2015-09-21 Nippon Steel & Sumitomo Metal Corp Hot stamped body and method for producing hot stamped body
JP6004102B2 (en) * 2013-06-11 2016-10-05 新日鐵住金株式会社 Hot stamp molded body and method for producing hot stamp molded body
JPWO2014199923A1 (en) * 2013-06-11 2017-02-23 新日鐵住金株式会社 Hot stamp molded body and method for producing hot stamp molded body
RU2621501C1 (en) * 2013-06-11 2017-06-06 Ниппон Стил Энд Сумитомо Метал Корпорейшн Product moulded by hot forming and manufacturing method for product moulded by hot forming
KR101772308B1 (en) 2013-06-11 2017-08-28 신닛테츠스미킨 카부시키카이샤 Hot-stamped product and process for producing hot-stamped product
US10358687B2 (en) 2013-06-11 2019-07-23 Nippon Steel Corporation Hot stamp molded body, and method for producing hot stamp molded body
JP2016089274A (en) * 2014-11-04 2016-05-23 株式会社神戸製鋼所 Plating steel sheet for hot stamp
WO2019003449A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
WO2019003540A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-press member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
WO2019003448A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
JP6501045B1 (en) * 2017-06-30 2019-04-17 Jfeスチール株式会社 Hot pressed member, method for producing the same, cold rolled steel sheet for hot pressing, and method for producing the same
JP6501046B1 (en) * 2017-06-30 2019-04-17 Jfeスチール株式会社 Hot pressed member, method for producing the same, cold rolled steel sheet for hot pressing, and method for producing the same
WO2019003541A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
CN110799661A (en) * 2017-06-30 2020-02-14 杰富意钢铁株式会社 Hot-pressed member, method for manufacturing same, cold-rolled steel sheet for hot pressing, and method for manufacturing same
US11111558B2 (en) 2017-06-30 2021-09-07 Jfe Steel Corporation Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
US11293074B2 (en) 2017-06-30 2022-04-05 Jfe Steel Corporation Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
JP2020032434A (en) * 2018-08-28 2020-03-05 株式会社キーレックス Hot press molding method
JP2020041177A (en) * 2018-09-07 2020-03-19 Jfeスチール株式会社 Steel plate for hot pressing
CN115595025A (en) * 2021-07-08 2023-01-13 武汉苏泊尔炊具有限公司(Cn) Non-stick material, preparation method thereof, non-stick coating and cooking utensil
CN115595025B (en) * 2021-07-08 2023-09-08 武汉苏泊尔炊具有限公司 Non-stick material, preparation method thereof, non-stick coating and cooking utensil

Also Published As

Publication number Publication date
JP5549921B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
TWI524953B (en) Cold-rolled steel and process for production of cold-rolled steel
CA2767206C (en) High strength steel sheet and method for manufacturing the same
JP5549921B2 (en) Manufacturing method of hot pressed parts and hot pressed parts
TWI468534B (en) High-strength cold rolled steel sheet and manufacturing method thereof
KR101422556B1 (en) Method for producing high-strength steel sheet
CN110291217B (en) High-strength steel sheet and method for producing same
EP2816132B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
TWI481730B (en) A steel sheet
TW201335385A (en) Hot-stamp-molded article and process for production of hot-stamp-molded article
JP2007231373A (en) High-strength steel sheet having excellent hydrogen brittleness resistance in weld zone and its production method
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
WO2020170667A1 (en) Hot-pressed member, cold-rolled steel sheet for hot press use, and methods respectively manufacturing these products
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP4975245B2 (en) Manufacturing method of high strength parts
JP2024515833A (en) Hot-pressed part with tensile strength of ≧1000 MPa and its manufacturing method
KR20180128977A (en) METHOD FOR MANUFACTURING TWIP STEEL SHEET HAVING AUSTENITE MATRIX
JP4924203B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP5789208B2 (en) High-strength galvannealed steel sheet with excellent chemical conversion and ductility and its manufacturing method
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
US11136641B2 (en) Mn-containing galvannealed steel sheet and method for producing the same
KR102249246B1 (en) High-strength alloyed hot-dip galvanized steel sheet and its manufacturing method
WO2022091529A1 (en) Hot-pressed member, steel sheet for hot-pressing, and methods for producing same
JP2006104527A (en) Method for producing high strength component and high strength component
JP6981385B2 (en) Steel plate for hot pressing
CN115667571A (en) Hot-pressed component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R151 Written notification of patent or utility model registration

Ref document number: 5549921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350