JP2011159537A - リチウムイオン二次電池パック - Google Patents

リチウムイオン二次電池パック Download PDF

Info

Publication number
JP2011159537A
JP2011159537A JP2010021203A JP2010021203A JP2011159537A JP 2011159537 A JP2011159537 A JP 2011159537A JP 2010021203 A JP2010021203 A JP 2010021203A JP 2010021203 A JP2010021203 A JP 2010021203A JP 2011159537 A JP2011159537 A JP 2011159537A
Authority
JP
Japan
Prior art keywords
ion secondary
secondary battery
lithium ion
voltage
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010021203A
Other languages
English (en)
Inventor
Shigetaka Tsubouchi
繁貴 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2010021203A priority Critical patent/JP2011159537A/ja
Publication of JP2011159537A publication Critical patent/JP2011159537A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

【課題】高安全性を確保しつつ停止後の使用可能なリチウムイオン二次電池を再使用に復帰させる。
【解決手段】リチウムイオン二次電池パック1は電池とその単電池2もしくは組電池3の電圧および温度を単電池単位もしくは組電池単位で電圧および電流を制御する制御装置とを有する。制御装置4は電圧検出部11と、温度検出部12と、電流検出部13と、選択部14と、充放電制御部15と、停止条件判定部16と、記憶部17と、バイパス動作制御部18と、通信部19とを備え、電圧・温度を取得し、記憶装置に記憶された停止上限電圧、停止上限温度と比較し停止条件に到達したことが判定されると所定時間回路を開回路状態にした後、電圧を取得し、電池の容量を算出する。定常駆動するリチウムイオン二次電地の容量と同等の容量まで放電し、放電させた単電池2または組電池を再使用に復帰させることができる。
【選択図】図2

Description

本発明は、リチウム二次電池パックに関し、特に高い出力性能を有しハイブリッド自動車等に好適な新規なリチウムイオン二次電池パックに関する。
環境保護や省エネルギーの観点から、エンジンとモーターとを動カ源として併用したハイブリッド電気自動車(HV)が開発および製品化されている。また、電気プラグから電力を供給できるシステムを有するプラグインハイブリッド電気自動車(PHV)の開発が進められている。このハイブリッド自動車のエネルギー源として電気を繰返し充電放電することが可能な二次電池は必須の技術である。
これらの電気自動車を代表とする、リチウムイオン二次電池によって駆動されるアプリケーションにおいては高い安全性が必要である。このため、イオン液体、固体電解質等の採用による電解液の難燃化、高温時のセパレータによるシャットダウン(すなわち、異常加熱時にリチウムイオンの移動(電池の機能)を止める安全機構)、ガス発生時の電流遮断弁による電流遮断等の、リチウムイオン二次電池本体の材料および構造を工夫することによる安全制御技術が施されている。また、これらに加え、リチウムイオン二次電池を充放電させる外部制御側からも制御可能な非定常時のシャットダウン機能が設定されている(例えば、特許文献1参照)。
特開平4−351432号公報
しかしながら、外部制御によって安全性を確保するためには、電池内材料および構造に固有の設定値を設定することが必要である。特に過充電においては正極活物質の遷移金属内Liの全脱離、負極表面のLi金属析出等の非定常な電池内反応が熱暴走、発火、***等の危険な現象を引き起こす原因となっている。つまりこれらの現象がトリガーとなる電池内反応は材料や構造によって異なり、それらの反応の出力として観測される電圧および温度といった値も電池内材料および構造によって決定される。それゆえ、実際に駆動対象となるアプリケーションに搭載されるリチウムイオン二次電池に固有の値を外部制御の設定値としなければ本質的な安全性の確保には至らない。
また、前記シャットダウン設定値は危険な現象が起こる前の設定値であるため、シャットダウンが起きた時には、電池群の中には再復帰可能な電池も存在する。しかしながら、これまでは、シャットダウン停止後は制御回路自体が全てシャットダウンするかもしくはシャットダウン停止した電池が制御回路から外されるのが一般的であり、結果としてアプリケーションへの駆動に必要な電力量を低減させていた。
本発明は上記課題を解決するため、リチウムイオン二次電池と、リチウムイオン二次電池の単電池もしくは組電池の電圧および温度を単電池単位もしくは組電池単位で電圧および電流を制御する制御装置とを有するパックであって、前記制御装置は、制御手段として、アプリケーションの定常駆動用の充電上限電圧とは別に、充電上限電圧以上の非定常な過充電における停止上限電圧と、前記リチウムイオン二次電池の非定常な温度上昇における停止上限温度が設けてあり、前記制御装置は、前記リチウムイオン二次電池の単電池もしくは組電池の過充電における停止上限電圧到達もしくは停止上限温度到達による停止後、停止したリチウムイオン二次電池の単電池もしくは組電池を所定時間開回路状態にさせ、所定時間後の前記停止したリチウムイオン二次電池の単電池および組電池の電圧値から電池の容量を算出し、定常駆動するリチウムイオン二次電池の単電池もしくは組電池と同等の容量まで放電し、前記定常駆動するリチウムイオン二次電池の単電池もしくは組電池と同等の容量まで放電したリチウムイオン二次電池の単電池もしくは組電池をアプリケーションの定常駆動用に再復帰させることが可能なリチウムイオン二次電池パックを提供する。
本発明によれば、高安全性を確保しつつシャットダウン停止後の使用可能なリチウムイオン二次電池を再使用のために系に復帰させることが可能である。
本発明の一実施の形態によるリチウム二次電地パックの模式図である。 一実施の形態によるリチウム二次電地パックに使用される充放電制御回路を機能的に表したブロック図である。 図1に示すリチウム二次電地パック1のパック内の構成を、単電池単位で制御が行われる場合について説明する図である。 図1に示すリチウム二次電地パック1のパック内の構成を、組電池単位で制御が行われる場合について説明する図である。 本発明の一実施の形態によるリチウム二次電地の使用の状況を模式的に示すフローチャートである。 図3のリレー12〜14の動作を説明する概略図であり、(a)はバイパス動作の前(定常駆動)の状態を示し、(b)はバイパス動作のための、電位差を吸収する準備がされる状態を示し、(c)はバイパス動作により生じる電位差を吸収する状態を示し、(d)はバイパスが完了した状態を示す。 本発明が適用されるリチウムイオン二次電池の捲回型電池の断面模式図である。 過充電時間と電圧との関係を示す図である。 モニター時間間隔dtが0.25分における休止時間tとdV/dtとの関係を示す図である。 モニター時間間隔dtが0.5分における休止時間tとdV/dtとの関係を示す図である。 モニター時間間隔dtが1分における休止時間tとdV/dtとの関係を示す図である。 モニター時間間隔dtが2分における休止時間tとdV/dtとの関係を示す図である。 モニター時間間隔dtが5分における休止時間tとdV/dtとの関係を示す図である。 モニター時間間隔dtと変化減衰dV/dt値との関係を示す図である。 電極の示差走査熱量測定結果を示すグラフである。 電極の示差走査熱量測定結果を示すグラフである。
以下、図面を参照して本発明を実施するための形態について説明する。図1は、本発明の一実施の形態によるリチウム二次電地パックの模式図である。リチウム二次電地パック1は、多数個のリチウム二次電地(以下、単電池ともいう。)2を直列接続してモジュール3(以下、組電池ともいう。)とし、これをパックしたものであり、単電池2または組電池3の電圧、温度等の物理量を制御する制御装置4を備えている。組電池3は図示しない内部配線、コネクタ5を介して図示しないインバータおよびモーター等のアプリケーション(外部負荷)6に接続される。
図2は、図1に示すリチウム二次電地パック1に使用される制御装置(回路)4を機能的に表したブロック図である。制御装置4は電圧検出部11と、温度検出部12と、電流検出部13と、選択部14と、充放電制御部15と、停止条件判定部16と、記憶部17と、バイパス動作制御部18と、通信部19とを備える。電圧検出部11は単電池2の電圧を検出・取得し充放電制御部15に送信する。温度検出部12は選択部14によって選択された単電池2の周囲温度を検出・取得し充放電制御部15に送信する。充放電制御部15は送信された単電池の電圧・温度を停止条件判定部16に送り記憶部17に記憶された停止条件(停止上限電圧、停止上限温度)と比較して停止条件が到達されたか否かを判定させる。停止条件判定部16が停止上限電圧および停止上限温度のいずれか一方が到達されたと判定した場合、停止条件判定部から停止条件到達信号が充放電制御部15に送信される。充放電制御部15は、この停止条件到達信号を受信すると、単電池2または組電池3を記憶部17に記憶された所定時間にわたって回路を開回路状態になるよう制御する。所定時間経過後、この所定時間の間停止したリチウム二次電地の単電池2または組電池3の電圧を電圧検出部11を介して取得する。この取得した電圧値から記憶部17に記憶された所定の計算式に従って電池の容量を計算する。この計算値を、記憶部17に記憶された定常駆動するリチウムイオン二次電地単電池または組電池の容量と比較し、その差に相当する容量を取得する。ついで、充放電制御部15は開回路状態で所定時間経過後の単電池2または組電池3を上述の取得された容量差に相当する分たけ放電させる。これにより、定常駆動するリチウム二次電地の単電池または組電池と停止され回復準備された単電池2または組電池3の間に実質的に電池容量の差がなくなり、停止させた単電池2または組電池3を再使用のために系に復帰させても不都合が生じない。なお、制御装置4はバイパス動作制御部18を備え、単電池2または組電池3を停止させる際に、図3を参照して後述するリレーを操作することにより対象となる単電池2または組電池3を系から外す。停止後開回路状態で所定時間経過後の電池の容量を計算するために電圧を用いたが電流検出部13により検出・取得された電流値を用いることも可能である。その場合は、当業者に自明な電圧値から電流値への変換を行えばよい。制御部4は通信部19を介して各部11〜18の検出・取得した各種パラメータを図示しない外部制御装置に送信し、この外部制御装置により制御を実行するようにすることもできる。
図3は、図1に示すリチウム二次電地パック1内の構成をさらに詳細に示す図である。20は電池モジュールである。制御装置4は単電池2の電圧を計測するセル電圧計測装置21、バランシング回路22、セル温度計測部23、直列接続された単電池2の中から測定対象の単電池を選択する選択装置(マルチプレクサ)24を含む。さらに、マルチプレクサが選択した単電池のアナログ電圧をデジタル電圧に変換する図示しないA/Dコンバータと、A/Dコンバータで変換された電圧値を図示しないRAM等に格納するための図示しないCPUまたはMPUとで構成されている。バランシング回路22は各単電池の容量を均一にするための容量調整用抵抗を単電池に並列接続するための一連のスイッチSWを備えている。電池パック1内には、全単電池のうち数個(例えば、1個おき)の単電池の温度を検出するサーミスタ等の温度センサ25が配置されている。各単電池にそれぞれ温度センサ25を設けてもよい。このように、セル温度計測部23は選択装置24と複数の温度センサ25とから構成されている。
図4は、組電池単位で制御が行われる場合について説明する図である。図4に示す電池パック1の構成では、セル電圧計測部21と温度センサ25はそれぞれ1個のみ設けられており、選択装置とバランシング回路はいずれも設けられていない。
図5は、本発明の一実施の形態によるリチウム二次電地の使用の状況を模式的に示すフローチャートである。図5において、リチウム2次電池がHEV等の電気自動車等のアプリケーションおいて通常に使用(正常駆動)されている(ステップS1)。この間に、同時にリチウム二次電地の稼動条件、例えば電圧および温度が監視され個々の単電池2または組電池(電池モジュール)1が正常駆動を継続可能か否かの判断が行われる(ステップS2)。この判断は単電池2または組電池の所定の物理量が所定の限界値に到達したか否かを監視することによって行われる。所定の物理量としては、通常、電圧と温度とが選択される。一実施の形態では、単電池2の電圧Vが所定の限界電圧値Vc以上(V≧Vc)である場合、または単電池2の温度Tが所定の限界温度値Tc以上(T≧Tc)である場合に、停止条件が満たされたとの判断がなされ、単電池または組電池の稼動が停止される(ステップS3)。すなわち単電池2の電圧が所定の限界電圧Vc以上(V≧Vc)であると判断されると、または単電池2の温度Tが所定の限界温度Tc以上(T≧Tc)であると判断されると、非定常時のシャットダウン機能が働きリチウム二次電地の駆動が停止される(ステップS3)。次いで、単電池2または組電池1は開回路状態(負荷の無い状態)に置かれる(ステップS4)。そして、ステップS5において、所定時間が経過したか否か判断される。所定時間が経過していると判断された場合、ステップS6において電圧がモニターされる。次いで、ステップS7で電圧モニターにより取得された電圧に基づいて電池の容量算出が行われる。この容量算出は、開回路状態で所定時間経過後の単電池または組電池の電圧を取得し、この電圧と経過時間とから所定の関係式に従って算出することにより行われる。ステップ8において、ステップS7で算出された電池容量Ccalから定常駆動するリチウムイオン二次電地の単電池または組電池の予め求められた容量Csまで放電が行われる。すなわち算出された電池容量と予め求められた定常駆動する単電池または組電池の容量との差に相当する差容量dC=Ccal−Csの分だけ放電が行われる。ステップS6における放電の終了後、リチウム二次電地の単電池または組電池は定常駆動するリチウムイオン二次電池の単電池または組電池と同等の容量となっているので、アプリケーションの定常駆動用に系に復帰させることができる。
上述のステップS3のシャットダウン動作は次のようにして行われる。すなわち、図3において、個々の単電池2の電圧がセル電圧計測部21の、単電池2に対応する電圧計などの各電圧計測手段18Aにより測定され、それぞれの電圧値が制御装置3により取得される。取得された各電圧値Vは、制御装置3に格納された停止上限電圧Vcと比較される。いずれか1つの単電池2において、V≧Vcのとき(ステップS2、N)は、制御装置3はメイン用リレー26、バイパス用リレー27よびプリチャージ用リレー28に信号を送って、これらのリレー26〜28のオン/オフを制御する。
図6は、図3のリレー26〜28の動作を説明する概略図であり、(a)はバイパス動作の前(定常駆動)の状態を示し、(b)はバイパス動作のための、電位差を吸収する準備がされる状態を示し、(c)はバイパス動作により生じる電位差を吸収する状態を示し、(d)はバイパスが完了した状態を示す。図6(a)に示すように、バイパス動作に入る前は電池モジュール1A、1Bのメイン用リレー26A、26Bはいずれもオンであり、電池モジュール1A、1Bは直列接続されているが、プリチャージ用リレー28A、28Bはいずれもオフである。通常、この状態でリチウム電池の定常駆動が行われる。定常駆動の間に非定常な原因により電池モジュール1Aに過充電、過度の温度上昇が生じた場合は、制御装置3からの信号に基づいて、図6(a)に示す状態から図6(b)に示す状態になる。すなわち、電池モジュール1A、1Bのリレー26A、26Bがオフとなり、電池モジュール1Bのプリチャージ用リレー28Aがオンに変わるが、バイパス用リレー27A、27B、およびプリチャージ用リレー28Aはそれぞれオフのままである。これにより、電池モジュール1Bの電位が上昇し、電池モジュール1A、1B間の電位差を吸収する準備がなされる。図6(c)の状態では、図6(b)の状態から、さらに電池モジュール1Aのバイパス用リレー27Aがオンとなり、これにより実際に両電池モジュール間の電位差が吸収される。電位差が吸収された状態で、図6(d)に示すように電池モジュール1Bのメイン用リレー26Bがオンとなり、これにより電池モジュール1Aの組電池を迂回して接続がなされ、バイパスが完了する。
図4に示すように組電池単位で制御が行われる場合も、図6に示したのと同様に各リレー26〜28動作する。
上述のように、前記制御装置における停止上限電圧の設定値が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の値であることが必要である。設定値として、あらかじめ前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池と同じ仕様の電極、電解液およびセパレータ構成からなる電池において、アプリケーションの定常駆動用の充電上限電圧から1Cレートの定電流充電を2時間行い、その後15分以上開回路状態にさせた後の開回路電圧値であるのがスタティックな電圧を見るために最低限必要な時間であり、最長でも60分間のモニター時間があれば十分である。この場合、「Cレート」とは、電池の全容量を1時間で満充電または満放電するのに必要な電流値をいい、充電および放電電圧は任意の値であり駆動電圧が広くなるほど1Cの電流値は大きくなる。
前記のように開回路時間を設定して制御する方法が制御の簡易化およびコスト低減において有効であるが、開回路状態の電圧変化をモニターしその微分曲線から停止上限電圧を設定する方法も可能である。より詳細には、この方法は電圧変化の取り込み時間間隔によって次のように計算方法を変更する必要がある。
(1)開回路中に15≦t<30秒の一定間隔で電圧をモニターする場合、開回路中にdt間隔でモニターした電圧変化dVおよびモニター時間dtからなる関数dV/dtの値が(0.1−0.6dt)mV/min以上になった時間であることが好ましい。
(2)開回路中に0.5≦dt<1分の一定間隔で電圧をモニターする場合、開回路中にdt間隔でモニターした電圧変化dVおよびモニター時間dtからなる関数dV/dtの値が(―0.1−0.2dt)mV/min以上になった時間であることが好ましい。
(3)開回路中に1≦dt<2分の一定間隔で電圧をモニターする場合、開回路中にdt間隔でモニターした電圧変化dVおよびモニター時間dtからなる関数dV/dtの値が(―0.2−0.1dt)mV/min以上になった時間であることが好ましい。
(4)開回路中に2≦dt≦5分の一定間隔で電圧をモニターする場合、開回路中にdt間隔でモニターした電圧変化dVおよびモニター時間dtからなる関数dV/dtの値が―0.4mV/min以上になった時間であることが好ましい。
(5)制御の簡素化および精度の確保の両立を考えると1≦dt≦2分の間でモニターするのが好ましく、dt=2分でモニターするのが制御の簡素化の点で最も好ましい。
前記のモニター時間を決定する関数dV/dtの値が30分のモニター時間を越えても到達されない場合、電池の内部短絡等により自己放電が起こっている可能性が高い。そのため、前記dV/dtの値が30分のモニター時間を越えても到達されない場合は電圧モニターを終了し、停止したリチウムイオン二次電池の単電池および組電池を使用に復帰させないことが好ましい。
また、前記制御装置における停止上限温度の設定値が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の値であることが必要である。設定値としてあらかじめリチウムイオン二次電池パックに詰めるリチウムイオン二次電池と同じ仕様の電極、電解液およびセパレータ構成からなる電池において、アプリケーションの定常駆動用の充電上限電圧から1Cレートの定電流充電を2時間行い、その後30分開回路状態にさせた後の正極および負極の電極を取り出しジメチルカーボネートで洗浄し、前記洗浄した電極の示差走査熱量測定を行い、正極もしくは負極のうち80℃以上において最も低い温度でかつ活物質重量に対して3W/g以上の発熱量で検出されるピークトップの温度とすることが好ましい。これは80℃以下ではアプリケーションの外部温度によって到達する場合があると同時に、感知する“ピーク”定義を活物質重量に対して3W/gを規定しているからである。このように規定することによって電池の危険状態のトリガーとなりえない小さな発熱ピークは考慮しなくて済む。これらの温度設定値は化学反応おける発熱ピーク温度であり、実際には±10℃の範囲であれば有効な設定値であるといえる。
前記停止したリチウムイオン二次電池の単電池および組電池の電圧値からの電池の容量の算出方法が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の値であることが必要である。設定値としてあらかじめ前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池と同じ仕様の電極、電解液およびセパレータ構成からなる電池において、アプリケーションの定常駆動用の放電下限電圧から充電上限電圧まで1Cレート以下の低電流での定電流充電を行い、その際の電圧と容量の関係式を前記制御装置に組み込み計算させる方法であることが好ましい。測定時間を考慮すると1Cレートで抽出される電圧と容量の関係式で十分な精度が得られる。
また、前記停止したリチウムイオン二次電池の単電池および組電池の電圧値からの電池容量の算出方法として前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池の単電池および組電池そのものによって、アプリケーション駆動前に定常駆動用の放電下限電圧まで1Cレート以下の低電流での定電流放電を行い、15分以上の開回路状態後、放電下限電圧から充電上限電圧まで1Cレート以下の低電流での定電流充電を行い、その際の電圧と容量の関係式を前記定期的に更新し制御装置に組み込み計算させる方法によって、制御にプログラムを追加することになるが、アプリケーションを駆動させる実際の電池で測定することによってより正確な数値を算出することが出来る。
さらに、前記停止したリチウムイオン二次電池の単電池および組電池の電圧値から電池の容量の算出方法が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池の使用によって経時的に変化する固有の方法として、前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池の単電池および組電池そのものによって、アプリケーション駆動前および定期的に定常駆動用の放電下限電圧まで1Cレート以下の低電流での定電流放電を行い、15分以上の開回路状態後、放電下限電圧から充電上限電圧まで1Cレート以下の低電流での定電流充電を行い、その際の電圧と容量の関係式を前記定期的に更新し制御装置に組み込み計算させる方法を用いることで、電池の経年劣化後もその精度を維持し続けることができる。
リチウムイオン二次電池の構成がLi遷移金属酸化物の活物質を主体とする活物質合剤を含む正極と炭素の活物質を主体とする活物質合剤を含む負極と有機電解液とを含むリチウムイオン二次電池が本発明において精度良く効果を示す。また、前記正極の活物質がLiMnM1M2(式中、M1がCo,Niから選ばれる少なくとも1種、M2がCo,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種、x+y+z=1,0.2≦x≦0.6,0.2≦y≦0.6,0.05≦z≦0.4)で表されるLi遷移金属酸化物であり、前記負極の活物質がX線回折により求めた(002)面の平均面間隔が、0.38nm以上0.40nm以下である炭素であり、前記有機電解液が複数の溶媒と添加剤と電解質とを含み、前記溶媒として、(式1)で表される環状カーボネート
Figure 2011159537
(式中、R,R,R,Rは、水素,炭素数1〜3のアルキル基、ハロゲン化アルキル基のいずれかを表わす。)と、
(式2)で表される鎖状カーボネート
Figure 2011159537
(式中、R,Rは、炭素数1〜3のアルキル基、ハロゲン化アルキル基のいずれかを表わす。)と、を含み、
(式1)で表される環状カーボネートの前記溶媒における組成比率が18.0vol%から30.0vol%の範囲であり、(式2)で表される鎖状カーボネートの前記溶媒における組成比率が70.0vol%から82.0vol%の範囲であり、前記添加剤が分子軌道計算によって求めたLUMO(Lowest Unoccupied Molecular Orbital)エネルギーの値がエチレンカーボネートにおける計算値よりも低い(計算上耐還元性が劣る)値を示す物質であり、HOMO(Highest Occupied Molecular Orbital)エネルギーがビニレンカーボネートにおける計算値と同等もしくは低い(計算上耐酸化性が優れる)値を示す物質である前記添加剤全量の前記混合溶媒と電解質塩とからなる溶液全重量に対し0wt%から20wt%の範囲であって、前記電解質として、LiPF又はLiBFで表されるリチウム塩のうちいずれかひとつを含み、前記電解質の濃度が、前記溶媒と前記添加剤の総量に対して0.5mol/Lから2.0mol/Lの範囲である前記溶媒、前記添加剤、前記電解質からなる電解液を有する構成が最も精度良く効果を示す。
(式1)で表される溶媒としては、リチウム塩の解離度を向上し、イオン伝導性を向上させ、(式3)に比べ還元電位の低いものであり、例えば、エチレンカーボネート(EC),プロピレンカーボネート(PC),ブチレンカーボネート(BC)などが挙げられる。これらのうち誘電率が最も高くリチウム塩の解離度を向上でき、高イオン伝導の電解液を提供できるECが好ましい。
(式2)で表される溶媒としては、ジメチルカーボネート(DMC),エチルメチルカーボネート(EMC),ジエチルカーボネート(DEC),メチルプロピルカーボネート(MPC),エチルプロピルカーボネート(EPC)等を用いることができる。
DMCは、相溶性の高い溶媒であり、EC等と混合して用いるのに好適である。DECは、DMCよりも融点が低く、−30℃の低温特性には好適である。EMCは、分子構造が非対称であり、融点も低いので低温特性には好適である。その中でも広い温度範囲で電池特性を確保できるECとDMCとEMCの混合溶媒が最も高い効果を発揮する。
電解液に含まれる添加剤として電池の寿命および低抵抗化の点でカーボネート誘導体、鎖状エステル誘導体、リン酸トリエステル誘導体、環状スルホン誘導体、環状スルホラン誘導体を用いることができる。それらの具体的化合物として寿命および低抵抗化の効果のあるビニレンカーボネート、メチルフルオロアセテート、トリメチルホスフェイト、スルホラン、および1,3−プロパンスルトンが好ましい。
電解液に用いるリチウム塩としては、特に限定はないが、無機リチウム塩では、LiPF,LiBF,LiClO,LiI,LiCl,LiBr等、また、有機リチウム塩では、LiB[OCOCF,LiB[OCOCFCF,LiPF(CF,LiN(SOCF,LiN(SOCFCF等を用いることができる。特に、LiPFは、品質の安定性およびカーボネート溶媒中ではイオン伝導性が高いことから好ましい。
正極材料には、組成式LiMnM1M2(式中、M1は、Co,Niから選ばれる少なくとも1種、M2は、Co,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種であり、x+y+z=1,0.2≦x≦0.6,0.2≦y≦0.6,0.05≦z≦0.4)で表されるものが好ましい。特に、LiMn0.4Ni0.4Co0.2,LiMn1/3Ni1/3Co1/3,LiMn0.3Ni0.4Co0.3,LiMn0.35Ni0.3Co0.3Al0.5,LiMn3.5Ni0.3Co0.30.5,LiMn0.35Ni0.3Co0.3Fe0.5,LiMn0.35Ni0.3Co0.3Mg0.5などを用いることができる。なお、これらを一般的に正極活物質と称する場合がある。組成中、Niを多くすると容量が大きく取れ、Coを多くすると低温での出力が向上でき、Mnを多くすると材料コストを抑制できる。特に、LiMn1/31/3Co1/3は、低温特性とサイクル安定性とが高く、ハイブリット自動車(HEV)用リチウム電池材料として最適である。また、添加元素は、サイクル特性を安定させるのに効果がある。他に、一般式LiMPO(M:Fe又はMn,0.01≦X≦0.4)やLiMn1−xPO(M:Mn以外の2価のカチオン、0.01≦X≦0.4)である空間群Pnmaの対称性を有する斜方晶のリン酸化合物でも良い。
負極の炭素材料には、大きく分けて、X線回折により求めた(002)面の平均面間隔d002が0.38〜0.4nmの炭素質材料(本発明ではこの材料を「難黒鉛化性炭素」と定義する)、0.34nm〜0.37nmの炭素質材料(本発明ではこの材料を「易黒鉛化性炭素」と定義する)、0.335nm〜0.34nmの炭素質材料(本発明ではこの材料を「黒鉛」と定義する)がある。これら炭素材料の重量あたりのLi吸蔵量はそれぞれ異なり、難黒鉛化性炭素のときに、本発明の最も高い効果を発揮するが、易黒鉛化性炭素、黒鉛においても本発明の効果は限定されない。炭素材料以外にもリチウムやシリコンの合金も用いることができる。
(1)捲回型電池の作製
図7は、本発明が適用されるリチウムイオン二次電池の捲回型電池の断面模式図である。
まず、正極活物質としてLiMn1/3Ni1/3Co1/3を用い、導電材としてカーボンブラック(CB1)と黒鉛(GF1)を用い、バインダとしてポリフッ化ビニリデン(PVDF)を用いて、乾燥時の固形分重量をLiMn1/3Ni1/3Co1/3:CB1:GF1:PVDF=86:9:2:3の比となるように、溶剤としてNMP(N−メチルピロリドン)を用いて、正極活物質合剤(正極材ペースト)31を調製した。この正極材ペースト31を、正極集電体32として用いたアルミ箔に塗布し、80℃で乾燥し、加圧ローラーでプレスし、120℃で乾燥して正極電極層31を正極集電体32に形成した。
次に、負極材料としてd002が0.387nmの難黒鉛化性炭素を用い、導電材としてカーボンブラック(CB2)を用い、バインダとしてPVDFを用いて、乾燥時の固形分重量を、擬似異方性炭素:CB1:PVDF=88:5:7の比となるように、溶剤としてNMPを用いて、負極活物質合剤(負極材ペースト)33を調製した。
この負極材ペースト33を、負極集電体34として用いた銅箔に塗布し、80℃で乾燥し、加圧ローラーでプレスし、120℃で乾燥して負極電極層33を負極集電体34に形成した。
正極集電体32、負極集電体34の未塗布部にニッケル箔で作製した正極リード部35と負極リード部36をそれぞれ電気溶接で取り付けた後、作製した電極31、33間にセパレータ37を挟み込んで巻き回し、最外周のセパレータをテープで固定し捲回電極群を形成した。この電極群を負極リード部36が缶底になるようにして絶縁のためのポリプロピレン製インシュレータ(図示しない)を介して、ステンレス製電池缶38に挿入し、電池缶38と負極リード部36を缶底で電気溶接して負極回路を形成した。正極リード部さらに電解液39を注液し、カシメることで捲回型電池を作製した。EC:DMC:EMC=20:40:40の体積組成比で混合した溶媒に、電解質39としてリチウム塩LiPFを1mol/L溶解したものを電解液とした。これに破裂弁40、正極端子部41、ガスケット42を設け、最後に電池蓋43を取り付けて前記捲回型電池を作製し、以下の評価に用いる電池とした。
(2)過充電試験
定常駆動用の放電下限電圧を2.7Vとし、充電上限電圧を4.1Vとしたサイクルを5サイクル行い、その後、4.1V(SOC100%)から各電流レートでSOC150%、200%、250%、300%まで1Cレート(2mA/cm)で過充電しその後30分間の休止状態の電圧プロファイルを観察した。
図8は、過充電時間と電圧との関係を示す図であり、定常駆動用の充電上限電圧を4.1Vとしたときの時間を0hとしてさらに所定時間過充電しそれぞれ30分間休止した際の電圧プロファイルを示している。0hの○を除き、以降の時間での各○で示した部分が最終的な休止30後の電圧値であり、早い時間から順に150%、200%、250%、300%の値である。これより過充電量によらず休止後15分以上では電圧値がある値に収束しており、15分以上の休止時間であればスタティックな電圧を捕らえることができることがわかる。また本実施形態の電池における上限停止電圧は4.7Vに設定すればよいことを示している。
図9から図13は、モニター時間間隔dtを変えてdV/dtの変化を観察した図であり、図9がdt=0.25分、図10がdt=0.5分、図11がdt=1分、図12がdt=2分、図13がdt=5分の結果を示している。図9〜図13から、モニター時間間隔dtの変化に伴い収束するdV/dtの値も変えなければならないことがわかる。図9のdt=0.25分の場合はdV/dt=―0.05(mV/min)、図10のdt=0.5分の場合はdV/dt=―0.2(mV/min)、図11のdt=1分の場合はdV/dt=―0.3(mV/min)、図12のdt=2分の場合はdV/dt=―0.4(mV/min)、図13のdt=5分の場合はdV/dt=―0.4(mV/min)であればスタティックな電圧値を捉えているといえる。モニター時間が1分以下であると制御装置への負荷が大きいだけでなく変化量が少なくなるため収束値を捉え難い。また、モニター時間が5分以上であると観測点が少なく感知誤差を招く危険性がある。よって図9から図13の結果から、モニター取り込み間隔は1分から2分の間で行なうのが好ましく、制御の簡素化を考えると2分が適していることが分かる。
また図14はモニター時間間隔dtと変化減衰dV/dt値との関係を示しており、本発明における実施形態の条件以外のモニター時間における収束するdV/dtの値を算出できる図である。図中の式は各時間領域に適した収束するdV/dtの算出式である。これらを用いることで、モニター時間15秒から5分までの全期間において収束するdV/dtを設定することができ、それに伴う上限停止電圧も抽出することが可能である。
図15および図16は定常駆動用の充電上限電圧を4.1Vから所定時間過充電し、その後30分間休止した後の負極および正極の電極を取り出しジメチルカーボネートで洗浄し、前記洗浄した電極の示差走査熱量測定を走査温度5℃/minの昇温条件で行なった結果を示す。負極のうち80℃以上において最も低い温度でかつ活物質重量に対して3W/g以上の発熱量で検出されるピークトップの温度が100℃〜110℃の範囲で見られ、正極では150℃以上でしか見られないことから、上限停止温度の設定値を100℃〜110℃の範囲で設定すれば良いことがわかる。安全を重視するなら100℃を設定値とするのが良い。
以上の実施の形態より制御装置における上限停止電圧および上限停止温度の設定方法、並びにそれらの上限値によって停止したリチウムイオン二次電池の再復帰のための容量調整に必要な電圧の設定方法について示した。
本実施例においては、高安全性を確保しシャットダウン停止後の使用可能なリチウムイオン二次電池を再使用のためにシステムに復帰させることが可能であり、リチウムイオン二次電池の安全制御を必要とする全ての機器に適応することができる。主に高い安全性を必要とするHEV等の電気自動車に用いた場合に最も優れた能力を発揮する。
1、1A、1B リチウム二次電地パック
2 リチウム二次電地(単電池)
3 モジュール(組電池)
4 制御装置
5 コネクタ
6 アプリケーション(外部負荷)
11 電圧検出部
12 温度検出部
13 電流検出部
14 選択部
15 充放電制御部
16 停止条件判定部
17 記憶部
18 バイパス動作制御部
19 通信部
21 セル電圧計測装置
22 バランシング回路
23 セル温度計測部
24 選択装置(マルチプレクサ)
25 温度センサ
26、26A、26B メイン用リレー
27、27A 27B バイパス用リレー
28、28A、28B プリチャージ用リレー
31 正極電極層
32 正極集電体
33 負極活物質合剤(負極材ペースト)
34 負極集電体
35 正極リード部
36 負極リード部
37 セパレータ
38 電池缶
39 電解質
40 破裂弁
41 正極端子部
42 ガスケット
43 電池蓋

Claims (20)

  1. リチウムイオン二次電池と、リチウムイオン二次電池の単電池もしくは組電池の電圧および温度を単電池単位もしくは組電池単位で電圧および電流を制御する制御装置とを有するパックであって、
    前記制御装置は、制御手段として、アプリケーションの定常駆動用の充電上限電圧とは別に、充電上限電圧以上の非定常な過充電における停止上限電圧と、前記リチウムイオン二次電池の非定常な温度上昇における停止上限温度が設けてあり、
    前記制御装置は、前記リチウムイオン二次電池の単電池もしくは組電池の過充電における停止上限電圧到達もしくは停止上限温度到達による停止後、停止したリチウムイオン二次電池の単電池もしくは組電池を所定時間開回路状態にさせ、所定時間後の前記停止したリチウムイオン二次電池の単電池および組電池の電圧値から電池の容量を算出し、定常駆動するリチウムイオン二次電池の単電池もしくは組電池と同等の容量まで放電し、前記定常駆動するリチウムイオン二次電池の単電池もしくは組電池と同等の容量まで放電したリチウムイオン二次電池の単電池もしくは組電池をアプリケーションの定常駆動用に再復帰させることが可能なリチウムイオン二次電池パック。
  2. 制御装置における停止上限電圧の設定値が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の値であり、あらかじめ前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池と同じ仕様の電極、電解液およびセパレータ構成からなる電池において、定常駆動用の充電上限電圧から1Cレートの定電流充電を2時間行い、その後15分以上開回路状態にさせた後の開回路電圧値であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
  3. 制御装置における停止上限電圧の設定値が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の値であり、あらかじめ前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池と同じ仕様の電極、電解液およびセパレータ構成からなる電池において、定常駆動用の充電上限電圧から1Cレートの定電流充電を2時間行い、その後15分以上60分未満開回路状態にさせた後の開回路電圧値であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
  4. 制御装置における停止上限電圧の設定値が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の値であり、あらかじめ前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池と同じ仕様の電極、電解液およびセパレータ構成からなる電池において、定常駆動用の充電上限電圧から1Cレートの定電流充電を2時間行い、その後15分以上30分未満開回路状態にさせた後の開回路電圧値であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
  5. 停止上限電圧および停止上限温度によって停止したリチウムイオン二次電池の単電池および組電池の開回路中に15≦dt<30秒の一定間隔で電圧をモニターし、開回路中にdt間隔でモニターした電圧変化dVおよびモニター時間dtからなる関数dV/dtの値が(0.1−0.6dt)mV/min以上になった時間であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
  6. 停止上限電圧および停止上限温度によって停止したリチウムイオン二次電池の単電池および組電池の開回路中に0.5≦dt<1分の一定間隔で電圧をモニターし、開回路中にdt間隔でモニターした電圧変化dVおよびモニター時間dtからなる関数dV/dtの値が(―0.1−0.2dt)mV/min以上になった時間であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
  7. 停止上限電圧および停止上限温度によって停止したリチウムイオン二次電池の単電池および組電池の開回路中に1≦dt<2分の一定間隔で電圧をモニターし、開回路中にdt間隔でモニターした電圧変化dVおよびモニター時間dtからなる関数dV/dtの値が(―0.2−0.1dt)mV/min以上になった時間であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
  8. 停止上限電圧および停止上限温度によって停止したリチウムイオン二次電池の単電池および組電池の開回路中に2≦dt≦5分の一定間隔で電圧をモニターし、開回路中にdt間隔でモニターした電圧変化dVおよびモニター時間dtからなる関数dV/dtの値が―0.4mV/min以上になった時間であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
  9. 請求項3〜6に記載のモニター時間を決定する関数dV/dtの値が30分のモニター時間を越えても到達しない場合、電圧モニターを終了し停止したリチウムイオン二次電池の単電池および組電池を再復帰させないことを特徴とする請求項3〜6に記載のリチウムイオン二次電池パック。
  10. 制御装置における停止上限温度の設定値が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の値であり、あらかじめ前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池と同じ仕様の電極、電解液およびセパレータ構成からなる電池において、定常駆動用の充電上限電圧から1Cレートの定電流充電を2時間行い、その後30分開回路状態にさせた後の正極および負極の電極を取り出しジメチルカーボネートで洗浄し、前記洗浄した電極の示差走査熱量測定を行い、正極もしくは負極のうち80℃以上において最も低い温度でかつ活物質重量に対して3W/g以上の発熱量で検出されるピークトップの温度とすることを特徴とした請求項2、9に記載のリチウムイオン二次電池パック。
  11. 停止上限電圧および停止上限温度によって停止したリチウムイオン二次電池の単電池および組電池の電圧値からの電池容量の算出方法が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の方法であり、あらかじめ前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池と同じ仕様の電極、電解液およびセパレータ構成からなる電池において、定常駆動用の放電下限電圧から充電上限電圧まで1Cレート以下の低電流での定電流充電を行い、その際の電圧と容量の関係式を制御装置に組み込み計算させる方法であることを特徴とする請求項10に記載のリチウムイオン二次電池パック。
  12. 停止上限電圧および停止上限温度によって停止したリチウムイオン二次電池の単電池および組電池の電圧値からの電池容量の算出方法が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の方法であり、前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池の単電池および組電池において、アプリケーション駆動前に定常駆動用の放電下限電圧まで1Cレート以下の低電流での定電流放電を行い、15分以上の開回路状態後、放電下限電圧から充電上限電圧まで1Cレート以下の低電流での定電流充電を行い、その際の電圧と容量の関係式を制御装置に組み込み計算させる方法であることを特徴とする請求項10に記載のリチウムイオン二次電池パック。
  13. 停止上限電圧および停止上限温度によって停止したリチウムイオン二次電池の単電池および組電池の電圧値からの電池容量の算出方法が、リチウムイオン二次電池パックに搭載するリチウムイオン二次電池固有の方法であり、前記リチウムイオン二次電池パックに詰めるリチウムイオン二次電池の単電池および組電池において、アプリケーション駆動前および定期的に定常駆動用の放電下限電圧まで1Cレート以下の低電流での定電流放電を行い、15分以上の開回路状態後、放電下限電圧から充電上限電圧まで1Cレート以下の低電流での定電流充電を行い、その際の電圧と容量の関係式を前記定期的に更新し制御装置に組み込み計算させる方法であることを特徴とする請求項10に記載のリチウムイオン二次電池パック。
  14. リチウムイオン二次電池がLi遷移金属酸化物の活物質を主体とする活物質合剤を含む正極と炭素の活物質を主体とする活物質合剤を含む負極と有機電解液とを含むリチウムイオン二次電池パックにおいて、前記正極の活物質がLiMnM1M2(式中、M1がCo,Niから選ばれる少なくとも1種、M2がCo,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種、x+y+z=1,0.2≦x≦0.6,0.2≦y≦0.6,0.05≦z≦0.4)で表されるLi遷移金属酸化物であり、前記負極の活物質がX線回折により求めた(002)面の平均面間隔が、0.38nm以上0.40nm以下である炭素であり、前記有機電解液が複数の溶媒と添加剤と電解質とを含み、前記溶媒として、(式1)で表される環状カーボネート
    Figure 2011159537
    (式中、R,R,R,Rは、水素,炭素数1〜3のアルキル基、ハロゲン化アルキル基のいずれかを表わす。)と、
    (式2)で表される鎖状カーボネート
    Figure 2011159537
    (式中、R,Rは、炭素数1〜3のアルキル基、ハロゲン化アルキル基のいずれかを表わす。)と、
    を含み、
    (式1)で表される環状カーボネートの前記溶媒における組成比率が18.0vol%から30.0vol%の範囲であり、(式2)で表される鎖状カーボネートの前記溶媒における組成比率が70.0vol%から82.0vol%の範囲であり、前記添加剤が分子軌道計算によって求めたLUMO(Lowest Unoccupied Molecular Orbital)エネルギーの値がエチレンカーボネートにおける計算値よりも低い(計算上耐還元性が劣る)値を示す物質であり、HOMO(Highest Occupied Molecular Orbital)エネルギーがビニレンカーボネートにおける計算値と同等もしくは低い(計算上耐酸化性が優れる)値を示す物質である前記添加剤全量の前記混合溶媒と電解質塩とからなる溶液全重量に対し0wt%から20wt%の範囲であって、前記電解質として、LiPF又はLiBFで表されるリチウム塩のうちいずれかひとつを含み、前記電解質の濃度が、前記溶媒と前記添加剤の総量に対して0.5mol/Lから2.0mol/Lの範囲である前記溶媒、前記添加剤、前記電解質からなる電解液を有することを特徴とする請求項11、12、13に記載のリチウムイオン二次電池パック。
  15. 前記環状カーボネートが、エチレンカーボネート又はプロピレンカーボネートの少なくとも一つを含み、前記鎖状カーボネートが、ジメチルカーボネート又はエチルメチルカーボネートの少なくとも一つを含むことを特徴とする請求項14に記載のリチウムイオン二次電池パック。
  16. 前記環状カーボネートがエチレンカーボネートであって、前記鎖状カーボネートがジメチルカーボネート及びエチルメチルカーボネートであることを特徴とする請求項14に記載のリチウムイオン二次電池パック。
  17. 前記エチルメチルカーボネートに対する前記ジメチルカーボネートの体積比が、1.0以上1.4以下であることを特徴とする請求項14に記載のリチウムイオン二次電池パック。
  18. 制御装置における停止上限電圧の設定値が4.7V〜4.6Vの範囲であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
  19. 制御装置における停止上限温度の設定値が90〜110℃の範囲であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
  20. 制御装置における停止上限電圧の設定値が4.7V〜4.6Vの範囲であり、停止上限温度の設定値が90〜110℃の範囲であることを特徴とする請求項1に記載のリチウムイオン二次電池パック。
JP2010021203A 2010-02-02 2010-02-02 リチウムイオン二次電池パック Pending JP2011159537A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021203A JP2011159537A (ja) 2010-02-02 2010-02-02 リチウムイオン二次電池パック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021203A JP2011159537A (ja) 2010-02-02 2010-02-02 リチウムイオン二次電池パック

Publications (1)

Publication Number Publication Date
JP2011159537A true JP2011159537A (ja) 2011-08-18

Family

ID=44591310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021203A Pending JP2011159537A (ja) 2010-02-02 2010-02-02 リチウムイオン二次電池パック

Country Status (1)

Country Link
JP (1) JP2011159537A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178918A (ja) * 2012-02-28 2013-09-09 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR101608877B1 (ko) * 2014-07-15 2016-04-20 한전케이디엔주식회사 배터리 관리 시스템
CN109638351A (zh) * 2018-11-02 2019-04-16 珠海市赛纬电子材料股份有限公司 一种兼顾高低温性能的高电压电解液及其锂离子电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178918A (ja) * 2012-02-28 2013-09-09 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR101608877B1 (ko) * 2014-07-15 2016-04-20 한전케이디엔주식회사 배터리 관리 시스템
CN109638351A (zh) * 2018-11-02 2019-04-16 珠海市赛纬电子材料股份有限公司 一种兼顾高低温性能的高电压电解液及其锂离子电池
CN109638351B (zh) * 2018-11-02 2021-08-24 珠海市赛纬电子材料股份有限公司 一种兼顾高低温性能的高电压电解液及其锂离子电池

Similar Documents

Publication Publication Date Title
JP7483078B2 (ja) 二次電池の異常検知装置及び二次電池
US10056773B2 (en) Battery control device, control method, control system and electric vehicle
JP5537521B2 (ja) リチウムイオン二次電池制御システムおよび組電池制御システム
JP5191502B2 (ja) リチウムイオン二次電池システムおよびリチウムイオン二次電池
WO2011007805A1 (ja) リチウムイオン二次電池監視システム及びリチウムイオン二次電池監視方法
CN102403551A (zh) 电池控制器和电压异常检测方法
JP2013092398A (ja) 二次電池の劣化状態判別システム及び劣化状態判別方法。
WO2015023311A1 (en) Dual storage system and method with lithium ion and lead acid battery cells
KR20100075913A (ko) 건강 상태의 모니터링을 위한 기준 전극을 갖는 리튬 재충전 가능한 셀
JP2013019709A (ja) 二次電池システム及び車両
KR101963034B1 (ko) 이차 전지의 회복 방법 및 재이용 방법
JP5775725B2 (ja) 充電制御システム
JP2011142016A (ja) 電池システム、電池の使用方法及び電池の再生方法
US20190280334A1 (en) Novel battery systems based on two-additive electrolyte systems including 1,2,6-oxodithiane-2,2,6,6-tetraoxide
KR101730702B1 (ko) 비수전해질 이차 전지
JP4826760B2 (ja) 非水電解液及びそれを用いたリチウム二次電池
JP2011159537A (ja) リチウムイオン二次電池パック
JP2019160662A (ja) 二次電池の劣化推定装置
JP7131568B2 (ja) 推定装置、推定方法及びコンピュータプログラム
JP5779914B2 (ja) 非水電解液型二次電池システムおよび車両
Malysz et al. Fundamentals of electric energy storage systems
WO2013183460A1 (ja) リチウムイオン二次電池制御システム、電池システム、並びにこれを備える移動体及び電力貯蔵システム
EP3659197B1 (en) Energy storage apparatus and method of using the same
CN102804477B (zh) 蓄电***
Mouais et al. A Comprehensive Review of the Li‐Ion Batteries Fast‐Charging Protocols

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140711