JP2011127514A - Horizontal shaft wind turbine - Google Patents

Horizontal shaft wind turbine Download PDF

Info

Publication number
JP2011127514A
JP2011127514A JP2009287151A JP2009287151A JP2011127514A JP 2011127514 A JP2011127514 A JP 2011127514A JP 2009287151 A JP2009287151 A JP 2009287151A JP 2009287151 A JP2009287151 A JP 2009287151A JP 2011127514 A JP2011127514 A JP 2011127514A
Authority
JP
Japan
Prior art keywords
tower
rotor
nacelle
horizontal axis
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009287151A
Other languages
Japanese (ja)
Inventor
Shigeo Yoshida
茂雄 吉田
Soichiro Kiyoki
荘一郎 清木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2009287151A priority Critical patent/JP2011127514A/en
Publication of JP2011127514A publication Critical patent/JP2011127514A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a fluctuating load of a rotor passing through a windward side of a tower, in an upwind type horizontal shaft wind turbine. <P>SOLUTION: The horizontal shaft wind turbine 10 includes: a rotor 1; a nacelle 2 pivotally supporting the rotor; and the tower 3 rotatably supporting the nacelle to be rotatable in a yaw direction, wherein a pointed straightening member 4 is disposed between a rotational face and the tower to be projected toward externally in a radial direction of the tower when the rotor disposed at least on the windward side of the tower is rotated for work such as power generation. For example, the straightening member is fixed to a part between the rotor of the nacelle and the tower, and is rotatably supported together with the rotor and the nacelle with respect to the tower. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水平軸風車に係り、特にアップウィンド型の水平軸風車のタワーとブレードの空力干渉に関する。   The present invention relates to a horizontal axis wind turbine, and more particularly to aerodynamic interference between a tower and a blade of an upwind type horizontal axis wind turbine.

周知のように、いわゆる水平軸風車が風力発電等の商業用に広く実用化されている。
水平軸風車は、1枚又は2枚以上のブレードがハブから放射状に取付けられてなるロータと、ハブに接続されるとともに略水平方向に延在された主軸を介してこのロータを軸支するナセルと、ナセルをヨー回転自在に支持するタワーとを有して構成される。
As is well known, so-called horizontal axis wind turbines are widely used for commercial purposes such as wind power generation.
A horizontal axis wind turbine has a rotor in which one or more blades are radially attached from a hub, and a nacelle that supports the rotor via a main shaft that is connected to the hub and extends in a substantially horizontal direction. And a tower that supports the nacelle in a yaw-rotatable manner.

この水平軸風車の一つであるアップウィンド型の水平軸風車は広く利用されており、発電等の仕事のためにブレードに受ける風力によってロータを回転させるとき、タワーよりも風上側にロータを配置する形態をとる。   Upwind type horizontal axis wind turbines, one of these horizontal axis wind turbines, are widely used, and when the rotor is rotated by wind power received by the blades for work such as power generation, the rotor is arranged on the windward side of the tower. Take the form.

特許文献1,2に記載のアップウィンド型の水平軸風車にあっては、タワーに回動自在に部材を設け、この部材をタワーの風下方向すなわちタワー後流方向に突出させるようにして、タワー後流を整流することにより、タワーの振動を低減する。   In the upwind type horizontal axis wind turbine described in Patent Documents 1 and 2, a tower is provided with a rotatable member, and this member protrudes in the leeward direction of the tower, that is, in the wake direction of the tower. By rectifying the wake, tower vibration is reduced.

特開2003‐49761号公報JP 2003-49761 A 特開2002‐21919号公報Japanese Patent Laid-Open No. 2002-21919

以上の従来のアップウィンド型の水平軸風車にあっても次のような問題があった。
本発明者らの研究によると、アップウィンド型の水平軸風車においては、タワーの風上側は低風速化し高圧化しており、タワーの風上に配置されたブレードがタワー近傍を通過するとき、ロータに変動荷重が生じ、この変動荷重が風車の疲労破壊、使用寿命の短縮、超低周波騒音の要因になることがわかった。
しかし、従来のアップウィンド型の水平軸風車にあっては、タワー後流側を整流する技術はあっても、タワーの風上側を通過するロータの変動荷重を低減する技術がなかった。
The conventional upwind type horizontal axis wind turbine described above has the following problems.
According to the study by the present inventors, in the upwind type horizontal axis wind turbine, the windward side of the tower has a low wind speed and a high pressure, and when the blades arranged on the windward side of the tower pass near the tower, the rotor It was found that fluctuating load was generated in the wind turbine, and that the fluctuating load caused fatigue damage of the windmill, shortened service life, and extremely low frequency noise.
However, in the conventional upwind horizontal axis wind turbine, although there is a technique for rectifying the wake side of the tower, there is no technique for reducing the fluctuating load of the rotor passing through the windward side of the tower.

本発明は以上の従来技術における問題に鑑みてなされたものであって、タワーの風上側を通過するロータの変動荷重を低減することができるアップウィンド型の水平軸風車を提供することを課題とする。   The present invention has been made in view of the above-described problems in the prior art, and it is an object of the present invention to provide an upwind type horizontal axis wind turbine capable of reducing the fluctuating load of the rotor passing through the windward side of the tower. To do.

以上の課題を解決するための請求項1記載の発明は、ロータと、前記ロータを軸支するナセルと、前記ナセルをヨー回転自在に支持するタワーとを備え、前記タワーの風上に配置された前記ロータの回転により仕事をするアップウィンド型の水平軸風車において、
少なくとも前記タワーの風上に配置された前記ロータが回転する時に、前記ロータの回転面と前記タワーとの間に前記タワーの径方向外方に向かって尖状の整流部材が配置される水平軸風車である。
The invention according to claim 1 for solving the above-described problems includes a rotor, a nacelle that supports the rotor, and a tower that supports the nacelle in a yaw-rotating manner, and is arranged on the wind of the tower. In an upwind type horizontal axis windmill that works by rotating the rotor,
At least when the rotor arranged on the windward side of the tower rotates, a horizontal axis in which a pointed rectifying member is arranged radially outward of the tower between the rotating surface of the rotor and the tower It is a windmill.

請求項2記載の発明は、前記整流部材は前記ナセルの前記ロータと前記タワーとの間の部位に固定され、前記ロータ及び前記ナセルとともに前記タワーに対して回転自在に支持された請求項1に記載の水平軸風車である。   According to a second aspect of the present invention, in the first aspect, the rectifying member is fixed to a portion of the nacelle between the rotor and the tower, and is supported rotatably with respect to the tower together with the rotor and the nacelle. It is a horizontal axis windmill of description.

請求項3記載の発明は、前記整流部材の水平断面における先端に延びる2辺は、前記タワーの接線を成し、当該2辺の間の角が90度以下である請求項1に記載の水平軸風車である。   According to a third aspect of the present invention, the two sides extending at the tip of the rectifying member in the horizontal cross section form a tangent line of the tower, and the angle between the two sides is 90 degrees or less. It is an axial windmill.

請求項4記載の発明は、前記2辺の前記タワーから離れて延びる先が前記タワーの半径の4分の1以下の曲率半径を有する前縁円弧に連続して前記整流部材の水平断面の外形が形成されてなる請求項3に記載の水平軸風車である。   According to a fourth aspect of the present invention, the outer shape of the horizontal section of the rectifying member is continuous with a leading edge arc having a radius of curvature equal to or less than a quarter of the radius of the tower. It is a horizontal axis windmill of Claim 3 formed by these.

本発明によれば、少なくともタワーの風上に配置されたロータが回転する時に、ロータの回転面とタワーとの間にタワーの径方向外方に向かって尖状の整流部材が配置されるので、この整流部材がタワーの風上側の低風速化・高圧化を緩和し、タワーの風上側を通過するロータの変動荷重を低減することができ、これにより、風車の疲労寿命の長期化、超低周波騒音の低減を図ることができるという効果がある。   According to the present invention, at least when the rotor disposed on the windward side of the tower rotates, the pointed rectifying member is disposed radially outward of the tower between the rotating surface of the rotor and the tower. This rectifying member can alleviate the low wind speed and high pressure on the windward side of the tower and reduce the variable load of the rotor passing through the windward side of the tower. There is an effect that low frequency noise can be reduced.

(a1)は従来例に係る水平軸風車の側面模式図で、(b1)本発明の一実施形態に係る水平軸風車の側面模式図である。(a2)は同従来例に係る水平軸風車の平面模式図でナセルを透過させて描いている。(b2)本発明の同実施形態に係る水平軸風車の平面模式図でナセルを透過させて描いている。(a1) is a schematic side view of a horizontal axis wind turbine according to a conventional example, and (b1) is a schematic side view of a horizontal axis wind turbine according to an embodiment of the present invention. (a2) is a schematic plan view of a horizontal axis wind turbine according to the conventional example, which is drawn through a nacelle. (b2) A plane schematic diagram of the horizontal axis wind turbine according to the embodiment of the present invention is drawn through the nacelle. (a)は図1(a1)に示したA−A線についての断面図であり、(b)は図1(b1)に示したB−B線についての断面図である。(a) is sectional drawing about the AA line shown to FIG. 1 (a1), (b) is sectional drawing about the BB line shown to FIG.1 (b1). タワー前方の風速変化の解析対象に係る柱状体(仮想タワー)の水平断面形状を示す断面図(a)(b)(c)である。It is sectional drawing (a) (b) (c) which shows the horizontal cross-sectional shape of the columnar body (virtual tower) which concerns on the analysis object of the wind speed change ahead of a tower. 解析結果に係る柱状体風上側の横軸(Y軸)方向の風速比分布グラフである。It is a wind speed ratio distribution graph of the horizontal axis (Y-axis) direction above the columnar body which concerns on an analysis result. 円柱の風上側の縦軸(X軸)上の風速比分布グラフである。It is a wind speed ratio distribution graph on the vertical axis | shaft (X-axis) of the windward side of a cylinder.

以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。   An embodiment of the present invention will be described below with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.

まず、本発明の一実施形態に係る水平軸風車につき図1を参照して説明する。
図1に示すように本水平軸風車10は、従来例の水平軸風車20と同様に、風車のロータ1と、ナセル2と、タワー3とを備える。ロータ1は1又は2以上のブレードとブレードを保持するハブとを有する。ナセル2はタワー3の上端にベアリング3aを介してヨー回転自在に支持される。
本水平軸風車10及び従来例の水平軸風車20は、風速計、風向計のほか、ナセル2のヨー角を変角させるヨー駆動装置、ロータ1のブレードを変角させるピッチ駆動装置、ロータ1の回転により駆動される発電機を備え、これら各部を司る制御装置を備える。
本水平軸風車10及び従来例の水平軸風車20は、アップウィンド型である。
上記制御装置は、風速計によって計測された風速が発電に適正な風速範囲にある時、ナセル2のヨー角を制御してタワー3の風上側にロータ1を配置するとともにブレードのピッチ角を制御して、風力によりロータ1を回転させて発電機を回転駆動する。これにより風車10,20は風力発電を行う。図1〜図3において矢印Wは風向きを示す。
First, a horizontal axis wind turbine according to an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the horizontal axis wind turbine 10 includes a wind turbine rotor 1, a nacelle 2, and a tower 3, similarly to the horizontal axis wind turbine 20 of the conventional example. The rotor 1 has one or more blades and a hub for holding the blades. The nacelle 2 is supported at the upper end of the tower 3 through a bearing 3a so as to be capable of yaw rotation.
The horizontal axis wind turbine 10 and the conventional horizontal axis wind turbine 20 include an anemometer, an anemometer, a yaw driving device that changes the yaw angle of the nacelle 2, a pitch driving device that changes the blade of the rotor 1, and the rotor 1. A generator driven by the rotation of the motor, and a control device that controls these parts.
The horizontal axis wind turbine 10 and the conventional horizontal axis wind turbine 20 are of an upwind type.
The control device controls the yaw angle of the nacelle 2 to arrange the rotor 1 on the windward side of the tower 3 and control the pitch angle of the blades when the wind speed measured by the anemometer is in a wind speed range appropriate for power generation. Then, the rotor 1 is rotated by wind power to drive the generator. Thereby, the windmills 10 and 20 perform wind power generation. 1 to 3, an arrow W indicates the wind direction.

本水平軸風車10は、従来例の水平軸風車20とは異なり、整流部材4を備える。
図1(b1)に示すように整流部材4は上下に長尺な部材で、タワー3に沿って設けられ、ロータ1よりもタワー3に近接するように設けられる。整流部材4の上下方向の設置範囲は、ロータ1の回転面の存する範囲である。図1(b1)に示すようにナセル2より下方のロータ1の回転面の存する範囲の全域に配置されるように整流部材4を長く設けることが好ましい。
整流部材4はタワー3の径方向外方に向かって尖状に形成される。本実施形態においては図1(b2)及び図2(b)に示すように整流部材4の水平断面は三角形状であり、整流部材4は上下方向について一様断面で形成されている。
Unlike the horizontal axis wind turbine 20 of the conventional example, the horizontal axis wind turbine 10 includes a rectifying member 4.
As shown in FIG. 1 (b 1), the rectifying member 4 is a member that is long in the vertical direction, is provided along the tower 3, and is provided closer to the tower 3 than the rotor 1. The installation range of the rectifying member 4 in the vertical direction is a range where the rotation surface of the rotor 1 exists. As shown in FIG. 1 (b1), it is preferable that the rectifying member 4 is provided long so as to be disposed over the entire range where the rotation surface of the rotor 1 below the nacelle 2 exists.
The rectifying member 4 is formed in a pointed shape outward in the radial direction of the tower 3. In this embodiment, as shown in FIGS. 1B2 and 2B, the horizontal cross section of the rectifying member 4 is triangular, and the rectifying member 4 is formed in a uniform cross section in the vertical direction.

整流部材4の上端はナセル2に固定されている。図1(b2)に示すように整流部材4はナセル2のロータ1とタワー3との間の部位に固定されている。
したがって、整流部材4は、ロータ1及びナセル2とともにタワー3に対して回転自在に支持されていることとなり、常にロータ1の回転面とタワー3との間に位置する。発電のためにロータ1がタワー3の風上に配置されて回転する時、ヨー駆動装置によるナセル2のヨー角制御に伴って当然に整流部材4はロータ1の回転面とタワー3との間であってタワー3の風上側に配置される。
なお、整流部材4の下端を安定させるため、整流部材4の下端部は、タワー3の外周を覆うベアリング3bによってタワー3回りに回動自在に支持される。
The upper end of the rectifying member 4 is fixed to the nacelle 2. As shown in FIG. 1 (b 2), the rectifying member 4 is fixed to a portion of the nacelle 2 between the rotor 1 and the tower 3.
Therefore, the rectifying member 4 is rotatably supported with respect to the tower 3 together with the rotor 1 and the nacelle 2, and is always located between the rotating surface of the rotor 1 and the tower 3. When the rotor 1 is arranged on the wind of the tower 3 and rotates for power generation, the rectifying member 4 is naturally between the rotating surface of the rotor 1 and the tower 3 in accordance with the yaw angle control of the nacelle 2 by the yaw driving device. It is arranged on the windward side of the tower 3.
In order to stabilize the lower end of the rectifying member 4, the lower end portion of the rectifying member 4 is rotatably supported around the tower 3 by a bearing 3 b that covers the outer periphery of the tower 3.

以上の構成を有する従来例の水平軸風車20にあっては、図2(a)に示すように、タワー3の風上側の領域A1が周囲に対して低風速化し高圧化する。
一方、本水平軸風車10にあっては、タワー3の風上側の領域B1の低風速化・高圧化は整流部材4による風の整流によって緩和される。したがって、本水平軸風車10によれば、タワーの風上側を通過するロータの変動荷重を低減することができる。この緩和効果を裏付ける解析内容を以下に記載する。
In the conventional horizontal axis wind turbine 20 having the above configuration, as shown in FIG. 2 (a), the windward area A1 of the tower 3 has a lower wind speed and a higher pressure.
On the other hand, in the horizontal axis wind turbine 10, the lower wind speed and the higher pressure in the region B 1 on the windward side of the tower 3 are alleviated by the rectification of the wind by the rectifying member 4. Therefore, according to the horizontal axis wind turbine 10, the fluctuating load of the rotor passing through the windward side of the tower can be reduced. The analysis content supporting this relaxation effect is described below.

本解析の対象は、図3(a)(b)(c)に示す3つのタイプの断面形状を有す柱状体T1,T2,T3である。
図3(a)に示すように柱状体T1の水平断面は円である。この円の半径をRとする。また、図3(a)中にX−Y座標を示す。以下の解析におけるX,Yはすべて、このX−Y座標に従う。図3(b)(c)においては座標の記載を省略したが、柱状体T2,T3に対する解析においても同じ座標系、すなわち、中心Pから風上方向にRの距離にある点Oを原点とし風向きの軸をX軸、点Oを同じく原点とし風向きに垂直な軸をYとする。
柱状体T1において、中心Pから前縁Oまでの距離はRとなる。
The objects of this analysis are columnar bodies T1, T2, and T3 having three types of cross-sectional shapes shown in FIGS. 3 (a), (b), and (c).
As shown in FIG. 3A, the horizontal cross section of the columnar body T1 is a circle. Let R be the radius of this circle. In addition, XY coordinates are shown in FIG. X and Y in the following analysis all follow this XY coordinate. In FIGS. 3B and 3C, the coordinates are omitted, but the same coordinate system is used for the analysis of the columnar bodies T2 and T3, that is, the point O at a distance R from the center P to the windward direction is the origin. The axis of the wind direction is the X axis, the point O is also the origin, and the axis perpendicular to the wind direction is Y.
In the columnar body T1, the distance from the center P to the leading edge O is R.

図3(b)に示すように柱状体T2の水平断面は楕円である。この楕円は、Y軸方向に短軸を、X軸方向に長軸を有する楕円である。短軸の長さは2Rで、長軸の長さは1辺2Rの正方形の対角線の長さに等しい。
柱状体T2において、中心Pから前縁Q1までの距離はRに対し2の平方根倍であるから約1.4Rとなる。
As shown in FIG. 3B, the horizontal cross section of the columnar body T2 is an ellipse. This ellipse is an ellipse having a minor axis in the Y-axis direction and a major axis in the X-axis direction. The length of the short axis is 2R, and the length of the long axis is equal to the length of the diagonal line of 2R on one side.
In the columnar body T2, the distance from the center P to the leading edge Q1 is about 1.4R since it is 2 times the square root of R.

図3(c)に示すように柱状体T3の水平断面は半径Rの円と中心角90度の2つの接線とから成る形状である。この中心角90度の2つの接線でつくられる部分を本発明の整流部材として想定する。
柱状体T3において、中心Pから前縁Q2までの距離はRに対し2の平方根倍であるから約1.4Rとなる。
As shown in FIG. 3 (c), the horizontal cross section of the columnar body T3 has a shape composed of a circle with a radius R and two tangents with a central angle of 90 degrees. A portion formed by two tangents having a central angle of 90 degrees is assumed as the rectifying member of the present invention.
In the columnar body T3, the distance from the center P to the leading edge Q2 is about 1.4R since it is 2 times the square root of R.

以上の柱状体T1,T2,T3の一様流の風況下において、風上側のY軸方向の風速分布を解析した。その解析結果は図4のグラフに示すとおりである。但し、グラフの横軸は〔Y/R〕で、縦軸は柱状体の影響の無い十分風上における一様流の元の風速に対する風速比で示す。また、図4のグラフに示すのは、X/R=−2の位置における風速比分布グラフである。すなわち、図4のグラフは原点Oより2Rだけ風上の位置におけるY軸方向の風速比分布を示している。本解析では、X/R=−2の位置をロータの回転面の位置とし中心Pをタワー3の軸中心として想定している。またRをタワー3の半径として想定している。   The wind speed distribution in the Y-axis direction on the windward side was analyzed under the uniform flow conditions of the columnar bodies T1, T2, and T3. The analysis results are as shown in the graph of FIG. However, the horizontal axis of the graph is [Y / R], and the vertical axis is the wind speed ratio with respect to the original wind speed of the uniform flow sufficiently upwind without the influence of the columnar body. Also, the graph of FIG. 4 shows a wind speed ratio distribution graph at the position of X / R = −2. That is, the graph of FIG. 4 shows the wind speed ratio distribution in the Y-axis direction at a position 2R upwind from the origin O. In this analysis, it is assumed that the position of X / R = −2 is the position of the rotation surface of the rotor and the center P is the axis center of the tower 3. R is assumed as the radius of the tower 3.

図4のグラフからわかるように、柱状体T1,T2,T3のいずれにおいてもY=0の位置を極小値として風速は低下する。したがって、Y=0の位置を通過するロータは、Y=0の位置をピークとした変動荷重を受ける。
楕円断面を有する柱状体T2にあっては、円断面を有する柱状体T1に比較して、前縁Q1がロータの回転面に近づくため、Y=0の位置における極小値はより低くなり、より変動の大きい荷重をロータに生じさせる結果となる。
As can be seen from the graph of FIG. 4, the wind speed decreases with the position of Y = 0 as the minimum value in any of the columnar bodies T1, T2, and T3. Therefore, the rotor passing through the position of Y = 0 receives a fluctuating load with the peak at the position of Y = 0.
In the columnar body T2 having an elliptical cross section, the front edge Q1 is closer to the rotation surface of the rotor than the columnar body T1 having a circular cross section, so that the minimum value at the position of Y = 0 is lower, and As a result, a large load is generated in the rotor.

一方、本発明例に相当する断面を有する柱状体T3にあっては、円断面を有する柱状体T1に比較して、前縁Q2が楕円断面の柱状体T2と同じだけロータの回転面に近づくが、Y=0の位置における極小値は円断面の柱状体T1と同程度である。そして、注目すべきは、極小値の両側において、本発明例に係る柱状体T3についてのグラフは、円断面の柱状体T1についてのグラフに比較して高風速となっており、すなわち、風速の低下が緩和されている。したがって、ロータに与える総圧力は、円断面の柱状体T1より本発明例に係る柱状体T3の方が小さくなり、円断面の柱状体T1より本発明例に係る柱状体T3の方がロータに与える変動荷重は小さい。
以上のことから、本発明の整流部材を適用することによるタワーの風上側を通過するロータの変動荷重を低減する効果は確認できる。
On the other hand, in the columnar body T3 having a cross section corresponding to the example of the present invention, the leading edge Q2 is as close to the rotation surface of the rotor as the columnar body T2 having an elliptical cross section as compared with the columnar body T1 having a circular cross section. However, the minimum value at the position of Y = 0 is substantially the same as that of the columnar body T1 having a circular cross section. It should be noted that, on both sides of the minimum value, the graph for the columnar body T3 according to the example of the present invention has a higher wind speed than the graph for the columnar body T1 having a circular cross section. The decline is mitigated. Therefore, the total pressure applied to the rotor is smaller in the columnar body T3 according to the example of the present invention than in the columnar body T1 having the circular cross section, and the columnar body T3 according to the present invention example is less in the rotor than the columnar body T1 having the circular cross section. The variable load applied is small.
From the above, the effect of reducing the fluctuating load of the rotor passing through the windward side of the tower by applying the rectifying member of the present invention can be confirmed.

以上の解析においては、本発明例に係る柱状体T3の前縁Q2は、2平面が90度の角度で辺同士を合わせてなる理想形状であった。
しかし、発明の実施においては前縁Q2に丸みが生じる。すなわち、水平断面においては前縁部分が円弧状となる。
そこで、柱状体T3の前縁円弧の曲率半径をどの程度大きくしても、本発明の整流部材を適用する効果があるかを以下のように計算した。結論は、タワーの半径Rの4分の1以下の曲率半径であれば、本発明の整流部材を適用する効果があるというものである。
In the above analysis, the front edge Q2 of the columnar body T3 according to the example of the present invention has an ideal shape in which two sides are aligned with each other at an angle of 90 degrees.
However, in the practice of the invention, the leading edge Q2 is rounded. That is, the front edge portion has an arc shape in the horizontal cross section.
Therefore, the following calculation was performed to determine how much the radius of curvature of the leading edge arc of the columnar body T3 is effective for applying the rectifying member of the present invention. The conclusion is that if the radius of curvature is less than or equal to one-fourth of the radius R of the tower, there is an effect of applying the flow straightening member of the present invention.

この結論を導き出すための計算は、まず、次の点に着目する。図4に示す柱状体T3についてのグラフにあっては極小風速比が0.74であるが、変動荷重を計算すると、この極小風速比が0.74から0.70に低下しても、依然、円断面の柱状体T1に比較して変動荷重の緩和があると判断できた。0.74から0.70への低下は0.95倍の低下に相当する。
ここで、図5のグラフを用いる。図5は、円柱の風上側の縦軸(X軸)上の風速比分布グラフである。但し、グラフの横軸は〔−X/r〕である。本グラフではその円柱の半径をrとし、Y=0の位置におけるX軸上の風速比分布を示す。X−Y座標は図3(a)中のものに従う。図5のグラフに示すように、円柱の影響の無い十分風上位置における風速が0.95倍に低下するのは、−X/r=4.0・・・(式1)の位置である。
一方、ロータ回転面と円柱タワーとの距離、すなわち、原点Oからロータ回転面までの距離を2Rとすると、ロータ回転面と本発明例に係る整流部材の前縁Q2との距離Xは、概算でX=2R−0.4R=1.6R・・・(式2)となる。
式1,式2を満たすとき、X/r=1.6R/r=4.0が成立し、この式の第2辺と第3辺との関係から、r/R=0.4・・・(式3)となる。
したがって、式3より、0.4Rの曲率半径に整流部材の前縁を円弧状にしても、ロータ回転面位置において0.95倍の風速低下に止まると計算できる。すなわち、円柱タワーの半径Rの4分の1以下の曲率半径であれば、整流部材の前縁を円弧状にしても、本発明の整流部材を適用する効果がある。
The calculation for deriving this conclusion first focuses on the following points. In the graph for the columnar body T3 shown in FIG. 4, the minimum wind speed ratio is 0.74. However, when the variable load is calculated, even if the minimum wind speed ratio decreases from 0.74 to 0.70, the columnar body having a circular cross section is still present. It was judged that there was relaxation of the fluctuating load as compared with T1. A decrease from 0.74 to 0.70 corresponds to a 0.95 times decrease.
Here, the graph of FIG. 5 is used. FIG. 5 is a wind speed ratio distribution graph on the vertical axis (X axis) on the windward side of the cylinder. However, the horizontal axis of the graph is [−X / r]. In this graph, the radius of the cylinder is r, and the wind speed ratio distribution on the X axis at the position of Y = 0 is shown. The XY coordinates follow those in FIG. As shown in the graph of FIG. 5, the wind speed at the sufficiently upwind position without the influence of the cylinder decreases by 0.95 times at the position of −X / r = 4.0 (Expression 1).
On the other hand, if the distance between the rotor rotation surface and the column tower, that is, the distance from the origin O to the rotor rotation surface is 2R, the distance X between the rotor rotation surface and the leading edge Q2 of the rectifying member according to the present invention example is approximately Therefore, X = 2R−0.4R = 1.6R (Expression 2).
When Expression 1 and Expression 2 are satisfied, X / r = 1.6 R / r = 4.0 is established. From the relationship between the second side and the third side of this expression, r / R = 0.4 (Expression 3) It becomes.
Therefore, it can be calculated from Equation 3 that even if the leading edge of the rectifying member has an arc shape with a radius of curvature of 0.4 R, the wind speed decreases only 0.95 times at the rotor rotation surface position. In other words, if the radius of curvature is equal to or less than a quarter of the radius R of the cylindrical tower, there is an effect of applying the rectifying member of the present invention even if the leading edge of the rectifying member is arcuate.

以上説明した実施形態にあっては、整流部材をナセルに固定したが、ナセルとは独立に整流部材をタワー周りに回動自在に支持しておき、整流部材のヨー角を制御して、少なくともタワーの風上に配置されたロータが回転する時にロータの回転面とタワーとの間に整流部材を配置する構成としても、同様の効果が得られる。
また、整流部材の水平断面形状は、図3(c)に示したようにタワー水平断面の外形円の接線となる2辺を有した三角形状であり、当該2辺の間の角が90度であったが、この角を90度より小さい角度とすることは勿論のこと、この角を挟む上記2辺を上記接線とせず、上記接線より内側に配置して、整流部材の先尖度を上げてもよい。また、上記2辺を直線状とはせず、内側に凹な反りを有した曲線状に形成しても整流部材の先尖度を上げることができ、同様の効果が得られる。
In the embodiment described above, the rectifying member is fixed to the nacelle, but independently of the nacelle, the rectifying member is rotatably supported around the tower, the yaw angle of the rectifying member is controlled, and at least The same effect can be obtained even when the rectifying member is arranged between the rotating surface of the rotor and the tower when the rotor arranged on the windward side of the tower rotates.
Further, as shown in FIG. 3C, the horizontal cross-sectional shape of the rectifying member is a triangular shape having two sides that are tangent to the outer circle of the tower horizontal cross section, and the angle between the two sides is 90 degrees. However, of course, this angle is set to be smaller than 90 degrees, and the two sides sandwiching the angle are not set as the tangent, but are arranged on the inner side of the tangent, and the kurtosis of the rectifying member is increased. May be raised. Further, even if the two sides are not formed in a straight line shape but formed in a curved shape having a concave warp on the inside, the kurtosis of the rectifying member can be increased, and the same effect can be obtained.

1 ロータ
2 ナセル
3 タワー
3a ベアリング
3b ベアリング
4 整流部材
10 本発明例の水平軸風車
20 従来例の水平軸風車
DESCRIPTION OF SYMBOLS 1 Rotor 2 Nacelle 3 Tower 3a Bearing 3b Bearing 4 Rectification member 10 Horizontal axis windmill 20 of the present invention example Horizontal axis windmill of the conventional example

Claims (4)

ロータと、前記ロータを軸支するナセルと、前記ナセルをヨー回転自在に支持するタワーとを備え、前記タワーの風上に配置された前記ロータの回転により仕事をするアップウィンド型の水平軸風車において、
少なくとも前記タワーの風上に配置された前記ロータが回転する時に、前記ロータの回転面と前記タワーとの間に前記タワーの径方向外方に向かって尖状の整流部材が配置される水平軸風車。
An upwind type horizontal axis wind turbine comprising a rotor, a nacelle supporting the rotor, and a tower for supporting the nacelle in a yaw-rotating manner, and performing work by rotation of the rotor disposed on the wind of the tower In
At least when the rotor arranged on the windward side of the tower rotates, a horizontal axis in which a pointed rectifying member is arranged radially outward of the tower between the rotating surface of the rotor and the tower Windmill.
前記整流部材は前記ナセルの前記ロータと前記タワーとの間の部位に固定され、前記ロータ及び前記ナセルとともに前記タワーに対して回転自在に支持された請求項1に記載の水平軸風車。 2. The horizontal axis wind turbine according to claim 1, wherein the rectifying member is fixed to a portion of the nacelle between the rotor and the tower, and is rotatably supported with respect to the tower together with the rotor and the nacelle. 前記整流部材の水平断面における先端に延びる2辺は、前記タワーの接線を成し、当該2辺の間の角が90度以下である請求項1に記載の水平軸風車。 2. The horizontal axis wind turbine according to claim 1, wherein two sides extending at a tip of the rectifying member in a horizontal section form a tangent line of the tower, and an angle between the two sides is 90 degrees or less. 前記2辺の前記タワーから離れて延びる先が前記タワーの半径の4分の1以下の曲率半径を有する円弧に連続して前記整流部材の水平断面の外形が形成されてなる請求項3に記載の水平軸風車。 4. The outer shape of the horizontal section of the rectifying member is formed continuously with an arc having a radius of curvature equal to or less than a quarter of the radius of the tower, the tip extending away from the tower on the two sides. Horizontal axis windmill.
JP2009287151A 2009-12-18 2009-12-18 Horizontal shaft wind turbine Pending JP2011127514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287151A JP2011127514A (en) 2009-12-18 2009-12-18 Horizontal shaft wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287151A JP2011127514A (en) 2009-12-18 2009-12-18 Horizontal shaft wind turbine

Publications (1)

Publication Number Publication Date
JP2011127514A true JP2011127514A (en) 2011-06-30

Family

ID=44290360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287151A Pending JP2011127514A (en) 2009-12-18 2009-12-18 Horizontal shaft wind turbine

Country Status (1)

Country Link
JP (1) JP2011127514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127514A (en) * 2013-12-27 2015-07-09 三菱重工業株式会社 Wind power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127514A (en) * 2013-12-27 2015-07-09 三菱重工業株式会社 Wind power generator

Similar Documents

Publication Publication Date Title
US10480483B2 (en) Serrated trailing edge panel for a wind turbine blade
US7946826B1 (en) Wind turbine rotor blade with a suction side winglet
US9297356B2 (en) Shrouded turbine blade design
CA2725960A1 (en) Aeroacoustic rotor blade for a wind turbine, and wind turbine equipped therewith
US20140050587A1 (en) Power-conversion installation including a hydraulic machine provided with a runner
EP2128434B1 (en) Wind turbine blades with twisted and tapered tips
JP5200117B2 (en) Wind turbine rotor design method, wind turbine rotor design support device, wind turbine rotor design support program, and wind turbine rotor
EP2128435B1 (en) Wind turbine blade with twisted tip
JP2011127514A (en) Horizontal shaft wind turbine
US11028823B2 (en) Wind turbine blade with tip end serrations
KR102499973B1 (en) Vertical axis windmills and wind turbines
KR20180017101A (en) A rotor blade shaped to improve wake diffusion
KR101566501B1 (en) Downwind Windpower Generating Apparatus having Swept Blade Tip
US10895242B2 (en) Output reinforcement device of power generator and natural energy type power generator
TWI527962B (en) Wind power plant
JP6904766B2 (en) Vertical axis wind turbines and wind power generators
EP2851556A1 (en) Arrangement to reduce noise of a wind turbine rotor blade
JP3071880U (en) Wind turbine rotation stabilization mechanism
JP2018155128A (en) Vertical axis wind turbine and wind power generator
TWI730337B (en) Control method of wind power generation device
JP7220018B2 (en) Vertical axis wind turbines and wind turbines
JP2022539866A (en) Rotor blades for wind turbines and wind turbines
JP2007046539A (en) Wind power device
Gu et al. Performance research of VAWT with expandable blades based on savonius turbines
WO2018193998A1 (en) Vertical shaft windmill and wind-power generation device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120723