JP2010203192A - Connected seismic control structure - Google Patents

Connected seismic control structure Download PDF

Info

Publication number
JP2010203192A
JP2010203192A JP2009052529A JP2009052529A JP2010203192A JP 2010203192 A JP2010203192 A JP 2010203192A JP 2009052529 A JP2009052529 A JP 2009052529A JP 2009052529 A JP2009052529 A JP 2009052529A JP 2010203192 A JP2010203192 A JP 2010203192A
Authority
JP
Japan
Prior art keywords
building
response
displacement
seismic
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009052529A
Other languages
Japanese (ja)
Other versions
JP5458370B2 (en
Inventor
Kazuhiko Isoda
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2009052529A priority Critical patent/JP5458370B2/en
Publication of JP2010203192A publication Critical patent/JP2010203192A/en
Application granted granted Critical
Publication of JP5458370B2 publication Critical patent/JP5458370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a connecting seismic control structure attaining excellent seismic control effect without being restricted by vibration characteristics of the structure. <P>SOLUTION: An annexed structure (building B), which is constructed in parallel with a main structure (building A), as an object of seismic control is supported in a base isolation state with a base isolation device 4. Also, an inertia mass damper 3 is installed in a base isolation layer of the annexed structure in parallel with the base isolation device. The main structure and the annexed structure are connected with a connecting spring element 1 and a connecting damping element 2. Further, specifications of the inertia mass damper 3, the connecting spring element 1 and the connecting damping element 2 are set so as to minimize a response (a peak of an acceleration response magnification or a displacement response magnification) of the main structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、制震対象の主構造物に対して従構造物を連結して制震効果を得る連結制震構造に関する。   The present invention relates to a connected seismic control structure that obtains a seismic control effect by connecting a substructure to a main structure to be controlled.

複数の建物をダンパーを介して接続することによりそれら建物の地震や風に対する応答を低減する構造であるいわゆる連結制震構造は、たとえば特許文献1や特許文献2において既に提案されている。   For example, Patent Document 1 and Patent Document 2 have already proposed a so-called coupled vibration control structure, which is a structure that reduces the response of buildings to earthquakes and winds by connecting a plurality of buildings via dampers.

特公昭54−1391号公報Japanese Patent Publication No.54-1391 特開平7−217253号公報JP 7-217253 A

このような連結制震構造は連結対象の双方の建物の振動特性の違いを利用して制震効果を得るものであるから、固有振動モードがさして異ならない建物どうしを連結しても充分な制震効果は得られないものであるが、現実的にはそのような好都合な条件に合致する計画は少ないことからこの種の連結制震構造は広く普及するに至っていない。   Since such a connected vibration control structure uses the difference in vibration characteristics of both buildings to be connected to obtain a vibration control effect, it is sufficient to connect buildings that do not differ in natural vibration mode. Although no seismic effect can be obtained, in reality there are few plans that meet such favorable conditions, so this type of coupled seismic control structure has not been widely used.

本発明は構造物の振動特性に制約されることなく優れた制震効果が得られる有効適切な連結制震構造を提供することを目的としている。   An object of the present invention is to provide an effective and appropriate coupled seismic control structure capable of obtaining an excellent seismic control effect without being restricted by the vibration characteristics of the structure.

本発明の連結制震構造は、制震対象の主構造物に並設した従構造物を免震装置により免震支持するとともに、該従構造物の免震層に前記免震装置と並列に慣性質量ダンパーを設置し、前記主構造物と前記従構造物とを連結バネ要素および連結減衰要素により連結して、前記慣性質量ダンパー、前記連結バネ要素、前記連結減衰要素の各諸元を前記主構造物の応答を最小化するように設定してなることを特徴とする。   The coupled seismic control structure of the present invention supports a substructure arranged in parallel to the main structure to be controlled by a seismic isolation device, and in parallel to the seismic isolation device on the seismic isolation layer of the substructure. An inertial mass damper is installed, the main structure and the substructure are connected by a connecting spring element and a connecting damping element, and the specifications of the inertial mass damper, the connecting spring element, and the connecting damping element are It is set to minimize the response of the main structure.

本発明の連結制震構造は建物を対象として適用することが好適であり、制震対象の主構造物としては低層ないし高層の建物とすることが現実的であるが、本発明は建物に限らず制震対策が必要とされる各種の構造物全般に適用可能である。
また、従構造物も建物とすることは勿論可能であり、その場合は主構造物としての建物よりも低層の建物とすれば良いが、従構造物を居住を前提としないモニュメント等の大規模構造物とすることも好ましい。
勿論、主構造物の構造形式は任意であって通常の耐震構造や制震構造あるいは免震構造のいずれでも良いし、鉄骨造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造、各種の複合構造のいずれでも良い。従構造物も免震構造とする限りにおいてその構造形式は任意である。
The coupled seismic control structure of the present invention is preferably applied to buildings, and the main structure to be controlled is a low-rise or high-rise building, but the present invention is not limited to buildings. It can be applied to all types of structures that require anti-seismic measures.
Of course, it is possible to make the substructure also a building. In that case, it may be a lower-rise building than the main structure, but the substructure is a large-scale monument that does not assume residence. A structure is also preferred.
Of course, the structure type of the main structure is arbitrary, and may be any of a normal seismic structure, a damping structure or a seismic isolation structure, or a steel structure, a reinforced concrete structure, a steel reinforced concrete structure, or various composite structures. As long as the substructure also has a seismic isolation structure, the structure type is arbitrary.

いずれにせよ、主構造物に対する居住性の改善を主目的とする場合にはその加速度応答倍率のピークを最小化するように各諸元を設定すれば良く、主構造物の構造耐力や層間変位が問題とされる場合にはその変位応答倍率のピークを最小化するように各諸元を設定すれば良い。   In any case, when the main purpose is to improve the habitability of the main structure, each specification should be set to minimize the peak of the acceleration response magnification. If this is a problem, each specification may be set so as to minimize the peak of the displacement response magnification.

従構造物を免震支持する免震装置の形式は任意であり、積層ゴムや滑り支承、リニアスライダー、いわゆるFPS(Friction Pendulum System:凹球面間に可動子を挟み込んだ形式の免震装置)等の周知の形式のものを採用可能である。
従構造物に設置する慣性質量ダンパーとしては、たとえばボールねじ機構により小質量のフライホイールを回転させることで大きな慣性質量が得られる形式のものが好適に採用可能である。
なお、従構造物には必要に応じて適宜の減衰要素(たとえばオイルダンパー、鉛ダンパー、鉛プラグ入り積層ゴム、鋼材ダンパー、摩擦ダンパー等、およびそれらを任意に組み合わせたもの)を免震装置および慣性質量ダンパーに対して並列に設置しても良い。
The type of seismic isolation device that supports the substructure is isolated. Laminated rubber, sliding bearings, linear sliders, so-called FPS (Friction Pendulum System), etc. The well-known type can be adopted.
As the inertia mass damper installed in the substructure, for example, a type in which a large inertia mass can be obtained by rotating a small mass flywheel by a ball screw mechanism can be suitably employed.
In addition, an appropriate damping element (for example, an oil damper, a lead damper, a laminated rubber with a lead plug, a steel damper, a friction damper, etc., and an arbitrary combination thereof) is added to the substructure as necessary. You may install in parallel with an inertia mass damper.

連結バネ要素と連結減衰要素による主構造体と従構造体との連結位置(高さ)は頂部に近い高所とする方が有利であるが、特に限定されることはなく所望位置に設定可能である。また、連結バネ要素と連結減衰要素は水平に設置することが現実的であるが、それに限ることもなく、両端部を異なる高さに接続して傾斜状態で設置しても良い。   The connection position (height) between the main structure and the substructure by the connection spring element and the connection damping element is advantageous to be a height near the top, but is not particularly limited and can be set to a desired position. It is. Moreover, although it is realistic to install the coupling spring element and the coupling damping element horizontally, the present invention is not limited to this, and the coupling spring element and the coupling damping element may be installed in an inclined state with both ends connected to different heights.

本発明は2棟の構造物どうしを連結する場合に限らず、3棟以上の構造物どうしを連結することも可能である。たとえば1棟の主構造物に対し2棟ないしそれ以上の従構造物を連結することでも良いし、1棟の主構造物に1棟の従構造物を連結したうえでその従構造物を主構造物としてこれにさらに他の従構造物を連結することもできる。いずれにせよ、制震対象の主構造物に対して目的とする応答低減効果が得られるように各諸元を設定すれば良い。   The present invention is not limited to connecting two structures, but it is also possible to connect three or more structures. For example, two or more substructures may be connected to one main structure, or one substructure is connected to one main structure and then the substructure is connected to the main structure. As a structure, another substructure can be connected to the structure. In any case, each specification may be set so that a desired response reduction effect can be obtained for the main structure to be controlled.

本発明の連結制震構造では次のような効果が得られる。
(1)従構造物の免震層に慣性質量ダンパーを設け、応答低減対象とする主構造物を従構造物に対して連結バネ要素と連結減衰要素を介して接続することで、主構造物の応答加速度も応答変位も大幅に低減することができる。
(2)従来の連結制震構造では連結する双方の振動特性が同じ(固有振動数が同じ)場合にはそれらの間に接続するバネ要素や減衰要素の諸元を如何に設定しても応答低減効果が得られないが、本発明によれば双方の振動特性が同じ場合でも慣性質量ダンパーと連結バネ要素と連結減衰要素の各諸元を適正に設定することで充分な応答低減効果が得られる。
The following effects are obtained in the coupled vibration control structure of the present invention.
(1) An inertia mass damper is provided in the seismic isolation layer of the substructure, and the main structure whose response is to be reduced is connected to the substructure via a coupling spring element and a coupling damping element. Both the response acceleration and the response displacement can be greatly reduced.
(2) When the vibration characteristics of the two connected joints are the same (same natural frequency) in the conventional coupled vibration control structure, the response regardless of the specifications of the spring elements and damping elements connected between them Although the reduction effect cannot be obtained, according to the present invention, even if both vibration characteristics are the same, a sufficient response reduction effect can be obtained by appropriately setting the specifications of the inertia mass damper, the connection spring element, and the connection damping element. It is done.

(3)従来の連結制震構造においては減衰を増加すると加速度応答倍率のピークを低減させることができるものの高振動数域での加速度応答が増大してしまうが、本発明によれば高振動数域の加速度応答を増大させずに応答倍率のピークを減少させることができる。
(4)従構造物の免震層に単に慣性質量ダンパーを設置することでは長周期化と免震層の変位の抑制効果は得られるものの高振動数域での加速度応答が増大してしまうが、本発明によれば高振動数域の加速度応答を増大させずに応答倍率のピークを減少させることができる。
(3) Although the acceleration response magnification peak can be reduced by increasing the damping in the conventional coupled vibration control structure, the acceleration response in the high frequency range increases. The response magnification peak can be reduced without increasing the acceleration response of the region.
(4) Although simply installing an inertial mass damper in the seismic isolation layer of the substructure can increase the period and suppress the displacement of the seismic isolation layer, the acceleration response at high frequencies increases. According to the present invention, the peak response magnification can be reduced without increasing the acceleration response in the high frequency range.

(5)制震対象の主構造物は新築でも既存でも良く、既存建物に本発明を適用すれば建物内部に補強や改修を施すことなく居ながら工事で耐震性や居住性を大幅に改善することができる。なお、従構造物は主構造物に並設するように新設することが現実的であるが、従構造物として利用できるような既存建物や既存構造物がある場合にはそれをそのままあるいは改修して利用しても良い。
(6)従構造物を免震構造としているのでその変位は免震層に集中し、上部構造の層間変位は免震層の変位に比べて桁違いに小さくなるから、連結部での相対変位をほぼそのままロスなく(上部構造の層間変位によって目減りすることなく)免震層に設置した慣性質量ダンパーを確実に作動させてダンパー変位に反映させることができ、そのダンパー性能を効果的に発揮させることができる。
(5) The main structure subject to seismic control may be newly constructed or existing, and if the present invention is applied to an existing building, it will greatly improve the earthquake resistance and habitability of the construction without being reinforced or renovated inside the building. be able to. In addition, it is realistic to install a substructure in parallel with the main structure, but if there is an existing building or existing structure that can be used as a substructure, it can be used as is or modified. May be used.
(6) Since the substructure has a seismic isolation structure, the displacement is concentrated in the seismic isolation layer, and the interlayer displacement of the superstructure is orders of magnitude smaller than the displacement of the seismic isolation layer. The inertia mass damper installed in the seismic isolation layer can be reliably operated and reflected in the damper displacement without any loss (without loss due to the interlayer displacement of the superstructure), and the damper performance can be effectively demonstrated. be able to.

(7)連結部の高さは任意であるので建築計画上の大きな制約にならないし、連結バネ要素や連結減衰要素をたとえば2棟間に設置される連絡通路や配管架台を利用して設置する等の合理的な計画も可能である。
(8)応答層せん断力やベースシヤー係数も低減されるので基礎や杭の設計も合理的になる。また、基礎に作用する水平力が低減されるので杭のコストダウンが図れる。
(7) Since the height of the connecting part is arbitrary, there is no major restriction on the building plan, and the connecting spring element and the connecting damping element are installed using, for example, a connecting passage or a pipe mount installed between the two buildings. A reasonable plan such as this is also possible.
(8) Since the response layer shear force and base shear coefficient are also reduced, the foundation and pile design will be rational. In addition, since the horizontal force acting on the foundation is reduced, the cost of the pile can be reduced.

(9)本発明は線形システムであるので大地震から中小地震まで効果を発揮する。また、地震時だけでなく風荷重に対する応答も低減することができる。
(10)本発明はパッシブ制震であり、従来一般のアクティブ制震のようにコンピュータや電源,高度の制御システムを必要としない。
(11)通常の制震構造のように建物内に制震ダンパーを設置する必要がないので、建築計画を大きく阻害することがない。また、各制震要素の設置個所が免震層と連結部に限定されるため点検作業も行い易い。
(12)慣性質量ダンパーにより得られる慣性質量は実際の錘質量の数百倍以上に大きくできるから、従来一般のダンパーを用いる場合には非現実的であるような大きな慣性質量を付加しても構造体への荷重負荷は極めて小さくて済む。
また、慣性質量を充分に大きくすることで応答倍率のピークを小さくでき、構造剛性や質量が変動しても安定的に制震効果を発揮でき、ロバスト性が向上する。
(13)本発明の実施(計画、設計、施工)に当たっては特別な技能は不要であり、容易にかつローコストに実施することが可能である。
(9) Since the present invention is a linear system, it is effective from large earthquakes to small and medium earthquakes. In addition to the earthquake, the response to wind loads can be reduced.
(10) The present invention is a passive vibration control, and does not require a computer, a power source, and an advanced control system unlike conventional active vibration control.
(11) Since it is not necessary to install a damping damper in the building unlike a normal damping structure, the construction plan is not greatly hindered. In addition, inspection work is easy because the location of each seismic control element is limited to the seismic isolation layer and the connecting part.
(12) Since the inertial mass obtained by the inertial mass damper can be made several hundred times larger than the actual weight mass, even if a large inertial mass that is unrealistic when using a conventional general damper is added. The load applied to the structure can be extremely small.
Further, by sufficiently increasing the inertial mass, the peak response magnification can be reduced, and even if the structural rigidity or mass varies, the vibration control effect can be stably exhibited, and the robustness is improved.
(13) No special skill is required for implementation (planning, design, construction) of the present invention, and it can be implemented easily and at low cost.

本発明の連結制震構造の実施形態を示す概要図である。It is a schematic diagram showing an embodiment of a connection vibration control structure of the present invention. 同、設計例1の効果を示す図である。It is a figure which shows the effect of the design example 1 similarly. 同、設計例1の効果を示す図である。It is a figure which shows the effect of the design example 1 similarly. 同、設計例2の効果を示す図である。It is a figure which shows the effect of the design example 2 similarly. 同、設計例2に対する比較例を示す図である。It is a figure which shows the comparative example with respect to the design example 2 similarly. 同、設計例2の効果を示す図である。It is a figure which shows the effect of the design example 2 similarly. 同、設計例3の概要を示す図である。It is a figure which shows the outline | summary of the design example 3 same as the above. 同、設計例3の概要を示す図である。It is a figure which shows the outline | summary of the design example 3 same as the above. 同、設計例3の効果を示す図である。It is a figure which shows the effect of the example 3 of a design similarly. 同、設計例3の効果を示す図である。It is a figure which shows the effect of the example 3 of a design similarly.

本発明の連結制震構造は、図1(a)に示すように主構造物としての建物Aに対して従構造物としての建物Bを並設してそれらを連結バネ要素1と連結減衰要素2とにより連結することを主眼とするものである。
本発明では従構造物である建物Bを免震構造として慣性質量ダンパー3を設置する必要があるので、建物Bの基礎部に免震ピットを設けて免震層を確保し、そこに積層ゴム等の免震装置4を設置して建物B全体を支持し、かつその免震層に慣性質量ダンパー3と減衰要素5を設置している。なお、減衰要素5の設置は必須ではなく建物Bの応答が大きくて良い場合には省略しても差し支えない。
制震対象の主構造物である建物Aは必ずしも免震構造とする必要はないが、本実施形態では建物Aも建物Bと同様の免震構造としており、同じく免震装置4により免震支持しかつ減衰要素5を設置している。
As shown in FIG. 1 (a), the coupled vibration control structure of the present invention has a building B as a subsidiary structure arranged side by side with a building A as a main structure, and these are connected to a coupling spring element 1 and a coupling damping element. The main purpose is to connect the two.
In the present invention, it is necessary to install the inertia mass damper 3 using the building B, which is a substructure, as a base isolation structure. Therefore, a base isolation pit is provided in the base of the building B to secure a base isolation layer, and laminated rubber is provided there. A base isolation device 4 is installed to support the entire building B, and an inertia mass damper 3 and a damping element 5 are installed in the base isolation layer. Note that the installation of the damping element 5 is not essential, and may be omitted if the response of the building B may be large.
Building A, which is the main structure subject to seismic control, does not necessarily have a seismic isolation structure, but in this embodiment, building A also has a seismic isolation structure similar to that of building B. And a damping element 5 is provided.

上記の構造は図1(b)に示すようにモデル化でき、その振動方程式は次式となる。
なお、次式においては、図中に示しているように建物Aの質量をm1、構造剛性をk1、構造減衰をc1、絶対座標系での変位をx1とし、建物Bの質量をm2、構造剛性をk2、構造減衰をc2、絶対座標系での変位をx2とし、慣性質量をψ、連結バネをkc、連結減衰をccとしている。
The above structure can be modeled as shown in FIG. 1B, and the vibration equation is as follows.
In the following equation, as shown in the figure, the mass of building A is m 1 , the structural stiffness is k 1 , the structural damping is c 1 , the displacement in the absolute coordinate system is x 1, and the mass of building B M 2 , structural rigidity k 2 , structural damping c 2 , displacement in the absolute coordinate system x 2 , inertial mass ψ, coupling spring k c , and coupling damping c c .

上記の方程式をx1について解くと次式となる。
Solving the above equation for x 1 yields:

したがって建物Aの加速度は次式で表される。
Therefore, the acceleration of building A is expressed by the following equation.

上式は地動加速度に対する建物Aの加速度伝達関数(複素数)であり、本発明では建物Aの居住性の改善を目的とする場合には、式中の慣性質量ψ、連結剛性kc、連結減衰ccを調整することにより、加速度応答倍率(伝達関数の絶対値)のピークを最小化するようにそれらの諸元を設定する。 The above equation is the acceleration transfer function (complex number) of the building A with respect to the ground acceleration. In the present invention, when the purpose is to improve the habitability of the building A, the inertia mass ψ, the connection stiffness k c , and the connection attenuation in the equation c Adjust the parameters so that the peak of acceleration response magnification (absolute value of transfer function) is minimized by adjusting c .

一方、建物Aの変位(免震層の地面に対する変位)は次式で表される。
On the other hand, the displacement of building A (the displacement of the seismic isolation layer relative to the ground) is expressed by the following equation.

上式は地動変位に対する建物Aの変位伝達関数(複素数)であり、本発明では建物Aの構造耐力や層間変位が問題となる場合には、式中の慣性質量ψ、連結剛性kc、連結減衰ccを調整することにより、変位応答倍率(伝達関数の絶対値)のピークを最小化するようにそれらの諸元を設定する。 The above equation is the displacement transfer function (complex number) of the building A with respect to the ground displacement. In the present invention, when the structural strength of the building A or the interlayer displacement becomes a problem, the inertia mass ψ, the connecting stiffness k c , By adjusting the attenuation c c , the specifications are set so as to minimize the peak of the displacement response magnification (the absolute value of the transfer function).

以下、具体的な設計例を示す。
(1)設計例1
建物A,Bがいずれも免震構造で固有振動数が同じ場合の設計例である。
建物Aおよび建物Bの固有角振動数ω0、加振角振動数と固有角振動数との比ξ=ω/ω0とする。
m2/m1=k2/k1=0.5、(k1/m1)0.5=(k2/m2)0.5=ω0、減衰定数h1=c1/(2m1ω0)=0.1、h2=c2/(2m2ω0)=0.1、慣性質量ψ=1.2m1、連結バネkc=0.15k1、連結減衰cc=1.8c1とする。
A specific design example is shown below.
(1) Design example 1
This is a design example in which both buildings A and B are seismic isolation structures and have the same natural frequency.
It is assumed that the natural angular frequency ω 0 of the building A and the building B is a ratio ξ = ω / ω 0 between the excitation angular frequency and the natural angular frequency.
m 2 / m 1 = k 2 / k 1 = 0.5, (k 1 / m 1 ) 0.5 = (k 2 / m 2 ) 0.5 = ω 0 , damping constant h 1 = c 1 / (2m 1 ω 0 ) = 0.1, h 2 = c 2 / (2m 2 ω 0 ) = 0.1, inertial mass ψ = 1.2 m 1 , coupling spring k c = 0.15 k 1 , coupling damping c c = 1.8c 1 .

上記設計例の場合における建物A,Bの加速度応答倍率および変位応答倍率を図2に示す。なお、加速度応答倍率は入力加速度に対する応答加速度であり、変位応答倍率は入力変位に対する応答変位であって地表に対する建物の相対変位である。
図2には比較例を含めて次の4ケースを示している。
・連結なし建物A単独:従来の免震構造の場合における建物Aの応答(建物Bも振動特性 が同じなので同じ結果となる)である。
・建物A,Bを剛結合:建物Bに慣性質量ダンパーを設置するのみで建物A,Bどうしを 単に剛結(連結バネ要素および連結減衰要素なし)した場合の全体の応答である。
・連結あり建物A:連結バネ要素および連結減衰要素を介して建物A,Bを連結した場合 の建物Aの応答である。
・連結あり建物B:連結バネ要素および連結減衰要素を介して建物A,Bを連結した場合 の建物Bの応答である。
FIG. 2 shows the acceleration response magnification and the displacement response magnification of the buildings A and B in the case of the above design example. The acceleration response magnification is the response acceleration with respect to the input acceleration, and the displacement response magnification is the response displacement with respect to the input displacement and is the relative displacement of the building with respect to the ground surface.
FIG. 2 shows the following four cases including a comparative example.
-Building A alone without connection: Response of building A in the case of conventional seismic isolation structure (same result because building B has the same vibration characteristics).
• Buildings A and B are rigidly connected: This is the overall response when buildings A and B are simply rigidly connected (no connecting spring element and connected damping element) simply by installing an inertial mass damper in building B.
• Building A with connection: Response of building A when buildings A and B are connected via a connecting spring element and a connecting damping element.
-Building B with connection: Response of building B when buildings A and B are connected via a connection spring element and a connection damping element.

図2に示されているように、制震対象である主構造物としての建物Aについては従来の免震構造の場合に比べて加速度、変位ともに抑制できることがわかる。
建物A,Bを単に剛結した場合には全体の固有振動数が低下してやや長周期化し、応答倍率のピークが少し低下するものの、高振動数域での加速度応答倍率が大きく増加してしまうが、上記設計例の連結制震構造によれば高振動数域での加速度応答倍率を増加させることなく(従来免震と殆ど同じ)共振域での応答を低減できる。
なお、制震対象ではない従構造物としての建物Bについては、高振動数域で従来の免震構造の場合よりも加速度応答が増大しているが、変位(免震層変位)は従来免震の30%程度に低減される。
As shown in FIG. 2, it can be seen that the building A as the main structure that is the seismic control object can suppress both acceleration and displacement compared to the conventional seismic isolation structure.
When buildings A and B are simply rigidly connected, the overall natural frequency decreases and the period becomes slightly longer, and the peak response magnification slightly decreases, but the acceleration response magnification in the high frequency range increases greatly. However, according to the coupled vibration control structure of the above design example, the response in the resonance region can be reduced without increasing the acceleration response magnification in the high frequency region (almost the same as the conventional seismic isolation).
For building B as a secondary structure that is not subject to seismic control, the acceleration response is higher than that of the conventional base-isolated structure at high frequencies, but the displacement (base-isolated layer displacement) is conventionally exempted. It is reduced to about 30% of the earthquake.

上記の設計例1における建物Aについての時刻歴応答解析結果を図3に示す。入力地震波は振動数特性の少ない建築センター波(最大加速度356gal、継続時間120秒)である。
図3に示されるように、上記設計例の連結免震構造によれば応答加速度を151galから128galに低減できるとともに、応答変位を333mmから243mmに低減でき、従来の単なる連結制震では実現できなかった同じ振動特性をもつ建物どうしの連結制震でも効果を発揮し得ることが確認できた。
FIG. 3 shows the time history response analysis result for the building A in the design example 1 described above. The input seismic wave is a building center wave with a low frequency characteristic (maximum acceleration 356 gal, duration 120 seconds).
As shown in FIG. 3, according to the coupled seismic isolation structure of the above design example, the response acceleration can be reduced from 151 gal to 128 gal, and the response displacement can be reduced from 333 mm to 243 mm, which cannot be realized by the conventional simple seismic control. It was also confirmed that the effect can be demonstrated even in the joint control of buildings with the same vibration characteristics.

(2)設計例2
建物Aが耐震構造であり、建物A,Bの固有振動数が異なる場合の設計例である。
上記の設計例1は建物Aが建物Bと同様に免震構造の場合であるが、本設計例2は建物Aが中低層の耐震構造(非免震構造)の建物であり、建物Bの質量は建物Aの1/5、固有周期は建物Aが1秒、建物Bが4秒とする。建物Aは構造減衰を1次に対してh=0.02とし、等価1質点系にモデル化する。
m2/m1=0.2、k2/k1=0.0125、(k1/m1)0.5=ω0、(k2/m2)0.5=ω0/4、減衰定数h1=c1/(2m1ω0)=0.02、h2=c2/(2m2ω0)=0.1、慣性質量ψ=0.5m1、連結バネkc=0.275k1=22k2、連結減衰cc=9c1とする。
(2) Design example 2
This is a design example when the building A has an earthquake-resistant structure and the natural frequencies of the buildings A and B are different.
The above design example 1 is a case where the building A has a seismic isolation structure like the building B, but the present design example 2 is a building having a middle and low-rise seismic structure (non-seismic isolation structure). The mass is 1/5 of building A, and the natural period is 1 second for building A and 4 seconds for building B. Building A is modeled as an equivalent one-mass system with structural damping h = 0.02 for the first order.
m 2 / m 1 = 0.2, k 2 / k 1 = 0.0125, (k 1 / m 1) 0.5 = ω 0, (k 2 / m 2) 0.5 = ω 0/4, the damping constant h 1 = c 1 / (2m 1 ω 0 ) = 0.02, h 2 = c 2 / (2 m 2 ω 0 ) = 0.1, inertial mass ψ = 0.5 m 1 , coupling spring k c = 0.275 k 1 = 22 k 2 , coupling damping c c = 9c is 1 .

上記設計例の場合における建物A,Bの加速度応答倍率および変位応答倍率を図4に示す(下段は上段の縦軸を拡大したものである)。
図4に示されるように、上記の設計例1の場合に比較して、建物A,Bの振動特性が異なるので、建物Bの質量が小さくても建物Aに対して大きな応答低減効果が得られ、特に加速度応答倍率は25から1.8に激減させることができる。しかも、高振動数域における加速度は増加することはなく従来免震と同程度である。
建物Bについては免震構造ではあっても高振動数域での加速度応答が増大するが、低振動数域において過大な応答を生じることはない。
FIG. 4 shows the acceleration response magnification and the displacement response magnification of the buildings A and B in the case of the above design example (the lower part is an enlargement of the vertical axis of the upper part).
As shown in FIG. 4, the vibration characteristics of the buildings A and B are different from those in the case of the design example 1 described above, so that a large response reduction effect is obtained for the building A even if the mass of the building B is small. In particular, the acceleration response magnification can be drastically reduced from 25 to 1.8. Moreover, the acceleration in the high frequency range does not increase and is about the same as conventional seismic isolation.
Even though the building B has a base-isolated structure, the acceleration response in the high frequency range increases, but an excessive response does not occur in the low frequency range.

本設計例における慣性質量ψによる応答低減効果を確認するために、慣性質量ダンパーを省略した場合と比較してみる。
建物Aの応答加速度を最小化するべく連結バネkc=0.133k1=10.6k2、連結減衰cc=1.8c1とした場合の建物A,Bの加速度応答倍率および変位応答倍率を図5に示す(下段は上段の縦軸を拡大したものである)。
図5に示されるように、慣性質量ダンパーがない場合には加速度応答倍率のピークは25から3.2に低下するに留まり、低振動数域における建物Bの加速度や変位も増大してしまい、したがって慣性質量ψが応答制御に大きく寄与することが実証できた。
In order to confirm the effect of reducing the response due to the inertial mass ψ in this design example, a comparison will be made with the case where the inertial mass damper is omitted.
FIG. 5 shows the acceleration response magnification and displacement response magnification of buildings A and B when the connection spring k c = 0.133k 1 = 10.6k 2 and the connection damping c c = 1.8c 1 in order to minimize the response acceleration of the building A. (The lower row is an enlargement of the vertical axis of the upper row).
As shown in FIG. 5, in the absence of an inertial mass damper, the peak acceleration response magnification is only reduced from 25 to 3.2, and the acceleration and displacement of the building B in the low frequency range are also increased. It was proved that mass ψ greatly contributes to response control.

設計例2における建物Aについての時刻歴応答解析結果を図6に示す。
図6に示されるように、本設計例2においても、設計例1の場合と同様に、応答加速度(880gal→307gal)も応答変位(223mm→86mm)もともに低減できることが確認できた。
FIG. 6 shows the time history response analysis result for the building A in the design example 2.
As shown in FIG. 6, in the present design example 2, as in the case of the design example 1, it was confirmed that both the response acceleration (880 gal → 307 gal) and the response displacement (223 mm → 86 mm) can be reduced.

(3)設計例3
図7に示すように、建物Aが中高層の耐震構造または制震構造であり、建物A,Bの固有振動数が異なる場合の設計例である。
この場合、建物Aは一般的な多質点系の振動モデルとするが、建物Bは免震構造であって免震層の剛性は上部構造の層剛性より桁違いに小さいことから等価な1質点系にモデル化する。なお、連結点は建物Bの頂部=建物Aの中間部とする。
(3) Design example 3
As shown in FIG. 7, this is a design example in a case where the building A has a middle- and high-rise seismic structure or damping structure and the natural frequencies of the buildings A and B are different.
In this case, Building A is a general multi-mass point vibration model, but Building B has a base isolation structure, and the rigidity of the base isolation layer is orders of magnitude smaller than that of the superstructure. Model into a system. The connecting point is the top of the building B = the middle part of the building A.

その具体例を図8に示す。建物Aはその基準階伏図と軸組図を(a)、(b)に示すように地上高さ60m、延べ床面積約10,000m2の鉄骨造15階建てで片コアタイプの事務所ビルとし、コア部の要所にブレースを設置している。各階の階高は全て4m、地上階質量は8097ton、建物A単独の固有周期は1.52秒である。
建物Bは地上高さ16m、延べ床面積約1,200m2のRC造4階建てとし地上階質量は1600ton、建物B単独の固有周期は4秒となるように免震層の剛性を4kN/mmとした。また、免震層の減衰係数はh=0.1と設定し、c=500kN/(m/sec)とした。免震層に設置する慣性質量ダンパーはψ=4000tonとする。
建物Aと建物Bを連結する高さは地上16m(5FL)とし、連結バネkc=80kN/mm、連結減衰cc=10MN/(m/sec)=100kN/kineとする。連結減衰には一般的なオイルダンパーを使用する。
A specific example is shown in FIG. Building A is a 15-story steel-framed office building with 60m above the ground and a total floor area of approximately 10,000m 2 as shown in (a) and (b). And braces are installed at the key points. The floor height of each floor is 4m, the ground floor mass is 8097ton, and the natural period of building A alone is 1.52 seconds.
Building B has a height of 16m and a total floor area of about 1,200m 2 and is 4 stories high. The mass of the ground floor is 1600ton, and the natural period of building B alone is 4 seconds so that the seismic isolation layer has a rigidity of 4kN / mm. It was. The damping coefficient of the seismic isolation layer was set to h = 0.1 and c = 500 kN / (m / sec). The inertial mass damper installed in the seismic isolation layer shall be ψ = 4000ton.
The height at which the building A and the building B are connected is 16 m above the ground (5 FL), the connection spring k c = 80 kN / mm, and the connection damping c c = 10 MN / (m / sec) = 100 kN / kine. A common oil damper is used for connection damping.

上記のモデルに対し、構造物の非線形は無視した線形応答解析で検討する。構造減衰は1次に対して2%の振動数比例型とする。検討用の地震動は高層評定で一般的に使用されている建築センター波L2(356gal)とし、継続時間120秒として解析する。
その結果を図9に示す。グラフの表記の都合上、RFL(屋根)は縦軸に16FLとして示している。
図9に示されるように、本設計例では応答変位も応答加速度も層間変位も層せん断力も充分に低減できることがわかる。
特に、建物Bの変位(免震層変位)は16.4cmであり、免震装置の変形としては問題にならない。建物A,B間の相対変位は12.0cmで連結バネや連結減衰の変形量としては問題ないレベルである。
なお、負担力は連結バネが9.6MN、連結減衰が16MNであり、免震層に設置する慣性質量ダンパーの最大負担力は9.9MNである。これらは現在製造されている装置を並設することで充分対応できる範囲である。
最大応答層間変位が3.39cmから2.32cmとなるのに対し、層間変形角が1/118から1/172に低減し、したがって本設計例によればレベル2(極大地震)入力に対しても許容応力度設計が可能な程度の応答に納まる。
In contrast to the above model, the nonlinearity of the structure is examined by ignoring linear response analysis. The structural damping shall be 2% frequency proportional to the first order. The ground motion for examination is the building center wave L2 (356 gal), which is generally used for high-rise evaluation, and is analyzed with a duration of 120 seconds.
The result is shown in FIG. For convenience of graph notation, RFL (roof) is shown as 16FL on the vertical axis.
As shown in FIG. 9, it can be seen that in this design example, the response displacement, the response acceleration, the interlayer displacement, and the layer shear force can be sufficiently reduced.
In particular, the displacement of the building B (base isolation layer displacement) is 16.4 cm, which is not a problem as a deformation of the base isolation device. The relative displacement between the buildings A and B is 12.0 cm, which is a satisfactory level of deformation for the coupling spring and coupling damping.
The load force is 9.6MN for the connection spring and 16MN for the connection damping, and the maximum load force of the inertia mass damper installed in the seismic isolation layer is 9.9MN. These are ranges that can be sufficiently accommodated by arranging currently manufactured devices in parallel.
While the maximum response interlayer displacement is from 3.39 cm to 2.32 cm, the interlayer deformation angle is reduced from 1/118 to 1/172, so this design example also allows for level 2 (extreme earthquake) inputs. It fits in a response that allows stress level design.

建物Aについての時刻歴応答解析結果を図10に示す。
図10は、制震対象の建物Aの頂部の応答変位、頂部の応答加速度、基準階として7階の応答層間変位、ベースシヤーとして1階の応答層せん断力を、それぞれ連結の有無により比較したものであり、いずれも中間階を連結するだけで大きな応答低減効果が得られている(応答変位434mm→241mm、応答加速度971gal→518gal、応答層間変位33mm→18mm、応答層せん断力33MN→22MNにそれぞれ低減)。特に、最大振幅が低減されるだけでなく60秒以降のあとゆれに対しても効果的であることがわかる。また、1階の層せん断力(ベースシヤー)を低減できるので基礎に作用する地震力を低減できる。
The time history response analysis result for the building A is shown in FIG.
Fig. 10 compares the response displacement at the top of the building A subject to seismic control, the response acceleration at the top, the response layer displacement at the 7th floor as the standard floor, and the response layer shear force at the 1st floor as the base shear depending on the presence or absence of connection. In both cases, a large response reduction effect is obtained just by connecting the intermediate floors (response displacement 434 mm → 241 mm, response acceleration 971 gal → 518 gal, response interlayer displacement 33 mm → 18 mm, response layer shear force 33 MN → 22 MN, respectively. Reduction). In particular, it can be seen that not only the maximum amplitude is reduced, but also effective against a sway after 60 seconds. In addition, since the shear force (base shear) on the first floor can be reduced, the seismic force acting on the foundation can be reduced.

なお、上記の設計例2および設計例3ではいずれも建物Aに対する建物Bの質量を1/5に設定したが、必ずしもその比率にすることはない。建物Bの質量比が小さくなると建物Aに対する応答低減効果がやや低下するとともに建物Bの応答変位が増大し、ダンパーのストロークが大きくなるが、それらを考慮したうえで所望の制震効果が得られるように各諸元を最適設計すれば良い。
また、建物A,Bどうしの連結高さは建物Bの頂部近傍に設定することが望ましいが、それに限るものでもなく、制震効果はやや低減するもののより低い位置で連結することでも良く、これについても最適設計すれば良い。
In both Design Example 2 and Design Example 3, the mass of the building B with respect to the building A is set to 1/5, but the ratio is not necessarily set. When the mass ratio of the building B is reduced, the response reduction effect for the building A is slightly reduced, the response displacement of the building B is increased, and the stroke of the damper is increased. In this way, each specification may be optimally designed.
The connection height between the buildings A and B is preferably set near the top of the building B. However, the height is not limited to this, and although the vibration control effect is somewhat reduced, it may be connected at a lower position. The best design should be done.

A 建物(制震対象の主構造物)
B 建物(従構造物)
1 連結バネ要素
2 連結減衰要素
3 慣性質量ダンパー
4 免震装置
5 減衰要素
A building (main structure subject to seismic control)
B Building (secondary structure)
DESCRIPTION OF SYMBOLS 1 Connection spring element 2 Connection damping element 3 Inertial mass damper 4 Seismic isolation device 5 Damping element

Claims (3)

制震対象の主構造物に並設した従構造物を免震装置により免震支持するとともに、該従構造物の免震層に前記免震装置と並列に慣性質量ダンパーを設置し、前記主構造物と前記従構造物とを連結バネ要素および連結減衰要素により連結して、前記慣性質量ダンパー、前記連結バネ要素、前記連結減衰要素の各諸元を前記主構造物の応答を最小化するように設定してなることを特徴とする連結制震構造。   A secondary structure arranged side by side on the main structure to be controlled is isolated by the seismic isolation device, and an inertia mass damper is installed in parallel with the seismic isolation device in the seismic isolation layer of the secondary structure. The structure and the substructure are connected by a connecting spring element and a connecting damping element, and the inertial mass damper, the connecting spring element, and the specifications of the connecting damping element minimize the response of the main structure. A combined seismic control structure, characterized by being set as follows. 請求項1記載の連結制震構造であって、前記主構造物の加速度応答倍率のピークを最小化するように前記各諸元を設定してなることを特徴とする連結制震構造。   2. The coupled seismic control structure according to claim 1, wherein each of the specifications is set so as to minimize a peak acceleration response magnification of the main structure. 請求項1記載の連結制震構造であって、前記主構造物の変位応答倍率のピークを最小化するように前記各諸元を設定してなることを特徴とする連結制震構造。   2. The coupled seismic control structure according to claim 1, wherein each of the specifications is set so as to minimize a displacement response magnification peak of the main structure.
JP2009052529A 2009-03-05 2009-03-05 Connected vibration control structure Active JP5458370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052529A JP5458370B2 (en) 2009-03-05 2009-03-05 Connected vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052529A JP5458370B2 (en) 2009-03-05 2009-03-05 Connected vibration control structure

Publications (2)

Publication Number Publication Date
JP2010203192A true JP2010203192A (en) 2010-09-16
JP5458370B2 JP5458370B2 (en) 2014-04-02

Family

ID=42964938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052529A Active JP5458370B2 (en) 2009-03-05 2009-03-05 Connected vibration control structure

Country Status (1)

Country Link
JP (1) JP5458370B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227777A (en) * 2013-05-24 2014-12-08 株式会社大林組 Extension method
JP2015094655A (en) * 2013-11-12 2015-05-18 大成建設株式会社 Characteristic evaluation method of connection member
JP2016023445A (en) * 2014-07-17 2016-02-08 首都高速道路株式会社 Connected vibration control structure for bridge, and setting method for the same
JP2017125324A (en) * 2016-01-13 2017-07-20 清水建設株式会社 Base isolation structure
JP2019210772A (en) * 2018-06-08 2019-12-12 清水建設株式会社 Seismic control structure
CN110873260A (en) * 2018-09-01 2020-03-10 厦门嘉达环保科技有限公司 Composite vibration isolation base
JP2021088875A (en) * 2019-12-04 2021-06-10 株式会社竹中工務店 Connection method of buildings
CN113609641A (en) * 2021-07-01 2021-11-05 昆明理工大学 Method for acquiring rotational kinetic energy of base isolation structure
JP7502144B2 (en) 2020-10-14 2024-06-18 株式会社竹中工務店 Vibration-damping structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021367U (en) * 1988-06-14 1990-01-08
JP2003056204A (en) * 2001-08-13 2003-02-26 Ohbayashi Corp Coupling vibration control device utilizing rotational inertia force
JP2006169719A (en) * 2004-12-13 2006-06-29 Tokyu Construction Co Ltd Horizontal base isolating apparatus
JP2007010110A (en) * 2005-07-04 2007-01-18 Tama Tlo Kk Base isolation device and rotational inertia addition device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021367U (en) * 1988-06-14 1990-01-08
JP2003056204A (en) * 2001-08-13 2003-02-26 Ohbayashi Corp Coupling vibration control device utilizing rotational inertia force
JP2006169719A (en) * 2004-12-13 2006-06-29 Tokyu Construction Co Ltd Horizontal base isolating apparatus
JP2007010110A (en) * 2005-07-04 2007-01-18 Tama Tlo Kk Base isolation device and rotational inertia addition device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227777A (en) * 2013-05-24 2014-12-08 株式会社大林組 Extension method
JP2015094655A (en) * 2013-11-12 2015-05-18 大成建設株式会社 Characteristic evaluation method of connection member
JP2016023445A (en) * 2014-07-17 2016-02-08 首都高速道路株式会社 Connected vibration control structure for bridge, and setting method for the same
JP2017125324A (en) * 2016-01-13 2017-07-20 清水建設株式会社 Base isolation structure
JP2019210772A (en) * 2018-06-08 2019-12-12 清水建設株式会社 Seismic control structure
JP7107759B2 (en) 2018-06-08 2022-07-27 清水建設株式会社 Damping structure
CN110873260A (en) * 2018-09-01 2020-03-10 厦门嘉达环保科技有限公司 Composite vibration isolation base
JP2021088875A (en) * 2019-12-04 2021-06-10 株式会社竹中工務店 Connection method of buildings
JP7395806B2 (en) 2019-12-04 2023-12-12 株式会社竹中工務店 How to connect buildings
JP7502144B2 (en) 2020-10-14 2024-06-18 株式会社竹中工務店 Vibration-damping structure
CN113609641A (en) * 2021-07-01 2021-11-05 昆明理工大学 Method for acquiring rotational kinetic energy of base isolation structure
CN113609641B (en) * 2021-07-01 2023-08-08 昆明理工大学 Method for obtaining rotational kinetic energy of foundation vibration isolation structure

Also Published As

Publication number Publication date
JP5458370B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5458370B2 (en) Connected vibration control structure
Murase et al. Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection
JP6979805B2 (en) Seismic isolation structure
Komur Soft-story effects on the behavior of fixed-base and LRB base-isolated reinforced concrete buildings
Liu et al. Seismic vibration control of novel prefabricated industrial equipment suspension structures with tuned mass damper
Tamari et al. Structural design and performance evaluation of a mid-story seismic isolated high-rise building
Kikuchi et al. Design of seismic isolated tall building with high aspect-ratio
Zeng et al. Shaking table test of a supertall building with hinged connections connecting a gravity load resisting system to a lateral force resisting system
Al-Soudani et al. Assessment of reinforced concrete structures under wind and earthquake using different design methods
JP2008240331A (en) Vibration damping structure of tower structure and method of setting specifications of vibration damping structure
Lan et al. Multifunctional vibration–absorption RC megaframe structures and their seismic responses
Kim et al. Challenges and opportunities for the structural design of 123-story Jamsil Lotte world tower
Briman et al. Using seismic isolation columns for retrofitting buildings with soft stories
JP3139675B2 (en) Construction method of vibration control structure
JP5290786B2 (en) Damping structure
Ribakov et al. Experimental methods for selecting base isolation parameters for public buildings
Alomari Conceptual seismic analysis of two RC adjacent buildings with different dynamic properties connected horizontally by sky bridges
JP2017043988A (en) Vibration control building
Zhou et al. Earthquake-resilient tall buildings using rocking walls
JP5131553B2 (en) Damping structure
Chang et al. Analytical and experimental studies on seismic behavior of buildings with mid-story isolation
Awchat et al. Seismic Response of Tall Building with Underground Storey Using Dampers
Gattulli et al. Nonlinear viscous dampers interconnecting adjacent structures for seismic retrofitting
Hooshmand et al. Analytical evaluation on the behavior of diagrid tall steel buildings under far and near earthquakes with the approach of controlling serviceability and acceleration criteria
El-korany Seismic Behavior of Virtual Outrigger System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5458370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150