JP2010174228A - Method for producing filmy adhesive for circuit connection - Google Patents

Method for producing filmy adhesive for circuit connection Download PDF

Info

Publication number
JP2010174228A
JP2010174228A JP2009021876A JP2009021876A JP2010174228A JP 2010174228 A JP2010174228 A JP 2010174228A JP 2009021876 A JP2009021876 A JP 2009021876A JP 2009021876 A JP2009021876 A JP 2009021876A JP 2010174228 A JP2010174228 A JP 2010174228A
Authority
JP
Japan
Prior art keywords
film
circuit connection
curing agent
adhesive
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009021876A
Other languages
Japanese (ja)
Other versions
JP5577599B2 (en
Inventor
Taketoshi Usui
健敏 臼井
Akira Shima
暁 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2009021876A priority Critical patent/JP5577599B2/en
Publication of JP2010174228A publication Critical patent/JP2010174228A/en
Application granted granted Critical
Publication of JP5577599B2 publication Critical patent/JP5577599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Adhesive Tapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filmy adhesive for circuit connection having high connection reliability based on a thermosetting resin, satisfying both of low-temperature quick curability and storage stability, and showing good sticking property to a substrate. <P>SOLUTION: The method for producing such a filmy adhesive for circuit connection includes: a step of producing a coating liquid by dissolving or dispersing in a solvent a thermosetting adhesive composition comprising a thermosetting resin, a microcapsule type curing agent, a film forming polymer and electrically conductive particles; a step of coating the top of a strippable substrate with the coating liquid; and a film formation step where the strippable substrate coated with the coating liquid is heated under stretching in an elastic region of the strippable substrate to volatilize the solvent. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回路基板同士や半導体チップ等の電子部品と回路基板との接続に用いられる回路接続用フィルム接着剤の製造法に関する。   The present invention relates to a method of manufacturing a film adhesive for circuit connection used for connection between circuit boards and electronic components such as semiconductor chips and circuit boards.

液晶ディスプレイと半導体チップやTCP(Tape Carrier Package)との接続、FPC(Flexible Printed Circuit)とTCPとの接続、又は、FPCとプリント配線板との接続を簡便に行うための接続部材として、絶縁性の接着剤中に導電粒子を分散させた構造のフィルム状接続部材や導電粒子が分散されていない絶縁性接着剤が使用されている。例えば、ノート型パソコンや携帯電話の液晶ディスプレイと制御ICとの接続用として、あるいは最近では、半導体チップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装にも、上記フィルム状接続部材が用いられている(以下、特許文献1、2、3参照)。   Insulating as a connection member for easily connecting a liquid crystal display and a semiconductor chip or TCP (Tape Carrier Package), connecting an FPC (Flexible Printed Circuit) and TCP, or connecting an FPC and a printed wiring board A film-like connecting member having a structure in which conductive particles are dispersed in the adhesive and an insulating adhesive in which conductive particles are not dispersed are used. For example, the film-like connecting member is used for connecting a liquid crystal display of a notebook personal computer or a mobile phone and a control IC, or recently for flip chip mounting in which a semiconductor chip is directly mounted on a printed circuit board or a flexible wiring board. (See Patent Documents 1, 2, and 3 below).

この分野では、回路接続部の信頼性を考慮して、接着剤として、エポキシ樹脂系などの熱硬化性接着剤が使用されている。回路接続用の熱硬化性接着剤は、使用するまでは、熱硬化性樹脂と硬化剤が未反応の状態で安定に存在し、使用時には、生産性や回路部材へのダメージを極小化するために低温短時間で硬化することが要求される。この様な貯蔵安定性と硬化性の両立を図るために、熱硬化性接着剤に用いられる硬化剤としては、潜在性硬化剤、中でも高反応性の硬化剤をカプセル膜で被覆したマイクロカプセル型の潜在性硬化剤が一般的に用いられている。一方、熱硬化性接着剤をフィルム状にするには、フィルム形成性高分子を熱硬化性接着剤中に均一に混合してフィルム状に成形する必要があり、フィルム形成性高分子を含む熱硬化性接着剤組成物を溶剤に溶解又は均一分散した塗工液を剥離性基材上に塗布し、加熱により溶剤を除去して成膜する方法が一般的である。ここで、マイクロカプセル型硬化剤も溶剤を含む塗工液中に分散され、更に溶剤を除去するための加熱を受けることになるが、溶剤や塗工液中に含まれる水分との接触や加熱はマイクロカプセル型硬化剤のカプセル膜を膨潤又は破壊し、貯蔵安定性を低下する要因となり、各種検討が為されている(以下、特許文献4、5参照)。   In this field, a thermosetting adhesive such as an epoxy resin is used as the adhesive in consideration of the reliability of the circuit connection portion. Until the thermosetting adhesive for circuit connection is used, the thermosetting resin and the curing agent exist stably in an unreacted state, and at the time of use, in order to minimize productivity and damage to circuit members It is required to be cured at a low temperature in a short time. In order to achieve both the storage stability and curability, the hardener used in the thermosetting adhesive is a microcapsule type in which a latent hardener, especially a highly reactive hardener, is coated with a capsule film. The latent curing agent is generally used. On the other hand, in order to form a thermosetting adhesive into a film, it is necessary to uniformly mix the film-forming polymer in the thermosetting adhesive and form the film. In general, a coating solution obtained by dissolving or uniformly dispersing a curable adhesive composition in a solvent is applied onto a peelable substrate, and the solvent is removed by heating to form a film. Here, the microcapsule-type curing agent is also dispersed in the coating liquid containing the solvent, and further subjected to heating to remove the solvent. Swells or breaks the capsule film of a microcapsule-type curing agent and causes a decrease in storage stability, and various studies have been made (see Patent Documents 4 and 5 below).

特開平03−107888号公報Japanese Patent Laid-Open No. 03-107888 特開平04−366630号公報Japanese Patent Laid-Open No. 04-366630 特開昭61−195179号公報JP-A-61-195179 特開平05−295329号公報JP 05-295329 A 特開2000−80146号公報JP 2000-80146 A

しかしながら、益々強く求められる低温短時間硬化性を発現しつつ、高い貯蔵安定性を達成するには至っておらず、その改良が求められている。
本発明は、熱硬化性樹脂による高い接続信頼性を有し、かつ、低温短時間硬化性と貯蔵安定性を両立でき、更には、基板への貼付性の良好な回路接続用フィルム接着剤の提供を課題とする。
However, it has not yet achieved high storage stability while exhibiting low temperature short-time curability that is increasingly demanded, and an improvement is required.
The present invention has a high connection reliability with a thermosetting resin, can achieve both low-temperature short-time curability and storage stability, and further, a film adhesive for circuit connection with good adhesion to a substrate. Offering is an issue.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、塗工液から溶剤を除去するための加熱段階が非常に重要であり、剥離性基材の弾性領域内で延伸しながら加熱して溶剤を除去することで、上記課題が解決できることを見出し、本発明を完成するに至った。
延伸しながら溶剤を除去することによって、高活性な硬化剤であっても高い貯蔵安定性が得られ、上記課題が解決できたことは、上記技術開示に鑑みて、当業者にとって予想できない、驚くべき発見であった。
As a result of intensive studies to solve the above problems, the inventors of the present invention are very important in the heating step for removing the solvent from the coating liquid, while stretching in the elastic region of the peelable substrate. It has been found that the above problem can be solved by removing the solvent by heating, and the present invention has been completed.
By removing the solvent while stretching, high storage stability was obtained even with a highly active curing agent, and it was surprising that the above problems could be solved in view of the above technical disclosure. It was a discovery that should be done.

即ち、本発明は、下記の通りである。
[1]熱硬化性樹脂と、マイクロカプセル型硬化剤と、フィルム形成性高分子と導電粒子を含有する熱硬化性接着剤組成物を溶剤に溶解又は分散させた塗工液を製造する工程、剥離性基材上に該塗工液を塗布する工程、塗工液が塗布された剥離性基材を、該剥離性基材の弾性領域内で延伸しながら加熱して溶剤を揮散させる製膜工程を含む回路接続用フィルム接着剤の製造法。
That is, the present invention is as follows.
[1] A step of producing a coating liquid in which a thermosetting adhesive composition containing a thermosetting resin, a microcapsule-type curing agent, a film-forming polymer and conductive particles is dissolved or dispersed in a solvent, The step of applying the coating liquid onto the peelable substrate, and the film formation for evaporating the solvent by heating the peelable substrate coated with the coating liquid while stretching within the elastic region of the peelable substrate. The manufacturing method of the film adhesive for circuit connection including a process.

[2]前記熱硬化性樹脂がエポキシ樹脂である、前記[1]に記載の回路接続用フィルム接着剤の製造法。   [2] The method for producing a film adhesive for circuit connection according to [1], wherein the thermosetting resin is an epoxy resin.

[3]前記マイクロカプセル型硬化剤が、エポキシ樹脂用の硬化剤の周囲を高分子化合物で被覆した構造である、前記[1]又は[2]に記載の回路接続用フィルム接着剤の製造法。   [3] The process for producing a film adhesive for circuit connection according to [1] or [2], wherein the microcapsule type curing agent has a structure in which a periphery of a curing agent for epoxy resin is coated with a polymer compound. .

[4]前記マイクロカプセル型硬化剤の活性化温度が60℃以上100℃以下である、前記[1]〜[3]のいずれかに記載の回路接続用フィルム接着剤の製造法。   [4] The method for producing a film adhesive for circuit connection according to any one of [1] to [3], wherein the activation temperature of the microcapsule type curing agent is 60 ° C. or higher and 100 ° C. or lower.

[5]前記塗工液中の水分量が、前記マイクロカプセル型硬化剤に対して、0.5質量%以上10質量%以下である、前記[1]〜[4]のいずれかに記載の回路接続用フィルム接着剤の製造法。   [5] The water content in the coating liquid according to any one of [1] to [4], in which the water content is 0.5% by mass or more and 10% by mass or less with respect to the microcapsule-type curing agent. A method for producing a film adhesive for circuit connection.

[6]前記成膜工程の加熱温度が50℃以上90℃以下である、前記[1]〜[5]のいずれかに記載の回路接続用フィルム接着剤の製造法。   [6] The method for producing a film adhesive for circuit connection according to any one of [1] to [5], wherein the heating temperature in the film forming step is 50 ° C. or higher and 90 ° C. or lower.

本発明の方法で製造された回路接続用フィルム接着剤は、熱硬化性樹脂による高い接続信頼性を有し、かつ、低温短時間硬化性と貯蔵安定性を両立でき、更には、基板への良好な貼付性を有するという効果を奏する。   The film adhesive for circuit connection produced by the method of the present invention has high connection reliability with a thermosetting resin, and can achieve both low temperature and short time curability and storage stability, and further to a substrate. There exists an effect that it has favorable sticking property.

以下、本発明について具体的に説明する。
本発明に用いられる塗工液は、熱硬化性接着剤組成物とそれを溶解又は分散する溶剤より構成される。熱硬化性接着剤組成物は熱硬化性樹脂、マイクロカプセル型硬化剤、フィルム形成性高分子、及び導電粒子を含有する。
Hereinafter, the present invention will be specifically described.
The coating liquid used for this invention is comprised from the thermosetting adhesive composition and the solvent which melt | dissolves or disperses it. The thermosetting adhesive composition contains a thermosetting resin, a microcapsule type curing agent, a film-forming polymer, and conductive particles.

熱硬化性樹脂としては、加熱によりマイクロカプセル型硬化剤と反応して架橋する樹脂が用いられる。この様な熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、アクリレート、ウレタン樹脂等が用いられる。それぞれの熱硬化性樹脂には、それに適したマイクロカプセル型硬化剤が用いられ、例えば、分子末端に反応性二重結合を有するアクリレートであれば、マイクロカプセル型硬化剤としては、加熱によってラジカルを発生する様な過酸化物等の硬化剤の周囲をカプセル膜で被覆したマイクロカプセル型硬化剤等が用いられる。
本発明においては、接続信頼性の高さから、熱硬化性樹脂としてエポキシ樹脂を用いることが好ましい。
As the thermosetting resin, a resin that reacts with the microcapsule-type curing agent by heating to crosslink is used. As such a thermosetting resin, for example, an epoxy resin, a phenol resin, an acrylate, a urethane resin, or the like is used. For each thermosetting resin, a suitable microcapsule type curing agent is used. For example, in the case of an acrylate having a reactive double bond at the molecular end, the microcapsule type curing agent can generate radicals by heating. A microcapsule-type curing agent or the like in which the periphery of a curing agent such as peroxide is coated with a capsule film is used.
In the present invention, it is preferable to use an epoxy resin as the thermosetting resin because of high connection reliability.

ここで用いられるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、レゾルシン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、脂肪族エーテル型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエーテルエステル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環族エポキサイド等があり、これらエポキシ樹脂はウレタン変性、ゴム変性、シリコーン変性等の変性されたエポキシ樹脂でもよい。グリシジルエーテル型エポキシ樹脂が好ましく、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が、より好ましい。   Examples of the epoxy resin used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetramethylbisphenol A type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, and resorcin type epoxy. Resin, fluorene type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, aliphatic ether type epoxy resin, etc. glycidyl ether type epoxy resin, glycidyl ether ester type epoxy resin, glycidyl ester type There are epoxy resins, glycidylamine type epoxy resins, hydantoin type epoxy resins, alicyclic epoxides, etc. These epoxy resins are urethane modified. , Rubber-modified, it may be a modified epoxy resin such as silicone-modified. A glycidyl ether type epoxy resin is preferable, and a naphthalene type epoxy resin, a bisphenol A type epoxy resin, and a bisphenol F type epoxy resin are more preferable.

マイクロカプセル型硬化剤としては、ホウ素化合物、ヒドラジド類、アミン類、イミダゾール類、ジシアンジアミド、カルボン酸無水物、チオール類、イソシアネート化合物、ホウ素錯塩、尿素化合物、メラミン化合物又はそれらの誘導体等の硬化剤を用いることができる。熱硬化性樹脂がエポキシ樹脂の場合、アミンアダクト、イミダゾールアダクト等のアダクト型硬化剤が安定性と硬化性のバランスが優れており好ましい。アダクト型硬化剤は、アミン類やイミダゾール類と、エポキシ樹脂、イソシアネート化合物、尿素化合物等との反応により得られる。マイクロカプセル型硬化剤は、前記硬化剤の表面をカプセル膜で被覆し安定化したもので、接続作業時の温度や圧力でカプセル膜が破壊され、硬化剤がマイクロカプセル外に拡散し、熱硬化性樹脂と反応する。   Microcapsule type curing agents include boron compounds, hydrazides, amines, imidazoles, dicyandiamide, carboxylic acid anhydrides, thiols, isocyanate compounds, boron complex salts, urea compounds, melamine compounds or their derivatives. Can be used. When the thermosetting resin is an epoxy resin, an adduct-type curing agent such as an amine adduct or an imidazole adduct is preferable because the balance between stability and curability is excellent. Adduct type curing agents are obtained by reaction of amines and imidazoles with epoxy resins, isocyanate compounds, urea compounds and the like. The microcapsule-type curing agent is the one that is stabilized by covering the surface of the curing agent with a capsule film. The capsule film is destroyed by the temperature and pressure at the time of connection work, the curing agent diffuses outside the microcapsule, and is thermally cured. Reacts with functional resin.

カプセル膜としては、室温での安定性と低温加熱による活性発現のバランス、即ち、潜在性が高いので、高分子化合物が好ましい。カプセル膜として用いられる高分子化合物としては、例えば、ポリウレタン化合物、ポリウレタンウレア化合物、ポリウレア化合物、ポリビニル化合物やメラミン化合物、エポキシ樹脂、フェノール樹脂から得られる高分子化合物が例示される。   As the capsule membrane, a polymer compound is preferable because it has a high balance between stability at room temperature and expression of activity by low-temperature heating, that is, high potential. Examples of the polymer compound used as the capsule membrane include polymer compounds obtained from polyurethane compounds, polyurethane urea compounds, polyurea compounds, polyvinyl compounds, melamine compounds, epoxy resins, and phenol resins.

マイクロカプセル型硬化剤は、微粉末状の硬化剤の表面をカプセル膜で被覆した構造が好ましく、その平均粒子径は0.2μm以上8μm以下が好ましい。硬化剤としての効率の観点から平均粒子径は0.2μm以上が好ましい。一方、硬化物の均一性の観点から、平均粒子径が8μm以下が、好ましい。マイクロカプセル型硬化剤の平均粒子径は、0.5μm以上6μm以下が塗工液中に分散する時に2次凝集や沈降が起こりにくいため、より好ましく、1μm以上4μm以下が、回路接続用フィルム接着剤の表面異物の発生が少ないため、さらに好ましい。   The microcapsule type curing agent preferably has a structure in which the surface of a fine powdery curing agent is covered with a capsule film, and the average particle size is preferably 0.2 μm or more and 8 μm or less. From the viewpoint of efficiency as a curing agent, the average particle size is preferably 0.2 μm or more. On the other hand, the average particle size is preferably 8 μm or less from the viewpoint of the uniformity of the cured product. The average particle size of the microcapsule type curing agent is more preferably 0.5 μm or more and 6 μm or less because secondary aggregation or sedimentation hardly occurs when dispersed in the coating liquid, and 1 μm or more and 4 μm or less is more preferable. Since the generation | occurrence | production of the surface foreign material of an agent is few, it is further more preferable.

マイクロカプセル型硬化剤の平均粒子径の測定方法としては、コールターカウンターを用いる方法が挙げられる。
マイクロカプセル型硬化剤の活性化温度は、回路接続用フィルム接着剤の硬化性に大きく影響する因子であり、低温短時間で性能発現するためには、活性化温度は低い方が好ましい。一方、回路接続用フィルム接着剤の製造時に熱硬化性樹脂とマイクロカプセル型硬化剤が反応することを防止するために、回路接続用フィルム接着剤の成膜時の加熱温度はマイクロカプセル型硬化材の活性化温度未満であることが好ましい。マイクロカプセル型硬化材の活性化温度は、貯蔵安定性を確保するために、溶剤が充分揮散できる温度以上が好ましい。マイクロカプセル型硬化剤の活性化温度は、好ましくは60℃以上100℃以下であり、より好ましくは70℃以上90℃以下である。
Examples of the method for measuring the average particle size of the microcapsule type curing agent include a method using a Coulter counter.
The activation temperature of the microcapsule type curing agent is a factor that greatly affects the curability of the film adhesive for circuit connection. In order to achieve performance at a low temperature in a short time, the activation temperature is preferably lower. On the other hand, in order to prevent the thermosetting resin and the microcapsule-type curing agent from reacting during the production of the circuit-connecting film adhesive, the heating temperature during film formation of the circuit-connecting film adhesive is the microcapsule-type curing material. It is preferable that it is less than the activation temperature. The activation temperature of the microcapsule-type curing material is preferably equal to or higher than the temperature at which the solvent can be sufficiently volatilized in order to ensure storage stability. The activation temperature of the microcapsule type curing agent is preferably 60 ° C. or higher and 100 ° C. or lower, more preferably 70 ° C. or higher and 90 ° C. or lower.

本明細書中、「マイクロカプセル型硬化剤の活性化温度」とは、マイクロカプセル型硬化剤と熱硬化性樹脂を質量比1対2で混合した組成物のゲルタイムが5分となる温度を意味し、例えば、70℃のゲルタイムが5分を超えていて、80℃のゲルタイムが5分未満の場合、活性化温度は70℃より高く80℃未満である。尚、ここで用いる熱硬化性樹脂は、熱硬化性接着剤組成物に用いられる熱硬化性樹脂であって、熱硬化性接着剤組成物中の熱硬化性樹脂を、硬化性の観点で代表するものを用いる必要がある。   In the present specification, the “activation temperature of the microcapsule type curing agent” means a temperature at which the gel time of the composition obtained by mixing the microcapsule type curing agent and the thermosetting resin at a mass ratio of 1: 2 is 5 minutes. For example, when the gel time at 70 ° C. exceeds 5 minutes and the gel time at 80 ° C. is less than 5 minutes, the activation temperature is higher than 70 ° C. and lower than 80 ° C. In addition, the thermosetting resin used here is a thermosetting resin used in the thermosetting adhesive composition, and the thermosetting resin in the thermosetting adhesive composition is representative from the viewpoint of curability. It is necessary to use what to do.

マイクロカプセル型硬化剤は、熱硬化性樹脂の高い硬化率を得るために、熱硬化性樹脂100質量部に対して、5〜60質量部用いるのが好ましい。より好ましくは10〜50質量部であり、さらに好ましくは20〜40質量部であり、それによって硬化物の吸水率を低く抑えることができる。   In order to obtain a high curing rate of the thermosetting resin, the microcapsule type curing agent is preferably used in an amount of 5 to 60 parts by mass with respect to 100 parts by mass of the thermosetting resin. More preferably, it is 10-50 mass parts, More preferably, it is 20-40 mass parts, Thereby, the water absorption rate of hardened | cured material can be restrained low.

本発明に用いられるフィルム形成性高分子としては、フェノキシ樹脂、ポリビニルブチラール、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ポリ酢酸ビニル樹脂、ナイロン、スチレン−イソプレン共重合体、ポリメチルメタクリレート樹脂が例示される。回路接続用フィルム接着剤が常態としてフィルム状であるために、フィルム形成性高分子のガラス転移温度は室温以上であることが好ましく、より好ましくはガラス転移温度が50℃以上である。より好ましくは60℃以上であり、さらに好ましくは70℃以上であり、それによって回路接続用フィルム接着剤のブロッキング性が大きく抑制できる。フィルム形成性高分子の重量平均分子量は5,000以上が好ましい。より好ましくは10,000以上800,000以下であり、さらに好ましくは20,000以上500,000以下である。それによって、熱硬化性接着剤組成物中で均一に存在しやすく、また、回路接続用フィルム接着剤の硬化物としたときに強い機械的強度が発現する。   As the film-forming polymer used in the present invention, phenoxy resin, polyvinyl butyral, polyester resin, polyurethane resin, polyimide resin, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, polyvinyl acetate resin, nylon And styrene-isoprene copolymer and polymethyl methacrylate resin. Since the film adhesive for circuit connection is normally in the form of a film, the glass transition temperature of the film-forming polymer is preferably room temperature or higher, more preferably the glass transition temperature is 50 ° C. or higher. More preferably, it is 60 degreeC or more, More preferably, it is 70 degreeC or more, Thereby, the blocking property of the film adhesive for circuit connection can be suppressed largely. The weight average molecular weight of the film-forming polymer is preferably 5,000 or more. More preferably, it is 10,000 or more and 800,000 or less, More preferably, it is 20,000 or more and 500,000 or less. Thereby, it exists easily in a thermosetting adhesive composition, and when it is set as the hardened | cured material of the film adhesive for circuit connections, strong mechanical strength is expressed.

熱硬化性樹脂としてエポキシ樹脂を用いる場合、フィルム形成性高分子としては、エポキシ樹脂との相溶性が高いフェノキシ樹脂が好ましい。ここで用いられるフェノキシ樹脂としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールAビスフェノールF混合型フェノキシ樹脂、ビスフェノールAビスフェノールS混合型フェノキシ樹脂、フルオレン環含有フェノキシ樹脂、カプロラクトン変性ビスフェノールA型フェノキシ樹脂等が例示される。フィルム形成性高分子の含有量は、熱硬化性樹脂に対して10〜200質量%が好ましい。   When an epoxy resin is used as the thermosetting resin, a phenoxy resin having high compatibility with the epoxy resin is preferable as the film-forming polymer. The phenoxy resin used here includes bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A bisphenol F mixed type phenoxy resin, bisphenol A bisphenol S mixed type phenoxy resin, fluorene ring-containing phenoxy resin, caprolactone modified bisphenol A type. Examples include phenoxy resin. The content of the film-forming polymer is preferably 10 to 200% by mass with respect to the thermosetting resin.

本発明に用いられる導電粒子としては、金属粒子、炭素からなる粒子や高分子核材に金属薄膜を被覆した粒子等を用いることができる。
金属粒子としては、例えば、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の単体や、2種以上のこれらの金属が層状又は傾斜状に組み合わされている粒子が例示される。
As the conductive particles used in the present invention, metal particles, particles made of carbon, particles obtained by coating a polymer thin film with a metal thin film, and the like can be used.
As the metal particles, for example, simple substances such as gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, and palladium, or two or more kinds of these metals are combined in a layered or inclined manner. Particles are exemplified.

高分子核材に金属薄膜を被覆した粒子としては、エポキシ樹脂、スチレン樹脂、シリコーン樹脂、アクリル樹脂、ポリオレフィン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂、ジビニルベンゼン架橋体、NBR、SBR等のポリマーの中から1種又は2種以上組み合わせた高分子核材に、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の中から1種又は2種以上組み合わせてメッキ等により金属被覆した粒子が例示される。金属薄膜の厚さは0.005μm以上1μm以下の範囲が、接続安定性と粒子の凝集性の観点から好ましい。金属薄膜は均一に被覆されていることが接続安定性上好ましい。これら導電粒子の表面を更に絶縁被覆した粒子も使用することができる。   Particles with a polymer core coated with a metal thin film include epoxy resins, styrene resins, silicone resins, acrylic resins, polyolefin resins, melamine resins, benzoguanamine resins, urethane resins, phenol resins, polyester resins, divinylbenzene crosslinked products, NBR , SBR and other polymer core materials combined with one or more polymers, gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, etc. The particle | grains which metal-coated by plating etc. in combination of 2 or more types are illustrated. The thickness of the metal thin film is preferably in the range of 0.005 μm to 1 μm from the viewpoint of connection stability and particle cohesion. It is preferable in terms of connection stability that the metal thin film is uniformly coated. Particles obtained by further insulating coating the surfaces of these conductive particles can also be used.

導電粒子の平均粒径は、0.5μm以上10μm未満の範囲が導電性と絶縁性の両立と粒子の凝集性との観点から好ましい。より好ましくは1μm以上7μm未満、さらに好ましくは1.5μm以上6μm未満、特に好ましくは2μm以上5.5μm未満、より特に好ましくは2.5μm以上5μm未満である。上記範囲の平均粒径の導電粒子を用いることで、ICチップや回路基板の電極高さのバラツキや、接続時の平行度のバラツキを吸収し、尚且つ、隣接電極間の粒子滞留による絶縁破壊を抑制できる。   The average particle diameter of the conductive particles is preferably in the range of 0.5 μm or more and less than 10 μm from the viewpoints of both conductivity and insulation and particle aggregability. More preferably, they are 1 micrometer or more and less than 7 micrometers, More preferably, they are 1.5 micrometers or more and less than 6 micrometers, Most preferably, they are 2 micrometers or more and less than 5.5 micrometers, More preferably, they are 2.5 micrometers or more and less than 5 micrometers. By using conductive particles with an average particle size in the above range, the variation in the electrode height of the IC chip and the circuit board and the variation in the parallelism at the time of connection are absorbed, and the dielectric breakdown due to the particle retention between adjacent electrodes Can be suppressed.

導電粒子の粒子径の標準偏差は小さいほど好ましく、平均粒径の50%以下が好ましい。より好ましくは20%以下、さらに好ましくは10%以下、特に好ましくは5%以下である。導電粒子の粒径は、コールターカウンターを用いて測定することができる。   The standard deviation of the particle diameter of the conductive particles is preferably as small as possible, and is preferably 50% or less of the average particle diameter. More preferably, it is 20% or less, more preferably 10% or less, and particularly preferably 5% or less. The particle size of the conductive particles can be measured using a Coulter counter.

導電粒子の含有量は、本発明の回路接続用フィルム接着剤に対して0.1質量%以上30質量%未満が好ましい。より好ましくは0.13質量%以上25質量%未満、さらに好ましくは0.15質量%以上20質量%未満、特に好ましくは0.2質量%以上15質量%未満、より特に好ましくは0.25質量%以上10質量%未満である。導電粒子の含有量が0.1質量%以上30質量%未満の領域では、対向する電極間の導電性と隣接する電極間の絶縁性が両立し易い。   The content of the conductive particles is preferably 0.1% by mass or more and less than 30% by mass with respect to the film adhesive for circuit connection of the present invention. More preferably 0.13% by weight or more and less than 25% by weight, further preferably 0.15% by weight or more and less than 20% by weight, particularly preferably 0.2% by weight or more and less than 15% by weight, more particularly preferably 0.25% by weight. % Or more and less than 10% by mass. In the region where the content of the conductive particles is 0.1% by mass or more and less than 30% by mass, the conductivity between the opposing electrodes and the insulation between the adjacent electrodes are easily compatible.

熱硬化性接着剤組成物には、回路接続用フィルム接着剤の硬化時や使用環境下における熱ストレス、即ち、被接着体との線膨張係数差による応力による接着性や接続信頼性の低下を抑制するために、絶縁性フィラーを含有させても良い。絶縁性フィラーとしては、例えば、溶融シリカ、結晶質シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム、酸化チタン等の粉体が挙げられる。絶縁性フィラーの平均粒径は、コールターカウンターを用いて測定することができる。絶縁性フィラーの平均粒径は、熱ストレスによる接続信頼性の低下抑制効果を十分に発揮するために0.01μm以上が好ましく、接続端子間の電気抵抗を低く抑えるために5μm以下で、尚且つ、導電粒子よりも粒径が小さいことが好ましい。より好ましくは0.05μm以上3μm以下であり、さらに好ましくは0.1μm以上2μm以下である。これによって、塗工液中で凝集や沈降を抑制することができる。   The thermosetting adhesive composition reduces the adhesiveness and connection reliability due to the stress caused by the difference in linear expansion coefficient with the adherend when the film adhesive for circuit connection is cured or under the usage environment. In order to suppress, an insulating filler may be included. Examples of the insulating filler include powders such as fused silica, crystalline silica, calcium silicate, alumina, calcium carbonate, and titanium oxide. The average particle diameter of the insulating filler can be measured using a Coulter counter. The average particle size of the insulating filler is preferably 0.01 μm or more in order to sufficiently exhibit the effect of suppressing the decrease in connection reliability due to thermal stress, 5 μm or less in order to keep the electrical resistance between the connection terminals low, and The particle size is preferably smaller than that of the conductive particles. More preferably, they are 0.05 micrometer or more and 3 micrometers or less, More preferably, they are 0.1 micrometer or more and 2 micrometers or less. Thereby, aggregation and sedimentation can be suppressed in the coating liquid.

絶縁性フィラーの添加量は、熱ストレスによる接続信頼性の低下抑制効果を十分に発揮することができるとともに回路接続用フィルム接着剤の硬化物としての機械的強度を高く保つことができるので、熱硬化性樹脂に対して5質量%以上200質量%以下で用いることが好ましい。より好ましくは20質量%以上150質量%以下であり、さらに好ましくは30質量%以上120質量%以下である。   The addition amount of the insulating filler can sufficiently exert the effect of suppressing the decrease in connection reliability due to thermal stress and can maintain high mechanical strength as a cured product of the film adhesive for circuit connection. It is preferable to use 5 mass% or more and 200 mass% or less with respect to curable resin. More preferably, they are 20 mass% or more and 150 mass% or less, More preferably, they are 30 mass% or more and 120 mass% or less.

熱硬化性接着剤組成物には、接着性や硬化時の応力緩和性を付与する目的で、ポリエステル樹脂、アクリルゴム、SBR、NBR、シリコーン樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアセタール樹脂、尿素樹脂、キシレン樹脂、カルボキシル基、ヒドロシキシル基、ビニル基、アミノ基などの官能基を含有するゴム、エラストマー類等の弾性高分子を含有させても良い。これら弾性高分子の分子量は、10,000〜3,000,000であることが好ましい。弾性高分子成分の含有量は、熱硬化性樹脂に対して2〜80質量%であることが好ましい。   The thermosetting adhesive composition has a polyester resin, acrylic rubber, SBR, NBR, silicone resin, polyvinyl butyral resin, polyurethane resin, polyacetal resin, urea resin for the purpose of imparting adhesiveness and stress relaxation during curing. Elastic polymers such as rubbers and elastomers containing functional groups such as xylene resin, carboxyl group, hydroxyl group, vinyl group and amino group may be contained. The molecular weight of these elastic polymers is preferably 10,000 to 3,000,000. The content of the elastic polymer component is preferably 2 to 80% by mass with respect to the thermosetting resin.

熱硬化性接着剤組成物は、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤等をさらに含有することができる。接着性の観点からカップリング剤を含有することが好ましい。カップリング剤としてはケチミン基、ビニル基、アクリル基、アミノ基、エポキシ基、イソシアネート基を含有するシランカップリング剤が、接着性の向上の観点から好ましい。   The thermosetting adhesive composition can further contain a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, and the like. It is preferable to contain a coupling agent from an adhesive viewpoint. As the coupling agent, a silane coupling agent containing a ketimine group, a vinyl group, an acrylic group, an amino group, an epoxy group, or an isocyanate group is preferable from the viewpoint of improving adhesiveness.

本発明では、熱硬化性接着剤組成物中の各成分が均一でかつ膜厚バラツキの少ない回路接続用フィルム接着剤とするために、熱硬化性組成物を溶剤に溶解又は分散して、塗工液とする。熱硬化性接着剤組成物が溶剤中に均一に溶解又は分散するためには、本発明に用いられる溶剤は、熱硬化性接着剤組成物の各成分の溶解性あるいは分散性が高いことが好ましい。また、回路接続用フィルム接着剤の安定性を確保するために、溶剤はマイクロカプセル型硬化剤のカプセル膜を溶解しないことが求められる。このような溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、酢酸エチル、酢酸ブチル、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート等が挙げられる。複数の溶剤を併用することもできる。   In the present invention, in order to obtain a film adhesive for circuit connection in which each component in the thermosetting adhesive composition is uniform and has little film thickness variation, the thermosetting composition is dissolved or dispersed in a solvent and applied. Use the working fluid. In order for the thermosetting adhesive composition to uniformly dissolve or disperse in the solvent, the solvent used in the present invention preferably has high solubility or dispersibility of each component of the thermosetting adhesive composition. . Moreover, in order to ensure the stability of the film adhesive for circuit connection, the solvent is required not to dissolve the capsule film of the microcapsule type curing agent. Examples of such a solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, and the like. A plurality of solvents can be used in combination.

溶剤の使用量は、塗工液が塗工に適した粘度となるように決定される。塗工液の25℃での粘度は、100mPa・s以上20000mPa・s以下であることが好ましい。より好ましくは、300mPa・s以上15000mPa・s以下であり、さらに好ましくは、400mPa・s以上10000mPa・s以下である。   The amount of the solvent used is determined so that the coating liquid has a viscosity suitable for coating. The viscosity of the coating liquid at 25 ° C. is preferably 100 mPa · s or more and 20000 mPa · s or less. More preferably, it is 300 mPa * s or more and 15000 mPa * s or less, More preferably, it is 400 mPa * s or more and 10000 mPa * s or less.

塗工液中の水分は、生産性の観点から、0.5質量%以上が好ましい。またマイクロカプセル型硬化剤の安定性を低下させるため、10質量%以下が好ましく、5質量%以下がより好ましい。本発明では、剥離性基材上に塗工液が塗布される。剥離性基材としては、ポリエチレン、ポリプロピレン、ポリスチレン、PET、PEN等のポリエステル、ナイロン、塩化ビニール、ポリビニルアルコール等のフィルムが例示される。厚みの安定性、耐溶剤性、経済性の観点から剥離性基材としては、ポリプロピレン、PETが好ましい。該剥離性基材としては、フッ素処理、シリコーン処理、アルキド処理等の表面処理がなされているものが好ましい。剥離性基材の厚みが30μm以上100μm以下であることは、塗工作業時のハンドリング性と厚みの安定性が優れるために、好ましい。   The water content in the coating solution is preferably 0.5% by mass or more from the viewpoint of productivity. Moreover, 10 mass% or less is preferable and 5 mass% or less is more preferable in order to reduce the stability of the microcapsule type curing agent. In the present invention, the coating liquid is applied onto the peelable substrate. Examples of the peelable substrate include films such as polyesters such as polyethylene, polypropylene, polystyrene, PET, and PEN, nylon, vinyl chloride, and polyvinyl alcohol. From the viewpoints of thickness stability, solvent resistance, and economy, polypropylene and PET are preferable as the peelable substrate. As the releasable base material, those subjected to surface treatment such as fluorine treatment, silicone treatment, alkyd treatment and the like are preferable. It is preferable that the peelable substrate has a thickness of 30 μm or more and 100 μm or less because the handling property and the stability of the thickness during coating work are excellent.

剥離性基材の弾性領域は、剥離性基材のストレス−ストレインカーブ(以下、SSカーブと称す)において降伏点以内のひずみ領域を意味し、降伏点を有さない場合は、本発明においては、SSカーブが直線領域から外れる変極点を降伏点とする。剥離性基材の70℃における降伏応力は、延伸条件幅が広く取れるので高い方が好ましく、1MPa以上がより好ましい。より好ましくは2MPa以上であり、さらに好ましくは3MPa以上である。
剥離性基材の70℃のヤング率は、延伸装置の剛性と延伸安定性を両立するために、1MPa以上10GPa以下が好ましい。より好ましくは3MPa以上5GPa以下であり、さらに好ましくは5MPa以上3GPa以下である。
The elastic region of the peelable substrate means a strain region within the yield point in the stress-strain curve (hereinafter referred to as an SS curve) of the peelable substrate, and when there is no yield point, in the present invention The inflection point at which the SS curve deviates from the linear region is taken as the yield point. The yield stress at 70 ° C. of the peelable substrate is preferably high because the range of stretching conditions can be widened, and more preferably 1 MPa or more. More preferably, it is 2 MPa or more, More preferably, it is 3 MPa or more.
The Young's modulus at 70 ° C. of the peelable substrate is preferably 1 MPa or more and 10 GPa or less in order to achieve both the rigidity of the stretching apparatus and the stretching stability. More preferably, it is 3 MPa or more and 5 GPa or less, More preferably, it is 5 MPa or more and 3 GPa or less.

次に、本発明の回路接続用フィルム接着剤の製造法について説明する。
本発明の回路接続用フィルム接着剤の製造法は、塗工液を製造する工程、剥離性基材上に塗工液を塗布する工程、加熱により成膜する成膜工程を含む。
塗工液を製造する工程では、溶剤に熱硬化性接着剤組成物の各成分を溶解又は均一分散させる。熱硬化性接着剤組成物の各成分は同時に混合しても構わないが、フィルム形成性高分子を先に溶剤に溶解させた後、マイクロカプセル型硬化剤を均一分散させることは、フィルム形成性高分子の溶け残りが少なく、貯蔵安定性が高い回路接続用フィルム接着剤が得られるために、好ましい。塗工液を製造する工程は、10℃以上100℃以下で実施するのが好ましい。
Next, the manufacturing method of the film adhesive for circuit connection of this invention is demonstrated.
The manufacturing method of the film adhesive for circuit connection of this invention includes the process of manufacturing a coating liquid, the process of apply | coating a coating liquid on a peelable base material, and the film-forming process formed into a film by heating.
In the process of producing the coating liquid, each component of the thermosetting adhesive composition is dissolved or uniformly dispersed in the solvent. Each component of the thermosetting adhesive composition may be mixed at the same time, but after the film-forming polymer is first dissolved in the solvent, the microcapsule-type curing agent is uniformly dispersed. This is preferable because a film adhesive for circuit connection having a high storage stability and a small amount of undissolved polymer can be obtained. The step of producing the coating liquid is preferably performed at 10 ° C. or higher and 100 ° C. or lower.

剥離性基材上に塗工液を塗布する工程では、バーコーター、ブレードコーター、ロールコータ−、ダイコーター、グラビアコーター等を用いる方法により塗工することができる。
成膜工程は、塗工液が塗布された剥離性基材を、該剥離性基材の弾性領域内で延伸しながら加熱して溶剤を揮散させて製膜する。
In the step of applying the coating liquid onto the peelable substrate, the coating can be performed by a method using a bar coater, a blade coater, a roll coater, a die coater, a gravure coater or the like.
In the film forming step, the peelable substrate coated with the coating liquid is heated while being stretched in the elastic region of the peelable substrate to evaporate the solvent, thereby forming a film.

加熱の方法としては、ドライヤー内に熱風を供給する方法や、赤外線等の熱線を照射する方法、加熱ロールによって剥離性基材側から熱を供給する方法等が挙げられる。揮発した溶剤が系外に抜けやすく、溶剤の揮散効率が高いので熱風を用いる方法が好ましい。
加熱の温度は、溶剤の揮散効率を上げて、短時間に成膜させるためには高い方が好ましく、熱硬化性樹脂とマイクロカプセル型硬化剤とを反応させないため、マイクロカプセル型硬化剤の活性化温度以下が好ましい。成膜工程の加熱温度としては、50℃以上90℃以下が好ましい。溶剤の揮散効率の観点から、50℃以上が好ましく、成膜時の安定性の観点から90℃以下が好ましい。より好ましくは60℃以上80℃以下である。
Examples of the heating method include a method of supplying hot air into the dryer, a method of irradiating heat rays such as infrared rays, a method of supplying heat from the peelable substrate side by a heating roll, and the like. A method using hot air is preferred because the volatilized solvent easily escapes from the system and the solvent volatilization efficiency is high.
The heating temperature is preferably high in order to increase the volatilization efficiency of the solvent and form a film in a short time, and since the thermosetting resin and the microcapsule type curing agent are not reacted, the activity of the microcapsule type curing agent is not affected. The temperature below the conversion temperature is preferred. The heating temperature in the film forming process is preferably 50 ° C. or higher and 90 ° C. or lower. From the viewpoint of volatilization efficiency of the solvent, 50 ° C. or higher is preferable, and from the viewpoint of stability during film formation, 90 ° C. or lower is preferable. More preferably, it is 60 degreeC or more and 80 degrees C or less.

加熱時間は3分以上20分以下であることが好ましい。残存する溶剤を除去し、フィルム接着剤の貯蔵安定性を向上させる点から、3分以上が好ましく、成膜工程で熱硬化性樹脂とマイクロカプセル型硬化剤との反応を防ぎ、やはり回路接続用フィルム接着剤の貯蔵安定性を向上させる点から20分以下が好ましい。より好ましくは5分以上15分以下である。   The heating time is preferably 3 minutes or more and 20 minutes or less. 3 minutes or more is preferable from the point of removing the remaining solvent and improving the storage stability of the film adhesive, preventing reaction between the thermosetting resin and the microcapsule type curing agent in the film formation process, and also for circuit connection From the point which improves the storage stability of a film adhesive, 20 minutes or less are preferable. More preferably, it is 5 minutes or more and 15 minutes or less.

成膜工程において塗工液を塗布した剥離性基材が延伸される。成膜工程においては、マイクロカプセル型硬化剤の活性化温度近くまで加熱し、溶剤を揮散することが行なわれるが、この時に、マイクロカプセル型硬化剤の活性化を促進する様な外部刺激が加わると熱硬化性樹脂とマイクロカプセル型硬化剤の反応が開始し、回路接続用フィルム接着剤の貯蔵安定性が低下する。外部刺激としては、成膜工程で用いられる熱風によりフィルムが振動することにより起こる、マイクロカプセル型硬化剤同士又はマイクロカプセル型硬化剤と導電粒子や絶縁性フィラーとの接触による衝撃や水分との接触が挙げられる。本発明では、成膜工程において塗工液を塗布した剥離性基材が延伸される。延伸時の張力によって熱風によるフィルムの振動を抑えることができ、その結果、回路接続用フィルム接着剤の貯蔵安定性を高く保つことができる。更には、剥離性基材の弾性領域内で延伸することで、溶剤の揮散効率を上げると共に、上記外部刺激になり得る水分を速やかに系外に揮散させ、その結果、回路接続用フィルム接着剤の貯蔵安定性を高く保つことができる。   In the film forming step, the peelable substrate coated with the coating liquid is stretched. In the film-forming process, heating to near the activation temperature of the microcapsule type curing agent is performed to volatilize the solvent. At this time, an external stimulus that promotes the activation of the microcapsule type curing agent is applied. The reaction between the thermosetting resin and the microcapsule type curing agent starts, and the storage stability of the circuit adhesive film adhesive is lowered. As external stimuli, impact caused by contact between microcapsule-type curing agents or between microcapsule-type curing agents and conductive particles or insulating filler, caused by the vibration of the film by hot air used in the film formation process, or contact with moisture Is mentioned. In this invention, the peelable base material which apply | coated the coating liquid in the film-forming process is extended | stretched. The film vibration due to hot air can be suppressed by the tension during stretching, and as a result, the storage stability of the film adhesive for circuit connection can be kept high. Furthermore, by stretching within the elastic region of the peelable substrate, the solvent evaporating efficiency is increased, and the moisture that can be an external stimulus is quickly volatilized out of the system. As a result, the film adhesive for circuit connection The storage stability of can be kept high.

延伸時に加える張力は、剥離性基材が弾性領域内の変形量である必要があり、剥離性基材断面積当たり0.3MPa以上200MPa以下が好ましい。貯蔵安定性を高く保つ効果を得るために0.3MPa以上が好ましく得られる回路接続用フィルム接着剤の膜厚ムラの抑制とフィルム接着剤の貼付け性の観点から200MPa以下が好ましい。より好ましくは断面積当たり0.5MPa以上100MPa以下であり、さらに好ましくは、1MPa以上50MPa以下であり、これによって、表面平滑性が高く、被着体に貼り付ける時の貼付性に優れた回路接続用フィルム接着剤が得られる。   The tension applied at the time of stretching needs to be a deformation amount of the peelable substrate in the elastic region, and is preferably 0.3 MPa or more and 200 MPa or less per cross-sectional area of the peelable substrate. In order to obtain the effect of keeping the storage stability high, the pressure is preferably 200 MPa or less from the viewpoint of suppressing the film thickness unevenness of the circuit connecting film adhesive that is preferably 0.3 MPa or more and sticking property of the film adhesive. More preferably, it is 0.5 MPa or more and 100 MPa or less per cross-sectional area, and more preferably 1 MPa or more and 50 MPa or less, whereby the circuit connection has high surface smoothness and excellent sticking property when sticking to an adherend. Film adhesive is obtained.

成膜工程における剥離性基材の延伸は一方向の延伸でも二方向の延伸でも構わない。延伸における剥離性基材の伸び率は0.1%以上20%以下が好ましい。貯蔵安定性を高く保つ効果を得るために、0.1%以上が好ましく、膜厚ムラの抑制、貼付性の観点から20%以下が好ましい。より好ましくは0.2%以上15%以下である。   Stretching of the peelable substrate in the film forming step may be performed in one direction or in two directions. The elongation percentage of the peelable substrate in stretching is preferably 0.1% or more and 20% or less. In order to obtain the effect of keeping the storage stability high, 0.1% or more is preferable, and 20% or less is preferable from the viewpoints of suppression of film thickness unevenness and stickability. More preferably, it is 0.2% or more and 15% or less.

本発明の方法により得られた回路接続用フィルム接着剤の膜厚は、5μm以上50μm以下が好ましい。表面の異常抑制の観点から5μm以上が好ましく、フィルム接着剤の貯蔵安定性の点から、50μm以下が好ましい。より好ましくは10μm以上30μm以下である。   The thickness of the film adhesive for circuit connection obtained by the method of the present invention is preferably 5 μm or more and 50 μm or less. 5 μm or more is preferable from the viewpoint of suppressing abnormalities on the surface, and 50 μm or less is preferable from the viewpoint of storage stability of the film adhesive. More preferably, they are 10 micrometers or more and 30 micrometers or less.

本発明の方法により得られた回路接続用フィルム接着剤に残存する溶剤は貯蔵安定性を低下させる要因になり得るので、少ないほど好ましい。好ましくは1質量%以下であり、より好ましくは0.7質量%以下であり、さらに好ましくは0.5質量%以下である。   Since the solvent remaining in the film adhesive for circuit connection obtained by the method of the present invention can cause a decrease in storage stability, it is preferably as small as possible. Preferably it is 1 mass% or less, More preferably, it is 0.7 mass% or less, More preferably, it is 0.5 mass% or less.

本発明の方法により得られた回路接続用フィルム接着剤は、そのまま使用してもよいし、回路接続用フィルム接着剤上に更に別の接着剤組成物を塗工又はラミネートして複層タイプの回路接続用フィルム接着剤としてもよい。
本発明の方法により得られた回路接続用フィルム接着剤は、所望の幅にスリットされ、リール状に巻き取られていてもよい。
The film adhesive for circuit connection obtained by the method of the present invention may be used as it is, or it may be of a multilayer type by coating or laminating another adhesive composition on the film adhesive for circuit connection. It is good also as a film adhesive for circuit connection.
The film adhesive for circuit connection obtained by the method of the present invention may be slit to a desired width and wound up in a reel shape.

本発明を実施例によりさらに詳細に説明する。
<水分の測定>
ダイアインスツルメンツ社製カールフィッシャー水分計CA−100型を使用して測定した。
The invention is explained in more detail by means of examples.
<Measurement of moisture>
The measurement was performed using a Karl Fischer moisture meter CA-100 manufactured by Dia Instruments.

<ゲルタイムの測定>
(株)テイ・エスエンジニアリング社製のキュラストメーターV型を使用し、JIS K6300に準拠して求めた。
<Measurement of gel time>
Using a Clastometer V type manufactured by TS Engineering Co., Ltd., it was determined according to JIS K6300.

<ヤング率と降伏応力の測定>
INSTRON社製万能材料試験機5581を用い、試験速度:50mm/分、チャック間距離50mm、試験片幅25mmの条件でJIS K7161に準拠して求めた。
<Measurement of Young's modulus and yield stress>
Using a universal material testing machine 5581 manufactured by INSTRON, the test speed was 50 mm / min, the distance between chucks was 50 mm, and the test piece width was 25 mm in accordance with JIS K7161.

<膜厚測定>
(株)ニコン製デジマイクロMH−15Mを用いて測定し、測定数25箇所の平均値を膜厚とした。
<Film thickness measurement>
It measured using Nikon Digimicro MH-15M, and made the average value of 25 measurement number the film thickness.

<接続抵抗測定>
日置電機(株)製3541RESISTANCE HiTESTERを用いて、接続端子間の接続抵抗を四端子法で測定した。
<Connection resistance measurement>
The connection resistance between the connection terminals was measured by a four-terminal method using a 3541 REISTANCE HiTESTER manufactured by Hioki Electric Co., Ltd.

[実施例1]
フェノキシ樹脂(InChem社製、商品名:PKHC、以下同じ)100質量部、ビスフェノールA型液状エポキシ樹脂(旭化成ケミカルズ株式会社製、商品名:AER2603、以下同じ)100質量部、シランカップリング剤(信越化学工業製、商品名:KBM−403、以下同じ)1.0質量部を酢酸エチル400質量部に溶解し、それに硬化剤として、マイクロカプセル型硬化剤とビスフェノール型液状エポキシ樹脂の質量比1:2の混合物(旭化成ケミカルズ株式会社製、商品名:ノバキュアHX−3932HP、活性化温度90℃、以下同じ)100質量部と平均粒径3μmの導電粒子(積水化学社製、商品名:ミクロパールAU203)50質量部を混合し、塗工液Aを得た。
尚、ここで用いた酢酸エチル以外の原材料は、50℃で24時間、真空乾燥を行ったものを使用した。酢酸エチルは1週間モレキュラーシーブス3Aを浸漬し、脱水処理したものを用いた。塗工液A中の水分量は、マイクロカプセル型硬化剤に対して9.1質量%であった。
[Example 1]
100 parts by mass of phenoxy resin (InChem, trade name: PKHC, hereinafter the same), 100 parts by mass of bisphenol A type liquid epoxy resin (Asahi Kasei Chemicals Co., Ltd., trade name: AER2603, hereinafter the same), silane coupling agent (Shin-Etsu) Made by Chemical Industry, trade name: KBM-403, the same applies hereinafter) 1.0 part by mass is dissolved in 400 parts by mass of ethyl acetate, and as a curing agent, mass ratio of microcapsule type curing agent to bisphenol type liquid epoxy resin 1: 100 parts by mass of a mixture of 2 (Asahi Kasei Chemicals Corporation, trade name: Novacure HX-3932HP, activation temperature 90 ° C., the same shall apply hereinafter) and conductive particles having an average particle diameter of 3 μm (trade name: Micropearl AU203, manufactured by Sekisui Chemical Co., Ltd.) ) 50 parts by mass were mixed to obtain a coating liquid A.
The raw materials other than ethyl acetate used here were those that were vacuum dried at 50 ° C. for 24 hours. The ethyl acetate used was one obtained by immersing Molecular Sieves 3A for 1 week and dehydrating it. The water content in the coating liquid A was 9.1% by mass with respect to the microcapsule type curing agent.

剥離性基材としてシリコーン系剥離処理を施した80μm厚の無延伸共重合ポリプロピレンフィルム(成膜温度の70℃でのヤング率と降伏応力は、それぞれ、27MPaと5MPaであった)を準備し、剥離処理面側に塗工液Aを、ブレードコーターを用いて塗布した。ここで得た塗工フィルムを、手動式延伸機を用いて、成膜温度での剥離性基材の伸び率が15%となる張力で一軸方向に引張りながら、熱風循環式の乾燥機で70℃(成膜温度)、10分間加熱し、溶剤を揮散させて成膜を行い、回路接続用フィルム接着剤Aを得た。回路接続用フィルム接着剤Aの膜厚は25μmであった。   80 μm-thick unstretched copolymerized polypropylene film subjected to silicone-based release treatment as a peelable substrate (Young's modulus and yield stress at 70 ° C. of the film formation temperature were 27 MPa and 5 MPa, respectively) was prepared, The coating liquid A was applied to the release treatment surface side using a blade coater. The coated film obtained here was stretched in a uniaxial direction with a tension at which the elongation of the peelable substrate at the film forming temperature was 15% using a manual stretching machine, while being dried with a hot-air circulating dryer. A film adhesive A for circuit connection was obtained by heating at 10 ° C. (film formation temperature) for 10 minutes to evaporate the solvent. The film thickness of the circuit connecting film adhesive A was 25 μm.

次に、25μm×100μmの金バンプがピッチ50μmで並んだ1.5mm×16.1mmのICチップと、これに対応した接続ピッチを有するITO配線(0.14μm)上にクロム配線(0.3μm)を形成した厚み0.7mmのガラス基板を3組準備し、ガラス基板のICチップ接続位置を覆う様に、2mm×20mmの回路接続用フィルム接着剤Aを貼り付けた。次に、70℃、0.5MPa、2秒間の条件で熱圧着し、剥離性基材を剥離した。3組とも剥離性基材を剥離することができ、貼付性は良好であった。回路接続用フィルム接着剤Aを貼り付けたガラス基板と、ICチップをフリップチップボンダー(東レエンジニアリング株式会社製FC2000)を用いて位置合わせをし、2秒後に180℃に到達し、その後一定温度となる条件で4MPa、10秒間加熱加圧し、ICチップをガラス基板に接続した。ICチップとガラス基板からは、4端子接続抵抗が5箇所測定でき、3組×5箇所(計15箇所)の接続抵抗の平均値は11.5Ωであり、安定に接続されていた。更に、85℃、相対湿度85%の環境下で1000時間放置後、同様に接続抵抗を測定した結果、接続抵抗の平均値は15.3Ωであり、優れた接続信頼性を有していた。   Next, a 1.5 mm × 16.1 mm IC chip in which gold bumps of 25 μm × 100 μm are arranged at a pitch of 50 μm, and a chromium wiring (0.3 μm) on an ITO wiring (0.14 μm) having a corresponding connection pitch. 3) of glass substrates having a thickness of 0.7 mm were prepared, and a 2 mm × 20 mm circuit connecting film adhesive A was attached so as to cover the IC chip connecting position of the glass substrate. Next, thermocompression bonding was performed under the conditions of 70 ° C., 0.5 MPa, and 2 seconds to peel the peelable substrate. In all three groups, the peelable substrate could be peeled off, and the sticking property was good. The glass substrate on which the film adhesive A for circuit connection is attached and the IC chip are aligned using a flip chip bonder (FC2000 manufactured by Toray Engineering Co., Ltd.), reach 180 ° C. after 2 seconds, and then reach a certain temperature. Under such conditions, 4 MPa and 10 seconds were heated and pressed to connect the IC chip to the glass substrate. From the IC chip and the glass substrate, the four-terminal connection resistance could be measured at five locations, and the average value of the connection resistance at 3 sets × 5 locations (total of 15 locations) was 11.5Ω, and the connection was stable. Furthermore, after leaving for 1000 hours in an environment of 85 ° C. and 85% relative humidity, the connection resistance was measured in the same manner. As a result, the average value of the connection resistance was 15.3Ω, and the connection reliability was excellent.

次に、5℃で6か月貯蔵した回路接続用フィルム接着剤Aを用いて、上記と同様に貼付性と接続抵抗測定、1000時間後の接続抵抗測定を行った。貼付性は良好であり、接続抵抗は15.5Ω、1000時間後の接続抵抗は17.3Ωであり、回路接続用フィルム接着剤Aは高い貯蔵安定性を有していた。   Next, using the film adhesive A for circuit connection stored at 5 ° C. for 6 months, the pastability and connection resistance measurement, and the connection resistance measurement after 1000 hours were performed in the same manner as described above. The adhesiveness was good, the connection resistance was 15.5Ω, the connection resistance after 1000 hours was 17.3Ω, and the circuit connecting film adhesive A had high storage stability.

[実施例2〜7]
以下の表1に示す配合量と製造条件で、実施例1と同様にして、回路接続用フィルム接着剤を作成し、実施例1と同様に、塗工液の水分量、貼付性、接続抵抗測定、貯蔵安定性を評価した。得られた結果を以下の表1に示す。
[Examples 2 to 7]
A film adhesive for circuit connection was prepared in the same manner as in Example 1 with the blending amounts and production conditions shown in Table 1 below. As in Example 1, the water content of the coating liquid, the adhesiveness, and the connection resistance Measurement and storage stability were evaluated. The results obtained are shown in Table 1 below.

[比較例1]
以下の表1に示す配合量と製造条件で、実施例1と同様にして、回路接続用フィルム接着剤を作成し、実施例1と同様に、塗工液の水分量、貼付性、接続抵抗測定、貯蔵安定性を評価した。得られた結果を以下の表1に示す。比較例1で使用した回路接続用フィルム接着剤では、製造直後、貼付性が少し低く3枚中1枚貼付けできないものが有ったが、貼付けできたものは、安定な接続が可能であった。しかしながら、回路接続用フィルム接着剤を貯蔵すると、貼付性が低下し、更に、貼付けできたものも、接続抵抗が高く、安定に接続することはできず、回路接続用フィルム接着剤の貯蔵安定性が劣っていた。
[Comparative Example 1]
A film adhesive for circuit connection was prepared in the same manner as in Example 1 with the blending amounts and production conditions shown in Table 1 below. As in Example 1, the water content of the coating liquid, the adhesiveness, and the connection resistance Measurement and storage stability were evaluated. The results obtained are shown in Table 1 below. In the film adhesive for circuit connection used in Comparative Example 1, there were some adhesives that were slightly sticky immediately after production and could not be attached to one of the three sheets, but those that could be attached were capable of stable connection. . However, when the film adhesive for circuit connection is stored, the sticking property is lowered, and furthermore, those that can be pasted have high connection resistance and cannot be connected stably, and the storage stability of the film adhesive for circuit connection Was inferior.

[比較例2]
以下の表1に示す配合量と製造条件で、実施例1と同様にして、回路接続用フィルム接着剤を作成し、実施例1と同様に、塗工液の水分量、貼付性を評価した。得られた結果を以下の表1に示す。比較例2で使用した回路接続用フィルム接着剤では、成膜時の延伸張力が剥離性基材の降伏応力を超えていたため、弾性領域外となり、部分的に剥離基材が大きく引き伸ばされ、回路接続用フィルム接着剤の膜厚も場所によって大きくばらついていた。更に、貼付性評価では、回路接続用フィルム接着剤の表面に、延伸ムラによる皺が発生したため、剥離性基材を回路接続用フィルム接着剤から剥離することができず、回路接続材の用を成さなかった。
[Comparative Example 2]
A film adhesive for circuit connection was prepared in the same manner as in Example 1 with the blending amounts and production conditions shown in Table 1 below, and the water content and adhesiveness of the coating solution were evaluated in the same manner as in Example 1. . The results obtained are shown in Table 1 below. In the film adhesive for circuit connection used in Comparative Example 2, since the stretching tension at the time of film formation exceeded the yield stress of the peelable substrate, it became out of the elastic region, and the peelable substrate was partially stretched greatly. The film thickness of the connecting film adhesive also varied greatly depending on the location. Furthermore, in the evaluation of stickability, wrinkles due to stretching unevenness occurred on the surface of the film adhesive for circuit connection, so the peelable substrate could not be peeled off from the film adhesive for circuit connection, I didn't make it.

Figure 2010174228
Figure 2010174228

本発明の方法で製造される回路接続用フィルム接着剤は、熱硬化性樹脂による高い接続信頼性を有し、かつ、低温短時間硬化性と貯蔵安定性を両立でき、更には、基板への貼付性が良好であり、回路接続用途において好適に利用できる。   The film adhesive for circuit connection produced by the method of the present invention has high connection reliability with a thermosetting resin, and can achieve both low temperature and short time curability and storage stability, and further to a substrate. Adhesiveness is good and can be suitably used in circuit connection applications.

Claims (6)

熱硬化性樹脂と、マイクロカプセル型硬化剤と、フィルム形成性高分子と導電粒子を含有する熱硬化性接着剤組成物を溶剤に溶解又は分散させた塗工液を製造する工程、剥離性基材上に該塗工液を塗布する工程、塗工液が塗布された剥離性基材を、該剥離性基材の弾性領域内で延伸しながら加熱して溶剤を揮散させる製膜工程を含む回路接続用フィルム接着剤の製造法。   A process for producing a coating solution in which a thermosetting adhesive composition containing a thermosetting resin, a microcapsule-type curing agent, a film-forming polymer and conductive particles is dissolved or dispersed in a solvent; A step of applying the coating liquid onto the material, and a film forming step of evaporating the solvent by heating the peelable substrate coated with the coating liquid while stretching within the elastic region of the peelable substrate. A method for producing a film adhesive for circuit connection. 前記熱硬化性樹脂がエポキシ樹脂である、請求項1に記載の回路接続用フィルム接着剤の製造法。   2. The method for producing a film adhesive for circuit connection according to claim 1, wherein the thermosetting resin is an epoxy resin. 前記マイクロカプセル型硬化剤が、エポキシ樹脂用の硬化剤の周囲を高分子化合物で被覆した構造である、請求項1又は2に記載の回路接続用フィルム接着剤の製造法。   The method for producing a film adhesive for circuit connection according to claim 1 or 2, wherein the microcapsule type curing agent has a structure in which a periphery of a curing agent for an epoxy resin is coated with a polymer compound. 前記マイクロカプセル型硬化剤の活性化温度が60℃以上100℃以下である、請求項1〜3のいずれか1項に記載の回路接続用フィルム接着剤の製造法。   The manufacturing method of the film adhesive for circuit connections of any one of Claims 1-3 whose activation temperature of the said microcapsule type hardening | curing agent is 60 degreeC or more and 100 degrees C or less. 前記塗工液中の水分量が、前記マイクロカプセル型硬化剤に対して、0.5質量%以上10質量%以下である、請求項1〜4のいずれか1項に記載の回路接続用フィルム接着剤の製造法。   The film for circuit connection according to any one of claims 1 to 4, wherein a moisture content in the coating liquid is 0.5% by mass or more and 10% by mass or less with respect to the microcapsule-type curing agent. Manufacturing method of adhesive. 前記成膜工程の加熱温度が50℃以上90℃以下である、請求項1〜5のいずれか1項に記載の回路接続用フィルム接着剤の製造法。   The manufacturing method of the film adhesive for circuit connections of any one of Claims 1-5 whose heating temperature of the said film-forming process is 50 to 90 degreeC.
JP2009021876A 2009-02-02 2009-02-02 Production method of film adhesive for circuit connection Active JP5577599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021876A JP5577599B2 (en) 2009-02-02 2009-02-02 Production method of film adhesive for circuit connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021876A JP5577599B2 (en) 2009-02-02 2009-02-02 Production method of film adhesive for circuit connection

Publications (2)

Publication Number Publication Date
JP2010174228A true JP2010174228A (en) 2010-08-12
JP5577599B2 JP5577599B2 (en) 2014-08-27

Family

ID=42705493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021876A Active JP5577599B2 (en) 2009-02-02 2009-02-02 Production method of film adhesive for circuit connection

Country Status (1)

Country Link
JP (1) JP5577599B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017375A (en) * 2010-07-07 2012-01-26 Sumitomo Electric Ind Ltd Film-like electroconductive adhesive
WO2019092933A1 (en) * 2017-11-07 2019-05-16 古河電気工業株式会社 Filmy adhesive, and method for producing semiconductor package using filmy adhesive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335910A (en) * 2005-06-03 2006-12-14 Asahi Kasei Electronics Co Ltd Anisotropically conductive adhesive sheet and fine connecting structure
JP2008308682A (en) * 2007-05-15 2008-12-25 Hitachi Chem Co Ltd Circuit connection material
JP2010174230A (en) * 2009-02-02 2010-08-12 Asahi Kasei E-Materials Corp Method for producing filmy adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335910A (en) * 2005-06-03 2006-12-14 Asahi Kasei Electronics Co Ltd Anisotropically conductive adhesive sheet and fine connecting structure
JP2008308682A (en) * 2007-05-15 2008-12-25 Hitachi Chem Co Ltd Circuit connection material
JP2010174230A (en) * 2009-02-02 2010-08-12 Asahi Kasei E-Materials Corp Method for producing filmy adhesive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014023943; 粘着技術ハンドブック 初版1刷, 1997, 第954-957頁 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017375A (en) * 2010-07-07 2012-01-26 Sumitomo Electric Ind Ltd Film-like electroconductive adhesive
WO2019092933A1 (en) * 2017-11-07 2019-05-16 古河電気工業株式会社 Filmy adhesive, and method for producing semiconductor package using filmy adhesive
KR20190062377A (en) * 2017-11-07 2019-06-05 후루카와 덴키 고교 가부시키가이샤 Film-like adhesive, method of manufacturing semiconductor package using film-like adhesive
JP2019085486A (en) * 2017-11-07 2019-06-06 古河電気工業株式会社 Film-like adhesive, and method for manufacturing semiconductor package using the film-like adhesive
CN110023444A (en) * 2017-11-07 2019-07-16 古河电气工业株式会社 Film-like adhesive, used film-like adhesive semiconductor package body manufacturing method
KR102207101B1 (en) * 2017-11-07 2021-01-25 후루카와 덴키 고교 가부시키가이샤 Method for manufacturing semiconductor package using film adhesive and film adhesive
CN110023444B (en) * 2017-11-07 2021-07-06 古河电气工业株式会社 Film-like adhesive and method for manufacturing semiconductor package using same
US11139261B2 (en) 2017-11-07 2021-10-05 Furukawa Electric Co., Ltd. Film-like adhesive and method for producing semiconductor package using film-like adhesive

Also Published As

Publication number Publication date
JP5577599B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5388572B2 (en) Conductive particle arrangement sheet and anisotropic conductive film
JP6391597B2 (en) Conductive adhesive composition
JP4789738B2 (en) Anisotropic conductive film
JP5540559B2 (en) Method for producing film adhesive for circuit connection
JP5581605B2 (en) Method for producing anisotropic conductive adhesive film
JP5373973B2 (en) Anisotropic conductive adhesive film and curing agent
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
JP5577599B2 (en) Production method of film adhesive for circuit connection
JP2017019900A (en) Adhesive composition, adhesive film, metal foil with resin and metal base substrate
JP2012038975A (en) Adhesive for connecting circuit member, adhesive sheet for connecting circuit member, semiconductor device, and method of manufacturing semiconductor device
TWI476267B (en) Anisotropic conductive adhesive
JP2012097226A (en) Anisotropically electroconductive adhesive film and connection structure
US9263372B2 (en) Anisotropic conductive film and semiconductor device
JP2013214417A (en) Circuit connection material, circuit connection material structure and manufacturing method of circuit connection material structure
JP2006233202A (en) Anisotropically electroconductive adhesive film for circuit connection
JP4657047B2 (en) Connecting member
JP2010174230A (en) Method for producing filmy adhesive
JP5046581B2 (en) Adhesive for circuit connection
CN110461982B (en) Adhesive composition and structure
KR20100073595A (en) Double layered anisotropic conductive adhesive
JP2009161684A (en) Adhesive composition for use in circuit connection, and connection structure of circuit member and connecting method of circuit member by using the adhesive composition
JP5013027B2 (en) Electrode connection method
JP5013028B2 (en) Film-like circuit connecting material manufacturing method
JP4947229B2 (en) Film-like circuit connecting material manufacturing method
JP2012099404A (en) Anisotropic conductive film and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5577599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250