JP2009164496A - Conductive material, and paste for thick film resistor and manufacturing method thereof - Google Patents

Conductive material, and paste for thick film resistor and manufacturing method thereof Download PDF

Info

Publication number
JP2009164496A
JP2009164496A JP2008002742A JP2008002742A JP2009164496A JP 2009164496 A JP2009164496 A JP 2009164496A JP 2008002742 A JP2008002742 A JP 2008002742A JP 2008002742 A JP2008002742 A JP 2008002742A JP 2009164496 A JP2009164496 A JP 2009164496A
Authority
JP
Japan
Prior art keywords
conductive material
thick film
film resistor
paste
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008002742A
Other languages
Japanese (ja)
Inventor
Hitoshi Osato
齊 大里
Isao Kagomiya
功 籠宮
Shinji Matsumoto
慎司 松本
Yukinori Maeda
幸則 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Nagoya Institute of Technology NUC
Original Assignee
Koa Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp, Nagoya Institute of Technology NUC filed Critical Koa Corp
Priority to JP2008002742A priority Critical patent/JP2009164496A/en
Publication of JP2009164496A publication Critical patent/JP2009164496A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Adjustable Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-free and ruthenium-free conductive material which can be substituted for Pb<SB>2</SB>Ru<SB>2</SB>O<SB>6.5</SB>, as a conductive material for forming the thick film resistor of a relatively high resistivity region, to provide a paste for the thick film resistor, and to provide a manufacturing method of the paste. <P>SOLUTION: The conductive material for use in formation of the thick film resistor includes a compound oxide consisting of La<SB>1-x</SB>Sr<SB>x</SB>MnO<SB>3</SB>(x is a substitution ratio) in which a part of La of LaMnO<SB>3</SB>is substituted with Sr. In this case, it is preferable that the substitution ratio x is 0.2 to 0.5. Also, the paste for the thick film resistor is obtained by kneading the conductive material La<SB>1-x</SB>Sr<SB>x</SB>MnO<SB>3</SB>(x is a substitution ratio) in which a part of La of LaMnO<SB>3</SB>is substituted with Sr, a glass material and a vehicle. Thus, the lead-free and ruthenium-free thick film resistor having a relatively high resistance value is manufactured using an inexpensive material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉛を含まない、比較的高い抵抗率の厚膜抵抗体を形成するための導電材料、および該導電材料を含む厚膜抵抗体用ペースト、および該ペーストの製造方法に関する。   The present invention relates to a conductive material for forming a thick film resistor having a relatively high resistivity that does not contain lead, a thick film resistor paste including the conductive material, and a method of manufacturing the paste.

従来、厚膜抵抗体用の導電材料には酸化ルテニウムやルテニウムを含む複合酸化物が広く利用されている。これらの材料は大気雰囲気下で使用可能であることに加えて、貴金属の中でもルテニウムは比較的安価であるメリットがあった。しかし、近年、ルテニウム地金が高騰し、安価であるメリットが薄れてきている。また、RoHS指令に代表されるように電子部品材料の鉛フリー化が進んでいる現在、適用除外である厚膜抵抗体材料に関しても、導電材料及びガラス材料の鉛フリー化の必要性が注目されている。   Conventionally, composite oxides containing ruthenium oxide and ruthenium have been widely used as conductive materials for thick film resistors. In addition to being able to use these materials in an air atmosphere, ruthenium has a merit that it is relatively inexpensive among noble metals. However, in recent years, ruthenium bullion has soared and the merit of being inexpensive has been diminished. Also, as lead-free electronic component materials are being promoted as represented by the RoHS Directive, the need for lead-free conductive materials and glass materials is also attracting attention for thick film resistor materials that are exempted from application. ing.

従来から、厚膜抵抗体を形成するための抵抗体用ペーストとして、比較的低い抵抗率領域(凡そシート抵抗値で1kΩ/□以下)では、RuO2等の鉛を含有しない導電材料を用いることができるものの、比較的高い抵抗率領域ではPb2Ru2O6.5等の鉛を含有した導電材料を用いざるを得ない。このため、比較的高い抵抗率領域でも、鉛フリー化の要請から、Bi2Ru2O7、BaRuO3、CaRuO3、SrRuO3等の鉛を含まない導電材料を用いた厚膜抵抗体用ペーストが提案されている(例えば、特許文献1,3)。また、鉛を含まないガラス組成物と、鉛を含まない導電材料と、WO3と、ビヒクルとを含有する厚膜抵抗体用ペーストにより、TCR調整剤を添加しなくても極めて良好なTCRが得られる厚膜抵抗体用ペーストが提案されている(特許文献2)。
特開平8−253342公報 特開2002−198203号公報 特開2005−57041号公報
Conventionally, as a resistor paste for forming thick film resistors, a conductive material that does not contain lead, such as RuO 2 , has been used in a relatively low resistivity region (approximately 1 kΩ / □ or less in sheet resistance). However, in a relatively high resistivity region, a conductive material containing lead such as Pb 2 Ru 2 O 6.5 must be used. Therefore, even in a relatively high resistivity region, a thick film resistor paste using a conductive material that does not contain lead, such as Bi 2 Ru 2 O 7 , BaRuO 3 , CaRuO 3 , SrRuO 3, etc. Has been proposed (for example, Patent Documents 1 and 3). In addition, a thick film resistor paste containing a lead-free glass composition, a lead-free conductive material, WO 3 and a vehicle provides a very good TCR without adding a TCR modifier. An obtained paste for thick film resistors has been proposed (Patent Document 2).
JP-A-8-253342 JP 2002-198203 A JP 2005-57041 A

しかしながら、厚膜抵抗体の比較的高い抵抗率領域で使用していた導電材料であるPb2Ru2O6.5と同等の特性を引き出すことができる鉛フリーの導電材料の選択は難しく、適当な鉛フリーの導電材料は現状では絞られていないと考えられる。また、高価なルテニウム材料の使用は、コスト面から好ましくなく、なるべく安価な材料を用いて導電材料を作製できることが好ましい。 However, it is difficult to select a lead-free conductive material that can bring out the same characteristics as Pb 2 Ru 2 O 6.5 , which is a conductive material used in the relatively high resistivity region of thick film resistors. Free conductive materials are not considered to be squeezed at present. Further, the use of an expensive ruthenium material is not preferable from the viewpoint of cost, and it is preferable that the conductive material can be manufactured using an inexpensive material as much as possible.

本発明は、上述した事情に鑑みてなされたもので、比較的高い抵抗率領域の厚膜抵抗体を形成するための導電材料として、Pb2Ru2O6.5に代替可能な鉛フリー及びルテニウムフリーの導電材料、該導電材料を含む厚膜抵抗体用ペーストおよび該ペーストの製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and is a lead-free and ruthenium-free material that can be substituted for Pb 2 Ru 2 O 6.5 as a conductive material for forming a thick film resistor having a relatively high resistivity region. It is an object of the present invention to provide a conductive film material, a thick film resistor paste containing the conductive material, and a method for producing the paste.

上記課題を解決するため、本発明の導電材料は、厚膜抵抗体の形成に用いる導電材料であって、LaMnO3のLaの一部がSrで置換された、La1-XSrXMnO3(但し、xは置換比率)からなる複合酸化物を含む。ここで、置換比率xが0.2〜0.5であることが好ましい。また、本発明の厚膜抵抗体用ペーストは、LaMnO3のLaの一部がSrで置換された導電材料La1-XSrXMnO3(但し、xは置換比率)と、ガラス材料と、ビヒクルと、を混練したものである。その製造方法は、出発原料として、La2O3とMn2O3とSrCO3とを所定混合比(mol%)となるように秤量し、La2O3とMn2O3とSrCO3との混合粉末を作製し、その混合粉末を焼成し、LaMnO3のLaの一部がSrで置換された導電材料La1-XSrXMnO3(但し、xは置換比率)を作製し、その導電材料と、ガラス材料と、ビヒクルと、を混練する。 In order to solve the above problems, a conductive material of the present invention is a conductive material used for forming a thick film resistor, and La 1-X Sr X MnO 3 in which a part of La in LaMnO 3 is substituted with Sr. (Where x is a substitution ratio). Here, the substitution ratio x is preferably 0.2 to 0.5. The thick film resistor paste of the present invention includes a conductive material La 1-X Sr X MnO 3 (where x is a substitution ratio) in which a part of La of LaMnO 3 is substituted with Sr, a glass material, The vehicle is kneaded. In the production method, La 2 O 3 , Mn 2 O 3 and SrCO 3 are weighed as starting materials so as to have a predetermined mixing ratio (mol%), and La 2 O 3 , Mn 2 O 3 and SrCO 3 The mixed powder was prepared, and the mixed powder was fired to produce a conductive material La 1-X Sr X MnO 3 (where x is a substitution ratio) in which part of La in LaMnO 3 was replaced with Sr. A conductive material, a glass material, and a vehicle are kneaded.

上記本発明によれば、比較的高い抵抗値を有する、鉛フリー及びルテニウムフリーの厚膜抵抗器を、安価な材料を用いて製造することができる。   According to the present invention, a lead-free and ruthenium-free thick film resistor having a relatively high resistance value can be manufactured using an inexpensive material.

以下、本発明の導電材料、該導電材料を用いた厚膜抵抗体用ペースト、および該ペーストの製造方法について、その実施形態を添付図面を参照しながら説明する。   Embodiments of a conductive material of the present invention, a thick film resistor paste using the conductive material, and a method of manufacturing the paste will be described below with reference to the accompanying drawings.

本発明の導電材料は、図1に示すように、出発原料として、SrCO3と、La2O3と、Mn2O3とを用いて、以下の工程により作製することができる。まず、La2O3とMn2O3とSrCO3と所定混合比(mol%)となるように秤量する。その置換比率xに対応した所定混合比(mol%)は、以下のとおりである。

Figure 2009164496
As shown in FIG. 1, the conductive material of the present invention can be produced by the following steps using SrCO 3 , La 2 O 3 and Mn 2 O 3 as starting materials. First, La 2 O 3 , Mn 2 O 3 and SrCO 3 are weighed so as to have a predetermined mixing ratio (mol%). The predetermined mixing ratio (mol%) corresponding to the substitution ratio x is as follows.
Figure 2009164496

そして、例えば、蒸留水、ジルコニアボールとともにプラスチック製ポットに入れ、ボールミルによる湿式混合を行う(ステップ1)。次に、例えば120℃で乾燥して混合粉末を作製する(ステップ2)。次に、作製した混合粉末を例えば850℃の大気中において4時間の仮焼成を行う(ステップ3)。このとき、昇温及び降温速度は5℃/minとすることが好ましい。そして、ボールミルなどを用いて粉砕し、粉末化する(ステップ4)。さらに、仮焼成した粉末を、例えば1350〜1450℃の大気雰囲気中において4時間の本焼成を行う(ステップ5)。このとき、昇温及び降温速度は5℃/minとすることが好ましい。   Then, for example, it is placed in a plastic pot together with distilled water and zirconia balls, and wet mixing is performed by a ball mill (step 1). Next, for example, it is dried at 120 ° C. to produce a mixed powder (step 2). Next, the prepared mixed powder is calcined for 4 hours in the atmosphere of, for example, 850 ° C. (step 3). At this time, it is preferable that the temperature increase / decrease rate is 5 ° C./min. And it grind | pulverizes using a ball mill etc. and pulverizes (step 4). Furthermore, the calcined powder is subjected to main firing for 4 hours in an air atmosphere at 1350 to 1450 ° C., for example (step 5). At this time, it is preferable that the temperature increase / decrease rate is 5 ° C./min.

これにより、本発明の導電材料である、LaMnO3のLaの一部がSrで置換されたLa1-XSrXMnO3(但し、xは置換比率)からなる複合酸化物が得られる。この導電材料は、LaMnO3のLaの一部がSrで置換されたことに特徴がある新規の一つの化合物であり、LaMnO3(x=0)またはSrMnO3(x=1)の単体よりも優れた抵抗率及び抵抗温度係数(TCR)が得られる。 Thereby, a composite oxide composed of La 1-X Sr X MnO 3 (where x is a substitution ratio) in which a part of La of LaMnO 3 is substituted with Sr, which is the conductive material of the present invention, is obtained. This conductive material is a new compound characterized by the fact that part of La in LaMnO 3 is replaced by Sr, which is more than the simple substance of LaMnO 3 (x = 0) or SrMnO 3 (x = 1) Excellent resistivity and temperature coefficient of resistance (TCR) are obtained.

この導電材料La1-XSrXMnO3は、置換比率xによって抵抗率及び抵抗温度係数(TCR)が、LaMnO3(x=0)とSrMnO3(x=1)との間で変化する。図2には、LaMnO3(x=0)とSrMnO3(x=1)との間で、置換比率xを0.1〜0.9の範囲で0.1きざみで作製した試料について、そのX線回折(XRD)解析結果を示す。 In the conductive material La 1-X Sr X MnO 3 , the resistivity and the temperature coefficient of resistance (TCR) vary between LaMnO 3 (x = 0) and SrMnO 3 (x = 1) depending on the substitution ratio x. FIG. 2 shows an X-ray diffraction pattern of a sample prepared between LaMnO 3 (x = 0) and SrMnO 3 (x = 1) at a substitution ratio x in the range of 0.1 to 0.9 in 0.1 increments ( XRD) shows the analysis results.

図2の解析結果から、x=0.1からx=0.5まではLa1-XSrXMnO3の単一固溶体が形成されていることが分かる。一方、x=0.6からx=0.9ではSrMnO3相のピークが現れたため、2相共存の状態であることが分かる。従って単一固溶体で使用する場合、xは0.6よりも小さいことが好ましい。 From the analysis result of FIG. 2, it can be seen that a single solid solution of La 1-X Sr X MnO 3 is formed from x = 0.1 to x = 0. On the other hand, when x = 0.6 to x = 0.9, the peak of the SrMnO 3 phase appeared, and it can be seen that two phases coexist. Therefore, when used in a single solid solution, x is preferably smaller than 0.6.

図3は、x=0〜0.5の間の各置換比率における試料の抵抗率を25℃〜125℃まで10℃間隔で測定した結果を示す。x=0〜0.2、x=0.5の範囲では温度増加に伴って抵抗率が減少する絶縁体的挙動を呈していることが分かる。これに対して、x=0.3〜0.45では温度増加に伴って抵抗率が増加する金属的挙動を呈していることが分かる。この結果、xが0.2と0.3との間と、0.45と0.5との間で、温度増加に伴って抵抗率が一定となる、すなわち、抵抗温度係数(TCR)がゼロ近傍となる置換比率が存在することが分かる。   FIG. 3 shows the results of measuring the resistivity of the sample at each substitution ratio between x = 0 to 0.5 at intervals of 10 ° C. from 25 ° C. to 125 ° C. It can be seen that in the range of x = 0 to 0.2 and x = 0.5, an insulator-like behavior is exhibited in which the resistivity decreases as the temperature increases. On the other hand, it can be seen that x = 0.3 to 0.45 exhibits a metallic behavior in which the resistivity increases as the temperature increases. As a result, when x is between 0.2 and 0.3, and between 0.45 and 0.5, there is a substitution ratio in which the resistivity becomes constant as the temperature increases, that is, the temperature coefficient of resistance (TCR) is near zero. I understand that

図4は、置換比率xと25℃における抵抗率及び25℃〜125℃の抵抗温度係数(TCR)との関係を示す。厚膜抵抗体の導電材料として使用する場合、ガラスとの混合を考えると抵抗温度係数(TCR)は正であることが好ましく、x=0.225〜0.45がこの条件に当てはまる。この置換比率xにおける抵抗率は10-4〜10-5Ω・mであり、Pb2Ru2O6.5の抵抗率10-5〜10-6Ω・mに対して1桁程度高い抵抗率が得られる。 FIG. 4 shows the relationship between the substitution ratio x, the resistivity at 25 ° C., and the temperature coefficient of resistance (TCR) from 25 ° C. to 125 ° C. When used as a conductive material for a thick film resistor, the temperature coefficient of resistance (TCR) is preferably positive in view of mixing with glass, and x = 0.225 to 0.45 applies to this condition. The resistivity at this substitution ratio x is 10 −4 to 10 −5 Ω · m, and the resistivity of Pb 2 Ru 2 O 6.5 is about 10 orders of magnitude higher than the resistivity 10 −5 to 10 −6 Ω · m. can get.

このようにLa1-XSrXMnO3導電材料は置換比率xによって抵抗率及び抵抗温度係数(TCR)が制御可能であり、厚膜抵抗体として使用する際に、抵抗値の制御が容易に出来る。特に、0.2≦x≦0.5の範囲では、La1-XSrXMnO3の単一固溶体が形成され、抵抗率は10-4〜10-5Ω・mと容易に高抵抗化が可能となる値が得られる。なお、導電材料自体の抵抗温度係数(TCR)は2000〜10000×10-6/Kが得られ、ガラスと混合することで、厚膜抵抗体の抵抗温度係数(TCR)を所定の範囲(例えば、±200×10-6/K)に調整することが可能である。 As described above, the La 1-X Sr X MnO 3 conductive material can control the resistivity and the temperature coefficient of resistance (TCR) by the substitution ratio x, and the resistance value can be easily controlled when used as a thick film resistor. I can do it. In particular, in the range of 0.2 ≦ x ≦ 0.5, a single solid solution of La 1-X Sr X MnO 3 is formed, and the resistivity can be easily increased to 10 −4 to 10 −5 Ω · m. A value is obtained. Note that the temperature coefficient of resistance (TCR) of the conductive material itself is 2000 to 10000 × 10 −6 / K, and when mixed with glass, the temperature coefficient of resistance (TCR) of the thick film resistor is within a predetermined range (for example, , ± 200 × 10 −6 / K).

次に、本発明の厚膜抵抗体用ペーストおよびその製造方法について、図1を再び参照して説明する。本発明の厚膜抵抗体用ペーストは、上記導電材料La1-XSrXMnO3(但し、x=0.2〜0.5)を10〜70wt%、ガラス材料を30〜90wt%、これにビヒクルを適量添加し、3本ロールを用いて混練して得ることができる(ステップ6)。導電材料とガラス材料の比率は、完成品の抵抗値及び所要の抵抗温度係数(TCR)に応じて調整可能である。また、上記導電材料およびガラス材料の粒子の大きさは、用途に応じて0.01μm〜10μmの範囲で調整する。 Next, the thick film resistor paste of the present invention and the manufacturing method thereof will be described with reference to FIG. 1 again. The thick film resistor paste of the present invention is composed of 10 to 70 wt% of the conductive material La 1-X Sr X MnO 3 (where x = 0.2 to 0.5), 30 to 90 wt% of the glass material, and an appropriate amount of vehicle. It can be added and kneaded using three rolls (step 6). The ratio of the conductive material to the glass material can be adjusted according to the resistance value of the finished product and the required temperature coefficient of resistance (TCR). Moreover, the particle size of the conductive material and the glass material is adjusted in the range of 0.01 μm to 10 μm depending on the application.

また、ガラス材料は鉛フリーであれば特に限定はなく、SiO2−B2O3をベースにBi2O3、CaO、SrO、BaO、ZnO、Al2O3、TiO2、ZrO、MnO、NiO等の酸化物を添加したものが好適である。ビヒクルは、エチルセルロース、α−テルピネオール、テキサノール等のこの種の厚膜抵抗体用に通常用いられるものがいずれも使用可能である。なお、厚膜抵抗体用ペーストには、抵抗値、抵抗温度係数(TCR)、熱膨張率の調整剤として、CuO、TiO2、ZnO、MgO、MnO、V2O5、Al2O3、ZrO、Fe2O3等を添加しても良い。 The glass material is not particularly limited as long as it is lead-free, based on SiO 2 -B 2 O 3 , Bi 2 O 3 , CaO, SrO, BaO, ZnO, Al 2 O 3 , TiO 2 , ZrO, MnO, What added the oxides, such as NiO, is suitable. As the vehicle, any of those usually used for this type of thick film resistor such as ethyl cellulose, α-terpineol, and texanol can be used. The thick film resistor paste has a resistance value, a temperature coefficient of resistance (TCR), and a coefficient of thermal expansion, such as CuO, TiO 2 , ZnO, MgO, MnO, V 2 O 5 , Al 2 O 3 , ZrO, Fe 2 O 3 or the like may be added.

以上の厚膜抵抗体用ペーストによれば、導電材料としてLa1-XSrXMnO3(但し、x=0.2-0.5)を用いることで、Pb2Ru2O6.5と比較して1桁程度以上高い抵抗率が得られ、且つ良好な抵抗温度係数(TCR)が得られ、且つ鉛フリーであるので環境上の問題がなく、且つルテニウムフリーであるので高価なルテニウムを使わなくて済み、製造コストの低減が可能である。これにより、厚膜抵抗器の比較的抵抗値の高いものも、鉛やルテニウムを含むPb2Ru2O6.5を用いた厚膜抵抗体用ペーストに代替して使用することが可能である。 According to the above thick film resistor paste, using La 1-X Sr X MnO 3 (x = 0.2-0.5) as the conductive material, about one digit compared to Pb 2 Ru 2 O 6.5 High resistivity, good temperature coefficient of resistance (TCR), lead free, no environmental problems, ruthenium free, no expensive ruthenium used, manufacturing Cost can be reduced. Accordingly, a thick film resistor having a relatively high resistance value can be used in place of the thick film resistor paste using Pb 2 Ru 2 O 6.5 containing lead or ruthenium.

なお、上記実施形態では、導電材料の置換比率xが0.1きざみの例について説明したが、厚膜抵抗体の形成に用いる導電材料であって、LaMnO3のLaの一部がSrで置換されたLa1-XSrXMnO3(但し、xは置換比率)からなる複合酸化物に、本発明の趣旨が同様に適用されることは勿論である。 In the above-described embodiment, the example in which the conductive material substitution ratio x is in increments of 0.1 has been described. However, the conductive material is used for forming the thick film resistor, and a part of La in LaMnO 3 is substituted with Sr. Of course, the gist of the present invention is similarly applied to a composite oxide composed of La 1-X Sr X MnO 3 (where x is a substitution ratio).

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明の導電材料および厚膜抵抗体用ペーストの作製プロセスを示すフロー図である。It is a flowchart which shows the preparation processes of the electrically-conductive material of this invention, and the paste for thick film resistors. 本発明の導電材料についてのX線回折(XRD)解析結果を示すグラフである。It is a graph which shows the X-ray-diffraction (XRD) analysis result about the electrically conductive material of this invention. 導電材料La1-XSrXMnO3の置換比率xの試料の温度と抵抗率(Ω・m)との関係を示すグラフである。It is a graph showing the relationship between temperature and the resistivity of a sample of the substitution ratio x of the conductive material La 1-X Sr X MnO 3 and (Ω · m). 導電材料La1-XSrXMnO3の置換比率xと、抵抗率及び抵抗温度係数(TCR)との関係を示すグラフである。And substitution ratio x of the conductive material La 1-X Sr X MnO 3 , is a graph showing the relationship between resistivity and temperature coefficient of resistance (TCR).

Claims (5)

厚膜抵抗体の形成に用いる導電材料であって、LaMnO3のLaの一部がSrで置換された、La1-XSrXMnO3(但し、xは置換比率)からなる複合酸化物を含むことを特徴とする導電材料。 A composite material composed of La 1-X Sr X MnO 3 (where x is a substitution ratio), which is a conductive material used to form thick film resistors, in which part of LaMnO 3 is replaced by Sr. A conductive material comprising the conductive material. 前記置換比率xが0.2≦x≦0.5であることを特徴とする請求項1に記載の導電材料。   The conductive material according to claim 1, wherein the substitution ratio x is 0.2 ≦ x ≦ 0.5. LaMnO3のLaの一部がSrで置換された導電材料La1-XSrXMnO3(但し、xは置換比率)と、
ガラス材料と、
ビヒクルと、
を混練したことを特徴とする厚膜抵抗体用ペースト。
Conductive material La 1-X Sr X MnO 3 (where x is a substitution ratio) in which part of La in LaMnO 3 is substituted with Sr;
Glass material,
With the vehicle,
A thick film resistor paste, characterized by being kneaded.
前記ガラス材料は、鉛を含まないものであることを特徴とする請求項3に記載の厚膜抵抗体用ペースト。   The thick film resistor paste according to claim 3, wherein the glass material does not contain lead. 出発原料として、La2O3とMn2O3とSrCO3とを所定混合比(mol%)となるように秤量し、
前記La2O3とMn2O3とSrCO3との混合粉末を作製し、
前記混合粉末を焼成し、LaMnO3のLaの一部がSrで置換された導電材料La1-XSrXMnO3(但し、xは置換比率)を作製し、
前記導電材料と、ガラス材料と、ビヒクルと、を混練することを特徴とする厚膜抵抗体用ペーストの製造方法。
As starting materials, La 2 O 3 , Mn 2 O 3 and SrCO 3 were weighed so as to have a predetermined mixing ratio (mol%),
A mixed powder of La 2 O 3 , Mn 2 O 3 and SrCO 3 is produced,
The mixed powder is fired to produce a conductive material La 1-X Sr X MnO 3 (where x is a substitution ratio) in which part of La in LaMnO 3 is replaced by Sr,
A method for producing a thick film resistor paste, comprising kneading the conductive material, a glass material, and a vehicle.
JP2008002742A 2008-01-10 2008-01-10 Conductive material, and paste for thick film resistor and manufacturing method thereof Pending JP2009164496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002742A JP2009164496A (en) 2008-01-10 2008-01-10 Conductive material, and paste for thick film resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008002742A JP2009164496A (en) 2008-01-10 2008-01-10 Conductive material, and paste for thick film resistor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009164496A true JP2009164496A (en) 2009-07-23

Family

ID=40966730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002742A Pending JP2009164496A (en) 2008-01-10 2008-01-10 Conductive material, and paste for thick film resistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009164496A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239212A (en) * 2013-05-07 2014-12-18 独立行政法人産業技術総合研究所 Resistor material, resistor film and manufacturing method therefor
CN114835491A (en) * 2021-02-01 2022-08-02 深圳麦克韦尔科技有限公司 Conductive ceramic material and preparation method thereof, and conductive ceramic body and preparation method thereof
CN114835490A (en) * 2021-02-01 2022-08-02 深圳麦克韦尔科技有限公司 Conductive ceramic material and preparation method thereof, and conductive ceramic body and preparation method thereof
CN115557789A (en) * 2022-10-25 2023-01-03 安徽工业大学 Preparation method and application of flexible transition metal oxide lanthanum strontium manganese oxygen ferromagnetism thick film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239212A (en) * 2013-05-07 2014-12-18 独立行政法人産業技術総合研究所 Resistor material, resistor film and manufacturing method therefor
CN114835491A (en) * 2021-02-01 2022-08-02 深圳麦克韦尔科技有限公司 Conductive ceramic material and preparation method thereof, and conductive ceramic body and preparation method thereof
CN114835490A (en) * 2021-02-01 2022-08-02 深圳麦克韦尔科技有限公司 Conductive ceramic material and preparation method thereof, and conductive ceramic body and preparation method thereof
CN114835490B (en) * 2021-02-01 2023-11-17 深圳麦克韦尔科技有限公司 Conductive ceramic material and preparation method thereof, and conductive ceramic body and preparation method thereof
CN115557789A (en) * 2022-10-25 2023-01-03 安徽工业大学 Preparation method and application of flexible transition metal oxide lanthanum strontium manganese oxygen ferromagnetism thick film

Similar Documents

Publication Publication Date Title
CN1971771B (en) Resistor composition and thick film resistor
JP5851591B2 (en) Oxide sintered body and wiring board using the same
JP4174051B2 (en) Resistor paste, resistor and electronic components
JP2009164496A (en) Conductive material, and paste for thick film resistor and manufacturing method thereof
US20100307669A1 (en) Piezoceramic multi-layer element
JP6152481B2 (en) Conductive oxide sintered body, conductive member, gas sensor, piezoelectric element, and method of manufacturing piezoelectric element
JP2020152622A (en) Dielectric composition and electronic component
JP2006108610A (en) Conductive material, resistor paste, resistor and electronic component
JP2006229164A (en) Thick-film resistor paste and thick-film resistor
JP2004104093A (en) Method for manufacturing negative characteristic thermistor
JP2018067640A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor, and method for manufacturing positive temperature coefficient resistor
JP2006261350A (en) Resistor paste and resistor
WO2013179774A1 (en) Ntc thermistor element and method for producing same
JP2009071219A (en) Conductive material, paste for thick-film resistor and its manufacturing method
JP3800614B1 (en) Thick film resistor paste and thick film resistor
JP2008205384A (en) Thermistor composition and thermistor element
JP5115949B2 (en) Conductive material and resistor paste
JP4974268B2 (en) Resistance paste and thick film resistor manufacturing method
JP7039075B2 (en) Conductive material, conductive ceramics, conductive paste, conductive material film, composite oxide manufacturing method, conductive paste manufacturing method and conductive material film manufacturing method
JP7043046B2 (en) Sintering conductive materials, conductive ceramics, conductive pastes, and conductive material membranes
JP2006202613A (en) Thick-film resistive element paste, thick-film resistive element, and electronic component
JP2006261349A (en) Resistor paste and resistor
JP2006261348A (en) Resistor paste and resistor
JP2002274940A (en) Raw material powder for ceramics, method for manufacturing the same, ceramic and method for manufacturing the same, and method for manufacturing laminated ceramic electronic part
JP2005119904A (en) Bismuth oxide based ceramics