JP2008043855A - Method and apparatus for transferring/supplying mixture fluid comprising gas and liquid - Google Patents

Method and apparatus for transferring/supplying mixture fluid comprising gas and liquid Download PDF

Info

Publication number
JP2008043855A
JP2008043855A JP2006220349A JP2006220349A JP2008043855A JP 2008043855 A JP2008043855 A JP 2008043855A JP 2006220349 A JP2006220349 A JP 2006220349A JP 2006220349 A JP2006220349 A JP 2006220349A JP 2008043855 A JP2008043855 A JP 2008043855A
Authority
JP
Japan
Prior art keywords
fluid
liquid
gas
gaseous
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006220349A
Other languages
Japanese (ja)
Other versions
JP5159064B2 (en
Inventor
Hikoichi Iwanami
彦一 岩波
Takayuki Osaki
貴之 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2006220349A priority Critical patent/JP5159064B2/en
Publication of JP2008043855A publication Critical patent/JP2008043855A/en
Application granted granted Critical
Publication of JP5159064B2 publication Critical patent/JP5159064B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for transferring/supplying mixture fluid comprising gas and liquid capable of stabilizing the amount of the fluid being transferred upon transferring the fluid in a mixture state of gas and liquid by reducing its pressure to a subsequent process. <P>SOLUTION: The apparatus 1 for transferring/supplying fluid in a mixture state of gas and liquid to a subsequent process by reducing its pressure is comprised of a pipe 11 for transferring the fluid, a pair of branch pipes 12a, 12b branched from the pipe 11, one upwardly and the other downwardly, pressure control valves 13 each disposed in the branch pipes 12a, 12b respectively wherein the mixture fluid is separated into gaseous fluid and fluid in liquid state. The separated gaseous fluid is transferred through the upwardly branched pipe 12a and the separated fluid in liquid state is transferred through the downwardly branched pipe 12b and the fluid pressures are individually reduced therein. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、気液混合の状態にある流動体を減圧して次工程に送給する方法及び装置に関する。   The present invention relates to a method and apparatus for depressurizing a fluid in a gas-liquid mixed state and feeding it to the next step.

近年、定置型燃料電池の実用化が進められている。そして、定置型燃料電池には、燃料となる水素ガスを生成するための原料として、従来の天然ガスやメタノールに比べて入手が容易な原料、例えば灯油などの石油系炭化水素、あるいは都市ガスを用いることが検討されている。   In recent years, stationary fuel cells have been put into practical use. For stationary fuel cells, raw materials that are easier to obtain than conventional natural gas and methanol, such as petroleum hydrocarbons such as kerosene, or city gas, are used as raw materials for generating hydrogen gas as fuel. Use is under consideration.

都市ガスや、灯油などの石油系炭化水素から水素ガスを生成するには、一般に、水素生成効率に優れる水蒸気改質法が採られる。これは、原料と水蒸気とを混合して改質器に導入し、700℃前後に保温された触媒上で反応させ、水素ガスを生成するものである。   In order to generate hydrogen gas from city gas or petroleum-based hydrocarbons such as kerosene, a steam reforming method having excellent hydrogen generation efficiency is generally employed. In this method, raw materials and water vapor are mixed and introduced into a reformer, and reacted on a catalyst kept at a temperature of about 700 ° C. to generate hydrogen gas.

ここで、原料となる都市ガスや、灯油などの石油系炭化水素には硫黄分が含まれており、この硫黄分が水蒸気改質器の触媒に悪影響を与えることから、それらの原料については水蒸気改質器に導入する前に脱硫器により硫黄分を除去する必要がある。   Here, the city gas used as a raw material and petroleum hydrocarbons such as kerosene contain sulfur, which adversely affects the catalyst of the steam reformer. It is necessary to remove sulfur by a desulfurizer before introducing it into the reformer.

定置型燃料電池において、特に家庭用のものは設備に制限があるため、硫黄分の除去には、一般に、簡便な吸着脱硫法が採られる。例えば、反応温度150℃〜300℃、加圧条件下でNi系の脱硫剤を用いて除去するものが知られている(例えば、特許文献1参照)。   In a stationary fuel cell, especially for a household fuel cell, there are restrictions on facilities, and therefore, a simple adsorptive desulfurization method is generally adopted to remove sulfur. For example, what is removed by using a Ni-based desulfurization agent under a reaction temperature of 150 ° C. to 300 ° C. under pressure (for example, see Patent Document 1).

特開平2004−51864号公報Japanese Patent Laid-Open No. 2004-51864

灯油などの液体状炭化水素を上記吸着脱硫法により脱硫すると、その一部は気化され、気体状炭化水素も生成される。ここで、改質反応が大気圧近くの加圧下で行われるのに対し脱硫反応は加圧条件下で行われるため、脱硫により生成された液体状炭化水素及び気体状炭化水素は、脱硫器と改質器との間の配管に設けられた調圧弁で減圧される。   When liquid hydrocarbons such as kerosene are desulfurized by the adsorptive desulfurization method, a part thereof is vaporized and gaseous hydrocarbons are also generated. Here, since the reforming reaction is performed under a pressure near atmospheric pressure, the desulfurization reaction is performed under a pressurized condition. Therefore, liquid hydrocarbons and gaseous hydrocarbons generated by desulfurization are separated from the desulfurizer. The pressure is reduced by a pressure regulating valve provided in the pipe between the reformer.

しかし、液体状炭化水素及び気体状炭化水素が混在した状態で調圧弁で減圧されると、気体状炭化水素が突沸を起こし、改質器に移送される液体状炭化水素及び気体状炭化水素の流れに脈流が生じる。その結果、改質器へ送給される炭化水素量が増減し、未改質ガスが発生し、あるいは水素ガスの生成量に影響を及ぼす。   However, when the pressure is reduced by the pressure regulating valve in a state where liquid hydrocarbons and gaseous hydrocarbons coexist, the gaseous hydrocarbons cause bumping, and the liquid hydrocarbons and gaseous hydrocarbons transferred to the reformer A pulsating flow is generated in the flow. As a result, the amount of hydrocarbons fed to the reformer increases or decreases, unreformed gas is generated, or the amount of hydrogen gas produced is affected.

そして、未改質ガス(未改質重質炭化水素)が燃料電池本体へ流入した場合に、例えば電解質に用いられる固体高分子膜を劣化させ、燃料電池の寿命を低下させるおそれがある。また、水素ガス不足の状態で発電した場合にも、燃料電池の寿命を低下させるおそれがある。   When unreformed gas (unreformed heavy hydrocarbon) flows into the fuel cell main body, for example, the solid polymer film used for the electrolyte may be deteriorated and the life of the fuel cell may be reduced. Further, even when power is generated in a state where hydrogen gas is insufficient, the life of the fuel cell may be reduced.

さらに、改質器への炭化水素の送給量が脈流により著しく増加すると、改質器の触媒上への炭素の析出が顕著となり、触媒が劣化する可能性もある。   Furthermore, if the amount of hydrocarbons fed to the reformer is significantly increased due to the pulsating flow, carbon deposition on the reformer catalyst becomes significant, and the catalyst may deteriorate.

本発明は、上記の事情に鑑みてなされたものであり、気液混合の状態にある流動体を減圧して次工程に送給するにあたり、その送給量を安定させることができる気液混合流動体の送給方法及び送給装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is capable of stabilizing the feeding amount when the fluid in the gas-liquid mixing state is decompressed and fed to the next process. It is an object to provide a fluid feeding method and a feeding device.

本発明者等は、気液混合の状態にある流動体を減圧した場合に、流動体の流れに脈流が生じる理由を下記(イ)若しくは(ロ)のように考察した。   The present inventors considered the reason why a pulsating flow is generated in the flow of the fluid when the fluid in a gas-liquid mixed state is decompressed as described in (a) or (b) below.

(イ)気体と液体とでは体積膨張率が異なるため、気液混合のまま流動体が調圧弁を通過すると、気体状流動体が液体状流動体を押し出してしまい、液体状流動体が安定して流れなくなる。
(ロ)気体と液体とでは調圧弁を通過する際の性状(例えば、粘性、表面張力、密度、等)が異なり、気体状流動体は、液体状流動体に比べて調圧弁を通過し難く、換言すれば調圧弁を通過するために液体状流動体に比べて大きな圧力が必要となるから、調圧弁内部に滞留する。そして、図4(a)〜(e)に示すように、所定量の気体状流動体G(液体状流動体中に存在する気泡)が調圧弁内部に蓄積されると(図4(b),(c)参照)、蓄積された気体状流動体Gが一気に調圧弁を通過して、突沸が起きる(図4(d)参照)。蓄積された気体状流動体Gが放出されると圧力が低下し、調圧弁を通過するのに必要な圧力まで昇圧する間は気体状流動体及び液体状流動体が流れなくなる(図4(e)参照)。尚、図中、矢印Fは流動体の流れ方向、符号31、32、33はそれぞれ調圧弁を構成するポペット、スプリング、インサートを示している。
(A) Since the volume expansion coefficient differs between gas and liquid, when the fluid passes through the pressure regulating valve with gas-liquid mixing, the gaseous fluid pushes out the liquid fluid and the liquid fluid is stabilized. Will stop flowing.
(B) Properties (for example, viscosity, surface tension, density, etc.) when passing through the pressure regulating valve are different between gas and liquid, and the gaseous fluid is less likely to pass through the pressure regulating valve than the liquid fluid. In other words, in order to pass through the pressure regulating valve, a larger pressure than that of the liquid fluid is required, so that it stays inside the pressure regulating valve. Then, as shown in FIGS. 4A to 4E, when a predetermined amount of the gaseous fluid G (bubbles existing in the liquid fluid) is accumulated inside the pressure regulating valve (FIG. 4B). , (C)), the accumulated gaseous fluid G passes through the pressure regulating valve all at once, and bumping occurs (see FIG. 4D). When the accumulated gaseous fluid G is released, the pressure decreases, and the gaseous fluid and the liquid fluid do not flow while the pressure is increased to a pressure required to pass through the pressure regulating valve (FIG. 4 (e )reference). In the figure, arrow F indicates the flow direction of the fluid, and reference numerals 31, 32, and 33 indicate poppets, springs, and inserts that constitute the pressure regulating valve, respectively.

そして、本発明者等は、上記(イ)、(ロ)の考察に基づき、調圧弁を通過する流動体が気体若しくは液体のいずれかであれば脈流が生じ難くなるものと考え、本発明に到った。   Based on the considerations (b) and (b) above, the present inventors consider that the pulsating flow is less likely to occur if the fluid passing through the pressure regulating valve is either a gas or a liquid. I reached.

本発明に係る気液混合流動体の送給方法は下記(1)〜(3)を特徴としている。   The method for feeding a gas-liquid mixed fluid according to the present invention is characterized by the following (1) to (3).

(1)気液混合の状態にある流動体を減圧して次工程に送給する方法であって、前記流動体を、気体状流動体と液体状流動体とに分離し、分離された前記気体状流動体及び前記液体状流動体を、別個の配管で移送して、各配管でそれぞれ減圧すること。
(2)上記(1)の送給方法において、前記流動体を、気液の比重差で前記気体状流動体と前記液体状流動体とに分離すること。
(3)上記(1)又は(2)の送給方法において、前記流動体が脱硫された灯油であり、前記次工程が水蒸気改質であること。
(1) A method of depressurizing a fluid in a gas-liquid mixed state and feeding it to the next step, wherein the fluid is separated into a gaseous fluid and a liquid fluid and separated The gaseous fluid and the liquid fluid are transferred through separate pipes and depressurized through the pipes.
(2) In the feeding method according to (1), the fluid is separated into the gaseous fluid and the liquid fluid by a difference in specific gravity of gas and liquid.
(3) In the feeding method of (1) or (2), the fluid is desulfurized kerosene, and the next step is steam reforming.

上記構成の送給方法によれば、気体状流動体と液体状流動体とに分離して、それぞれ減圧するので、脈流の発生を防止することができる。   According to the feeding method having the above-described configuration, the gaseous fluid and the liquid fluid are separated and decompressed, so that the generation of pulsating flow can be prevented.

そして、気液の比重差で気体状流動体と液体状流動体とに分離するようにすれば、簡易な構造で両者を分離することができ、設備に制限のある定置用燃料電池に好適である。   And if it separates into a gaseous fluid and a liquid fluid by the specific gravity difference of gas-liquid, both can be separated with a simple structure, and it is suitable for a stationary fuel cell with limited equipment. is there.

また、本発明に係る気液混合流動体の送給装置は下記(4)〜(6)を特徴としている。   The gas-liquid mixed fluid feeding device according to the present invention is characterized by the following (4) to (6).

(4)気液混合の状態にある流動体を減圧して次工程に送給する装置であって、前記流動体を移送する導管と、該導管から上下に分岐した2つの分岐管と、該各分岐管にそれぞれ設けられた調圧弁と、を備えていること。
(5)気液混合の状態にある流動体を減圧して次工程に送給する装置であって、前記流動体を貯留する貯留部と、該貯留部に貯留した前記流動体の液層に開口端を有する第1導管及び気層に開口端を有する第2導管と、該第1導管及び該第2導管にそれぞれ設けられた調圧弁と、を備えていること。
(6)上記(4)又は(5)の送給装置において、前記流動体が脱硫された灯油であり、前記次工程が水蒸気改質であること。
(4) An apparatus for depressurizing and feeding a fluid in a gas-liquid mixed state to the next process, a conduit for transporting the fluid, two branch pipes branched vertically from the conduit, A pressure regulating valve provided in each branch pipe;
(5) An apparatus for depressurizing a fluid in a gas-liquid mixed state and feeding it to the next step, wherein a reservoir for storing the fluid and a liquid layer of the fluid stored in the reservoir A first conduit having an open end; a second conduit having an open end in the air layer; and a pressure regulating valve provided in each of the first conduit and the second conduit.
(6) In the feeding device according to (4) or (5), the fluid is desulfurized kerosene, and the next step is steam reforming.

上記(4)の構成の送給装置によれば、相対的に比重の小さい気体状流動体は上に向かう分岐管に、また、相対的に比重の大きい液体状流動体は下に向かう分岐管に流入するので、簡易な構造で気体状流動体と液体状流動体とに分離することができる。そして、互いに分離された気体状流動体及び液体状流動体は、各分岐管に設けられた調圧弁でそれぞれ減圧されるので、脈流の発生を防止することができる。   According to the feeding device having the above configuration (4), the gaseous fluid having a relatively small specific gravity is directed to the branch pipe that is directed upward, and the liquid fluid having a relatively large specific gravity is directed to the branched pipe that is directed downward. Therefore, it can be separated into a gaseous fluid and a liquid fluid with a simple structure. Since the gaseous fluid and the liquid fluid separated from each other are reduced in pressure by the pressure regulating valve provided in each branch pipe, generation of pulsating flow can be prevented.

上記(5)の構成の送給装置によれば、気液混合の状態にある流動体は、気液の比重差により、貯留部において気層及び液層を形成するので、簡易な構造で気体状流動体と液体状流動体とに分離することができる。そして、互いに分離された気体状流動体及び液体状流動体は、第1導管及び第2導管に設けられた調圧弁でそれぞれ減圧されるので、脈流の発生を防止することができる。   According to the feeding device having the configuration of (5) above, the fluid in the gas-liquid mixed state forms a gas layer and a liquid layer in the reservoir due to the difference in specific gravity of the gas and liquid. It can be separated into a liquid fluid and a liquid fluid. The gaseous fluid and the liquid fluid separated from each other are reduced in pressure by the pressure regulating valves provided in the first conduit and the second conduit, respectively, so that generation of pulsating flow can be prevented.

本発明によれば、気液混合の状態にある流動体を減圧して次工程に送給するにあたり、その送給量を安定させることができる。   According to the present invention, when the fluid in a gas-liquid mixed state is depressurized and fed to the next step, the feeding amount can be stabilized.

以下、本発明に係る気液混合流動体の送給方法及び送給装置の好適な実施形態を図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a gas-liquid mixed fluid feeding method and a feeding device according to the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明に係る気液混合流動体の送給装置の第1実施形態の概略構成を示す模式図、図2は気液混合の状態で移送される流動体を示す模式図である。
(First embodiment)
FIG. 1 is a schematic diagram showing a schematic configuration of a first embodiment of a gas-liquid mixed fluid feeding apparatus according to the present invention, and FIG. 2 is a schematic diagram showing a fluid transferred in a gas-liquid mixed state.

図1に示すように、第1実施形態の送給装置1は、気液混合の状態にある流動体を減圧して次工程に送給する装置であって、定置型燃料電池の燃料である水素ガスを生成するための脱硫器4と水蒸気改質器5との間に設けられており、脱硫器4において脱硫された原料を水蒸気改質器5に送給するものである。脱硫・改質される原料は、例えば灯油、ガソリン、ナフサ、軽油、等の液体状炭化水素燃料であるが、以下では灯油を例に説明する。   As shown in FIG. 1, a feeding device 1 according to the first embodiment is a device that depressurizes a fluid in a gas-liquid mixed state and feeds it to the next process, and is a fuel for a stationary fuel cell. It is provided between the desulfurizer 4 and the steam reformer 5 for generating hydrogen gas, and feeds the raw material desulfurized in the desulfurizer 4 to the steam reformer 5. The raw material to be desulfurized / reformed is, for example, liquid hydrocarbon fuel such as kerosene, gasoline, naphtha, and light oil. Hereinafter, kerosene will be described as an example.

原料である灯油は、タンク2に貯留されており、ポンプ3によって脱硫器4に送給される。脱硫器4に移送された灯油は、脱硫器4の底部に導入され、そして、脱硫器4において硫黄分を除去されるが、ここでは吸着脱硫法が用いられており、一般的には反応温度150℃〜300℃、0.01MPaG〜1.0MPaGの加圧条件下で脱硫剤の使用により硫黄分を除去される。   Kerosene as a raw material is stored in the tank 2 and is fed to the desulfurizer 4 by the pump 3. The kerosene transferred to the desulfurizer 4 is introduced into the bottom of the desulfurizer 4 and the sulfur content is removed in the desulfurizer 4. Here, the adsorptive desulfurization method is used, and generally the reaction temperature. The sulfur content is removed by using a desulfurizing agent under pressure conditions of 150 ° C. to 300 ° C. and 0.01 MPaG to 1.0 MPaG.

脱硫された灯油は、水蒸気と混合されて水蒸気改質器5に導入される。水蒸気が高温であるので液体状の灯油はほぼ気化し、そして、大気圧近くの加圧下、700℃前後に保温された触媒上で反応が進み、水素を主成分とする改質ガスが生成される。   The desulfurized kerosene is mixed with steam and introduced into the steam reformer 5. Since the water vapor is hot, the liquid kerosene is almost vaporized, and the reaction proceeds on the catalyst kept at around 700 ° C. under a pressure close to atmospheric pressure, and a reformed gas mainly containing hydrogen is generated. The

ここで、脱硫器4における脱硫反応では、灯油の一部が分解され、例えばメタンなどの気体状炭化水素が生成される。定置型燃料電池では、装置の小型化の要請により、脱硫器4と水蒸気改質器5とを連通する導管11の内径は一般的には2mm〜9mmである。かかる細径の配管では、図2に示すように、脱硫された灯油(液体状炭化水素)L及び気体状炭化水素Gは気液混合の状態で移送される。   Here, in the desulfurization reaction in the desulfurizer 4, a part of kerosene is decomposed to generate gaseous hydrocarbons such as methane, for example. In the stationary fuel cell, the inner diameter of the conduit 11 that communicates the desulfurizer 4 and the steam reformer 5 is generally 2 mm to 9 mm in response to a request for downsizing of the apparatus. In such a small-diameter pipe, as shown in FIG. 2, the desulfurized kerosene (liquid hydrocarbon) L and the gaseous hydrocarbon G are transferred in a gas-liquid mixed state.

改質反応が大気圧近くの加圧下で行われるのに対し脱硫反応は加圧条件下で行われるため、脱硫により生成された液体状炭化水素及び気体状炭化水素は、脱硫器4と水蒸気改質器5との間の配管に設けられた調圧弁で減圧されるが、上述の通り、液体状炭化水素及び気体状炭化水素が混在した状態で調圧弁で減圧すると、気体状炭化水素が突沸を起こし、水蒸気改質器5に移送される液体状炭化水素及び気体状炭化水素の流れに脈流が生じる。   Since the reforming reaction is performed under a pressure near atmospheric pressure, the desulfurization reaction is performed under a pressurized condition. Therefore, liquid hydrocarbons and gaseous hydrocarbons generated by the desulfurization are separated from the desulfurizer 4 and the steam reformer. Although the pressure is reduced by the pressure regulating valve provided in the pipe between the mass device 5 and the liquid hydrocarbon and the gaseous hydrocarbon are mixed as described above, when the pressure is reduced by the pressure regulating valve, the gaseous hydrocarbon is bumped. And a pulsating flow is generated in the flow of liquid hydrocarbons and gaseous hydrocarbons transferred to the steam reformer 5.

そこで本実施形態の送給装置1では、脱硫により生成された液体状炭化水素及び気体状炭化水素を移送する導管11と、導管11から上下に分岐した2つの分岐管12a,12bを備え、各分岐管にそれぞれ調圧弁13が設けられている。   Therefore, the feeding device 1 of the present embodiment includes a conduit 11 for transferring liquid hydrocarbons and gaseous hydrocarbons generated by desulfurization, and two branch pipes 12a and 12b branched up and down from the conduit 11, A pressure regulating valve 13 is provided in each branch pipe.

分岐管12a,12bの分岐点に気液混合の状態で流入した液体状炭化水素及び気体状炭化水素のうち、相対的に比重の小さい気体状炭化水素は上に向かう分岐管12aに、また、相対的に比重の大きい液体状炭化水素は下に向かう分岐管12bに流入し、気体状炭化水素と液体状炭化水素とは互いに分離される。   Of the liquid hydrocarbons and gaseous hydrocarbons that have flowed into the branch points of the branch pipes 12a and 12b in a gas-liquid mixed state, gaseous hydrocarbons having a relatively low specific gravity are directed to the upward branch pipe 12a. The liquid hydrocarbon having a relatively large specific gravity flows into the downward branch pipe 12b, and the gaseous hydrocarbon and the liquid hydrocarbon are separated from each other.

ここで、分岐管12a,12bにおいて気体状炭化水素と液体状炭化水素とに十分に分離するには、分岐点近傍における分岐管12a,12bの内径Rは、導管11の1.5倍以上であることが好ましい。これにより、液体状炭化水素である灯油の表面張力による分岐管12bへの気体状炭化水素の混入や、飛沫同伴による分岐管12aへの液体状炭化水素の混入が防止される。   Here, in order to sufficiently separate the gaseous hydrocarbon and the liquid hydrocarbon in the branch pipes 12a and 12b, the inner diameter R of the branch pipes 12a and 12b in the vicinity of the branch point is 1.5 times or more that of the pipe 11. Preferably there is. Thereby, mixing of gaseous hydrocarbons into the branch pipe 12b due to the surface tension of kerosene, which is liquid hydrocarbon, and mixing of liquid hydrocarbons into the branch pipe 12a due to entrainment are prevented.

そして、互いに分離された気体状炭化水素及び液体状炭化水素は、分岐管12a,12bにそれぞれ設けられた調圧弁13において、次の水蒸気改質器5に導入するために必要な圧力まで、それぞれ減圧される。各調圧弁13を通過するのは気体状炭化水素若しくは液体状炭化水素のいずれかであるので、脈流の発生は防止され、水蒸気改質器5に安定して炭化水素が送給される。   The gaseous hydrocarbon and liquid hydrocarbon separated from each other up to the pressure required to be introduced into the next steam reformer 5 at the pressure regulating valves 13 provided in the branch pipes 12a and 12b, respectively. Depressurized. Since either the gaseous hydrocarbon or the liquid hydrocarbon passes through each pressure regulating valve 13, the generation of the pulsating flow is prevented, and the hydrocarbon is stably fed to the steam reformer 5.

尚、本実施形態の送給装置1では、分岐管12a,12bで互いに分離された気体状炭化水素及び液体状炭化水素は、調圧弁13でそれぞれ減圧された後に再び混合されて水蒸気改質器5に移送されているが、必ずしも再び混合される必要はない。   In the feeding device 1 of the present embodiment, the gaseous hydrocarbon and the liquid hydrocarbon separated from each other by the branch pipes 12a and 12b are mixed again after being depressurized by the pressure regulating valve 13, and then the steam reformer. Is not necessarily mixed again.

(第2実施形態)
また、図3は本発明に係る気液混合流動体の送給装置の第2実施形態の概略構成を示す模式図である。尚、上述の第1実施形態の送給装置1と同様の部材については、同一符号を付すことで説明を省略する。
(Second Embodiment)
FIG. 3 is a schematic diagram showing a schematic configuration of a second embodiment of the gas-liquid mixed fluid feeding device according to the present invention. In addition, about the member similar to the feeder 1 of the above-mentioned 1st Embodiment, description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図3に示すように、第2実施形態の送給装置1´は、気液混合の状態にある流動体を減圧して次工程に送給する装置であって、定置型燃料電池の燃料である水素ガスを生成するための脱硫器4と水蒸気改質器5との間に設けられており、脱硫器4において脱硫された原料を水蒸気改質器5に送給するものである。   As shown in FIG. 3, the feeding device 1 ′ of the second embodiment is a device that depressurizes the fluid in a gas-liquid mixed state and feeds it to the next process, and uses the fuel of the stationary fuel cell. It is provided between the desulfurizer 4 and the steam reformer 5 for generating a certain hydrogen gas, and feeds the raw material desulfurized in the desulfurizer 4 to the steam reformer 5.

送給装置1´は、脱硫器4において生成された液体状炭化水素及び気体状炭化水素を貯留する貯留部21を備えている。本実施形態では、貯留部21は、底部より灯油が導入される脱硫器4の出口付近にあたる天井部とされている。気液混合の状態にある炭化水素は、気液の比重差により、貯留部21において液層及びその上方に気層を形成する。   The feeding apparatus 1 ′ includes a storage unit 21 that stores liquid hydrocarbons and gaseous hydrocarbons generated in the desulfurizer 4. In this embodiment, the storage part 21 is a ceiling part near the outlet of the desulfurizer 4 into which kerosene is introduced from the bottom part. The hydrocarbon in a gas-liquid mixed state forms a liquid layer in the reservoir 21 and a gas layer above it due to the difference in specific gravity of the gas and liquid.

そして、送給装置1´は、貯留部21に貯留された炭化水素の液層に開口端を有する第1導管22a及び気層に開口端を有する第2導管22bとを備えている。本実施形態では、脱硫器4の出口近傍においては、第1導管22aが第2導管22b内を同軸に伸びている2重管構造とされており、第2導管22bは、その開口端を脱硫器4の天井壁に接続して炭化水素の気層に開口し、第1導管22aは、その開口端を脱硫器4の貯留部21内に進入させて炭化水素の液層に開口している。   The feeding device 1 ′ includes a first conduit 22 a having an open end in the liquid layer of hydrocarbon stored in the storage portion 21 and a second conduit 22 b having an open end in the gas layer. In the present embodiment, in the vicinity of the outlet of the desulfurizer 4, the first conduit 22a has a double pipe structure extending coaxially in the second conduit 22b, and the second conduit 22b is desulfurized at its open end. Connected to the ceiling wall of the vessel 4 and opened to the hydrocarbon gas layer, the first conduit 22a opens into the hydrocarbon liquid layer with its open end entering the reservoir 21 of the desulfurizer 4. .

第1導管22aには液体状炭化水素が流入し、第2導管22bには気体状炭化水素が流入し、気体状炭化水素と液体状炭化水素とは互いに分離される。第1導管22a及び第2導管22bにはそれぞれ調圧弁13が設けられており、互いに分離された液体状炭化水素及び気体状炭化水素は、各調圧弁13において、次の水蒸気改質器5に導入するために必要な圧力まで、それぞれ減圧される。各調圧弁13を通過するのは気体状炭化水素若しくは液体状炭化水素のいずれかであるので、脈流の発生は防止され、水蒸気改質器5に安定して炭化水素が送給される。   Liquid hydrocarbons flow into the first conduit 22a, gaseous hydrocarbons flow into the second conduit 22b, and the gaseous hydrocarbon and the liquid hydrocarbon are separated from each other. The first conduit 22a and the second conduit 22b are each provided with a pressure regulating valve 13, and the liquid hydrocarbon and the gaseous hydrocarbon separated from each other are sent to the next steam reformer 5 in each pressure regulating valve 13. Each pressure is reduced to the pressure required for introduction. Since either the gaseous hydrocarbon or the liquid hydrocarbon passes through each pressure regulating valve 13, the generation of the pulsating flow is prevented, and the hydrocarbon is stably fed to the steam reformer 5.

尚、本実施形態の送給装置1´においても、第1導管22a及び第2導管22bにより互いに分離された気体状炭化水素及び液体状炭化水素は、調圧弁13でそれぞれ減圧された後に再び混合されて水蒸気改質器5に移送されているが、必ずしも再び混合される必要はない。   In the feeding device 1 ′ of the present embodiment, the gaseous hydrocarbon and the liquid hydrocarbon separated from each other by the first conduit 22 a and the second conduit 22 b are mixed again after being depressurized by the pressure regulating valve 13. Although being transferred to the steam reformer 5, it is not always necessary to be mixed again.

また、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。   The present invention is not limited to the above-described embodiments, and modifications, improvements, etc. can be made as appropriate. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

つぎに、実施例及び比較例により、本発明を具体的に説明する。   Next, the present invention will be specifically described with reference to examples and comparative examples.

市販灯油を15ml/hの流量で脱硫器に導入し、反応温度220℃、圧力0.3MPaGの条件下で脱硫を行った。脱硫器出口付近での液体状炭化水素及び気体状炭化水素の温度は220℃、圧力は0.3MPaGであり、これを調圧弁で0.13MPaGまで減圧して水蒸気改質器に移送する。   Commercial kerosene was introduced into the desulfurizer at a flow rate of 15 ml / h, and desulfurization was performed under conditions of a reaction temperature of 220 ° C. and a pressure of 0.3 MPaG. The temperature of liquid hydrocarbons and gaseous hydrocarbons near the desulfurizer outlet is 220 ° C., and the pressure is 0.3 MPaG. The pressure is reduced to 0.13 MPaG by a pressure regulating valve and transferred to the steam reformer.

実施例1及び実施例2は、脱硫により生成された液体状炭化水素及び気体状炭化水素を移送する導管に上下に分岐した2つの分岐管を設け、これら分岐管で液体状炭化水素及び気体状炭化水素を分離し、各分岐管に設けられた調圧弁でそれぞれ減圧する。減圧後、液体状炭化水素と気体状炭化水素とを図1の調圧弁13以降の配管を通じて再度混合し、水蒸気改質器5に導入する。尚、導管の内径は2.17mmであり、分岐管の内径は導管の2倍である4.35mmである。また、実施例1は、第1実施形態の送給装置1と同様にアップフローで脱硫器に導入するのに対し、実施例2はダウンフローで脱硫器に導入する。   In Example 1 and Example 2, two branch pipes branched up and down are provided in a conduit for transporting liquid hydrocarbons and gaseous hydrocarbons produced by desulfurization, and liquid hydrocarbons and gaseous states are provided in these branch pipes. The hydrocarbon is separated and depressurized by a pressure regulating valve provided in each branch pipe. After decompression, the liquid hydrocarbon and the gaseous hydrocarbon are mixed again through the piping after the pressure regulating valve 13 in FIG. 1 and introduced into the steam reformer 5. The inner diameter of the conduit is 2.17 mm, and the inner diameter of the branch pipe is 4.35 mm, which is twice that of the conduit. Moreover, Example 1 introduce | transduces into a desulfurizer by an upflow similarly to the feeder 1 of 1st Embodiment, In contrast, Example 2 introduce | transduces into a desulfurizer by a downflow.

実施例3は、脱硫により生成された液体状炭化水素及び気体状炭化水素を貯留する貯留部と、該貯留部に貯留された炭化水素の液層に開口端を有する第1導管及び気層に開口端を有する第2導管とを設け、これら第1導管及び第2導管で液体状炭化水素及び気体状炭化水素を分離し、各導管に設けられた調圧弁でそれぞれ減圧する。減圧後、液体状炭化水素と気体状炭化水素とを図3の調圧弁13以降の配管を通じて再度混合し、水蒸気改質器5に導入する。尚、実施例3は、第2実施形態の送給装置1´と同様に2重管構造であって、内側の第1導管の内径は2.17mm、外側の第2導管の内径は4.35mmである。   Example 3 includes a reservoir for storing liquid hydrocarbons and gaseous hydrocarbons generated by desulfurization, and a first conduit and an air layer having an open end in a liquid layer of hydrocarbons stored in the reservoir. A second conduit having an open end is provided, liquid hydrocarbons and gaseous hydrocarbons are separated by the first conduit and the second conduit, and the pressure is reduced by a pressure regulating valve provided in each conduit. After decompression, the liquid hydrocarbon and the gaseous hydrocarbon are mixed again through the piping after the pressure regulating valve 13 in FIG. 3 and introduced into the steam reformer 5. In addition, Example 3 is a double pipe structure similarly to the feeding device 1 ′ of the second embodiment, and the inner diameter of the inner first conduit is 2.17 mm, and the inner diameter of the outer second conduit is 4. 35 mm.

比較例は、脱硫により生成された液体状炭化水素及び気体状炭化水素を気液混合の状態で調圧弁で減圧する。   In the comparative example, liquid hydrocarbons and gaseous hydrocarbons produced by desulfurization are decompressed by a pressure regulating valve in a gas-liquid mixed state.

実施例1,2,3については、調圧弁13で減圧後の液体状炭化水素と気体状炭化水素とが再度混合された直後の流量を、比較例については、前記のとおり脱硫により生成された液体状炭化水素及び気体状炭化水素を気液混合の状態で調圧弁で減圧した直後の流量を、それぞれ測定した。流量測定については、脱硫器および水蒸気改質器の起動開始5時間後からの連続運転途上で各流量を測定した。実施例及び比較例それぞれについて、流量の測定を複数回実施し、複数の測定流量の平均値、各測定流量がその平均値から該平均値の±10%以内に含まれる割合を表1に示す。   For Examples 1, 2, and 3, the flow rate immediately after the liquid hydrocarbon and the gaseous hydrocarbon after being reduced by the pressure regulating valve 13 were mixed again was generated by desulfurization as described above for the comparative example. The flow rates immediately after the liquid hydrocarbon and the gaseous hydrocarbon were depressurized by the pressure regulating valve in a gas-liquid mixed state were measured. Regarding the flow rate measurement, each flow rate was measured during the continuous operation from 5 hours after the start of the desulfurizer and the steam reformer. For each of the examples and comparative examples, the flow rate was measured multiple times, and the average value of the plurality of measured flow rates and the ratio of each measured flow rate within ± 10% of the average value from the average value are shown in Table 1. .

Figure 2008043855
Figure 2008043855

表1から、各測定流量がその平均値から該平均値の±10%以内に含まれる割合が、比較例については20%であるのに対し、実施例では70〜95%と向上しており、即ち、液体状炭化水素及び気体状炭化水素を分離し、それぞれ減圧する実施例1〜3は、気液混合の状態で減圧する比較例に比べて、調圧弁から水蒸気改質器まで流量が安定していることがわかる。   From Table 1, the ratio that each measured flow rate is included within ± 10% of the average value from the average value is 20% for the comparative example, whereas it is improved to 70 to 95% in the example. That is, in Examples 1 to 3, in which liquid hydrocarbons and gaseous hydrocarbons are separated and reduced in pressure, the flow rate from the pressure regulating valve to the steam reformer is higher than that in the comparative example in which pressure is reduced in a gas-liquid mixed state. It turns out that it is stable.

本発明に係る気液混合流動体の送給装置の第1実施形態の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of 1st Embodiment of the supply apparatus of the gas-liquid mixed fluid which concerns on this invention. 気液混合の状態で移送される流動体を示す模式図である。It is a schematic diagram which shows the fluid transferred in the state of gas-liquid mixing. 本発明に係る気液混合流動体の送給装置の第2実施形態の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of 2nd Embodiment of the supply apparatus of the gas-liquid mixed fluid which concerns on this invention. 調圧弁における突沸の発生過程を示す模式図である。It is a schematic diagram which shows the generation | occurrence | production process of bumping in a pressure regulation valve.

符号の説明Explanation of symbols

1 送給装置
2 タンク
3 ポンプ
4 脱硫器
5 水蒸気改質器
11 導管
12a 分岐管
12b 分岐管
13 調圧弁
DESCRIPTION OF SYMBOLS 1 Feeding device 2 Tank 3 Pump 4 Desulfurizer 5 Steam reformer 11 Pipe 12a Branch pipe 12b Branch pipe 13 Pressure regulating valve

Claims (6)

気液混合の状態にある流動体を減圧して次工程に送給する方法であって、
前記流動体を、気体状流動体と液体状流動体とに分離し、
分離された前記気体状流動体及び前記液体状流動体を、別個の配管で移送して、各配管でそれぞれ減圧することを特徴とする気液混合流動体の送給方法。
A method of depressurizing a fluid in a gas-liquid mixed state and feeding it to the next process,
Separating the fluid into a gaseous fluid and a liquid fluid;
A method for feeding a gas-liquid mixed fluid, wherein the separated gaseous fluid and liquid fluid are transferred through separate pipes and depressurized through the pipes.
前記流動体を、気液の比重差で前記気体状流動体と前記液体状流動体とに分離することを特徴とする請求項1に記載の気液混合流動体の送給方法。   The method of feeding a gas-liquid mixed fluid according to claim 1, wherein the fluid is separated into the gaseous fluid and the liquid fluid by a specific gravity difference between the gas and liquid. 前記流動体が脱硫された灯油であり、前記次工程が水蒸気改質であること、を特徴とする請求項1又は請求項2に記載の気液混合流動体の送給方法。   The method for feeding a gas-liquid mixed fluid according to claim 1 or 2, wherein the fluid is desulfurized kerosene, and the next step is steam reforming. 気液混合の状態にある流動体を減圧して次工程に送給する装置であって、
前記流動体を移送する導管と、該導管から上下に分岐した2つの分岐管と、該各分岐管にそれぞれ設けられた調圧弁と、を備えていることを特徴とする気液混合流動体の送給装置。
An apparatus for depressurizing a fluid in a gas-liquid mixed state and feeding it to the next process,
A gas-liquid mixed fluid comprising: a conduit for transferring the fluid; two branch pipes branched vertically from the conduit; and a pressure regulating valve provided in each of the branch pipes. Feeding device.
気液混合の状態にある流動体を減圧して次工程に送給する装置であって、
前記流動体を貯留する貯留部と、該貯留部に貯留した前記流動体の液層に開口端を有する第1導管及び気層に開口端を有する第2導管と、該第1導管及び該第2導管にそれぞれ設けられた調圧弁と、を備えていることを特徴とする気液混合流動体の送給装置。
An apparatus for depressurizing a fluid in a gas-liquid mixed state and feeding it to the next process,
A reservoir for storing the fluid, a first conduit having an open end in the liquid layer of the fluid stored in the reservoir, a second conduit having an open end in the gas layer, the first conduit and the first A gas-liquid mixed fluid feeding device comprising: a pressure regulating valve provided in each of two conduits.
前記流動体が脱硫された灯油であり、前記次工程が水蒸気改質であること、を特徴とする請求項4又は請求項5に記載の気液混合流動体の送給装置。   6. The gas-liquid mixed fluid feeding apparatus according to claim 4, wherein the fluid is desulfurized kerosene, and the next step is steam reforming.
JP2006220349A 2006-08-11 2006-08-11 Gas-liquid mixed fluid feeding device Expired - Fee Related JP5159064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220349A JP5159064B2 (en) 2006-08-11 2006-08-11 Gas-liquid mixed fluid feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220349A JP5159064B2 (en) 2006-08-11 2006-08-11 Gas-liquid mixed fluid feeding device

Publications (2)

Publication Number Publication Date
JP2008043855A true JP2008043855A (en) 2008-02-28
JP5159064B2 JP5159064B2 (en) 2013-03-06

Family

ID=39178102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220349A Expired - Fee Related JP5159064B2 (en) 2006-08-11 2006-08-11 Gas-liquid mixed fluid feeding device

Country Status (1)

Country Link
JP (1) JP5159064B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202469A (en) * 2009-03-05 2010-09-16 Jx Nippon Oil & Energy Corp Desulfurization system
JP2011213559A (en) * 2010-04-01 2011-10-27 Toshiba Corp Reformed gas or hydrogen production system
JP2013516319A (en) * 2010-01-06 2013-05-13 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Liquid dispensing system with gas removal and detection capability
CN112755557A (en) * 2021-02-07 2021-05-07 中国海洋石油集团有限公司 Falling film evaporation device and separation method thereof
CN114029001A (en) * 2021-12-03 2022-02-11 上海镁源动力科技有限公司 Device and method for automatically feeding liquid metal raw materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120104A (en) * 1993-10-27 1995-05-12 Hitachi Ltd Air conditioner
JPH09152192A (en) * 1995-11-29 1997-06-10 Hitachi Ltd Air conditioner
JP2003151608A (en) * 2001-11-15 2003-05-23 Idemitsu Kosan Co Ltd Desulfurization and reforming method for liquid fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120104A (en) * 1993-10-27 1995-05-12 Hitachi Ltd Air conditioner
JPH09152192A (en) * 1995-11-29 1997-06-10 Hitachi Ltd Air conditioner
JP2003151608A (en) * 2001-11-15 2003-05-23 Idemitsu Kosan Co Ltd Desulfurization and reforming method for liquid fuel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202469A (en) * 2009-03-05 2010-09-16 Jx Nippon Oil & Energy Corp Desulfurization system
JP2013516319A (en) * 2010-01-06 2013-05-13 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Liquid dispensing system with gas removal and detection capability
US10676341B2 (en) 2010-01-06 2020-06-09 Entegris, Inc. Liquid dispensing systems with gas removal and sensing capabilities
JP2011213559A (en) * 2010-04-01 2011-10-27 Toshiba Corp Reformed gas or hydrogen production system
CN112755557A (en) * 2021-02-07 2021-05-07 中国海洋石油集团有限公司 Falling film evaporation device and separation method thereof
CN112755557B (en) * 2021-02-07 2024-05-24 中国海洋石油集团有限公司 Falling film evaporation device and separation method thereof
CN114029001A (en) * 2021-12-03 2022-02-11 上海镁源动力科技有限公司 Device and method for automatically feeding liquid metal raw materials
CN114029001B (en) * 2021-12-03 2023-11-24 上海镁源动力科技有限公司 Device and method for automatically feeding liquid metal raw materials

Also Published As

Publication number Publication date
JP5159064B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
US7987877B2 (en) Method for managing storage of gaseous hydrogen
JP4511956B2 (en) FUEL PROCESSING APPARATUS, FUEL PROCESSING METHOD USING THE FUEL PROCESSING APPARATUS, FUEL CELL PROVIDED WITH FUEL PROCESSING APPARATUS, AND METHOD OF SUPPLYING FUEL CELL WITH FUEL PROCESSING APPARATUS
JP5159064B2 (en) Gas-liquid mixed fluid feeding device
JP2009249203A (en) System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell
JP5220755B2 (en) Bubble column type hydrocarbon synthesis reactor and hydrocarbon synthesis reaction system equipped with the same
JP4302372B2 (en) Desulfurizer and desulfurization method
WO2011024652A1 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis reaction method
JP4215539B2 (en) Desulfurizer and desulfurization method
CN102165038B (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method
JP5409598B2 (en) Method for extracting contents from inside of reactor maintained at high temperature and high pressure, and synthesis reaction system for hydrocarbon compounds
JP5129544B2 (en) Reformed raw material manufacturing apparatus and fuel cell system
JP5159059B2 (en) Gas-liquid mixed fluid feeding method and feeding device
US9499453B2 (en) Catalyst filling apparatus of bubble column slurry bed reactor and catalyst filling method of bubble column slurry bed reactor
US7332003B1 (en) Hydrocarbon fuel processing for hydrogen generation
JP3914749B2 (en) Liquid fuel desulfurization and reforming method
JP5869137B2 (en) Non-catalytic hydrogen generation process for delivery to hydrodesulfurization unit and solid oxide fuel cell system combination in auxiliary power unit applications
JP2009138044A (en) Desulfurization method and desulfurization device for hydrocarbon source material, hydrogen gas production method using the desulfurization method, and hydrogen gas production device equipped with the desulfurization device
KR102467476B1 (en) Biogas purification-upgrading and utilization system
JP4209722B2 (en) Hydrocarbon fuel desulfurization equipment
JP5266103B2 (en) Reforming method and reforming system
JP2005060172A (en) Hydrogen production equipment, hydrogen production method, and fuel cell system
JP6306371B2 (en) Hydrogen supply system and hydrogen supply method
JP2015164886A (en) Hydrogen generation device and fuel cell system
JP2010254532A (en) Method for degassing desulfurizer, desulfurization method and reforming system
JP2005093214A (en) Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees