JP2007292529A - Method of evaluating degree of deterioration in polymer material - Google Patents

Method of evaluating degree of deterioration in polymer material Download PDF

Info

Publication number
JP2007292529A
JP2007292529A JP2006118701A JP2006118701A JP2007292529A JP 2007292529 A JP2007292529 A JP 2007292529A JP 2006118701 A JP2006118701 A JP 2006118701A JP 2006118701 A JP2006118701 A JP 2006118701A JP 2007292529 A JP2007292529 A JP 2007292529A
Authority
JP
Japan
Prior art keywords
polymer material
deterioration
degree
amount
carbonyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006118701A
Other languages
Japanese (ja)
Other versions
JP4717700B2 (en
Inventor
Satoru Toyama
悟 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006118701A priority Critical patent/JP4717700B2/en
Publication of JP2007292529A publication Critical patent/JP2007292529A/en
Application granted granted Critical
Publication of JP4717700B2 publication Critical patent/JP4717700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively evaluate a degree of deterioration in a polymer material with high sensitivity, irrespective of a kind and a form of the polymer material. <P>SOLUTION: A carbonyl group 11 is chemically modified by making a reagent 12 reactive with the carbonyl group 11 act selectively on the carbonyl group 11 generated on a surface 101 of the polymer material 10 in accompaniment to the deterioration of the polymer material 10, and a reaction product 13 of the carbonyl group 11 with the polymer material 10 is thereby generated on the surface 101 of the polymer material 10. A compound 141 derived from the chemically modified carbonyl group 11, i.e. the reaction product 13 is quantitatively determined by analyzing the polymer material 10 after the carbonyl group 11 reacts with the polymer material 10, by a pyrolysis gas chromatography, and an amount of the compound 141 is regarded as an amount of the carbonyl group 11 to serve as a basis of determining the deterioration of the polymer material 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高分子材料の劣化度の評価方法に関する。   The present invention relates to a method for evaluating the degree of deterioration of a polymer material.

高分子材料を用いた製品の寿命は、当該製品を構成する高分子材料の劣化度に左右される。このため、高分子材料を用いた製品の寿命を判定するのにあたっては、当該製品を構成する高分子材料の劣化度を定量的に評価する必要がある。   The lifetime of a product using a polymer material depends on the degree of deterioration of the polymer material constituting the product. For this reason, in determining the life of a product using a polymer material, it is necessary to quantitatively evaluate the degree of deterioration of the polymer material constituting the product.

高分子材料の劣化度は、高分子材料の色、硬さ及びぬれ性等の物理的なパラメータの変化で評価することもできるが、製品を構成する高分子材料の絶縁性及び帯電性等のミクロな表面状態の変化が製品特性に影響する分野では、高分子材料の表面の官能基の量で高分子材料の劣化度を評価することが一般的となっている。   The degree of deterioration of a polymer material can be evaluated by changes in physical parameters such as color, hardness, and wettability of the polymer material. In the field where changes in the microscopic surface state affect product characteristics, it is common to evaluate the degree of deterioration of a polymer material by the amount of functional groups on the surface of the polymer material.

なお、高分子材料の劣化度を評価する方法としては、例えば、特許文献1〜3及び非特許文献1に開示されている方法が知られている。   In addition, as a method of evaluating the deterioration degree of a polymeric material, the method currently disclosed by patent documents 1-3 and the nonpatent literature 1, for example is known.

特許文献1では、ポリアミドの劣化に伴い生成した末端アミノ基をアルデヒドで修飾し、修飾された末端アミノ基の量を可視紫外吸光度で特定することにより、ポリアミドの劣化度を評価している。この方法は、ポリアミドの分解に起因する劣化に係る劣化度の評価にのみ適用することができる。   In patent document 1, the terminal amino group produced | generated with deterioration of a polyamide is modified with an aldehyde, and the deterioration degree of a polyamide is evaluated by specifying the amount of the modified terminal amino group by visible ultraviolet light absorbency. This method can be applied only to the evaluation of the degree of deterioration related to the deterioration caused by the decomposition of the polyamide.

特許文献2では、架橋ポリエチレンの劣化に伴う蛍光スペクトルの変化により、架橋ポリエチレンの劣化度を評価している。この方法は、架橋ポリエチレンの劣化度の評価にのみ適用することができる。   In patent document 2, the deterioration degree of crosslinked polyethylene is evaluated by the change of the fluorescence spectrum accompanying deterioration of crosslinked polyethylene. This method can be applied only to the evaluation of the degree of deterioration of the crosslinked polyethylene.

特許文献3では、合成樹脂製シートの表面張力により、合成樹脂製シートの劣化度を評価している。この方法では、表面が汚染されておらず、表面張力を評価可能な平坦面が存在する場合にのみ、劣化度を適切に評価することができる。   In patent document 3, the deterioration degree of a synthetic resin sheet is evaluated by the surface tension of the synthetic resin sheet. In this method, the degree of deterioration can be appropriately evaluated only when the surface is not contaminated and there is a flat surface whose surface tension can be evaluated.

非特許文献1には、ポリエチレンフィルムの表面に生成した官能基をSEWS(Surface Electromagnetic Wave Spectroscopy)で分析した例が開示されている。この方法は、感度が不十分であり、定量的な評価にも向いていない。   Non-Patent Document 1 discloses an example in which a functional group generated on the surface of a polyethylene film is analyzed by SEWS (Surface Electromagnetic Wave Spectroscopy). This method has insufficient sensitivity and is not suitable for quantitative evaluation.

これらの技術の他、高分子材料の劣化度の評価、特に、紙の劣化度の評価にあたって、劣化に伴って生成するカルボキシル基を一般的な中和滴定で定量することも行われているが、この方法では、空気中の二酸化炭素が妨害となるため、微小な劣化を評価する場合には、中和滴定時に空気を徹底的に排除しなければ、十分な精度を得ることができない。   In addition to these techniques, in the evaluation of the degree of deterioration of polymer materials, especially the evaluation of the degree of deterioration of paper, the carboxyl groups produced with the deterioration are also quantified by general neutralization titration. In this method, since carbon dioxide in the air becomes an obstacle, in the case of evaluating minute deterioration, sufficient accuracy cannot be obtained unless air is thoroughly eliminated during neutralization titration.

特開2005−17041号公報JP 2005-17041 A 特開2000−241351号公報JP 2000-241351 A 特開2003−254893号公報JP 2003-254893 A 「第18回表面科学基礎講座」、日本表面科学会、1994年、p.48"18th Surface Science Basic Course", Japan Surface Science Society, 1994, p.48

すなわち、従来の技術には、劣化度を評価することができる高分子材料の種類や形態が著しく制限されたり、劣化度を高感度で定量的に評価することができないという問題がある。   That is, the conventional techniques have a problem that the type and form of the polymer material that can evaluate the deterioration degree are remarkably limited, or the deterioration degree cannot be quantitatively evaluated with high sensitivity.

本発明は、これらの問題を解決するためになされたもので、高分子材料の種類や形態によらず、高分子材料の劣化度を高感度で定量的に評価することができるようにすることを目的とする。   The present invention has been made to solve these problems, and is intended to enable highly sensitive and quantitative evaluation of the degree of deterioration of a polymer material regardless of the type and form of the polymer material. With the goal.

上記課題を解決するため、請求項1の発明は、高分子材料の劣化度の評価方法であって、前記高分子材料の劣化に伴い前記高分子材料の表面に生成する官能基を化学的に修飾する修飾工程と、前記修飾工程を経た前記高分子材料を熱分解ガスクロマトグラフ法で分析し、化学的に修飾された前記官能基に由来する第1物質を定量する分析工程と、を備え、前記分析工程で定量された前記第1物質の量を、前記劣化度の決定の基礎とする。   In order to solve the above-mentioned problems, the invention of claim 1 is a method for evaluating the degree of deterioration of a polymer material, wherein a functional group generated on the surface of the polymer material as the polymer material deteriorates is chemically treated. A modification step for modifying, and an analysis step for analyzing the polymer material that has undergone the modification step by pyrolysis gas chromatography and quantifying the first substance derived from the chemically modified functional group, The amount of the first substance quantified in the analysis step is used as a basis for determining the degree of deterioration.

請求項1ないし請求項4の発明によれば、高分子材料の劣化に伴って高分子材料の表面に生成した官能基を高感度の熱分解ガスクロマトグラフ法で定量分析するので、高分子材料の種類や形態によらず、劣化度を高感度で定量的に評価することができる。   According to the first to fourth aspects of the present invention, the functional group generated on the surface of the polymer material as the polymer material deteriorates is quantitatively analyzed by a highly sensitive pyrolysis gas chromatograph method. Regardless of the type or form, the degree of deterioration can be quantitatively evaluated with high sensitivity.

<実施形態1>
本発明の望ましい実施形態1では、空気中の酸素による高分子材料の劣化に係る劣化度を、高分子材料の表面に生成した官能基であるカルボニル基の量を特定することにより評価している。実施形態1に係る劣化度の評価方法は、劣化に伴い表面にカルボニル基が生成する有機高分子化合物であれば、天然高分子化合物または、縮合重合体、開環重合体及び付加重合体などの合成高分子化合物のいずれであっても適用可能であり、特定の元素若しくは原子団又は化学構造の有無に関わらず適用可能である。さらに、実施形態1に係る劣化度の評価方法は、高分子材料の形態、例えば、形状や繊維であるか否かによらず適用可能である。
<Embodiment 1>
In desirable Embodiment 1 of this invention, the degradation degree which concerns on degradation of the polymeric material by oxygen in air is evaluated by specifying the quantity of the carbonyl group which is the functional group produced | generated on the surface of the polymeric material. . The degradation degree evaluation method according to Embodiment 1 is a natural polymer compound, a condensation polymer, a ring-opening polymer, an addition polymer, or the like as long as it is an organic polymer compound in which a carbonyl group is generated on the surface with degradation. Any synthetic polymer compound can be applied, and can be applied regardless of the presence or absence of a specific element or atomic group or chemical structure. Furthermore, the degradation degree evaluation method according to the first embodiment can be applied regardless of the form of the polymer material, for example, whether it is a shape or a fiber.

図1は、本発明の実施形態1に係る高分子材料10の劣化度の評価方法の原理を説明する図である。   FIG. 1 is a diagram for explaining the principle of a method for evaluating the degree of deterioration of a polymer material 10 according to Embodiment 1 of the present invention.

図1に示すように、実施形態1では、高分子材料10の劣化に伴い高分子材料10の表面101に生成したカルボニル基11に、カルボニル基11との反応性を有する試薬12を選択的に作用させることにより、カルボニル基11を化学的に修飾し、カルボニル基11と試薬12との反応生成物13を高分子材料10の表面101に生成している。ここで、「選択的」とは、試薬12を、高分子材料10の劣化に伴い生成するカルボニル基11と反応させる一方で、高分子材料10の劣化とは無関係の残余の部分とは反応させないことを意味している。   As shown in FIG. 1, in Embodiment 1, a reagent 12 having reactivity with a carbonyl group 11 is selectively added to a carbonyl group 11 generated on the surface 101 of the polymer material 10 as the polymer material 10 deteriorates. By acting, the carbonyl group 11 is chemically modified, and a reaction product 13 of the carbonyl group 11 and the reagent 12 is generated on the surface 101 of the polymer material 10. Here, “selective” means that the reagent 12 is allowed to react with the carbonyl group 11 that is generated as the polymer material 10 deteriorates, while the reagent 12 is not reacted with the remaining portion that is unrelated to the deterioration of the polymer material 10. It means that.

さらに、実施形態1では、カルボニル基11と試薬12とを反応させた後の高分子材料10を熱分解ガスクロマトグラフ法で分析することにより、熱分解生成物14のうち、化学的に修飾されたカルボニル基11、すなわち、反応生成物13に由来する化合物141を定量し、化合物141の量をカルボニル基11の量とみなして、高分子材料10の劣化度の決定の基礎としている。   Furthermore, in Embodiment 1, the polymer material 10 after the reaction of the carbonyl group 11 and the reagent 12 is analyzed by a pyrolysis gas chromatographic method, whereby the pyrolysis product 14 is chemically modified. The amount of the compound 141 derived from the carbonyl group 11, that is, the compound 141 derived from the reaction product 13 is quantified, and the amount of the compound 141 is regarded as the amount of the carbonyl group 11.

なお、熱分解生成物14のうち、高分子材料10に由来するモノマー142も定量するとともに、モノマー142の量で化合物141の量を規格化し、モノマー142の量と化合物141の量との比を、高分子材料10の劣化度の決定の基礎とすれば、高分子材料10の重量の測定誤差や熱分解の進行度のバラツキの影響を受けることなく、高分子材料10の劣化度を高精度で評価することができる。   In addition, among the pyrolysis products 14, the monomer 142 derived from the polymer material 10 is also quantified, the amount of the compound 141 is normalized by the amount of the monomer 142, and the ratio between the amount of the monomer 142 and the amount of the compound 141 is determined. As a basis for determining the degree of deterioration of the polymer material 10, the degree of deterioration of the polymer material 10 is highly accurate without being affected by measurement errors in the weight of the polymer material 10 and variations in the degree of thermal decomposition. Can be evaluated.

カルボニル基11との反応性を有する試薬12としては、例えば、ヒドラジン類(ヒドラジン及びその置換体)を挙げることができ、より具体的には、ペンタフルオロフェニルヒドラジンを挙げることができる。ヒドラジン類を試薬12としてカルボニル基11に作用させた場合、カルボニル基11は化学的に修飾され、反応生成物13としてヒドラゾンが生成される。なお、ペンタフルオロフェニルヒドラジンをカルボニル基11に作用させる場合、ペンタフルオロフェニルヒドラジンをメタノール等の有機溶媒に溶解させた溶液に高分子材料10を浸漬するようにすればよい。   Examples of the reagent 12 having reactivity with the carbonyl group 11 include hydrazines (hydrazine and substituted products thereof), and more specifically, pentafluorophenylhydrazine. When hydrazines are allowed to act on the carbonyl group 11 as the reagent 12, the carbonyl group 11 is chemically modified, and a hydrazone is generated as the reaction product 13. When pentafluorophenylhydrazine is allowed to act on the carbonyl group 11, the polymer material 10 may be immersed in a solution in which pentafluorophenylhydrazine is dissolved in an organic solvent such as methanol.

<実施形態2>
本発明の望ましい実施形態2では、空気中の酸素による高分子材料の劣化に係る劣化度を、高分子材料の表面に生成した官能基である水酸基の量を特定することにより評価している。実施形態2に係る劣化度の評価方法は、劣化に伴い表面に水酸基が生成する有機高分子化合物であれば、縮合重合体、開環重合体及び付加重合体のいずれであっても適用可能であり、特定の元素若しくは原子団又は化学結合の有無に関わらず適用可能である。さらに、実施形態2に係る劣化度の評価方法は、高分子材料の形態、例えば、形状や繊維であるか否かによらず適用可能である。
<Embodiment 2>
In the preferred embodiment 2 of the present invention, the degree of deterioration associated with deterioration of the polymer material due to oxygen in the air is evaluated by specifying the amount of hydroxyl groups that are functional groups generated on the surface of the polymer material. The degradation degree evaluation method according to Embodiment 2 is applicable to any of a condensation polymer, a ring-opening polymer, and an addition polymer as long as it is an organic polymer compound in which a hydroxyl group is generated on the surface with degradation. Yes, it can be applied with or without specific elements or atomic groups or chemical bonds. Furthermore, the degradation degree evaluation method according to the second embodiment can be applied regardless of the form of the polymer material, for example, whether it is a shape or a fiber.

図2は、本発明の実施形態2に係る高分子材料20の劣化度の評価方法の原理を説明する図である。   FIG. 2 is a diagram for explaining the principle of the evaluation method of the degree of deterioration of the polymer material 20 according to the second embodiment of the present invention.

実施形態2では、高分子材料20の劣化に伴い高分子材料20の表面201に生成した水酸基21に、水酸基21との反応性を有する試薬22を選択的に作用させることにより、水酸基21を化学的に修飾し、水酸基21と試薬22との反応生成物23を高分子材料20の表面201に生成している。ここで、「選択的」とは、試薬22を、高分子材料20の劣化に伴い生成した水酸基21と反応させる一方で、高分子材料20の劣化とは無関係の残余の部分とは反応させないことを意味している。   In the second embodiment, the hydroxyl group 21 is chemically reacted with the hydroxyl group 21 generated on the surface 201 of the polymer material 20 with the degradation of the polymer material 20 by selectively reacting the reagent 22 having reactivity with the hydroxyl group 21. Thus, the reaction product 23 of the hydroxyl group 21 and the reagent 22 is generated on the surface 201 of the polymer material 20. Here, “selective” means that the reagent 22 is allowed to react with the hydroxyl group 21 generated with the deterioration of the polymer material 20 while not reacting with the remaining portion unrelated to the deterioration of the polymer material 20. Means.

さらに、実施形態2では、水酸基21と試薬22とを反応させた後の高分子材料20を熱分解ガスクロマトグラフ法で分析することにより、熱分解生成物24のうち、化学的に修飾された水酸基21、すなわち反応生成物23に由来する化合物241を定量し、化合物241の量を水酸基21の量とみなして、高分子材料20の劣化度の決定の基礎としている。   Furthermore, in Embodiment 2, the polymer material 20 after the reaction of the hydroxyl group 21 and the reagent 22 is analyzed by a pyrolysis gas chromatographic method, so that a chemically modified hydroxyl group in the pyrolysis product 24 is obtained. 21, that is, the compound 241 derived from the reaction product 23 is quantified, and the amount of the compound 241 is regarded as the amount of the hydroxyl group 21 and is used as a basis for determining the degree of deterioration of the polymer material 20.

なお、熱分解生成物24のうち、高分子材料20に由来するモノマー242も定量するとともに、モノマー242の量で化合物241の量を規格化し、モノマー242の量と化合物241の量との比を、高分子材料20の劣化度の決定の基礎とすれば、高分子材料20の重量の測定誤差や熱分解の進行度のバラツキの影響を受けることなく、高分子材料20の劣化度を高精度で評価することができる。   In addition, among the thermal decomposition products 24, the monomer 242 derived from the polymer material 20 is also quantified, the amount of the compound 241 is normalized by the amount of the monomer 242, and the ratio between the amount of the monomer 242 and the amount of the compound 241 is determined. As a basis for determining the degree of deterioration of the polymer material 20, the degree of deterioration of the polymer material 20 is highly accurate without being affected by measurement errors in the weight of the polymer material 20 and variations in the degree of thermal decomposition. Can be evaluated.

水酸基21との反応性を有する試薬22としては、例えば、酸無水物や酸塩化物を挙げることができ、より具体的には、無水トリフルオロ酢酸を挙げることができる。酸無水物や酸塩化物を水酸基21に作用させた場合、水酸基21は化学的に修飾(エステル化)され、反応生成物23としてエステルが生成される。なお、無水トリフルオロ酢酸をカルボニル基に作用させる場合、無水トリフルオロ酢酸をアセトニトリル等の有機溶媒に溶解させた溶液に、劣化度の評価対象となる高分子材料20を浸漬するようにすればよい。   Examples of the reagent 22 having reactivity with the hydroxyl group 21 include acid anhydrides and acid chlorides, and more specifically, trifluoroacetic anhydride. When an acid anhydride or acid chloride is allowed to act on the hydroxyl group 21, the hydroxyl group 21 is chemically modified (esterified), and an ester is generated as the reaction product 23. In the case where trifluoroacetic anhydride is allowed to act on the carbonyl group, the polymer material 20 to be evaluated for deterioration degree may be immersed in a solution obtained by dissolving trifluoroacetic anhydride in an organic solvent such as acetonitrile. .

<その他>
上述の説明では、カルボニル基にヒドラジン類を作用させることにより、カルボニル基を化学的に修飾する例や、水酸基に酸無水物や酸塩化物を作用させることにより、水酸基を化学的に修飾する例を示したが、化学的に修飾される官能基と修飾に用いる試薬との組み合わせはこれらに制限されない。例えば、HMDS(Hexamethyldisilazane)又は塩化アセチル等の試薬によって、水酸基をシリル化又はアシル化してもよいし、塩酸メタノール混合液又はHMDS等の試薬によって、カルボキシル基をエステル化又はシリル化してもよい。
<Others>
In the above description, examples of chemically modifying the carbonyl group by acting hydrazines on the carbonyl group, and examples of chemically modifying the hydroxyl group by acting an acid anhydride or acid chloride on the hydroxyl group However, the combination of the chemically modified functional group and the reagent used for the modification is not limited thereto. For example, the hydroxyl group may be silylated or acylated with a reagent such as HMDS (Hexamethyldisilazane) or acetyl chloride, or the carboxyl group may be esterified or silylated with a reagent such as hydrochloric acid methanol mixture or HMDS.

<実施例1>
実施例1では、空気中で加熱劣化させたセルロースの劣化度を、実施形態1で説明した方法で評価した例について説明する。
<Example 1>
In Example 1, an example in which the degree of deterioration of cellulose that has been heat-degraded in air is evaluated by the method described in Embodiment 1 will be described.

最初に、劣化度が異なる複数のセルロースを準備するとともに、ペンタフルオロフェニルヒドラジンのメタノール溶液(以下では、単に「メタノール溶液」と略記する)を準備した。劣化度が異なる複数のセルロースは、新品のセルロースを、加熱温度や加熱日数を変更しつつ空気中で加熱劣化させることにより得た。また、メタノール溶液は、メタノール10ccに対して、市販のペンタフルオロフェニルヒドラジン200mgを溶解させ、塩酸を数滴滴下することにより調製した。   First, a plurality of celluloses having different degrees of deterioration were prepared, and a methanol solution of pentafluorophenylhydrazine (hereinafter simply abbreviated as “methanol solution”) was prepared. A plurality of celluloses having different degrees of deterioration were obtained by heat-degrading new cellulose in the air while changing the heating temperature and the number of heating days. The methanol solution was prepared by dissolving 200 mg of commercially available pentafluorophenylhydrazine in 10 cc of methanol and dropping a few drops of hydrochloric acid.

続いて、セルロースをメタノール溶液に浸漬し、セルロースの表面のカルボニル基とペンタフルオロフェニルヒドラジンとを反応させ、ヒドラゾン化合物を生成した。この反応は、一般的には、室温で数時間以内に完了するが、セルロースが繊維状となっている場合には、メタノール溶液を50℃まで加温して繊維内部の反応性を高めることにより、より確実に反応を完了させることが望ましい。   Subsequently, the cellulose was immersed in a methanol solution, and the carbonyl group on the surface of the cellulose was reacted with pentafluorophenylhydrazine to produce a hydrazone compound. This reaction is generally completed within a few hours at room temperature, but when cellulose is in a fibrous form, the methanol solution is heated to 50 ° C. to increase the reactivity inside the fiber. It is desirable to complete the reaction more reliably.

さらに続いて、セルロースに付着したメタノール溶液をメタノールで洗浄し、未反応のペンタフルオロフェニルヒドラジンを除去した。セルロースが繊維状となっている場合には、超音波洗浄により、ペンタフルオロフェニルヒドラジンを確実に除去することが望ましい。   Subsequently, the methanol solution adhering to the cellulose was washed with methanol to remove unreacted pentafluorophenylhydrazine. When cellulose is in a fibrous form, it is desirable to reliably remove pentafluorophenylhydrazine by ultrasonic cleaning.

そして、洗浄が完了したセルロースからメタノールを蒸発させ、セルロースを乾燥させた。セルロースの乾燥は、メタノールの沸点付近の温度で行うことが望ましい。   And methanol was evaporated from the cellulose after washing, and the cellulose was dried. It is desirable to dry the cellulose at a temperature near the boiling point of methanol.

このようにして得られたセルロースから、数100μgの小片を切り取り、熱分解ガスクロマトグラフ法による分析のための試料とした。なお、熱分解ガスクロマトグラフ法における熱分解を均一に行うためには、当該小片の形状は、可能な限り薄いことが望ましい。   Several hundred μg of small pieces were cut out from the cellulose thus obtained and used as samples for analysis by pyrolysis gas chromatography. In addition, in order to perform the thermal decomposition in the pyrolysis gas chromatograph method uniformly, it is desirable that the shape of the small piece is as thin as possible.

次に、市販の熱分解ガスクロマトグラフ装置の熱分解炉に試料を導入して600℃で熱分解し、発生した熱分解ガス(熱分解生成物)を、熱分解炉と細管で直結されたガスクロマトグラフ装置に導いた。そして、ガスクロマトグラフ装置で得られたクロマトグラムを解析して、ヒドラゾン化合物に由来するペンタフルオロフェニルヒドラジンを定量した。このようにして定量されたペンタフルオロフェニルヒドラジンの量、すなわち、セルロースの表面のカルボニル基の量の、高分子材料の加熱日数に対する変化を加熱温度ごとに図3のグラフに示す。なお、図3においては、カルボニル基の量は、セルロースに由来するモノマーの量で規格化されている(セルロースに由来するモノマーの量に比例する数値で除されている)とともに、新品の高分子材料において「1」となるように規格化されている。   Next, a sample is introduced into a pyrolysis furnace of a commercially available pyrolysis gas chromatograph, pyrolyzed at 600 ° C., and the generated pyrolysis gas (pyrolysis product) is directly connected to the pyrolysis furnace by a narrow tube. Led to tomograph equipment. And the chromatogram obtained by the gas chromatograph apparatus was analyzed, and the pentafluorophenyl hydrazine derived from a hydrazone compound was quantified. The change of the amount of pentafluorophenylhydrazine quantified in this way, that is, the amount of carbonyl groups on the surface of cellulose, with respect to the heating days of the polymer material is shown in the graph of FIG. 3 for each heating temperature. In FIG. 3, the amount of carbonyl groups is normalized by the amount of monomers derived from cellulose (divided by a value proportional to the amount of monomers derived from cellulose), and a new polymer. The material is standardized to be “1”.

図3に示すように、実施例1では、加熱温度が高くなるにつれて、カルボニル基の量が増加するとともに、加熱日数が長くなるにつれて、カルボニル基の量が増加しており、実施例1の方法で特定したカルボニル基の量は、高分子材料の劣化度を示す指標値として適切であることがわかる。   As shown in FIG. 3, in Example 1, the amount of carbonyl groups increased as the heating temperature increased, and the amount of carbonyl groups increased as the number of heating days increased. It can be seen that the amount of the carbonyl group specified in (1) is appropriate as an index value indicating the degree of deterioration of the polymer material.

<実施例2>
実施例2では、空気中で加熱劣化させたセルロースの劣化度を、実施形態1で説明した方法で評価した例について説明する。
<Example 2>
In Example 2, an example will be described in which the degradation degree of cellulose that has been heat-degraded in air is evaluated by the method described in the first embodiment.

最初に、165℃で3日かけて新品のセルロースを空気中で加熱劣化させることにより、同じ劣化度の複数のセルロースを準備した。   First, a plurality of celluloses having the same degree of deterioration were prepared by heat-deteriorating new cellulose in air at 165 ° C. for 3 days.

このようなセルロースの劣化度を実施例1と同様の手順で評価した結果を図4に示す。図4は、定量されたペンタフルオロフェニルヒドラジンの量、すなわち、セルロースの表面のカルボニル基の量と熱分解炉に導入した試料の重量との関係を示すグラフとなっているが、当該グラフには、カルボニル基の量を、セルロースに由来するモノマーの量で規格化した(セルロースに由来するモノマーの量に比例する数値で除された)場合と規格化していない場合とが図示されている。   FIG. 4 shows the results of evaluating the degree of deterioration of cellulose in the same procedure as in Example 1. FIG. 4 is a graph showing the relationship between the quantified amount of pentafluorophenylhydrazine, that is, the amount of carbonyl groups on the surface of cellulose and the weight of the sample introduced into the pyrolysis furnace. The case where the amount of the carbonyl group is normalized by the amount of the monomer derived from cellulose (divided by a numerical value proportional to the amount of the monomer derived from cellulose) and the case where it is not normalized are shown.

図4に示すように、セルロースに由来するモノマーの量で規格化されている場合、カルボニル基の量と熱分解炉に導入した試料の重量とは略比例しているが、規格化されていない場合、比例関係からの逸脱が大きくなっている。このことは、試料の重量が変化したり熱分解の進行度がばらついたりした場合、モノマーの量とカルボニル基の量とが同期して増減するため、モノマーの量でカルボニル基の量を規格化すれば、試料の重量の測定誤差や熱分解の進行度のバラツキの影響を受けることなく、セルロースの劣化度を高精度で評価することができることを意味している。   As shown in FIG. 4, when normalized with the amount of monomer derived from cellulose, the amount of carbonyl groups and the weight of the sample introduced into the pyrolysis furnace are approximately proportional, but are not normalized. In this case, the deviation from the proportional relationship is large. This means that when the weight of the sample changes or the degree of thermal decomposition varies, the amount of monomer and the amount of carbonyl groups increase or decrease synchronously, so the amount of carbonyl groups is normalized by the amount of monomer. This means that the degree of degradation of cellulose can be evaluated with high accuracy without being affected by measurement errors in the weight of the sample and variations in the degree of progress of thermal decomposition.

<実施例3>
実施例3では、空気中で加熱劣化させたポリエーテルの劣化度を、実施形態2で説明した方法で評価した例について説明する。
<Example 3>
In Example 3, an example will be described in which the degree of deterioration of a polyether that has been heat-degraded in air is evaluated by the method described in the second embodiment.

最初に、劣化度が異なる複数のポリエーテルを準備するとともに、無水トリフルオロ酢酸のアセトニトリル溶液(以下では、単に「アセトニトリル溶液」と略記する)を準備した。劣化度が異なる複数の高分子材料は、新品のポリエーテルを、加熱温度や加熱時間を変更しつつ空気中で加熱劣化させることにより得た。また、アセトニトリル溶液は、市販のアセトニトリルと無水トリフルオロ酢酸とを1:2の割合で混合することにより調製した。   First, a plurality of polyethers having different degrees of deterioration were prepared, and an acetonitrile solution of trifluoroacetic anhydride (hereinafter simply referred to as “acetonitrile solution”) was prepared. A plurality of polymer materials having different degrees of deterioration were obtained by heat-deteriorating new polyethers in air while changing the heating temperature and heating time. The acetonitrile solution was prepared by mixing commercially available acetonitrile and trifluoroacetic anhydride in a ratio of 1: 2.

続いて、準備したポリエーテルをアセトニトリル溶液に浸漬し、ポリエーテルの表面の水酸基と無水トリフルオロ酢酸とを反応させ、エステル化合物を生成した。この反応は、一般的には、室温で数時間以内に完了するが、ポリエーテルが繊維状となっている場合には、アセトニトリル溶液を50℃まで加温して繊維内部の反応性を高めることにより、より確実に反応を完了させることが望ましい。   Subsequently, the prepared polyether was immersed in an acetonitrile solution, and a hydroxyl group on the surface of the polyether was reacted with trifluoroacetic anhydride to produce an ester compound. This reaction is generally completed within a few hours at room temperature, but if the polyether is fibrous, the acetonitrile solution is heated to 50 ° C. to increase the reactivity inside the fiber. Therefore, it is desirable to complete the reaction more reliably.

さらに続いて、ポリエーテルに付着したアセトニトリル溶液をアセトニトリルで洗浄し、未反応の無水トリフルオロ酢酸を除去した。ポリエーテルが繊維状となっている場合には、超音波洗浄により、無水トリフルオロ酢酸を確実に除去することが望ましい。   Subsequently, the acetonitrile solution adhered to the polyether was washed with acetonitrile to remove unreacted trifluoroacetic anhydride. When the polyether is in a fibrous form, it is desirable to reliably remove trifluoroacetic anhydride by ultrasonic cleaning.

そして、洗浄が完了したポリエーテルからアセトニトリルを蒸発させ、ポリエーテルを乾燥させた。ポリエーテルの乾燥は、アセトニトリルの沸点付近の温度で行うことが望ましい。   Then, acetonitrile was evaporated from the washed polyether, and the polyether was dried. Desirably, the polyether is dried at a temperature near the boiling point of acetonitrile.

このようにして得られたポリエーテルから、数100μgの小片を切り取り、熱分解ガスクロマトグラフ法による分析のための試料とした。なお、熱分解ガスクロマトグラフ法における熱分解を均一に行うためには、当該小片の形状は、可能な限り薄いことが望ましい。   A few hundred μg of small pieces were cut out from the polyether thus obtained and used as samples for analysis by pyrolysis gas chromatography. In addition, in order to perform the thermal decomposition in the pyrolysis gas chromatograph method uniformly, it is desirable that the shape of the small piece is as thin as possible.

次に、市販の熱分解ガスクロマトグラフ装置の熱分解炉に試料を導入して600℃で熱分解し、発生した熱分解ガス(熱分解生成物)を、熱分解炉と細管で直結されたガスクロマトグラフ装置に導いた。そして、ガスクロマトグラフ装置で得られたクロマトグラムを解析して、エステル化合物に由来するトリフルオロ酢酸を定量した。このようにして定量されたトリフルオロ酢酸の量、すなわち、ポリエーテルの表面の水酸基の量の、ポリエーテルの加熱時間に対する変化を加熱温度ごとに図5のグラフに示す。なお、図5においては、水酸基の量は、ポリエーテルに由来するモノマーの量で規格化されている(ポリエーテルに由来するモノマーの量に比例する数値で除されている)とともに、新品のポリエーテルにおいて「1」となるように規格化されている。   Next, a sample is introduced into a pyrolysis furnace of a commercially available pyrolysis gas chromatograph, pyrolyzed at 600 ° C., and the generated pyrolysis gas (pyrolysis product) is directly connected to the pyrolysis furnace by a narrow tube. Led to tomograph equipment. And the chromatogram obtained with the gas chromatograph apparatus was analyzed, and the trifluoroacetic acid derived from an ester compound was quantified. The change in the amount of trifluoroacetic acid quantified in this way, that is, the amount of hydroxyl group on the surface of the polyether, with respect to the heating time of the polyether is shown in the graph of FIG. 5 for each heating temperature. In FIG. 5, the amount of hydroxyl groups is normalized by the amount of monomers derived from polyether (divided by a value proportional to the amount of monomers derived from polyether), and a new poly It is standardized to be “1” in ether.

図5に示すように、実施例3では、加熱温度が高くなるにつれて、水酸基の量が増加するとともに、加熱時間が長くなるにつれて、水酸基の量が増加しており、実施例3の方法で特定した水酸基の量は、ポリエーテルの劣化度を示す指標として適切であることがわかる。   As shown in FIG. 5, in Example 3, the amount of hydroxyl groups increases as the heating temperature increases, and the amount of hydroxyl groups increases as the heating time increases. It can be seen that the amount of hydroxyl group thus obtained is appropriate as an index indicating the degree of deterioration of the polyether.

本発明の望ましい実施形態1に係る高分子材料10の劣化度の評価方法の原理を説明する図である。It is a figure explaining the principle of the evaluation method of the deterioration degree of the polymeric material 10 which concerns on desirable Embodiment 1 of this invention. 本発明の望ましい実施形態2に係る高分子材料20の劣化度の評価方法の原理を説明する図である。It is a figure explaining the principle of the evaluation method of the deterioration degree of the polymeric material 20 which concerns on desirable Embodiment 2 of this invention. セルロースの表面のカルボニル基の量の、高分子材料の加熱日数に対する変化を加熱温度ごとに示す図である。It is a figure which shows the change with respect to the heating days of a polymeric material for every heating temperature of the quantity of the carbonyl group on the surface of a cellulose. セルロースの表面のカルボニル基の量と熱分解炉に導入した試料の重量との関係を示す図である。It is a figure which shows the relationship between the quantity of the carbonyl group on the surface of a cellulose, and the weight of the sample introduce | transduced into the pyrolysis furnace. ポリエーテルの表面の水酸基の量の、ポリエーテルの加熱時間に対する変化を加熱温度ごとに示す図である。It is a figure which shows the change with respect to the heating time of the polyether for the amount of hydroxyl groups of the surface of polyether for every heating temperature.

符号の説明Explanation of symbols

10,20 高分子材料、11 カルボニル基、21 水酸基、12,22 試薬、13,23 反応生成物、14,24 熱分解生成物。
10,20 Polymer material, 11 Carbonyl group, 21 Hydroxyl group, 12,22 Reagent, 13,23 Reaction product, 14,24 Thermal decomposition product.

Claims (4)

高分子材料の劣化度の評価方法であって、
前記高分子材料の劣化に伴い前記高分子材料の表面に生成する官能基を化学的に修飾する修飾工程と、
前記修飾工程を経た前記高分子材料を熱分解ガスクロマトグラフ法で分析し、化学的に修飾された前記官能基に由来する第1物質を定量する分析工程と、
を備え、
前記分析工程で定量された前記第1物質の量を、前記劣化度の決定の基礎とすることを特徴とする高分子材料の劣化度の評価方法。
A method for evaluating the degree of deterioration of a polymer material,
A modification step of chemically modifying a functional group generated on the surface of the polymer material as the polymer material deteriorates;
Analyzing the polymer material having undergone the modification step by pyrolysis gas chromatography, and analyzing the first substance derived from the chemically modified functional group;
With
A method for evaluating the degree of deterioration of a polymer material, wherein the amount of the first substance quantified in the analysis step is used as a basis for determining the degree of deterioration.
請求項1に記載の高分子材料の劣化度の評価方法において、
前記高分子材料に由来する第2物質を前記分析工程で定量するとともに、
前記分析工程で定量された前記第1物質の量と前記第2物質の量との比を、前記劣化度の決定の基礎とすることを特徴とする高分子材料の劣化度の評価方法。
In the evaluation method of the deterioration degree of the polymeric material of Claim 1,
While quantifying the second substance derived from the polymer material in the analysis step,
A method for evaluating the degree of deterioration of a polymer material, wherein a ratio between the amount of the first substance and the amount of the second substance determined in the analysis step is a basis for determining the degree of deterioration.
請求項2に記載の高分子材料の劣化度の評価方法において、
前記第2物質の量で規格化された前記第1物質の量を前記劣化度を示す指標値とすることを特徴とする高分子材料の劣化度の評価方法。
In the evaluation method of the deterioration degree of the polymeric material of Claim 2,
A method for evaluating the degree of deterioration of a polymer material, wherein the amount of the first substance normalized by the amount of the second substance is used as an index value indicating the degree of deterioration.
請求項1ないし請求項3のいずれかに記載の高分子材料の劣化度の評価方法において、
前記第2物質は、前記高分子材料を構成するモノマーであることを特徴とする高分子材料の劣化度の評価方法。
In the evaluation method of the deterioration degree of the polymeric material in any one of Claims 1 thru | or 3,
The second material is a monomer constituting the polymer material, and the degradation method of the polymer material is characterized.
JP2006118701A 2006-04-24 2006-04-24 Evaluation method of degradation degree of polymer materials Expired - Fee Related JP4717700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118701A JP4717700B2 (en) 2006-04-24 2006-04-24 Evaluation method of degradation degree of polymer materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118701A JP4717700B2 (en) 2006-04-24 2006-04-24 Evaluation method of degradation degree of polymer materials

Publications (2)

Publication Number Publication Date
JP2007292529A true JP2007292529A (en) 2007-11-08
JP4717700B2 JP4717700B2 (en) 2011-07-06

Family

ID=38763282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118701A Expired - Fee Related JP4717700B2 (en) 2006-04-24 2006-04-24 Evaluation method of degradation degree of polymer materials

Country Status (1)

Country Link
JP (1) JP4717700B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180520A (en) * 2008-01-29 2009-08-13 Polyplastics Co Creep rupture lifetime prediction method of polymeric material in organic liquid dipping state
JP2009250610A (en) * 2008-04-01 2009-10-29 Sumitomo Chemical Co Ltd Analyzing method of compound having ion exchange group protected by protective group
JP2011149844A (en) * 2010-01-22 2011-08-04 Asahi Kasei Homes Co Method for evaluating degree of deterioration of polyether-containing polymer
JP2011149843A (en) * 2010-01-22 2011-08-04 Asahi Kasei Homes Co Accelerated deterioration method for polyurethane
JP2013024663A (en) * 2011-07-19 2013-02-04 Asahi Kasei Homes Co Method for calculating patience time of exterior sealant
WO2017188314A1 (en) * 2016-04-28 2017-11-02 日本精工株式会社 Lubricant deterioration detection device and lubricant deterioration state evaluation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290962A (en) * 1993-03-31 1994-10-18 Kansai Electric Power Co Inc:The Abnormality diagnosing method and abnormality monitoring apparatus of liquid-cooled electric equipment
JPH08213782A (en) * 1995-02-02 1996-08-20 Mitsubishi Electric Corp Anomaly analyzing equipment for electrical equipment and insulating medium
JP2005017041A (en) * 2003-06-24 2005-01-20 Toyota Motor Corp Evaluation method of degradation degree of polyamide
JP2007017196A (en) * 2005-07-05 2007-01-25 Frontier Lab Kk Analyzer of high-molecular sample

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290962A (en) * 1993-03-31 1994-10-18 Kansai Electric Power Co Inc:The Abnormality diagnosing method and abnormality monitoring apparatus of liquid-cooled electric equipment
JPH08213782A (en) * 1995-02-02 1996-08-20 Mitsubishi Electric Corp Anomaly analyzing equipment for electrical equipment and insulating medium
JP2005017041A (en) * 2003-06-24 2005-01-20 Toyota Motor Corp Evaluation method of degradation degree of polyamide
JP2007017196A (en) * 2005-07-05 2007-01-25 Frontier Lab Kk Analyzer of high-molecular sample

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180520A (en) * 2008-01-29 2009-08-13 Polyplastics Co Creep rupture lifetime prediction method of polymeric material in organic liquid dipping state
JP2009250610A (en) * 2008-04-01 2009-10-29 Sumitomo Chemical Co Ltd Analyzing method of compound having ion exchange group protected by protective group
JP2011149844A (en) * 2010-01-22 2011-08-04 Asahi Kasei Homes Co Method for evaluating degree of deterioration of polyether-containing polymer
JP2011149843A (en) * 2010-01-22 2011-08-04 Asahi Kasei Homes Co Accelerated deterioration method for polyurethane
JP2013024663A (en) * 2011-07-19 2013-02-04 Asahi Kasei Homes Co Method for calculating patience time of exterior sealant
WO2017188314A1 (en) * 2016-04-28 2017-11-02 日本精工株式会社 Lubricant deterioration detection device and lubricant deterioration state evaluation method
US10890575B2 (en) 2016-04-28 2021-01-12 Nsk Ltd. Lubricant deterioration detection device and lubricant deterioration state evaluation method

Also Published As

Publication number Publication date
JP4717700B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4717700B2 (en) Evaluation method of degradation degree of polymer materials
Hu et al. Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance
Leibl et al. Polydopamine-based molecularly imprinted thin films for electro-chemical sensing of nitro-explosives in aqueous solutions
Peez et al. Quantitative 1 H-NMR spectroscopy as an efficient method for identification and quantification of PVC, ABS and PA microparticles
CN110291383A (en) OH free radical detects detector, OH determining free radicals device and OH determining free radicals method
US8349257B2 (en) Detecting apparatus with photonic crystal structure
Vallejos et al. Polymeric chemosensor for the detection and quantification of chloride in human sweat. Application to the diagnosis of cystic fibrosis
CN109761978A (en) A kind of near infrared fluorescent probe detecting benzenethiol and its synthetic method and application
CN108003869A (en) A kind of fluorescence probe of highly sensitive detection hypochlorite and its synthetic method and application
Berliner et al. A patterned colorimetric sensor array for rapid detection of TNT at ppt level
JPWO2018221283A1 (en) Receiver for nanomechanical sensor made of low hygroscopic material and nanomechanical sensor using the same as receptor
CN109540863A (en) A kind of detection method of Nitrofuran antibiotics
Hudson et al. Dual detection of nafcillin using a molecularly imprinted polymer-based platform coupled to thermal and fluorescence read-out
Wu et al. Recyclable flexible upconversion-luminescence sensing platform for quantifying sulfite based on inner filter effect
Wolfs et al. Determination of the degree of substitution of cellulose esters via ATR‐FTIR spectroscopy
CN114705656A (en) Long-period fiber grating modified based on toxigenic strain imprinted artificial antibody combined with phage and preparation method and application thereof
CN110658154A (en) Preparation and application of reproducible terahertz biological sample detection cell
CN106518763A (en) High-selectivity fluorescence probe for detecting cyanide ions in ratio mode and synthesis method and application thereof
Foo et al. Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass
Kiefer et al. Infrared Spectroscopy of a Wilkinson Catalyst in a Room‐Temperature Ionic Liquid
Nietzold et al. Cyclodextrin–ferrocene host–guest complexes on silicon oxide surfaces
Kim et al. Advanced molecular recognition of 3-nitro-L-tyrosine: The use of zwitterion embedded molecularly imprinted mesoporous organosilica with sub-nanomolar sensitivity
CN101393202A (en) Evanescent wave optical fiber biosensor and use thereof
Thakur et al. Optode sensor for on-site detection and quantification of hydroxide ions in highly concentrated alkali solutions
JP4935472B2 (en) Degradation measurement method of synthetic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees