JP2007251547A - Digital pll device - Google Patents

Digital pll device Download PDF

Info

Publication number
JP2007251547A
JP2007251547A JP2006071517A JP2006071517A JP2007251547A JP 2007251547 A JP2007251547 A JP 2007251547A JP 2006071517 A JP2006071517 A JP 2006071517A JP 2006071517 A JP2006071517 A JP 2006071517A JP 2007251547 A JP2007251547 A JP 2007251547A
Authority
JP
Japan
Prior art keywords
frequency
signal
value
phase
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006071517A
Other languages
Japanese (ja)
Inventor
Taiyo Oishi
太洋 大石
Sadaharu Yoneda
貞春 米田
Hiroyuki Takashina
博之 高科
Seizo Nakamura
精三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006071517A priority Critical patent/JP2007251547A/en
Publication of JP2007251547A publication Critical patent/JP2007251547A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a digital PLL device capable of reducing jitter even when a frequency of an input signal is fluctuated. <P>SOLUTION: The digital PLL device associated with one embodiment of the present invention includes: a phase detector for detecting a phase lag and a phase lead of a reproduction clock with respect to the input signal; a random walk filter section for integrating an output signal from the phase detector and generating a phase deviation signal in response to an integral value; a frequency detector for generating a frequency signal with a value depending on a frequency value of the input signal; an adder for generating a control signal with a value summating the value of the phase deviation signal and the value of the frequency signal; and a control frequency divider for using the value of the control signal to be a frequency division ratio to produce the reproduction clock by dividing a master clock. A central value N (N is a natural number) of the frequency division ratio is determined by the value of the frequency signal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディジタルPLL装置に関するものである。   The present invention relates to a digital PLL device.

入力信号の位相と一致した位相を有する再生クロックを生成するPLL装置が知られている。このPLL装置の動作をディジタル的に行うディジタルPLL装置も提案されている(例えば、特許文献1〜3)。   There is known a PLL device that generates a reproduction clock having a phase that matches the phase of an input signal. A digital PLL device that digitally operates the PLL device has also been proposed (for example, Patent Documents 1 to 3).

ディジタルPLL装置は、入力信号と再生クロックとの位相差に応じて、マスタークロックを分周する分周比を固定中心値Nから例えばN+1またはN−1に変更することによって、入力信号の位相と再生クロックの位相とを一致させる。入力信号の位相と再生クロックの位相とを一致させた後には、分周比を固定中心値Nに戻す。ディジタルPLL装置は、このような分周比N,N+1,N−1の変更動作を継続することによって、入力信号の位相と再生クロックの位相とを継続的に一致させる。
特開平5−268007号公報 特開平8−316826号公報 特開平6−111490号公報
The digital PLL device changes the division ratio for dividing the master clock from a fixed center value N to, for example, N + 1 or N−1 according to the phase difference between the input signal and the reproduction clock, thereby changing the phase of the input signal. Match the phase of the recovered clock. After matching the phase of the input signal and the phase of the recovered clock, the frequency division ratio is returned to the fixed center value N. The digital PLL device continuously matches the phase of the input signal and the phase of the recovered clock by continuing the operation of changing the frequency dividing ratios N, N + 1, and N−1.
JP-A-5-268007 JP-A-8-316826 JP-A-6-111490

ところで、UHF帯RFIDシステム(Radio Frequency IDentification)のEPC Global Class1 Generation1b規格では、応答器(無線ICタグともいう)から出力されるデータの周波数が中心周波数に対して最大±25%(0.8倍〜1.33倍)まで変動することが許容されている。この周波数変動±25%を1ビット中の位相変動に換算すると、±90度に相当する。この応答器から出力されたデータを入力信号とするリーダライタにおけるディジタルPLL装置では、データの周波数が中心周波数に対して最大±25%変動した場合、再生クロックの位相を入力信号の位相に合わせるために1ビット中で最大±90度ずらすこととなる。このディジタルPLL装置では、分周比N,N+1,N−1の変更動作を継続するので、すなわち再生クロックの周波数をデータの中心周波数付近に戻す動作を繰り返すので、再生クロックの位相を入力信号の位相に合わせるために最大±90度ずらす動作が断続的に繰り返されることとなる。したがって、再生クロックには最大±90度の大きなジッタが発生してしまう。   By the way, in the EPC Global Class 1 Generation 1b standard of the UHF band RFID system (Radio Frequency IDentification), the frequency of data output from the responder (also referred to as a wireless IC tag) is a maximum of ± 25% (0.8 times the center frequency). To 1.33 times) is allowed. When this frequency fluctuation ± 25% is converted into a phase fluctuation in one bit, it corresponds to ± 90 degrees. In a digital PLL device in a reader / writer that uses the data output from the transponder as an input signal, when the data frequency fluctuates by a maximum of ± 25% with respect to the center frequency, the phase of the recovered clock is adjusted to the phase of the input signal. The maximum shift is ± 90 degrees in 1 bit. In this digital PLL device, since the operation of changing the frequency dividing ratios N, N + 1, and N−1 is continued, that is, the operation of returning the frequency of the recovered clock to the vicinity of the center frequency of the data is repeated. The operation of shifting by a maximum of ± 90 degrees to match the phase will be repeated intermittently. Therefore, a large jitter of ± 90 degrees at maximum occurs in the recovered clock.

そこで、本発明は、入力信号の周波数が変動してもジッタを低減させることが可能なディジタルPLL装置を提供することを目的としている。   Therefore, an object of the present invention is to provide a digital PLL device that can reduce jitter even if the frequency of an input signal varies.

本発明のディジタルPLL装置は、(a)入力信号に対する再生クロックの位相遅れ、位相進みを検出する位相検出器と、(b)位相検出器からの出力信号を積分し、積分値に応じて位相ずれ信号を発生するランダムウォークフィルタ部と、(c)入力信号の周波数値に応じた値を有する周波数信号を生成する周波数検出器と、(d)位相ずれ信号の値と周波数信号の値とを加算した値を有する制御信号を生成する加算器と、(e)制御信号の値を分周比として、マスタークロックを分周した再生クロックを生成する制御分周部と、を備えている。(f)制御分周部における分周比の中心値N(Nは自然数)は、周波数信号の値によって定められることを特徴とする。   The digital PLL device according to the present invention includes (a) a phase detector that detects a phase lag and phase advance of a recovered clock with respect to an input signal, and (b) an output signal from the phase detector that is integrated, A random walk filter that generates a shift signal; (c) a frequency detector that generates a frequency signal having a value corresponding to the frequency value of the input signal; and (d) a value of the phase shift signal and a value of the frequency signal. An adder that generates a control signal having an added value; and (e) a control frequency dividing unit that generates a reproduction clock by dividing the master clock by using the value of the control signal as a frequency dividing ratio. (F) The center value N (N is a natural number) of the frequency division ratio in the control frequency divider is determined by the value of the frequency signal.

このディジタルPLL装置によれば、位相検出器、ランダムウォークフィルタ部、加算器、および制御分周部とのループ処理によって、入力信号の位相とほぼ一致した位相を有する再生クロックが生成される。その際、制御分周部における分周比を定める制御信号の値には、周波数検出器から出力される周波数信号の値が加算器によって加算される。この周波数信号の値は入力信号の周波数値に応じた値であり、制御分周部における分周比の中心値N(Nは自然数)は周波数信号の値によって定められるので、分周比の中心値Nによって定まる再生クロックと入力信号との周波数差が低減される。すなわち、この周波数差から換算される再生クロックと入力信号との位相差が低減される。したがって、このディジタルPLL装置によれば、入力信号の周波数が変動しても、再生クロックのジッタを低減することが可能である。   According to this digital PLL device, a reproduction clock having a phase substantially coincident with the phase of the input signal is generated by loop processing with the phase detector, the random walk filter unit, the adder, and the control frequency dividing unit. At this time, the value of the frequency signal output from the frequency detector is added to the value of the control signal that determines the frequency division ratio in the control frequency dividing unit. The value of the frequency signal is a value corresponding to the frequency value of the input signal, and the center value N (N is a natural number) of the frequency division ratio in the control frequency divider is determined by the value of the frequency signal. The frequency difference between the reproduction clock determined by the value N and the input signal is reduced. That is, the phase difference between the recovered clock converted from this frequency difference and the input signal is reduced. Therefore, according to this digital PLL device, it is possible to reduce the jitter of the recovered clock even if the frequency of the input signal varies.

制御分周部における分周比の変更量+aまたは−a(aは自然数)は、位相ずれ信号の値によって定められ、制御分周部は、分周比の中心値Nを+aずつ増加または−aずつ減少する。このとき、分周比の変更量の絶対値aは1であることが好ましい。この構成によれば、制御分周部における分周比N,N+a,N−aの変更量が小さいので、再生クロックのジッタを更に低減することが可能である。   The change amount + a or −a (a is a natural number) in the control frequency dividing unit is determined by the value of the phase shift signal, and the control frequency dividing unit increases the center value N of the frequency dividing ratio by + a or − Decreases by a. At this time, the absolute value a of the change amount of the frequency division ratio is preferably 1. According to this configuration, since the amount of change of the frequency dividing ratios N, N + a, and Na in the control frequency dividing unit is small, it is possible to further reduce the jitter of the recovered clock.

また、分周比の中心値Nの中心値は16であることが好ましい。制御分周部にプログラマブルカウンタが用いられる場合、プログラマブルカウンタの回路構成を合理化するために、分周比は2のべき乗であることが好ましい。ところで、分周比を小さく設定すると、周波数検出器において入力信号の周波数値に精度よく応じた値を有する周波数信号を生成することが困難となる。一方、分周比を大きく設定すると、処理すべき周波数が上がり、ディジタルPLL装置において必要な処理能力が増大し、一般的には消費電力の増加という好ましくない事態となる。しかしながら、この構成によれば、分周比の中心値Nの中心値を16と設定することによって、制御分周部にプログラマブルカウンタが用いられる場合でも、ディジタルPLL装置における必要な処理能力が増大することなく、入力信号の周波数値に精度よく応じた値を有する周波数信号を生成することができる。   The center value of the center value N of the frequency division ratio is preferably 16. When a programmable counter is used for the control frequency dividing unit, the frequency dividing ratio is preferably a power of 2 in order to rationalize the circuit configuration of the programmable counter. By the way, if the frequency division ratio is set to be small, it becomes difficult for the frequency detector to generate a frequency signal having a value that accurately corresponds to the frequency value of the input signal. On the other hand, if the frequency division ratio is set to be large, the frequency to be processed increases, and the processing capability required in the digital PLL device increases, which generally leads to an undesirable situation of increased power consumption. However, according to this configuration, setting the center value of the center value N of the frequency division ratio to 16 increases the necessary processing capability in the digital PLL device even when a programmable counter is used for the control frequency dividing unit. Therefore, it is possible to generate a frequency signal having a value that accurately corresponds to the frequency value of the input signal.

本発明によれば、入力信号の周波数が変動してもジッタを低減することが可能なディジタルPLL装置が提供される。   According to the present invention, a digital PLL device capable of reducing jitter even when the frequency of an input signal varies is provided.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.

まず、本発明の実施形態に係るディジタルPLL装置が用いられるRFIDシステム(Radio Frequency IDentification)の一例について説明する。図1は、RFIDシステムの構成を示す図である。図1に示すRFIDシステム1は、リーダライタ10および応答器(無線ICタグともいう)20から構成されており、応答器20に記憶されている情報をリーダライタ10によって無線で読み取ることができる。   First, an example of an RFID system (Radio Frequency IDentification) in which a digital PLL device according to an embodiment of the present invention is used will be described. FIG. 1 is a diagram illustrating a configuration of an RFID system. The RFID system 1 shown in FIG. 1 includes a reader / writer 10 and a responder (also referred to as a wireless IC tag) 20, and information stored in the responder 20 can be read wirelessly by the reader / writer 10.

以下では、リーダライタ10および応答器20の構成の一例を説明する。リーダライタ10は、応答器20へ要求信号を送信し、この要求信号に応じて応答器20から出力される応答信号を受けることによって、応答器20に予め記憶されている情報を読み取る。そのために、リーダライタ10は、制御部11、送信部12、変調器13、発振器14、増幅器15、サーキュレータ16、アンテナ17、復調器18、および受信部19を備えている。   Below, an example of a structure of the reader / writer 10 and the responder 20 is demonstrated. The reader / writer 10 transmits a request signal to the responder 20 and receives a response signal output from the responder 20 in response to the request signal, thereby reading information stored in the responder 20 in advance. For this purpose, the reader / writer 10 includes a control unit 11, a transmission unit 12, a modulator 13, an oscillator 14, an amplifier 15, a circulator 16, an antenna 17, a demodulator 18, and a reception unit 19.

制御部11は要求信号を生成する。制御部11は送信部12に接続されており、送信部12は制御部11からの要求信号を変調器13へ導く。変調器13には発振器14からの搬送波(例えば950MHzの交流電力)も入力される。変調器13は、要求信号によって搬送波を変調した出力要求信号を生成する。変調器13は増幅器15に接続されており、増幅器15はサーキュレータ16に接続されている。サーキュレータ16は、増幅器15を介して入力される出力要求信号をアンテナ17へ導く。アンテナ17は、電気信号すなわち出力要求信号を電磁波に変換すると共に、この電磁波を応答器20へ放射する。   The control unit 11 generates a request signal. The control unit 11 is connected to the transmission unit 12, and the transmission unit 12 guides a request signal from the control unit 11 to the modulator 13. The modulator 13 also receives a carrier wave (for example, 950 MHz AC power) from the oscillator 14. The modulator 13 generates an output request signal obtained by modulating the carrier wave with the request signal. The modulator 13 is connected to an amplifier 15, and the amplifier 15 is connected to a circulator 16. The circulator 16 guides the output request signal input via the amplifier 15 to the antenna 17. The antenna 17 converts an electric signal, that is, an output request signal into an electromagnetic wave, and radiates the electromagnetic wave to the responder 20.

また、アンテナ17は、応答器20から放射された電磁波を受けて、この電磁波に応じた電気信号すなわち出力応答信号を再生する。サーキュレータ16は、この応答信号を復調器18へ導く。復調器18には発振器14からの搬送波も入力される。復調器18は、搬送波を用いて出力応答信号を復調し、応答信号を再生する。復調器18は受信部19に接続されており、受信部19は応答信号を制御部11へ導く。制御部11は、ディジタルPLL装置30を有しており、復調された応答信号から再生クロックを生成することによって要求信号を識別および解析する。   The antenna 17 receives an electromagnetic wave radiated from the responder 20 and reproduces an electric signal corresponding to the electromagnetic wave, that is, an output response signal. The circulator 16 guides this response signal to the demodulator 18. A carrier wave from the oscillator 14 is also input to the demodulator 18. The demodulator 18 demodulates the output response signal using the carrier wave and reproduces the response signal. The demodulator 18 is connected to the receiving unit 19, and the receiving unit 19 guides the response signal to the control unit 11. The control unit 11 has a digital PLL device 30 and identifies and analyzes the request signal by generating a recovered clock from the demodulated response signal.

応答器20は、リーダライタ10からの要求信号に応じて、予め記憶されている情報を応答信号としてリーダライタ10へ返信する。そのために、応答器20は、アンテナ21、共振部22、電源部23、変調・復調部24、制御部25、およびデータ記憶部26を備えている。   In response to the request signal from the reader / writer 10, the responder 20 returns information stored in advance to the reader / writer 10 as a response signal. For this purpose, the responder 20 includes an antenna 21, a resonance unit 22, a power supply unit 23, a modulation / demodulation unit 24, a control unit 25, and a data storage unit 26.

アンテナ21は、リーダライタ10から放射された電磁波を受けて、この電磁波に応じた電気信号、すなわちリーダライタ10からの出力要求信号を再生する。アンテナ21は、共振部22を介して電源部23および変調・復調部24に接続されている。共振部22は、電源部23および変調・復調部24とアンテナ21とのインピーダンス整合を調整する共振回路である。電源部23は、出力要求信号における搬送波を整流することによって直流電力を生成し、この直流電力を変調・復調部24、制御部25、およびデータ記憶部26へ供給する。変調・復調部24は、変調回路と復調回路とを有している。復調回路は、出力要求信号を復調することによってリーダライタ10からの要求信号を再生する。変調・復調部24は制御部25に接続されている。制御部25は、PLL装置を有しており、復調された要求信号から再生クロックを生成することによって要求信号を識別および解析する。   The antenna 21 receives the electromagnetic wave radiated from the reader / writer 10 and reproduces an electric signal corresponding to the electromagnetic wave, that is, an output request signal from the reader / writer 10. The antenna 21 is connected to the power supply unit 23 and the modulation / demodulation unit 24 via the resonance unit 22. The resonance unit 22 is a resonance circuit that adjusts impedance matching between the power supply unit 23 and the modulation / demodulation unit 24 and the antenna 21. The power supply unit 23 generates DC power by rectifying the carrier wave in the output request signal, and supplies the DC power to the modulation / demodulation unit 24, the control unit 25, and the data storage unit 26. The modulation / demodulation unit 24 includes a modulation circuit and a demodulation circuit. The demodulation circuit reproduces the request signal from the reader / writer 10 by demodulating the output request signal. The modulation / demodulation unit 24 is connected to the control unit 25. The control unit 25 has a PLL device, and identifies and analyzes the request signal by generating a recovered clock from the demodulated request signal.

また、制御部25は、解析結果に応じてデータ記憶部26に予め記憶されているデータから、PLL装置の再生クロックに基づいて応答信号を生成する。変調・復調部24における変調回路は、この応答信号に応じて共振部22のインピーダンスを変化させる。このようにして、入力される出力要求信号に対する共振部22の反射率を変化させ、負荷変調された出力応答信号を生成する。アンテナ21は、この出力応答信号を電磁波に変換すると共に、この電磁波をリーダライタ10へ放射する。   Further, the control unit 25 generates a response signal based on the reproduction clock of the PLL device from the data stored in advance in the data storage unit 26 according to the analysis result. The modulation circuit in the modulation / demodulation unit 24 changes the impedance of the resonance unit 22 according to the response signal. In this manner, the reflectance of the resonance unit 22 with respect to the input output request signal is changed, and a load-modulated output response signal is generated. The antenna 21 converts the output response signal into an electromagnetic wave and radiates the electromagnetic wave to the reader / writer 10.

ここで、負荷変調された出力応答信号にリーダライタ10からの要求信号が重畳されないように、リーダライタ10における要求信号の送信時間は、最低限、要求信号を識別できる程度の短い時間である。すなわち、制御部25における応答信号生成時、リーダライタ10から出力される出力要求信号は、要求信号を含まず、エネルギー供給のための無変調搬送波である。したがって、制御部25における応答信号生成時、制御部25におけるPLL装置には要求信号が入力されておらず、このPLL装置はフリーラン状態となる。そのために、要求信号受信開始時に位相および周波数が要求信号に一致した再生クロックは、電源電圧の揺らぎ等によって、徐々に変動してしまう。この再生クロックに基づいて生成される応答信号の周波数は大きく変動することとなる。   Here, the transmission time of the request signal in the reader / writer 10 is at least short enough to identify the request signal so that the request signal from the reader / writer 10 is not superimposed on the load-modulated output response signal. That is, when the response signal is generated in the control unit 25, the output request signal output from the reader / writer 10 is an unmodulated carrier wave for supplying energy without including the request signal. Therefore, when the response signal is generated in the control unit 25, no request signal is input to the PLL device in the control unit 25, and the PLL device is in a free-run state. For this reason, the recovered clock whose phase and frequency coincide with the request signal at the start of receiving the request signal gradually fluctuates due to fluctuations in the power supply voltage. The frequency of the response signal generated based on this reproduction clock will fluctuate greatly.

本発明は、このように周波数が大きく変動する信号を入力信号としても、再生クロックのジッタを低減することが可能なディジタルPLL装置に関し、上述したリーダライタ10におけるディジタルPLL装置30として好適なディジタルPLL装置に関する。図2は、本発明の実施形態に係るディジタルPLL装置の構成を示す回路図である。ディジタルPLL装置30は、位相検出器31、ランダムウォークフィルタ部(以下、「RWF部」という)32、周波数検出器34、加算器35、および制御分周部36を備えている。   The present invention relates to a digital PLL device capable of reducing the jitter of a recovered clock even when a signal whose frequency varies greatly as described above is an input signal, and is a digital PLL suitable as the digital PLL device 30 in the reader / writer 10 described above. Relates to the device. FIG. 2 is a circuit diagram showing the configuration of the digital PLL device according to the embodiment of the present invention. The digital PLL device 30 includes a phase detector 31, a random walk filter unit (hereinafter referred to as “RWF unit”) 32, a frequency detector 34, an adder 35, and a control frequency dividing unit 36.

位相検出器31の第1の入力端子には、上述したように、応答器20から受ける応答信号が入力信号として入力される。位相検出器31の第2の入力端子には、ディジタルPLL装置30の出力クロックである再生クロックが入力される。位相検出器31は、入力信号に対する再生クロックの位相遅れ、位相進みを検出する。位相検出器31の出力端子は、RWF部32の入力端子に接続されている。   As described above, the response signal received from the responder 20 is input to the first input terminal of the phase detector 31 as an input signal. A reproduction clock that is an output clock of the digital PLL device 30 is input to the second input terminal of the phase detector 31. The phase detector 31 detects the phase lag and phase advance of the recovered clock with respect to the input signal. The output terminal of the phase detector 31 is connected to the input terminal of the RWF unit 32.

RWF部32は、位相検出器31からの出力信号を積分し、積分値に応じて位相ずれ信号を発生する。そのために、RWF部32は、ランダムウォークフィルタ(以下、「RWF」という)32a、リセットホールド部32b、およびリセット制御部32cを有している。   The RWF unit 32 integrates the output signal from the phase detector 31 and generates a phase shift signal according to the integration value. For this purpose, the RWF unit 32 includes a random walk filter (hereinafter referred to as “RWF”) 32a, a reset hold unit 32b, and a reset control unit 32c.

RWF32aの入力端子は、位相検出器31の出力端子に接続されている。RWF32aは、位相検出器31からの出力信号のパルスをカウントし、カウント値が予め記憶されている所定値に達する場合に、入力信号に対する再生クロックの位相ずれ(位相遅れまたは位相進み)を表す値を有する位相ずれ信号を発生する。例えば、RWF32aは、カウント値が位相遅れのための所定値に達する場合に位相遅れを表す値−aを有する位相ずれ信号を発生し、カウント値が位相進みのための所定値に達する場合に位相進みを表す値+aを有する位相ずれ信号を発生する。   The input terminal of the RWF 32 a is connected to the output terminal of the phase detector 31. The RWF 32a counts the pulses of the output signal from the phase detector 31, and when the count value reaches a predetermined value stored in advance, a value representing a phase shift (phase lag or phase advance) of the reproduction clock with respect to the input signal A phase shift signal having For example, the RWF 32a generates a phase shift signal having a value -a indicating a phase lag when the count value reaches a predetermined value for phase lag, and a phase when the count value reaches a predetermined value for phase advance. A phase shift signal having a value + a representing advance is generated.

RWF32aの出力端子は、リセットホールド部32bの入力端子に接続されている。リセットホールド部32bは、位相ずれ信号を受けると、この位相ずれ信号を出力する。また、リセットホールド部32bのリセット端子は、リセット制御部32cの出力端子に接続されており、リセット制御部32cからのリセット信号に基づいて位相ずれ信号の出力を停止する。リセットホールド部32bの出力端子は、加算器35の第1の入力端子およびRWF32aの制御端子に接続されている。なお、リセット制御部32cについては後述する。   The output terminal of the RWF 32a is connected to the input terminal of the reset hold unit 32b. When receiving the phase shift signal, the reset hold unit 32b outputs the phase shift signal. The reset terminal of the reset hold unit 32b is connected to the output terminal of the reset control unit 32c, and stops outputting the phase shift signal based on the reset signal from the reset control unit 32c. The output terminal of the reset hold unit 32b is connected to the first input terminal of the adder 35 and the control terminal of the RWF 32a. The reset control unit 32c will be described later.

RWF32aの制御端子は、リセットホールド部32bの出力端子に接続されている。RWF32aは、リセットホールド部32bから位相ずれ信号が出力されたら、位相ずれ信号、カウント値をリセットする。   The control terminal of the RWF 32a is connected to the output terminal of the reset hold unit 32b. When the phase shift signal is output from the reset hold unit 32b, the RWF 32a resets the phase shift signal and the count value.

ここで、RWF部32によって生成される位相ずれ信号の値は、制御分周部36における分周比の変更量+aまたは−a(aは自然数)を定める。例えば、位相検出器31が位相遅れを検出し、RWF32aの積分値が予め定められたカウント値に達したとすると、リセットホールド部32bは現在の位相が遅れた状態であると判断し、再生クロックの周波数を上げるために制御分周部36における制御分周器36aの分周数を−a減少する。一方、位相検出器31が位相進みを検出した時には、リセットホールド部32bは現在の位相が進んだ状態にあると判断し、再生クロックの周波数を下げるために制御分周部36における制御分周器36aの分周数を+a増加する。制御分周器36aとして、プログラマブルカウンタを使用した場合、リセットホールド部32bの制御に基づき、プログラマブルカウンタの分周比が逐次、変化されることになる。なお、再生クロックにおけるジッタを低減するためには、位相ずれ信号の絶対値aは小さい値であることが好ましく、1であることが好ましい。   Here, the value of the phase shift signal generated by the RWF unit 32 determines the change amount + a or −a (a is a natural number) of the division ratio in the control frequency dividing unit 36. For example, if the phase detector 31 detects a phase delay and the integral value of the RWF 32a reaches a predetermined count value, the reset hold unit 32b determines that the current phase is delayed, and the recovered clock In order to increase the frequency, the frequency division number of the control frequency divider 36a in the control frequency divider 36 is decreased by -a. On the other hand, when the phase detector 31 detects a phase advance, the reset hold unit 32b determines that the current phase is advanced, and a control frequency divider in the control frequency divider 36 reduces the frequency of the recovered clock. The frequency division number of 36a is increased by + a. When a programmable counter is used as the control frequency divider 36a, the frequency division ratio of the programmable counter is sequentially changed based on the control of the reset hold unit 32b. In order to reduce jitter in the recovered clock, the absolute value a of the phase shift signal is preferably a small value, and is preferably 1.

周波数検出器34の入力端子には入力信号が入力される。周波数検出器34は、入力信号の周波数値に応じた値を有する周波数信号を生成する。ここで、周波数信号の値は、制御分周部36における分周比の中心値N(Nは自然数)を定める。この分周比の中心値Nの中心値は16であることが好ましい。例えば、入力信号が標準周波数である場合にN=16が選択されるとすると、入力信号が標準周波数より高く、標準周波数の1.15倍である場合、N=14(16/1.15)が選択される。一方、入力信号が標準周波数より低く、標準周波数の0.85倍である場合、N=19(16/0.85)が選択される。周波数検出器34の詳細は後述する。周波数検出器34の出力端子は、加算器35の第2の入力端子に接続されている。   An input signal is input to the input terminal of the frequency detector 34. The frequency detector 34 generates a frequency signal having a value corresponding to the frequency value of the input signal. Here, the value of the frequency signal determines the center value N (N is a natural number) of the frequency division ratio in the control frequency divider 36. The center value N of the frequency division ratio is preferably 16. For example, if N = 16 is selected when the input signal is a standard frequency, N = 14 (16 / 1.15) when the input signal is higher than the standard frequency and 1.15 times the standard frequency. Is selected. On the other hand, if the input signal is lower than the standard frequency and 0.85 times the standard frequency, N = 19 (16 / 0.85) is selected. Details of the frequency detector 34 will be described later. The output terminal of the frequency detector 34 is connected to the second input terminal of the adder 35.

加算器35は、位相ずれ信号と周波数信号とを加算した値を有する制御信号を生成する。すなわち、加算器35は、制御分周部36における制御分周器36aのための分周比の中心値Nと分周比の変更量±aとから、制御分周器36aにおける分周比N±aを定める。例えば、入力信号が標準周波数である場合に16分周され、変更量の絶対値a=1であるとすると、入力信号が標準周波数より高く、標準周波数の1.15倍である場合、1/14分周を中心に1/13分周または1/15分周で位相制御される。一方、入力信号が標準周波数より低く、標準周波数の0.85倍である場合、1/19分周を中心に1/18分周または1/20分周で位相制御される。加算器35の出力端子は、制御分周部36の制御端子に接続されている。   The adder 35 generates a control signal having a value obtained by adding the phase shift signal and the frequency signal. That is, the adder 35 calculates the frequency division ratio N in the control frequency divider 36a from the center value N of the frequency division ratio for the control frequency divider 36a in the control frequency divider 36 and the change amount ± a of the frequency division ratio. ± a is determined. For example, when the input signal has a standard frequency, the frequency is divided by 16, and the change amount absolute value a = 1, the input signal is higher than the standard frequency and 1.15 times the standard frequency. Phase control is performed at a frequency of 1/13 or 1/15 with a frequency division of 14. On the other hand, when the input signal is lower than the standard frequency and is 0.85 times the standard frequency, the phase is controlled by dividing by 1/18 or 1/20 centering on 1/19 division. The output terminal of the adder 35 is connected to the control terminal of the control frequency divider 36.

制御分周部36は、制御分周器36aおよび固定分周器36bから構成されている。制御分周器36aの入力端子にはマスタークロックが入力されており、制御分周器36aの制御端子は加算器35の出力端子に接続されている。制御分周器36aは、制御信号の値を分周比として、マスタークロックを分周した分周クロックを生成する。制御分周器36aの出力端子は、固定分周器36bの入力端子およびリセット制御部32cの第1の入力端子に接続されている。   The control divider 36 includes a control divider 36a and a fixed divider 36b. A master clock is input to the input terminal of the control frequency divider 36 a, and the control terminal of the control frequency divider 36 a is connected to the output terminal of the adder 35. The control divider 36a generates a divided clock obtained by dividing the master clock using the value of the control signal as a division ratio. The output terminal of the control frequency divider 36a is connected to the input terminal of the fixed frequency divider 36b and the first input terminal of the reset control unit 32c.

固定分周器36bは、分周クロックを固定の分周値で分周した再生クロックを生成する。固定分周器36bの出力端子は、位相検出器31の第2の入力端子およびリセット制御部32cの第2の入力端子に接続されている。   The fixed divider 36b generates a recovered clock obtained by dividing the divided clock by a fixed divided value. The output terminal of the fixed frequency divider 36b is connected to the second input terminal of the phase detector 31 and the second input terminal of the reset control unit 32c.

リセット制御部32cは、第2の入力端子に入力される再生クロックに基づいて、第1の入力端子に入力される分周クロックの周期数のカウントを開始し、このカウント値が予め設定された回数(J回)に達したときにリセット信号を発生する。すなわち、リセット制御部32cは、再生クロックに基づき、制御分周器36aにおいて行われる位相修正を可変量化させる回路で、制御分周器36aにおけるN−a分周またはN+a分周を何回行わせるかを制御する。リセット制御部32cは、予め設定された回数(J回)に、制御分周器36aの位相修正回数が達したとき、位相修正終了の指令信号(リセット信号)をリセットホールド部に与え、位相修正操作を終了させる。このとき、上記したリセットホールド部32bは、指令信号を受けて位相ずれ信号の出力を停止し、制御分周器36aの制御を解除し、制御分周器36aの分周比をNにもどす。   The reset control unit 32c starts counting the number of divided clocks input to the first input terminal based on the recovered clock input to the second input terminal, and the count value is set in advance. When the number of times (J times) is reached, a reset signal is generated. That is, the reset control unit 32c is a circuit that makes the phase correction performed in the control frequency divider 36a variable based on the recovered clock, and how many times the N-a frequency division or N + a frequency division is performed in the control frequency divider 36a. To control. The reset control unit 32c gives a phase correction end command signal (reset signal) to the reset hold unit when the number of phase corrections of the control frequency divider 36a reaches the preset number of times (J times). End the operation. At this time, the reset hold unit 32b receives the command signal, stops outputting the phase shift signal, cancels the control of the control frequency divider 36a, and returns the frequency division ratio of the control frequency divider 36a to N.

次に、周波数検出器34について詳細に説明する。図3は、周波数検出器を示す回路図である。図3に示す周波数検出器34は、入力信号における周波数情報を検出し、この周波数情報に応じた周波数信号を生成する。そのために、周波数検出器34は、Pビットカウンタ41、1/2割算器42、スイッチ43、Pビットラッチ部44,45,46、加算器47、1/4割算器48、判定部49、コンパレータ50,51,52,53、およびAND演算部54を備えている。   Next, the frequency detector 34 will be described in detail. FIG. 3 is a circuit diagram showing the frequency detector. The frequency detector 34 shown in FIG. 3 detects frequency information in the input signal, and generates a frequency signal corresponding to the frequency information. For this purpose, the frequency detector 34 includes a P bit counter 41, a 1/2 divider 42, a switch 43, P bit latch units 44, 45, 46, an adder 47, a 1/4 divider 48, and a determination unit 49. Comparators 50, 51, 52, 53, and an AND operation unit 54 are provided.

Pビットカウンタ41の入力端子には入力信号が入力される。Pビットカウンタ(Pは例えば32)41のクロック端子には基準クロックが入力され、Pビットカウンタ41のリセット端子にはリセット信号が入力される。なお、基準クロックは入力信号より十分に早いクロックであればよく、基準クロックにはマスタークロックもしくはマスタークロックを分周したクロックが適用可能である。基準クロックとして、マスタークロックを固定分周器36bの分周比nで割ったものを使用した場合には、本周波数検出器の出力そのものが中心値Nとなる。Pビットカウンタ41は、基準クロックのタイミングで入力信号の周期長をカウントし、カウント値に応じたディジタル値の出力信号を生成する。具体的には、Pビットカウンタ41は、入力信号の立ち上がりから次の立ち上がりまでの時間において、基準クロックのクロック数をカウントすることによって入力信号の周期長を測定する。Pビットカウンタ41は、リセット信号に基づいて、入力信号の次の立ち上がりでカウント数をリセットし、新たにカウントを始める。したがって、Pビットカウンタ41の出力信号は入力信号の周波数情報を表している。Pビットカウンタ41の出力端子は、スイッチ43の第1の端子および1/2割算器42の入力端子に接続されている。   An input signal is input to the input terminal of the P-bit counter 41. A reference clock is input to the clock terminal of the P-bit counter (P is 32, for example) 41, and a reset signal is input to the reset terminal of the P-bit counter 41. The reference clock may be a clock sufficiently earlier than the input signal, and a master clock or a clock obtained by dividing the master clock can be applied to the reference clock. When the master clock divided by the division ratio n of the fixed frequency divider 36 b is used as the reference clock, the output itself of the frequency detector becomes the center value N. The P bit counter 41 counts the cycle length of the input signal at the timing of the reference clock, and generates a digital value output signal corresponding to the count value. Specifically, the P bit counter 41 measures the period length of the input signal by counting the number of reference clocks in the time from the rising edge of the input signal to the next rising edge. Based on the reset signal, the P-bit counter 41 resets the count number at the next rising edge of the input signal, and newly starts counting. Therefore, the output signal of the P bit counter 41 represents the frequency information of the input signal. The output terminal of the P-bit counter 41 is connected to the first terminal of the switch 43 and the input terminal of the ½ divider 42.

1/2割算器42は、Pビットカウンタ41からの出力信号のディジタル値を半分にした出力信号を生成する。1/2割算器42の出力端子はスイッチ43の第2の端子に接続されている。   The 1/2 divider 42 generates an output signal in which the digital value of the output signal from the P bit counter 41 is halved. The output terminal of the 1/2 divider 42 is connected to the second terminal of the switch 43.

スイッチ43には、リーダライタ10における制御部11内の識別器から応答信号判別情報、すなわち入力信号識別情報が入力されている。スイッチ43は、この入力信号識別情報に基づいて、第1の端子と第2の端子とのいずれかを第3の端子に接続するか選択する。具体的には、スイッチ43は、入力信号の論理が「1」である場合に第1の端子と第3の端子を接続し、入力信号の論理が「0」である場合に第2の端子と第3の端子を接続する。   Response signal discrimination information, that is, input signal identification information, is input to the switch 43 from the discriminator in the control unit 11 of the reader / writer 10. The switch 43 selects whether to connect either the first terminal or the second terminal to the third terminal based on the input signal identification information. Specifically, the switch 43 connects the first terminal and the third terminal when the logic of the input signal is “1”, and the second terminal when the logic of the input signal is “0”. And the third terminal are connected.

図4は、入力信号の波形を示す図である。この入力信号はサブキャリアFSKと呼ばれている。図4に示されるように、1ビットが短い周期の「10」を2サイクル含む波形である場合、論理は「1」であり、1ビットが長い周期(短い周期のちょうど2倍)の「10」を1サイクル含む波形である場合、論理は「0」である。したがって、入力信号の論理が「0」である場合には、論理が「1」である場合に比べて時間が2倍になるので、Pビットカウンタ41の出力信号のディジタル値を1/2倍にしている。なお、図4におけるm−i(例えば、i=−1〜6)は、Pビットカウンタ41における入力信号の測定区間番号を表している。   FIG. 4 is a diagram illustrating a waveform of an input signal. This input signal is called a subcarrier FSK. As shown in FIG. 4, when 1 bit is a waveform including two cycles of “10” having a short cycle, the logic is “1”, and “10” of 1 cycle is a long cycle (just twice the short cycle). "Is a waveform including one cycle, the logic is" 0 ". Therefore, when the logic of the input signal is “0”, the time is doubled compared to when the logic is “1”, so the digital value of the output signal of the P-bit counter 41 is halved. I have to. Note that mi (for example, i = −1 to 6) in FIG. 4 represents the measurement section number of the input signal in the P-bit counter 41.

スイッチ43の第3の端子は、Pビットラッチ部44の入力端子、加算器47の第1の入力端子、およびコンパレータ50の入力端子に接続されている。同様に、Pビットラッチ部44の出力端子は、Pビットラッチ部45の入力端子、加算器47の第2の入力端子、およびコンパレータ51の入力端子に接続されており、Pビットラッチ部45の出力端子は、Pビットラッチ部46の入力端子、加算器47の第3の入力端子、およびコンパレータ52の入力端子に接続されている。また、Pビットラッチ部46の出力端子は、加算器47の第4の入力端子、およびコンパレータ53の入力端子に接続されている。Pビットラッチ部44〜46は、Pビットカウンタ41からの出力信号を順次にラッチする。   The third terminal of the switch 43 is connected to the input terminal of the P bit latch unit 44, the first input terminal of the adder 47, and the input terminal of the comparator 50. Similarly, the output terminal of the P bit latch unit 44 is connected to the input terminal of the P bit latch unit 45, the second input terminal of the adder 47, and the input terminal of the comparator 51. The output terminal is connected to the input terminal of the P-bit latch unit 46, the third input terminal of the adder 47, and the input terminal of the comparator 52. Further, the output terminal of the P-bit latch unit 46 is connected to the fourth input terminal of the adder 47 and the input terminal of the comparator 53. The P bit latch units 44 to 46 sequentially latch the output signal from the P bit counter 41.

図5は、周波数検出器における各部信号波形を示す図である。図5(a)〜(f)には、入力信号波形、Pビットカウンタ41の出力信号波形、スイッチ43の出力信号波形、およびPビットラッチ部44,45,46の出力信号波形それぞれの時間変化が順に示されている。なお、それぞれの信号波形のタイミングは一致している。図5におけるNn−i(例えば、i=−1〜6:iは図4に対応している)は、Pビットカウンタ41の測定区間ごとの出力信号を表している。また、Nn±iの各iは、測定区間番号m−iの各iに対応している。上述したように、区間番号m,m+1の論理は「0」であるので、(c)のNn+1,Nnのディジタル値は、Pビットカウンタ41の出力信号のディジタル値の1/2倍となっている。このように、Pビットラッチ部44の出力信号、Pビットラッチ部45の出力信号、およびPビットラッチ部46の出力信号は、Pビットカウンタ41の出力信号を基準として、1測定区間ずつ順に遅れている。   FIG. 5 is a diagram showing signal waveforms at various parts in the frequency detector. FIGS. 5A to 5F show time variations of the input signal waveform, the output signal waveform of the P-bit counter 41, the output signal waveform of the switch 43, and the output signal waveforms of the P-bit latch units 44, 45, and 46, respectively. Are shown in order. The timing of each signal waveform is the same. Nn-i in FIG. 5 (for example, i = −1 to 6: i corresponds to FIG. 4) represents an output signal for each measurement section of the P-bit counter 41. Further, each i of Nn ± i corresponds to each i of the measurement section number mi. As described above, since the logic of the section numbers m and m + 1 is “0”, the digital values of Nn + 1 and Nn in (c) are ½ times the digital value of the output signal of the P-bit counter 41. Yes. As described above, the output signal of the P bit latch unit 44, the output signal of the P bit latch unit 45, and the output signal of the P bit latch unit 46 are sequentially delayed by one measurement interval based on the output signal of the P bit counter 41. ing.

加算器47は、スイッチ43の出力信号およびPビットラッチ部44,45,46の出力信号を加算する。加算器47の出力端子は、1/4割算器48の入力端子に接続されている。1/4割算器48は、加算器47の出力信号のディジタル値を1/4倍にする。1/4割算器48の出力端子は、判定部49の入力端子に接続されている。すなわち、加算器47および1/4割算器48によって、Pビットカウンタ41の測定区間における先行4つの周波数情報の平均値が得られる。Pビットカウンタ41の測定区間における先行4つの周波数情報は、入力信号における2ビット(論理「1」が連続した場合)〜4ビット(論理「0」が連続した場合)の周波数情報に相当する。   Adder 47 adds the output signal of switch 43 and the output signals of P-bit latch units 44, 45, and 46. The output terminal of the adder 47 is connected to the input terminal of the ¼ divider 48. The 1/4 divider 48 multiplies the digital value of the output signal of the adder 47 by 1/4. The output terminal of the 1/4 divider 48 is connected to the input terminal of the determination unit 49. That is, the adder 47 and the 1/4 divider 48 obtain an average value of the preceding four frequency information in the measurement interval of the P bit counter 41. The preceding four frequency information in the measurement section of the P-bit counter 41 corresponds to frequency information of 2 bits (when logic “1” continues) to 4 bits (when logic “0” continues) in the input signal.

コンパレータ50は、スイッチ43の出力信号の値と予め設定された上限値および下限値とを比較することによって、スイッチ43の出力信号が上限値および下限値の間の値を有する場合に論理「1」の出力信号を生成し、スイッチ43の出力信号が上限値および下限値の間の値を有さない場合に論理「0」の出力信号を生成する。同様に、コンパレータ51〜53は、それぞれ、Pビットラッチ部44〜46の出力信号の値と予め設定された上限値および下限値とを比較することによって、Pビットラッチ部44〜46の出力信号が上限値および下限値の間の値を有する場合に論理「1」の出力信号を生成し、Pビットラッチ部44〜46の出力信号が上限値および下限値の間の値を有さない場合に論理「0」の出力信号を生成する。コンパレータ50〜53の各々の出力端子は、AND演算部54の4つの入力端子に接続されている。   The comparator 50 compares the value of the output signal of the switch 43 with preset upper limit and lower limit values, so that when the output signal of the switch 43 has a value between the upper limit value and the lower limit value, the logic “1” , And when the output signal of the switch 43 does not have a value between the upper limit value and the lower limit value, an output signal of logic “0” is generated. Similarly, the comparators 51 to 53 respectively compare the output signal values of the P bit latch units 44 to 46 with preset upper limit values and lower limit values, thereby outputting the output signals of the P bit latch units 44 to 46, respectively. Generates an output signal of logic "1" when it has a value between the upper limit value and the lower limit value, and the output signal of the P-bit latch units 44 to 46 does not have a value between the upper limit value and the lower limit value Output signal of logic "0". Each output terminal of the comparators 50 to 53 is connected to four input terminals of the AND operation unit 54.

AND演算部54は、コンパレータ50〜53からの出力信号の論理が全て「1」である場合に論理「1」を有する出力信号を出力し、コンパレータ50〜53からの出力信号のいずれかの論理が「0」である場合に論理「0」を有する出力信号を出力する。AND演算部54の出力端子は、判定部49の制御端子に接続されている。   The AND operation unit 54 outputs an output signal having a logic “1” when all of the logics of the output signals from the comparators 50 to 53 are “1”, and any one of the output signals from the comparators 50 to 53 is output. When “0” is “0”, an output signal having a logic “0” is output. An output terminal of the AND operation unit 54 is connected to a control terminal of the determination unit 49.

判定部49は、AND演算部54からの出力信号に基づいて、1/4割算器48から受ける周波数情報の平均値を値Nとして有する周波数信号を出力する。例えば、AND演算部54からの出力信号の値が「1」である場合に、1/4割算器48からの周波数情報の平均値を値Nとして有する周波数信号を出力し、AND演算部54からの出力信号の値が「0」である場合には、この周波数信号を出力しない。   Based on the output signal from AND operation unit 54, determination unit 49 outputs a frequency signal having an average value of frequency information received from ¼ divider 48 as value N. For example, when the value of the output signal from the AND operation unit 54 is “1”, a frequency signal having an average value of frequency information from the ¼ divider 48 as a value N is output, and the AND operation unit 54 When the value of the output signal from “0” is “0”, this frequency signal is not output.

すなわち、コンパレータ50〜53は、測定した周波数情報が予め設定された上限値と下限値の間の値を有するか否かを判定し、AND演算部54に入力する。これによって、測定区間における先行する4つの周波数情報がすべて異常でないかを判定し、周波数情報を使うか否かを判定部49で決定する。このように、周波数検出器34は、入力信号の立ち上がりから次の立ち上がりまでの時間を測定し、測定区間における先行する4つの周波数情報がすべて異常でないことを判断した上で周波数情報として使用する。すなわち、加算器35に入力される周波数信号の値Nは、Pビットカウンタ41にて入力信号の周期をカウントした数である。そのため、判定部49の後段において周波数情報を変換する必要性なく、カウントした値が正しいか否かをPビットカウンタ41の後段において判断する構成となっている。   That is, the comparators 50 to 53 determine whether the measured frequency information has a value between a preset upper limit value and lower limit value, and input the result to the AND operation unit 54. Thus, it is determined whether all the preceding four frequency information in the measurement section is abnormal, and the determination unit 49 determines whether or not to use the frequency information. As described above, the frequency detector 34 measures the time from the rising edge of the input signal to the next rising edge, and uses it as frequency information after determining that the preceding four pieces of frequency information in the measurement section are not abnormal. That is, the value N of the frequency signal input to the adder 35 is the number obtained by counting the period of the input signal by the P bit counter 41. Therefore, there is no need to convert the frequency information at the subsequent stage of the determination unit 49, and it is determined at the subsequent stage of the P bit counter 41 whether the counted value is correct.

次に、ディジタルPLL装置30の動作を説明する。入力信号が入力されると、周波数検出器34におけるPビットカウンタ41によって、基準クロックのタイミングで入力信号の周期長がカウントされ、このカウント値に応じたディジタル値の出力信号が生成される。リーダライタ10内の識別器の指令に基づくスイッチ43によって、入力信号の論理が「1」である場合にはPビットカウンタ41の出力信号が出力され、入力信号の論理が「0」である場合には1/2割算器42によってPビットカウンタ41の出力信号のディジタル値が半分にされた出力信号が出力される。すると、Pビットラッチ部44,45,46によって、それぞれPビットカウンタ41の測定区間における1つ前の出力信号、2つ前の出力信号、3つ前の出力信号が出力され、これらの出力信号は、加算器47によってPビットカウンタ41の測定区間における現在の出力信号と加算され、1/4割算器48によって平均化される。   Next, the operation of the digital PLL device 30 will be described. When an input signal is input, the P bit counter 41 in the frequency detector 34 counts the period length of the input signal at the timing of the reference clock, and generates an output signal having a digital value corresponding to the count value. When the logic of the input signal is “1” by the switch 43 based on the command of the discriminator in the reader / writer 10, the output signal of the P-bit counter 41 is output, and the logic of the input signal is “0” The ½ divider 42 outputs an output signal in which the digital value of the output signal of the P bit counter 41 is halved. Then, the P bit latch units 44, 45, and 46 respectively output the previous output signal, the previous output signal, the previous three output signal in the measurement section of the P bit counter 41, and these output signals. Is added to the current output signal in the measurement interval of the P-bit counter 41 by the adder 47 and averaged by the ¼ divider 48.

コンパレータ50,51,52,53では、Pビットカウンタ41の測定区間における現在の出力信号の値、1つ前の出力信号の値、2つ前の出力信号の値、3つ前の出力信号の値がそれぞれ所定の範囲内である場合には論理「1」の出力信号が出力され、AND演算部54によって論理「1」の出力信号が出力される。すると、判定部49によって、1/4割算器48からの出力信号の値を値Nとして有する周波数信号が加算器35へ出力される。すなわち、コンパレータ50〜53、AND演算部54、および判定部49によって、Pビットカウンタ41にてカウントされた周波数情報が正常であることが判定され、この周波数情報が周波数信号として加算器35へ出力される。   In the comparators 50, 51, 52, and 53, the value of the current output signal in the measurement section of the P-bit counter 41, the value of the previous output signal, the value of the previous output signal, the value of the previous output signal, When each value is within a predetermined range, an output signal of logic “1” is output, and an output signal of logic “1” is output by the AND operation unit 54. Then, the determination unit 49 outputs a frequency signal having the value N of the output signal from the ¼ divider 48 to the adder 35. That is, it is determined by the comparators 50 to 53, the AND operation unit 54, and the determination unit 49 that the frequency information counted by the P-bit counter 41 is normal, and this frequency information is output to the adder 35 as a frequency signal. Is done.

一方、コンパレータ50,51,52,53では、Pビットカウンタ41の測定区間における現在の出力信号の値、1つ前の出力信号の値、2つ前の出力信号の値、3つ前の出力信号の値のうち何れかが所定の範囲外である場合には、対応のコンパレータによって論理「0」の出力信号が出力され、AND演算部54によって論理「0」の出力信号が出力される。すると、判定部49によって周波数信号が加算器35へ出力されない。すなわち、コンパレータ50〜53、AND演算部54、および判定部49によって、Pビットカウンタ41にてカウントされた周波数情報が異常であることが判定され、周波数信号が加算器35へ出力されない。このような場合は、例えば直近の正しい値を保持させ、本実施形態のディジタルPLL装置30の安定動作に寄与する。   On the other hand, in the comparators 50, 51, 52, and 53, the value of the current output signal in the measurement section of the P-bit counter 41, the value of the previous output signal, the value of the previous output signal, the output of the previous three If any of the signal values is outside the predetermined range, an output signal of logic “0” is output by the corresponding comparator, and an output signal of logic “0” is output by the AND operation unit 54. Then, the determination unit 49 does not output the frequency signal to the adder 35. That is, the comparators 50 to 53, the AND operation unit 54, and the determination unit 49 determine that the frequency information counted by the P bit counter 41 is abnormal, and the frequency signal is not output to the adder 35. In such a case, for example, the latest correct value is held, which contributes to the stable operation of the digital PLL device 30 of the present embodiment.

また、位相検出器31によって入力信号に対する再生クロックの位相遅れ、位相進みを検出され、RWF32aによって位相検出器31からの出力信号のパルスがカウントされる。   Further, the phase detector 31 detects the phase lag and phase advance of the recovered clock with respect to the input signal, and the RWF 32a counts the pulses of the output signal from the phase detector 31.

(i)再生クロックの位相が入力信号の位相付近である場合
RWF32aによってカウントされた値が所定の値に達しないので、位相ずれ信号がRWF32aおよびリセットホールド部32bから出力されない。
(I) When the phase of the recovered clock is near the phase of the input signal Since the value counted by the RWF 32a does not reach a predetermined value, the phase shift signal is not output from the RWF 32a and the reset hold unit 32b.

すると、加算器35によって値Nを有する制御信号が生成される。制御分周器36aでは、この制御信号の値Nに基づいてマスタークロックをN分周した分周クロックが生成され、更に固定分周器36bによって分周されて再生クロックが生成される。このように、再生クロックの位相が入力信号の位相付近である場合には、制御分周器36aによるN分周が継続される。   Then, a control signal having a value N is generated by the adder 35. In the control frequency divider 36a, a frequency-divided clock obtained by dividing the master clock by N is generated based on the value N of the control signal, and further, the frequency is divided by the fixed frequency divider 36b to generate a recovered clock. Thus, when the phase of the recovered clock is near the phase of the input signal, the N frequency division by the control frequency divider 36a is continued.

(ii)次に、再生クロックの位相が入力信号の位相より遅れている場合
RWF32aによってカウントされた値が所定の値に達し、位相遅れを表す値−aを有する位相ずれ信号がRWF32aおよびリセットホールド部32bから出力されると共に、リセットホールド部32bがロックされ、値−aを有する位相ずれ信号が出力され続ける。
(Ii) Next, when the phase of the recovered clock is delayed from the phase of the input signal, the value counted by the RWF 32a reaches a predetermined value, and the phase shift signal having the value -a indicating the phase delay is transferred to the RWF 32a and the reset hold. In addition to being output from the unit 32b, the reset hold unit 32b is locked, and the phase shift signal having the value -a is continuously output.

すると、位相ずれ信号の値−aと周波数信号の値Nとは加算器35によって加算され、値N−aを有する制御信号が生成される。制御分周器36aでは、この制御信号の値N−aに基づいてマスタークロックをN−a分周した分周クロックが生成され、更に固定分周器36bによって分周されて再生クロックが生成される。制御分周器36aにおいてN−1分周がJ回行われると、リセット制御部32cからリセット信号が出力され、リセットホールド部32bからの位相ずれ信号が停止されて、加算器35によって制御信号の値がN−aからNに戻る。すると、制御分周器36aにおけるN−a分周がN分周に戻る。このように、再生クロックの位相が入力信号の位相より遅れている場合には、制御分周器36aによるJ回のN−a分周によって再生クロックの位相が進められる。   Then, the value -a of the phase shift signal and the value N of the frequency signal are added by the adder 35, and a control signal having the value Na is generated. In the control frequency divider 36a, a divided clock obtained by dividing the master clock by Na is generated based on the value Na of the control signal, and further, the recovered clock is generated by frequency division by the fixed frequency divider 36b. The When the N-1 frequency division is performed J times in the control frequency divider 36a, the reset signal is output from the reset control unit 32c, the phase shift signal from the reset hold unit 32b is stopped, and the control signal of the control signal is added by the adder 35. The value returns from Na to N. Then, the Na frequency division in the control frequency divider 36a returns to the N frequency division. As described above, when the phase of the recovered clock is delayed from the phase of the input signal, the phase of the recovered clock is advanced by J times of Na division by the control frequency divider 36a.

(iii)再生クロックの位相が入力信号の位相より進んでいる場合
RWF32aによってカウントされた値が所定の値に達し、位相進みを表す値+aを有する位相ずれ信号がRWF32aおよびリセットホールド部32bから出力されると共に、リセットホールド部32bがロックされ、値+aを有する位相ずれ信号が出力され続ける。
(Iii) When the phase of the recovered clock is ahead of the phase of the input signal The value counted by the RWF 32a reaches a predetermined value, and a phase shift signal having a value + a representing the phase advance is output from the RWF 32a and the reset hold unit 32b At the same time, the reset hold unit 32b is locked and the phase shift signal having the value + a is continuously output.

すると、位相ずれ信号の値+aと周波数信号の値Nとは加算器によって加算され、値N+aを有する制御信号が生成される。制御分周器36aでは、この制御信号の値N+aに基づいてマスタークロックをN+a分周した分周クロックが生成され、更に固定分周器36bによって分周されて再生クロックが生成される。制御分周器36aにおいてN+a分周がJ回行われると、リセット制御部32cからリセット信号が出力され、リセットホールド部32bからの位相ずれ信号が停止されて、加算器35によって制御信号の値がN+aからNに戻る。すると、制御分周器36aにおけるN+a分周がN分周に戻る。このように、再生クロックの位相が入力信号の位相より進んでいる場合には、制御分周器36aによるJ回のN+a分周によって再生クロックの位相が遅らせされる。   Then, the value + a of the phase shift signal and the value N of the frequency signal are added by the adder, and a control signal having the value N + a is generated. In the control frequency divider 36a, a divided clock obtained by dividing the master clock by N + a is generated based on the value N + a of the control signal, and further, the recovered clock is generated by frequency division by the fixed frequency divider 36b. When N + a frequency division is performed J times in the control frequency divider 36a, a reset signal is output from the reset control unit 32c, the phase shift signal from the reset hold unit 32b is stopped, and the value of the control signal is added by the adder 35. Return from N + a to N. Then, the N + a frequency division in the control frequency divider 36a returns to the N frequency division. Thus, when the phase of the recovered clock is ahead of the phase of the input signal, the phase of the recovered clock is delayed by J times of N + a division by the control frequency divider 36a.

ところで、上述したように、RFIDシステム1における応答器20内のPLL装置のフリーラン動作によって、応答器20から出力される応答信号の周波数が変動することがある。RFIDシステム1では、応答器20から出力される応答信号の周波数が中心周波数に対して最大±25%(0.8倍〜1.33倍)まで変動することが許容されている。すなわち、リーダライタ10におけるディジタルPLL装置30の入力信号の周波数が中心周波数に対して最大±25%まで変動することがある。この周波数変動±25%を位相変動に換算すると、±90度に相当する。   By the way, as described above, the frequency of the response signal output from the responder 20 may fluctuate due to the free-run operation of the PLL device in the responder 20 in the RFID system 1. In the RFID system 1, the frequency of the response signal output from the responder 20 is allowed to vary up to ± 25% (0.8 times to 1.33 times) with respect to the center frequency. That is, the frequency of the input signal of the digital PLL device 30 in the reader / writer 10 may vary up to ± 25% with respect to the center frequency. When this frequency variation ± 25% is converted into phase variation, it corresponds to ± 90 degrees.

しかしながら、本実施形態のディジタルPLL装置30によれば、制御分周部36内の制御分周器36aにおける分周比を定める制御信号の値には、周波数検出器34から出力される周波数信号の値が加算器35によって加算される。この周波数信号の値は入力信号の周波数値に応じた値であり、制御分周部36内の制御分周器36aにおける分周比の中心値Nは周波数信号の値によって定められるので、分周比の中心値Nによって定まる再生クロックと入力信号との周波数差が低減される。したがって、このディジタルPLL装置30によれば、入力信号の周波数が大きく変動しても、再生クロックのジッタを低減することが可能である。   However, according to the digital PLL device 30 of the present embodiment, the value of the control signal that determines the frequency division ratio in the control frequency divider 36 a in the control frequency divider 36 is the value of the frequency signal output from the frequency detector 34. The value is added by the adder 35. The value of the frequency signal is a value corresponding to the frequency value of the input signal, and the center value N of the frequency division ratio in the control frequency divider 36a in the control frequency divider 36 is determined by the value of the frequency signal. The frequency difference between the reproduction clock and the input signal determined by the center value N of the ratio is reduced. Therefore, according to the digital PLL device 30, it is possible to reduce the jitter of the recovered clock even if the frequency of the input signal varies greatly.

例えば、入力信号が中心周波数である場合に16分周され、a=1であるとすると、1/16分周を中心に1/15分周または、1/17分周で位相制御される。入力信号が中心周波数より高く、中心周波数の1.15倍である場合、1/14分周を中心に1/13分周または1/15分周で位相制御され、周波数差から換算されるジッタは±15度に抑えることができる。一方、入力信号が中心周波数より低く、中心周波数の0.85倍である場合、1/19分周を中心に1/18分周または1/20分周で位相制御され、周波数差から換算されるジッタは±15度に抑えることができる。   For example, when the input signal has the center frequency, the frequency is divided by 16, and when a = 1, the phase is controlled by the 1/15 frequency division or the 1/17 frequency division centering on the 1/16 frequency division. When the input signal is higher than the center frequency and 1.15 times the center frequency, the phase is controlled by the 1/13 or 1/15 division centered on the 1/14 division, and the jitter converted from the frequency difference Can be suppressed to ± 15 degrees. On the other hand, when the input signal is lower than the center frequency and is 0.85 times the center frequency, phase control is performed by dividing 1/18 or 1/20 centering on the 1/19 division and converted from the frequency difference. Jitter can be suppressed to ± 15 degrees.

ところで、一般にカウンタは、2、4、8、16、32など2のべき乗の回数をカウントする毎に出力パルスを出力するように構成すれば、回路の簡素化が図れる。   By the way, in general, if the counter is configured to output an output pulse each time the number of powers of 2, such as 2, 4, 8, 16, 32, is counted, the circuit can be simplified.

そのため、制御分周器36aとしてプログラマブルカウンタが用いられる場合、制御分周器36aの分周比の中心値Nは2のべき乗の値であることが好ましい。ここで、分周比の中心値Nは周波数検出器34から出力される周波数信号の値Nであり、この周波数信号の値NはPビットカウンタ41のカウント数Nに相当する。したがって、Pビットカウンタ41では、2のべき乗の回数で入力信号をカウントすることが望ましい。また、Pビットカウンタ41のカウント数Nは、図4に示す入力信号の波形とPビットカウンタ41のカウント数との関係を考慮し、論理「1」の区間と論理「0」の区間とをともに把握できるカウント数にする必要性がある。   Therefore, when a programmable counter is used as the control frequency divider 36a, the center value N of the frequency division ratio of the control frequency divider 36a is preferably a power of 2. Here, the center value N of the frequency division ratio is the value N of the frequency signal output from the frequency detector 34, and the value N of this frequency signal corresponds to the count number N of the P bit counter 41. Therefore, it is desirable for the P-bit counter 41 to count the input signal by the power of 2. Further, the count number N of the P-bit counter 41 takes into account the relationship between the waveform of the input signal and the count number of the P-bit counter 41 shown in FIG. It is necessary to make the number of counts that can be grasped together.

具体的には、Pビットカウンタ41のカウント数がN=8である場合、Pビットカウンタ41では、入力信号における論理「1」の区間の一つのパルスのカウント数が2回であるので、入力信号におけるパルスの立ち上がりを確実に把握することができない可能性がある。一方、Pビットカウンタ41のカウント数がN=32である場合、Pビットカウンタ41では、入力信号における論理「1」の区間の一つのパルスのカウント数が8回であるので、入力信号におけるパルスの立ち上がりを確実に把握することができるが、カウント数が多くなることによって、周波数検出器34および制御分周器36aにおける消費電力が増大し、ディジタルPLL装置30全体としての消費電力が増大する可能性がある。   Specifically, when the count number of the P-bit counter 41 is N = 8, the P-bit counter 41 has two counts of one pulse in the logical “1” section in the input signal. There is a possibility that the rising edge of the pulse in the signal cannot be reliably grasped. On the other hand, when the count number of the P-bit counter 41 is N = 32, the P-bit counter 41 counts one pulse in the interval of logic “1” in the input signal as eight times, so the pulse in the input signal However, if the count number increases, the power consumption in the frequency detector 34 and the control frequency divider 36a increases, and the power consumption of the entire digital PLL device 30 may increase. There is sex.

そこで、本実施形態では、Pビットカウンタ41のカウント数N、すなわち制御分周器36aにおける分周比の中心値Nの中心値を16とすることによって、Pビットカウンタ41では、入力信号における論理「1」の区間の一つのパルスのカウント数が4回となり、入力信号におけるパルスの立ち上がりを確実に捕らえることができ、更に最小限のカウント数で入力信号の周期をカウントすることができ、ディジタルPLL装置30における消費電力が低減される。   Therefore, in this embodiment, the count number N of the P bit counter 41, that is, the center value N of the center value N of the frequency division ratio in the control frequency divider 36a is set to 16, so that the P bit counter 41 has a logic in the input signal. The number of counts of one pulse in the section “1” is four times, the rising edge of the pulse in the input signal can be reliably captured, and the cycle of the input signal can be counted with a minimum number of counts. The power consumption in the PLL device 30 is reduced.

なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。本実施形態では、本発明の利点を明確化するためにRFIDシステムへの適用例を示したが、本発明のディジタルPLL装置は様々なシステムに適用可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made. In this embodiment, an example of application to an RFID system has been shown to clarify the advantages of the present invention, but the digital PLL device of the present invention can be applied to various systems.

RFIDシステムの構成を示す図である。It is a figure which shows the structure of an RFID system. 本発明の実施形態に係るディジタルPLL装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of a digital PLL device according to an embodiment of the present invention. 周波数検出器を示す回路図である。It is a circuit diagram which shows a frequency detector. 入力信号の波形を示す図である。It is a figure which shows the waveform of an input signal. 周波数検出器における各部信号波形を示す図である。It is a figure which shows each part signal waveform in a frequency detector.

符号の説明Explanation of symbols

1…RFIDシステム、10…リーダライタ、11…制御部、12…送信部、13…変調器、14…発振器、15…増幅器、16…サーキュレータ、17…アンテナ、18…復調器、19…受信部、20…応答器、21…アンテナ、22…共振部、23…電源部、24…変調・復調部、25…制御部、26…データ記憶部、30…ディジタルPLL装置、31…位相検出器、32…ランダムウォークフィルタ部(RWF部)、32a…ランダムウォークフィルタ(RWF)、32b…リセットホールド部、32c…リセット制御部、34…周波数検出器、35…加算器、36…制御分周部、36a…制御分周器、36b…固定分周器、41…Pビットカウンタ、42…1/2割算器、43…スイッチ、44〜46…Pビットラッチ部、47…加算器、48…1/4割算器、49…判定部、50〜53…コンパレータ、54…AND演算部。   DESCRIPTION OF SYMBOLS 1 ... RFID system, 10 ... Reader / writer, 11 ... Control part, 12 ... Transmission part, 13 ... Modulator, 14 ... Oscillator, 15 ... Amplifier, 16 ... Circulator, 17 ... Antenna, 18 ... Demodulator, 19 ... Reception part , 20 ... transponder, 21 ... antenna, 22 ... resonance unit, 23 ... power supply unit, 24 ... modulation / demodulation unit, 25 ... control unit, 26 ... data storage unit, 30 ... digital PLL device, 31 ... phase detector, 32 ... Random walk filter unit (RWF unit), 32a ... Random walk filter (RWF), 32b ... Reset hold unit, 32c ... Reset control unit, 34 ... Frequency detector, 35 ... Adder, 36 ... Control frequency division unit, 36a ... Control frequency divider, 36b ... Fixed frequency divider, 41 ... P-bit counter, 42 ... 1/2 divider, 43 ... Switch, 44-46 ... P-bit latch unit, 47 ... Adder, 48 ... 1/4 divider, 49 ... determining unit, 50 to 53 ... comparator, 54 ... the AND operation unit.

Claims (4)

入力信号に対する再生クロックの位相遅れ、位相進みを検出する位相検出器と、
前記位相検出器からの出力信号を積分し、積分値に応じて位相ずれ信号を発生するランダムウォークフィルタ部と、
前記入力信号の周波数値に応じた値を有する周波数信号を生成する周波数検出器と、
前記位相ずれ信号の値と前記周波数信号の値とを加算した値を有する制御信号を生成する加算器と、
前記制御信号の値を分周比として、マスタークロックを分周した前記再生クロックを生成する制御分周部と、
を備え、
前記制御分周部における前記分周比の中心値N(Nは自然数)は、前記周波数信号の値によって定められることを特徴とする、
ディジタルPLL装置。
A phase detector that detects the phase lag and phase advance of the recovered clock relative to the input signal;
A random walk filter unit that integrates an output signal from the phase detector and generates a phase shift signal according to an integrated value;
A frequency detector that generates a frequency signal having a value corresponding to the frequency value of the input signal;
An adder for generating a control signal having a value obtained by adding the value of the phase shift signal and the value of the frequency signal;
A control frequency dividing unit that generates the reproduction clock obtained by dividing the master clock by using the value of the control signal as a frequency division ratio;
With
A center value N (N is a natural number) of the frequency division ratio in the control frequency dividing unit is determined by a value of the frequency signal.
Digital PLL device.
前記制御分周部における前記分周比の変更量+aまたは−a(aは自然数)は、前記位相ずれ信号の値によって定められ、
前記制御分周部は、前記分周比の中心値Nを+aずつ増加または−aずつ減少する、
ことを特徴とする請求項1に記載のディジタルPLL装置。
The change amount + a or −a (a is a natural number) of the frequency division ratio in the control frequency divider is determined by the value of the phase shift signal.
The control frequency dividing unit increases the central value N of the frequency dividing ratio by + a or decreases by −a.
The digital PLL device according to claim 1, wherein:
前記分周比の変更量の絶対値aが1である、ことを特徴とする請求項2に記載のディジタルPLL装置。   The digital PLL device according to claim 2, wherein an absolute value a of the change amount of the division ratio is 1. 前記分周比の中心値Nの中心値が16である、ことを特徴とする請求項1〜3の何れかに記載のディジタルPLL装置。   The digital PLL device according to any one of claims 1 to 3, wherein a center value of the center value N of the frequency division ratio is 16.
JP2006071517A 2006-03-15 2006-03-15 Digital pll device Withdrawn JP2007251547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071517A JP2007251547A (en) 2006-03-15 2006-03-15 Digital pll device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006071517A JP2007251547A (en) 2006-03-15 2006-03-15 Digital pll device

Publications (1)

Publication Number Publication Date
JP2007251547A true JP2007251547A (en) 2007-09-27

Family

ID=38595388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071517A Withdrawn JP2007251547A (en) 2006-03-15 2006-03-15 Digital pll device

Country Status (1)

Country Link
JP (1) JP2007251547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154841A (en) * 2011-01-27 2012-08-16 Mitsubishi Electric Corp Gps jitter reduction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154841A (en) * 2011-01-27 2012-08-16 Mitsubishi Electric Corp Gps jitter reduction device

Similar Documents

Publication Publication Date Title
EP3337049B1 (en) Active load modulation technique in near field communication
US10454532B2 (en) Method and transmitter circuit for communication using active load modulation in radio frequency identification systems
US9369120B2 (en) Detector circuit, transponder and method for detecting signal amplitudes
US10841074B2 (en) Method for synchronizing an active load modulation clock within a transponder, and corresponding transponder
EP2727255A1 (en) Method and circuit intended for high-frequency communication between an interrogator and a smart tag
US10740575B1 (en) Reception circuit and near field communication (NFC) card including same
US10164766B1 (en) Advanced synchronization schemes for NFC card emulation mode, peer-to-peer mode and RFID tag design
US11533081B2 (en) NFC device detection
US11239885B2 (en) Near field communication method and transceiver with clock recovery
JP2019510397A (en) Clock synchronizer that synchronizes the device clock to the clock of the remote device
US8923383B2 (en) Transmitter and transmitting method using delay locked loop
JP2001045083A (en) Carrier synchronization type demodulator for psk signal
JP2007251547A (en) Digital pll device
CN111327315B (en) Clock frequency supply device and method
KR101617013B1 (en) Semiconductor device
CN101326716B (en) Electric circuit for and method of generating a clock signal
US8766776B2 (en) Transponder unit
US9729359B1 (en) Methods and apparatus for transponder oscillator with optimized timing
JP2008283634A (en) Demodulation circuit and rfid system
CZ2007527A3 (en) Device for reading contactless integrated circuits
EP4020811B1 (en) Power-on communication between a host ic and a client ic
US20060192656A1 (en) Transmission of data to or from transponder devices
JP2000059261A (en) Noncontact data transmission and reception device
JP2010128881A (en) Information processing apparatus, information processing method, and program
JP2009507442A (en) How to generate a clock signal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602