JP2006278093A - Continuous heat treatment method of powder and liquid, powdered carbon material obtained by the above method, and powdered carbon material to which heat treatment is applied by the above method - Google Patents

Continuous heat treatment method of powder and liquid, powdered carbon material obtained by the above method, and powdered carbon material to which heat treatment is applied by the above method Download PDF

Info

Publication number
JP2006278093A
JP2006278093A JP2005094019A JP2005094019A JP2006278093A JP 2006278093 A JP2006278093 A JP 2006278093A JP 2005094019 A JP2005094019 A JP 2005094019A JP 2005094019 A JP2005094019 A JP 2005094019A JP 2006278093 A JP2006278093 A JP 2006278093A
Authority
JP
Japan
Prior art keywords
powder
heat treatment
liquid
treatment method
continuous heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005094019A
Other languages
Japanese (ja)
Inventor
Yoshinori Iwabuchi
芳典 岩淵
Masahito Yoshikawa
雅人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005094019A priority Critical patent/JP2006278093A/en
Publication of JP2006278093A publication Critical patent/JP2006278093A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous heat treatment method capable of continuously applying heat treatment to powder or liquid. <P>SOLUTION: The continuous heat treatment is applied to powder or liquid by continuously supplying the powder or the liquid to a heating chamber 1 provided with a microwave generation device 2, and irradiating microwave on the powder or liquid in the heating chamber 1. It is preferable that the frequency of the microwave irradiated on the powder or liquid is 28 GHz. Further, it is preferable to use a movable convayor for continuously supplying the powder to the heating chamber, and it is further preferable to use a microwave absorbing body for the movable convayor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粉体又は液体の連続熱処理方法、並びに該連続熱処理方法で得られた粉末状炭素材料及び該連続熱処理方法で熱処理を施した粉末状炭素材料に関するものである。   The present invention relates to a powder or liquid continuous heat treatment method, a powdery carbon material obtained by the continuous heat treatment method, and a powdery carbon material subjected to heat treatment by the continuous heat treatment method.

従来、ポリマー等の有機物を加熱し、分解・炭化させて炭素材料を製造するためには、電気ヒータに代表される外部加熱方式の炉が一般に使用されている。しかしながら、該外部加熱方式の炉で有機物を加熱する場合、被加熱体である有機物の加熱を熱伝導に頼らざるを得ないため、急速加熱が難しいという問題がある。   Conventionally, in order to produce a carbon material by heating, decomposing and carbonizing an organic substance such as a polymer, an external heating type furnace represented by an electric heater is generally used. However, when heating an organic substance in the furnace of the external heating system, there is a problem that rapid heating is difficult because heating of the organic substance that is the object to be heated must be relied on heat conduction.

また、外部加熱方式の炉で有機物を加熱する場合、加熱中に、被加熱体である有機物の表面と内部とで温度差が生じてしまい、均一に加熱することが難しいという問題もある。   In addition, when an organic substance is heated in an external heating type furnace, there is a problem that a temperature difference occurs between the surface and the inside of the organic substance that is an object to be heated, which makes it difficult to heat uniformly.

更に、外部加熱方式の炉で有機物を加熱する場合、投入エネルギーが被加熱体である有機物の温度上昇以外にも用いられ、例えば、周辺雰囲気全体の加熱に費やされるため、エネルギー効率が悪いという問題もある。   Furthermore, when heating organic matter in an external heating type furnace, the input energy is used in addition to the temperature rise of the organic matter that is the object to be heated. For example, the energy consumption is poor because the entire surrounding atmosphere is heated. There is also.

また更に、上記外部加熱方式の炉で有機物を連続焼成する場合には、さらに問題が多く、例えば、熱の逃げによる温度レベルの限界や、熱の逃げを防ぐための断熱材の配置や、ヒータとの位置関係等を詳細に検討する必要があり、装置が複雑化するといった問題もある。   Furthermore, when organic matter is continuously fired in the furnace of the external heating method, there are many more problems, for example, the limit of the temperature level due to the escape of heat, the arrangement of heat insulating material to prevent the escape of heat, the heater Therefore, there is a problem that the apparatus becomes complicated.

また、上記炭化とは異なる熱処理プロセスでも同様に、外部加熱方式では急速加熱や均一加熱が難しく、熱処理の連続化が困難であるという問題がある。   Similarly, in the heat treatment process different from the carbonization, there is a problem that rapid heating and uniform heating are difficult in the external heating method, and it is difficult to continue the heat treatment.

このような状況下、本発明の目的は、上記従来技術の問題を解決し、粉体又は液体を連続的に熱処理することが可能な粉体又は液体の連続熱処理方法を提供することにある。また、本発明の他の目的は、かかる連続熱処理方法を用いて製造された粉末状炭素材料、並びに、かかる連続熱処理方法で熱処理を施した粉末状炭素材料を提供することにある。   Under such circumstances, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a powder or liquid continuous heat treatment method capable of continuously heat treating powder or liquid. Another object of the present invention is to provide a powdery carbon material produced by using such a continuous heat treatment method and a powdery carbon material that has been heat-treated by such a continuous heat treatment method.

本発明者らは、上記目的を達成するために鋭意検討した結果、加熱用のチャンバーに粉体又は液体を連続的に供給し、該チャンバー内でマイクロ波照射を行うことで、粉体又は液体を連続的に熱処理できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have continuously supplied powder or liquid to a heating chamber and performed microwave irradiation in the chamber, whereby powder or liquid is obtained. Has been found to be continuously heat-treated, and the present invention has been completed.

即ち、本発明の連続熱処理方法は、マイクロ波発生装置を備える加熱チャンバーに粉体又は液体を連続的に供給し、該加熱チャンバー中で前記粉体又は液体にマイクロ波照射を行い、該粉体又は液体を連続的に熱処理することを特徴とする。   That is, in the continuous heat treatment method of the present invention, powder or liquid is continuously supplied to a heating chamber equipped with a microwave generator, and the powder or liquid is irradiated with microwaves in the heating chamber. Alternatively, the liquid is continuously heat-treated.

本発明の連続熱処理方法の好適例においては、前記粉体又は液体に照射するマイクロ波の周波数が28GHzである。この場合、原料の粉体又は液体がマイクロ波(周波数28GHzのミリ波)を十分に吸収し、また、熱暴走することがなく、均一な加熱が可能であり、更に、アーキングの発生も防止することができる。   In a preferred embodiment of the continuous heat treatment method of the present invention, the frequency of the microwave applied to the powder or liquid is 28 GHz. In this case, the raw material powder or liquid sufficiently absorbs the microwave (millimeter wave with a frequency of 28 GHz), does not run out of heat, can be heated uniformly, and further prevents arcing. be able to.

本発明の連続熱処理方法の他の好適例においては、前記粉体を前記加熱チャンバーに連続的に供給するために可動コンベアを用いる。ここで、該可動コンベアがマイクロ波吸収体からなることが更に好ましい。この場合、搬送体が効率よくマイクロ波を吸収し発熱するため、原料の粉体又は液体自体の自己発熱以外に、搬送体から伝導してくる熱が加わり、更に効率的な熱処理が可能となる。   In another preferred embodiment of the continuous heat treatment method of the present invention, a movable conveyor is used to continuously supply the powder to the heating chamber. Here, it is more preferable that the movable conveyor is made of a microwave absorber. In this case, since the carrier efficiently absorbs microwaves and generates heat, heat conducted from the carrier is added in addition to the self-heating of the raw material powder or liquid itself, thereby enabling more efficient heat treatment. .

本発明の連続熱処理方法の他の好適例においては、前記加熱チャンバーが前記粉体又は液体の通過位置の上方及び下方に断熱材又は真空断熱層を有する。ここで、該断熱材中に加熱ヒータが埋設されていることが更に好ましい。   In another preferred embodiment of the continuous heat treatment method of the present invention, the heating chamber has a heat insulating material or a vacuum heat insulating layer above and below the passage position of the powder or liquid. Here, it is more preferable that a heater is embedded in the heat insulating material.

本発明の連続熱処理方法の他の好適例においては、前記加熱チャンバー中における前記粉体又は液体に対するマイクロ波照射を、真空下、不活性ガス雰囲気下又は反応性ガス雰囲気下で行う。   In another preferred embodiment of the continuous heat treatment method of the present invention, microwave irradiation of the powder or liquid in the heating chamber is performed in a vacuum, in an inert gas atmosphere, or in a reactive gas atmosphere.

本発明の連続熱処理方法の他の好適例においては、前記粉体が粉末状ポリマーであり、前記マイクロ波照射による熱処理によって、該粉末状ポリマーを焼成し炭化させて粉末状炭素材料とする。また、本発明の粉末状炭素材料は、かかる連続熱処理方法で得られたものであることを特徴とする。   In another preferred embodiment of the continuous heat treatment method of the present invention, the powder is a powdered polymer, and the powdered polymer is baked and carbonized by the heat treatment by microwave irradiation to obtain a powdery carbon material. The powdery carbon material of the present invention is obtained by such a continuous heat treatment method.

本発明の連続熱処理方法の他の好適例においては、前記粉体が粉末状炭素材料である。ここで、該粉末状炭素材料としては、ナノカーボン及びアモルファスカーボン粉末が挙げられる。なお、該粉末状炭素材料がアモルファスカーボン粉末である場合、前記マイクロ波照射による熱処理によって、該アモルファスカーボン粉末を結晶化させることができる。また、本発明の粉末状炭素材料は、かかる連続熱処理方法で熱処理を施したものであることを特徴とする。   In another preferred embodiment of the continuous heat treatment method of the present invention, the powder is a powdered carbon material. Here, examples of the powdery carbon material include nanocarbon and amorphous carbon powder. When the powdery carbon material is an amorphous carbon powder, the amorphous carbon powder can be crystallized by the heat treatment by the microwave irradiation. Moreover, the powdery carbon material of the present invention is characterized by being heat-treated by such a continuous heat treatment method.

本発明によれば、粉体又は液体を連続的に熱処理することが可能な粉体又は液体の連続熱処理方法を提供することができる。また、該連続熱処理方法を用いて製造された粉末状炭素材料、並びに、該連続熱処理方法で熱処理を施した粉末状炭素材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the continuous heat processing method of the powder or liquid which can heat-process a powder or liquid continuously can be provided. Moreover, the powdery carbon material manufactured using this continuous heat processing method and the powdery carbon material which heat-processed by this continuous heat processing method can be provided.

以下に、本発明を詳細に説明する。本発明の連続熱処理方法は、マイクロ波発生装置を備える加熱チャンバーに粉体又は液体を連続的に供給し、該加熱チャンバー中で前記粉体又は液体にマイクロ波照射を行い、該粉体又は液体を連続的に熱処理することを特徴とする。マイクロ波を照射して粉体又は液体を連続熱処理する場合、粉体又は液体がマイクロ波を吸収し自己発熱することで、高い効率で熱処理することができる。また、マイクロ波照射による加熱の場合、熱源からの熱伝導に頼らないために、短時間で昇温が可能であり、短時間・省エネルギープロセスを実現することができる。更にマイクロ波加熱は、温度の制御性にも優れ応答性が高いことも特徴といえる。   The present invention is described in detail below. In the continuous heat treatment method of the present invention, powder or liquid is continuously supplied to a heating chamber equipped with a microwave generator, microwave irradiation is performed on the powder or liquid in the heating chamber, and the powder or liquid It is characterized by heat-treating continuously. When the powder or liquid is subjected to continuous heat treatment by irradiation with microwaves, the powder or liquid absorbs the microwave and self-heats, whereby heat treatment can be performed with high efficiency. In addition, in the case of heating by microwave irradiation, since it does not depend on heat conduction from a heat source, the temperature can be raised in a short time, and a short time and energy saving process can be realized. Furthermore, microwave heating is also characterized by excellent temperature controllability and high response.

本発明の連続熱処理方法において、マイクロ波照射により連続的に熱処理する場合、照射するマイクロ波の周波数は、通常、300MHz〜300GHzの範囲であり、28GHz(ミリ波)が特に好ましい。マイクロ波としては、電子レンジに代表される周波数2.45GHzのものが広く普及しているが、2.45GHzのマイクロ波を用いた場合は、以下のような問題がある。(i)2.45GHzのマイクロ波を十分に吸収する材料(粉体又は液体)が限られている。(ii)材料が複雑な形状を有する場合に、突起部に電界が集中し、熱暴走して均一な加熱が難しい。(iii)導電性材料ではアーキングが発生する(電子レンジでアルミホイルから火花が飛ぶ現象)。これらのデメリットを解決すべく鋭意検討した結果、マイクロ波の周波数を高めることで上記問題を解決することができ、28GHzのマイクロ波(ミリ波)が特に好適に使用できることが分った。また、28GHzのマイクロ波を用い、粉体又は液体がポリマーからなる場合、ポリマー自体の加熱を効率的に行うことが可能となり、その他の特長としては、導電性材料であってもアーキングが極めて生じ難い点が挙げられる。なお、ポリマー等の有機物が炭化して導電性グラファイト化した場合でも、28GHzのマイクロ波を用いることで、アーキングの発生を防止できる。また、投入電力やラインスピードを調整することで、マイクロ波を吸収しやすい材料、吸収しにくい材料等、様々な材料に対して本発明の連続熱処理方法を適応することが可能となる。なお、マイクロ波を発生させるために用いるマイクロ波発生装置としては、特に制限は無く、一般的なものを使用することができ、例えば、ジャイロトロン発振機等を例示することができる。   In the continuous heat treatment method of the present invention, when the heat treatment is continuously performed by microwave irradiation, the frequency of the microwave to be irradiated is usually in a range of 300 MHz to 300 GHz, and 28 GHz (millimeter wave) is particularly preferable. As a microwave, a microwave with a frequency of 2.45 GHz typified by a microwave oven is widely used. However, when a microwave of 2.45 GHz is used, there are the following problems. (i) The material (powder or liquid) that sufficiently absorbs 2.45 GHz microwave is limited. (ii) When the material has a complicated shape, the electric field concentrates on the protrusion, and thermal runaway occurs, making uniform heating difficult. (iii) Arcing occurs in conductive materials (a phenomenon in which sparks fly from aluminum foil in a microwave oven). As a result of intensive studies to solve these disadvantages, it has been found that the above problem can be solved by increasing the frequency of the microwave, and that a 28 GHz microwave (millimeter wave) can be used particularly suitably. In addition, when a 28 GHz microwave is used and the powder or liquid is made of a polymer, it is possible to efficiently heat the polymer itself. Another feature is that arcing is extremely generated even with conductive materials. A difficult point is mentioned. Even when an organic substance such as a polymer is carbonized to become conductive graphite, generation of arcing can be prevented by using a 28 GHz microwave. Further, by adjusting the input power and the line speed, the continuous heat treatment method of the present invention can be applied to various materials such as a material that easily absorbs microwaves and a material that hardly absorbs microwaves. In addition, there is no restriction | limiting in particular as a microwave generator used for generating a microwave, A general thing can be used, For example, a gyrotron oscillator etc. can be illustrated.

本発明の連続熱処理方法は、例えば、図1に示すような連続熱処理装置を用いて実施することができる。図1に示す連続熱処理装置は、加熱チャンバー1と、該加熱チャンバー中で粉体又は液体をマイクロ波照射により熱処理するためのマイクロ波発生装置2と、前記加熱チャンバーに前記粉体又は液体を搬入及び搬出するための搬送体3とを備える。なお、図示例の搬送体3は、可動コンベアであるが、他の種類の搬送機構を用いることもできる。   The continuous heat treatment method of the present invention can be carried out using, for example, a continuous heat treatment apparatus as shown in FIG. The continuous heat treatment apparatus shown in FIG. 1 has a heating chamber 1, a microwave generator 2 for heat-treating powder or liquid by microwave irradiation in the heating chamber, and the powder or liquid is carried into the heating chamber. And a carrier 3 for carrying out. In addition, although the conveyance body 3 of the example of illustration is a movable conveyor, another kind of conveyance mechanism can also be used.

また、図1に示す連続熱処理装置は、粉体又は液体を貯蔵するホッパー4と、該ホッパー4から搬送体3に粉体又は液体を供給するための供給管5と、上記加熱チャンバー1で熱処理を施された粉体又は液体を回収する回収部6とを備える。更に、図1に示す連続熱処理装置は、加熱チャンバー1とマイクロ波発生装置2とを連結し、マイクロ波発生装置2で発生したマイクロ波を加熱チャンバー1に導くための導波管7Aと、加熱チャンバー1に不活性ガスや反応性ガス等の各種ガスを導入するための導入ライン7Bと、加熱チャンバー1からガスを排気するための排気ライン7Cとを備える。   Further, the continuous heat treatment apparatus shown in FIG. 1 has a hopper 4 for storing powder or liquid, a supply pipe 5 for supplying powder or liquid from the hopper 4 to the carrier 3, and heat treatment in the heating chamber 1. And a collection unit 6 that collects the powder or liquid subjected to. Further, the continuous heat treatment apparatus shown in FIG. 1 connects the heating chamber 1 and the microwave generator 2, a waveguide 7 A for guiding the microwave generated by the microwave generator 2 to the heating chamber 1, and the heating An introduction line 7B for introducing various gases such as an inert gas and a reactive gas into the chamber 1 and an exhaust line 7C for exhausting the gas from the heating chamber 1 are provided.

図1に示す連続熱処理装置においては、粉体又は液体を貯蔵するホッパー4から供給管5を経て搬送体(可動コンベア)3に粉体又は液体が供給され、該搬送体3によって粉体又は液体が加熱チャンバー1に供給される。加熱チャンバー1に供給された粉体又は液体は、該加熱チャンバー1内でマイクロ波発生装置2で発生したマイクロ波を吸収し、自己発熱することで熱処理される。熱処理された粉体又は液体は、搬送体3によって加熱チャンバー1の外部に搬出され、回収部6にて回収される。   In the continuous heat treatment apparatus shown in FIG. 1, powder or liquid is supplied from a hopper 4 for storing powder or liquid to a transport body (movable conveyor) 3 through a supply pipe 5, and the powder or liquid is supplied by the transport body 3. Is supplied to the heating chamber 1. The powder or liquid supplied to the heating chamber 1 is heat-treated by absorbing the microwave generated by the microwave generator 2 in the heating chamber 1 and self-heating. The heat-treated powder or liquid is carried out of the heating chamber 1 by the carrier 3 and collected by the collection unit 6.

ここで、炭化を目的とした熱処理の場合には、上記粉体又は液体としては、重油や各種モノマー、オリゴマー、ポリマー等の有機物を使用することができ、熱処理の結果として、粉末状炭素材料が得られる。   Here, in the case of heat treatment for the purpose of carbonization, as the powder or liquid, organic substances such as heavy oil, various monomers, oligomers, and polymers can be used. can get.

また、本発明の連続熱処理方法は、粉末状炭素材料に対して適用することもできる。ここで、該粉末状炭素材料がアモルファスカーボン粉末である場合、前記マイクロ波照射による熱処理によって、該アモルファスカーボン粉末を結晶化させることができる。また、熱処理を施す粉末状炭素材料としては、特に制限は無く、例えば、各種ナノカーボン(カーボンナノファイバー、カーボンナノチューブ等)を例示することができる。   The continuous heat treatment method of the present invention can also be applied to powdered carbon materials. Here, when the powdery carbon material is an amorphous carbon powder, the amorphous carbon powder can be crystallized by the heat treatment by the microwave irradiation. Moreover, there is no restriction | limiting in particular as a powdery carbon material which heat-processes, For example, various nanocarbon (a carbon nanofiber, a carbon nanotube, etc.) can be illustrated.

更に、上記搬送体3にカーボン繊維シート等のマイクロ波吸収体を用いた場合には、該搬送体3が効率よくマイクロ波を吸収し発熱するため、被加熱体である粉体又は液体自体の自己発熱以外に、搬送体3から伝導してくる熱が加わり、いわばハイブリッド加熱となり、更に効率的な熱処理が可能となる。一般的に、有機物材料は温度が上がる程、また炭化が進む程マイクロ波を吸収するようになり良好に熱処理することができる。なお、搬送体3の材料としては、マイクロ波吸収体に限定されるものではなく、原料の粉体又は液体の処理温度に耐える耐熱性を有するものであればいずれでもよい。   Further, when a microwave absorber such as a carbon fiber sheet is used for the carrier 3, the carrier 3 efficiently absorbs microwaves and generates heat. In addition to self-heating, heat conducted from the carrier 3 is applied, so to speak, hybrid heating is achieved, and more efficient heat treatment is possible. In general, as the temperature of the organic material increases and the carbonization proceeds, the organic material absorbs microwaves and can be heat-treated well. The material of the carrier 3 is not limited to the microwave absorber, and any material having heat resistance that can withstand the processing temperature of the raw material powder or liquid may be used.

上記加熱チャンバー1は、原料である粉体又は液体からの放熱による温度低下をさけるために、前記粉体又は液体の通過位置の上方及び下方にマイクロ波を透過する断熱材8を有することが好ましい。使用する断熱材としては、1800℃程度まではアルミナが好適に使用でき、1800℃以上では、ボロンナイトライド(BN)等が好適に使用できる。例えば、図2の(A)に示すように、原料である粉体又は液体の通過位置の上方及び下方に断熱材8を配置することで、原料からの放熱による温度低下を抑制して、マイクロ波照射により原料を容易に加熱するることができる。   The heating chamber 1 preferably has a heat insulating material 8 that transmits microwaves above and below the passage position of the powder or liquid in order to avoid a temperature drop due to heat radiation from the powder or liquid as a raw material. . As the heat insulating material to be used, alumina can be suitably used up to about 1800 ° C., and boron nitride (BN) or the like can be suitably used at 1800 ° C. or higher. For example, as shown in FIG. 2A, by arranging the heat insulating material 8 above and below the passage position of the raw material powder or liquid, the temperature drop due to heat dissipation from the raw material is suppressed, and the micro The raw material can be easily heated by wave irradiation.

また、上記加熱チャンバー1は、前記粉体又は液体の通過位置の上方及び下方に真空断熱層9を有することも好ましい。この場合も、真空断熱(魔法瓶の原理)により、原料である粉体又は液体からの放熱による温度低下を防止することができる。該真空断熱層としては、マイクロ波を透過する石英等で構成された真空断熱層等を用いることができる。例えば、図2の(B)に示すように、原料である粉体又は液体の通過位置の上方及び下方に真空断熱層9を配置することで、原料からの放熱による温度低下を抑制して、マイクロ波照射により原料を容易に加熱することができる。なお、上記加熱チャンバー1は、断熱材8と真空断熱層9の両方を有してもよい。   Moreover, it is also preferable that the said heating chamber 1 has the vacuum heat insulation layer 9 above and below the passage position of the said powder or liquid. In this case as well, temperature reduction due to heat radiation from the raw material powder or liquid can be prevented by vacuum insulation (the principle of thermos). As the vacuum heat insulating layer, a vacuum heat insulating layer made of quartz or the like that transmits microwaves can be used. For example, as shown in FIG. 2B, by disposing the vacuum heat insulating layer 9 above and below the passage position of the raw material powder or liquid, the temperature drop due to heat dissipation from the raw material is suppressed, The raw material can be easily heated by microwave irradiation. The heating chamber 1 may include both the heat insulating material 8 and the vacuum heat insulating layer 9.

上記加熱チャンバー1が断熱材8を有する場合、該断熱材8中には加熱ヒータ10が埋設されていることが好ましい。連続熱処理時には原料である粉体又は液体がマイクロ波を吸収するため、急速加熱しても周囲の断熱材8に熱を奪われてしまうことがある。これに対し、断熱材8中に加熱ヒータ10を埋設することで、速やかに昇温することができ、装置をより速やかに安定化することができる。例えば、図2の(C)に示すように、原料である粉体又は液体の通過位置の上方及び下方に加熱ヒータ10が埋設された断熱材8を配置することで、原料にマイクロ波が照射される部分の温度を速やかに上昇させて、装置を速やかに安定化することができる。   When the heating chamber 1 has the heat insulating material 8, it is preferable that a heater 10 is embedded in the heat insulating material 8. During continuous heat treatment, the powder or liquid as a raw material absorbs microwaves, so that the surrounding heat insulating material 8 may be deprived of heat even when rapidly heated. On the other hand, by burying the heater 10 in the heat insulating material 8, the temperature can be raised quickly, and the apparatus can be stabilized more quickly. For example, as shown in FIG. 2C, microwaves are irradiated to the raw material by disposing the heat insulating material 8 in which the heater 10 is embedded above and below the passing position of the raw material powder or liquid. The temperature of the portion to be applied can be quickly raised to stabilize the device quickly.

また、加熱チャンバー1の断熱材8に開口を設け、非接触温度計で加熱チャンバー1の温度を計測し、マイクロ波電力にフィードバックする制御機構を設けることで、様々な材料や、処理条件に適宜対応することが容易となる。なお、本発明の連続熱処理方法における熱処理温度は、特に制限されるものでなく、目的に応じて適宜設定でき、マイクロ波電力を調整する等してコントロールすることができる。   In addition, an opening is provided in the heat insulating material 8 of the heating chamber 1, and a control mechanism that measures the temperature of the heating chamber 1 with a non-contact thermometer and feeds back to the microwave power is provided. It becomes easy to respond. Note that the heat treatment temperature in the continuous heat treatment method of the present invention is not particularly limited, can be appropriately set according to the purpose, and can be controlled by adjusting the microwave power.

本発明の連続熱処理方法においては、上記加熱チャンバー1中における前記粉体又は液体に対するマイクロ波照射を、真空下、不活性ガス雰囲気下又は反応性ガス雰囲気下で行うことができる。ここで、反応性ガス雰囲気下で熱処理を行うことで、連続的に粉体又は液体に表面処理を施すことができる。ここで、不活性ガス及び反応性ガスの導入には、上記導入ライン7Bを、不活性ガス、未反応の反応性ガス及び反応による生成ガスの排気には、上記排気ライン7Cを用いることができる。また、加熱チャンバー1を真空にする場合は、上記排気ライン7Cに真空ポンプ等を連結して加熱チャンバー1を減圧すればよい。なお、真空中でマイクロ波照射を行う場合、加熱チャンバー1を3×102Pa以下に維持することが好ましい。また、不活性ガスとしては、窒素、アルゴン、ヘリウム等が挙げられ、反応性ガスとしては、メタン、エタン、エチレン、アセチレン等が挙げられる。 In the continuous heat treatment method of the present invention, microwave irradiation on the powder or liquid in the heating chamber 1 can be performed in a vacuum, in an inert gas atmosphere, or in a reactive gas atmosphere. Here, by performing heat treatment in a reactive gas atmosphere, the powder or liquid can be subjected to surface treatment continuously. Here, the introduction line 7B can be used for introducing the inert gas and the reactive gas, and the exhaust line 7C can be used for exhausting the inert gas, the unreacted reactive gas, and the product gas generated by the reaction. . When the heating chamber 1 is evacuated, the heating chamber 1 may be decompressed by connecting a vacuum pump or the like to the exhaust line 7C. In addition, when performing microwave irradiation in a vacuum, it is preferable to maintain the heating chamber 1 at 3 × 10 2 Pa or less. In addition, examples of the inert gas include nitrogen, argon, helium, and examples of the reactive gas include methane, ethane, ethylene, acetylene, and the like.

原料である粉体又は液体の搬送は、一定スピードの連続搬送であってもよいし、あるいは一定長搬送後に停止させ焼成し、その後、再び搬送するような搬送・焼成(停止)を繰り返すプロセスであってもよい。   The conveyance of the raw material powder or liquid may be a continuous conveyance at a constant speed, or it is a process of repeating conveyance / firing (stop) such that conveyance is stopped after a certain length of conveyance and then fired again. There may be.

上記粉体が粉末状ポリマーである場合、前記マイクロ波照射による熱処理によって、該粉末状ポリマーを焼成し炭化させて粉末状炭素材料とすることができる。本発明の連続熱処理方法による炭化で製造した粉末炭素材料は、各種ゴムや樹脂への配合剤や、活性炭、リチウムイオン電池の電極材料等として広く使用することができる。ここで、使用する粉末状ポリマーとしては、特に制限は無く、ペレット状のポリマーの破砕物や、市販のポリマーパウダー等を用いることができる。   When the powder is a powdered polymer, the powdered polymer can be baked and carbonized by the heat treatment by microwave irradiation to obtain a powdered carbon material. The powdered carbon material produced by carbonization by the continuous heat treatment method of the present invention can be widely used as a compounding agent for various rubbers and resins, activated carbon, electrode materials for lithium ion batteries, and the like. Here, there is no restriction | limiting in particular as a powdery polymer to be used, The crushed material of a pellet-like polymer, a commercially available polymer powder, etc. can be used.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
図1に示す連続熱処理装置の加熱チャンバーに窒素ガスを導入して、加熱チャンバー内をガス置換した。その後、ウレタン樹脂を細かく粉砕して得たウレタンパウダーを原料として、搬送体へ供給し、最高温度が1000℃となるようにマイクロ波電力を調整し、0.25m/minのスピードで搬送し、加熱チャンバー出口で被熱処理物(粉末状炭素材料)を回収した。なお、マイクロ波発生装置としては、28GHzのジャイロトロン発振機を使用した。回収した被熱処理物の残炭率を計測したところ37.6%であり、良好に炭化していることが確認された。この結果から、短時間で連続的にポリマー粉末を炭化し、炭素粉末材料が得られることが確認された。なお、残炭率は、下記式:
残炭率=(焼成後の炭素粉末の質量)/(焼成前のポリマーの質量)×100
から算出した。
Example 1
Nitrogen gas was introduced into the heating chamber of the continuous heat treatment apparatus shown in FIG. After that, urethane powder obtained by finely pulverizing the urethane resin is used as a raw material, supplied to the carrier, and the microwave power is adjusted so that the maximum temperature is 1000 ° C, and it is conveyed at a speed of 0.25 m / min and heated. The object to be heat-treated (powdered carbon material) was recovered at the chamber outlet. A 28 GHz gyrotron oscillator was used as the microwave generator. When the residual carbon ratio of the collected heat-treated material was measured, it was 37.6%, confirming that it was well carbonized. From this result, it was confirmed that the carbon powder material can be obtained by continuously carbonizing the polymer powder in a short time. The remaining charcoal rate is the following formula:
Residual carbon ratio = (mass of carbon powder after firing) / (mass of polymer before firing) × 100
Calculated from

(比救例1)
実施例1と同様にウレタン樹脂を細かく粉砕して得たウレタンパウダーをアルミナの坩堝に入れ、該坩堝を焼成炉中にセットし、窒素雰囲気中7℃/分の昇温速度で2.5時間で1000℃まで昇温し、その後1000℃で2時間保持して焼成処理した。4時間の冷却時間を経て、得られた焼成物を取り出し残炭率を計測したところ平均で38.7%あった。なお、坩堝中心部と周辺部とでは、残炭率に大きなバラツキがあった。
(Comparison example 1)
Urethane powder obtained by finely pulverizing a urethane resin in the same manner as in Example 1 was put in an alumina crucible, and the crucible was set in a firing furnace, and the temperature was increased to 1000 ° C. for 2.5 hours at a heating rate of 7 ° C./min in a nitrogen atmosphere. The temperature was raised to 0 ° C., and then calcined at 1000 ° C. for 2 hours. After the cooling time of 4 hours, the obtained fired product was taken out and the residual charcoal rate was measured and found to be 38.7% on average. In addition, there was a large variation in the remaining charcoal rate between the crucible center and the periphery.

本発明の連続熱処理方法に使用できる連続熱処理装置の一例の概略図である。It is the schematic of an example of the continuous heat processing apparatus which can be used for the continuous heat processing method of this invention. 本発明の連続熱処理方法に使用できる連続熱処理装置の好適例の概略図である。It is the schematic of the suitable example of the continuous heat processing apparatus which can be used for the continuous heat processing method of this invention.

符号の説明Explanation of symbols

1 加熱チャンバー
2 マイクロ波発生装置
3 搬送体
4 ホッパー
5 供給管
6 回収部
7A 導波管
7B 導入ライン
7C 排気ライン
8 断熱材
9 真空断熱層
10 加熱ヒータ

DESCRIPTION OF SYMBOLS 1 Heating chamber 2 Microwave generator 3 Conveyance body 4 Hopper 5 Supply pipe 6 Recovery part 7A Waveguide 7B Introduction line 7C Exhaust line 8 Heat insulation material 9 Vacuum heat insulation layer 10 Heating heater

Claims (13)

マイクロ波発生装置を備える加熱チャンバーに粉体又は液体を連続的に供給し、該加熱チャンバー中で前記粉体又は液体にマイクロ波照射を行い、該粉体又は液体を連続的に熱処理することを特徴とする連続熱処理方法。   Continuously supplying powder or liquid to a heating chamber equipped with a microwave generator, irradiating the powder or liquid with microwaves in the heating chamber, and continuously heat-treating the powder or liquid. A characterized continuous heat treatment method. 前記粉体又は液体に照射するマイクロ波の周波数が28GHzであることを特徴とする請求項1に記載の連続熱処理方法。   The continuous heat treatment method according to claim 1, wherein a frequency of microwaves applied to the powder or liquid is 28 GHz. 前記粉体を前記加熱チャンバーに連続的に供給するために可動コンベアを用いることを特徴とする請求項1に記載の連続熱処理方法。   The continuous heat treatment method according to claim 1, wherein a movable conveyor is used to continuously supply the powder to the heating chamber. 前記可動コンベアがマイクロ波吸収体からなることを特徴とする請求項3に記載の連続熱処理方法。   The continuous heat treatment method according to claim 3, wherein the movable conveyor is made of a microwave absorber. 前記加熱チャンバーが前記粉体又は液体の通過位置の上方及び下方に断熱材又は真空断熱層を有することを特徴とする請求項1に記載の連続熱処理方法。   The continuous heat treatment method according to claim 1, wherein the heating chamber has a heat insulating material or a vacuum heat insulating layer above and below the passage position of the powder or liquid. 前記断熱材中に加熱ヒータが埋設されていることを特徴とする請求項5に記載の連続熱処理方法。   The continuous heat treatment method according to claim 5, wherein a heater is embedded in the heat insulating material. 前記加熱チャンバー中における前記粉体又は液体に対するマイクロ波照射を、真空下、不活性ガス雰囲気下又は反応性ガス雰囲気下で行うことを特徴とする請求項1に記載の連続熱処理方法。   The continuous heat treatment method according to claim 1, wherein the microwave irradiation to the powder or liquid in the heating chamber is performed in a vacuum, an inert gas atmosphere, or a reactive gas atmosphere. 前記粉体が粉末状ポリマーであり、前記マイクロ波照射による熱処理によって、該粉末状ポリマーを焼成し炭化させて粉末状炭素材料とすることを特徴とする請求項1に記載の連続熱処理方法。   The continuous heat treatment method according to claim 1, wherein the powder is a powdery polymer, and the powdery polymer is baked and carbonized by the heat treatment by the microwave irradiation to obtain a powdery carbon material. 請求項8に記載の連続熱処理方法で得られた粉末状炭素材料。   A powdery carbon material obtained by the continuous heat treatment method according to claim 8. 前記粉体が粉末状炭素材料であることを特徴とする請求項1に記載の連続熱処理方法。   The continuous heat treatment method according to claim 1, wherein the powder is a powdery carbon material. 前記粉末状炭素材料がナノカーボンであることを特徴とする請求項10に記載の連続熱処理方法。   The continuous heat treatment method according to claim 10, wherein the powdery carbon material is nanocarbon. 前記粉末状炭素材料がアモルファスカーボン粉末であり、前記マイクロ波照射による熱処理によって、該アモルファスカーボン粉末を結晶化させることを特徴とする請求項10に記載の連続熱処理方法。   The continuous heat treatment method according to claim 10, wherein the powdery carbon material is an amorphous carbon powder, and the amorphous carbon powder is crystallized by the heat treatment by the microwave irradiation. 請求項10〜12のいずれかに記載の連続熱処理方法で熱処理を施した粉末状炭素材料。

The powdery carbon material which heat-processed with the continuous heat processing method in any one of Claims 10-12.

JP2005094019A 2005-03-29 2005-03-29 Continuous heat treatment method of powder and liquid, powdered carbon material obtained by the above method, and powdered carbon material to which heat treatment is applied by the above method Withdrawn JP2006278093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094019A JP2006278093A (en) 2005-03-29 2005-03-29 Continuous heat treatment method of powder and liquid, powdered carbon material obtained by the above method, and powdered carbon material to which heat treatment is applied by the above method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094019A JP2006278093A (en) 2005-03-29 2005-03-29 Continuous heat treatment method of powder and liquid, powdered carbon material obtained by the above method, and powdered carbon material to which heat treatment is applied by the above method

Publications (1)

Publication Number Publication Date
JP2006278093A true JP2006278093A (en) 2006-10-12

Family

ID=37212652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094019A Withdrawn JP2006278093A (en) 2005-03-29 2005-03-29 Continuous heat treatment method of powder and liquid, powdered carbon material obtained by the above method, and powdered carbon material to which heat treatment is applied by the above method

Country Status (1)

Country Link
JP (1) JP2006278093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149080A (en) * 2008-12-26 2010-07-08 Kubota Matsushitadenko Exterior Works Ltd Detoxification treatment method of asbestos
CN112404449A (en) * 2020-10-23 2021-02-26 中国科学技术大学 Device and method for continuously synthesizing powder material based on thermal shock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149080A (en) * 2008-12-26 2010-07-08 Kubota Matsushitadenko Exterior Works Ltd Detoxification treatment method of asbestos
CN112404449A (en) * 2020-10-23 2021-02-26 中国科学技术大学 Device and method for continuously synthesizing powder material based on thermal shock

Similar Documents

Publication Publication Date Title
US20090130442A1 (en) Expanded Graphite and Process for Producing the Expanded Graphite
CN109292761B (en) Method for reducing graphene oxide by optical microwave
WO2020088172A1 (en) Continuous operation method for microwave high-temperature pyrolysis of solid material comprising organic matter
EP3556916B1 (en) Apparatus for manufacturing carbon fiber by using microwaves
JP2009533562A (en) Continuous production method of carbon fiber
WO2006101084A1 (en) Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
JPWO2004038074A1 (en) Fine carbon fiber powder heat treatment method and heat treatment apparatus
US4505787A (en) Process for production of a carbide by-product with microwave energy and aluminum by electrolysis
Vashisth et al. Radio frequency heating and material processing using carbon susceptors
JP2007145674A (en) Method for manufacturing fibrous carbon material
US20160200583A1 (en) Chemical activation of carbon using rf and dc plasma
Namazi et al. Benefits of microwave heating method in production of activated carbon
TW201622808A (en) Process for modification of particles
JPH06116616A (en) Method and device for producing iron powder utilizing microwave
Yang et al. Further carbonization of anisotropic and isotropic pitch-based carbons by microwave irradiation
JP2006278093A (en) Continuous heat treatment method of powder and liquid, powdered carbon material obtained by the above method, and powdered carbon material to which heat treatment is applied by the above method
CN109437162B (en) Method for producing reduced graphene oxide
AU2011245064A1 (en) Microwave and radio frequency material processing
JP6726617B2 (en) Microwave combined heating furnace
US20060237398A1 (en) Plasma-assisted processing in a manufacturing line
JP3553624B2 (en) CFC decomposition method
Cherif et al. Effect of pellet size and additive on silica carbothermic reduction in microwave furnace for solar grade silicon
JP5811017B2 (en) Method for producing reduced iron
CN115196621A (en) Method and device for preparing graphene by catalyst-assisted microwave excitation metal discharge
JP3838618B2 (en) Graphite carbon powder, production method and apparatus thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603