JP2006271112A - Power supply device for power amplifier - Google Patents

Power supply device for power amplifier Download PDF

Info

Publication number
JP2006271112A
JP2006271112A JP2005085630A JP2005085630A JP2006271112A JP 2006271112 A JP2006271112 A JP 2006271112A JP 2005085630 A JP2005085630 A JP 2005085630A JP 2005085630 A JP2005085630 A JP 2005085630A JP 2006271112 A JP2006271112 A JP 2006271112A
Authority
JP
Japan
Prior art keywords
voltage
battery
power supply
power amplifier
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085630A
Other languages
Japanese (ja)
Inventor
Shigeo Kusunoki
繁雄 楠
Masanaga Hatsuya
匡長 初谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Ericsson Mobile Communications Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Ericsson Mobile Communications Japan Inc filed Critical Sony Ericsson Mobile Communications Japan Inc
Priority to JP2005085630A priority Critical patent/JP2006271112A/en
Publication of JP2006271112A publication Critical patent/JP2006271112A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use electric power efficiently, even when a battery having comparatively large voltage drop rate is used. <P>SOLUTION: A voltage detection portion 13 compares a voltage of the battery 11 with a predetermined reference voltage. When the battery voltage is higher than the reference voltage, a step-down voltage conversion portion 14 is put into an operating state, and a switch 12 into a non-conducting state. When the battery voltage is equal to or lower than the reference voltage, the voltage conversion portion 14 is switched to a no-operating state, and the switch 12 to a conducting state. It is also possible to reverse the polarity of an output of the voltage detection portion 13, by using the voltage conversion portion 14 of a step-up type. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電力増幅器用電源装置、特に携帯電話機のような携帯端末装置に使用して好適な高周波電力増幅器用電源装置に関する。   The present invention relates to a power amplifier power supply device, and more particularly to a high frequency power amplifier power supply device suitable for use in a mobile terminal device such as a mobile phone.

第3世代と呼ばれる携帯電話サービスがほぼ普及しつつある現在、これに更にアプリケーションと呼ばれる多くのサービスが付加されつつある。そこで、電池の消耗時間が大きな課題となってきている。現在実用化されている炭素電極を用いたリチウムイオン電池の容量は理論限界に達している。   At present, mobile phone services called third generation are almost prevalent, and many services called applications are being added to this. Thus, battery consumption time has become a major issue. The capacity of lithium ion batteries using carbon electrodes that are currently in practical use has reached the theoretical limit.

一方、合金電極を用いたリチウムイオン電池は50%程度の容量増加が見込まれるが、その一方で、後述するような電圧低下の課題がある。携帯電話機に使用される部品のうち電力増幅器の所要電圧は3.5Vであり、これは10年来変わっていない。このままでは、電力増幅器の限界に起因して、折角の電池容量の増加が有効に機能しないという事態が生じることになる。   On the other hand, lithium ion batteries using alloy electrodes are expected to have a capacity increase of about 50%, but on the other hand, there is a problem of voltage reduction as described later. Of the parts used in mobile phones, the required voltage of the power amplifier is 3.5V, which has not changed for 10 years. In this state, due to the limitation of the power amplifier, a situation occurs in which the increase in the battery capacity at the corner does not function effectively.

特許文献1には、外部電源電圧が5Vであっても3.3Vのどちらの外部電源電圧を使用しても、高速の動作速度と安定な作動を行う半導体装置が提案されている。具体的には、外部電源電圧を検出し、外部電源電圧が5Vである場合は降圧回路によって3.3Vに降圧された内部電源電圧を内部回路に供給し、外部電源電圧が3.3Vである場合には外部電源電圧をそのまま内部回路に供給する。
特開平6−149395号公報
Patent Document 1 proposes a semiconductor device that operates at a high speed and operates stably regardless of whether the external power supply voltage is 5V or 3.3V. Specifically, the external power supply voltage is detected, and when the external power supply voltage is 5V, the internal power supply voltage stepped down to 3.3V by the step-down circuit is supplied to the internal circuit, and the external power supply voltage is 3.3V. In this case, the external power supply voltage is supplied to the internal circuit as it is.
Japanese Patent Laid-Open No. 6-149395

図2に、従来の炭素電極系リチウムイオン電池と合金電極系リチウムイオン電池の特性の違いをグラフとして示す。図中、TypeAと記した炭素電極電池は電池電圧が長時間に亘って3.5V一定を保持し、使いやすい。しかし、現状ではその容量は理論限界に達しており、その増加は困難である。   FIG. 2 is a graph showing the difference in characteristics between a conventional carbon electrode type lithium ion battery and an alloy electrode type lithium ion battery. In the figure, the carbon electrode battery denoted as Type A is easy to use because the battery voltage remains constant at 3.5 V for a long time. However, the capacity has reached the theoretical limit at present, and its increase is difficult.

一方、TypeBと記した合金電極電池では、その容量は最大50%もの増加が見込まれ有望である。しかし、使用開始時から時間とともに電池電圧が徐々に低下し、約2.7Vにまで低下する。現在携帯電話機に使用する電力増幅器は、電源電圧3.5Vを要するので、電池電圧が早期に3.5Vまで低下するTypeBの合金電極電池は使えない。   On the other hand, an alloy electrode battery denoted as Type B is promising because its capacity is expected to increase by up to 50%. However, the battery voltage gradually decreases with time from the start of use and decreases to about 2.7V. Since the power amplifier currently used for a mobile phone requires a power supply voltage of 3.5 V, a Type B alloy electrode battery in which the battery voltage drops to 3.5 V at an early stage cannot be used.

この問題に対して、2.7Vで動作できる電力増幅器を使用することが考えられるが、電池電圧の高いところで動作させると、効率が極端に低下するという問題がある。   To solve this problem, it is conceivable to use a power amplifier that can operate at 2.7 V. However, if it is operated at a high battery voltage, there is a problem that the efficiency is extremely lowered.

また、上記特許文献1に記載の技術は電池電圧の広い範囲を有する電池に対応するために利用することも考えられるが、その降圧回路は常に動作しており効率の観点から改善の余地がある。   Further, although the technique described in Patent Document 1 may be used to deal with batteries having a wide range of battery voltages, the step-down circuit always operates and there is room for improvement from the viewpoint of efficiency. .

本発明はこのような背景においてなされたものであり、その目的は、電圧の降下幅が比較的大きい電池を用いた場合にも効率的な電力使用を行うことができる電力増幅器用電源装置を提供することにある。   The present invention has been made in this background, and an object of the present invention is to provide a power amplifier power supply device that can efficiently use power even when a battery having a relatively large voltage drop is used. There is to do.

本発明による第1の電力増幅器用電源装置は、電池を動作電源とする電力増幅器のための電源装置であって、電池電圧を降圧する電圧変換部と、電池電圧を前記電力増幅器へ直接供給するためのスイッチ部と、電圧変換部およびスイッチ部を制御する電圧検出部とを備える。この電圧検出部は、電池電圧を所定の基準電圧と比較し、電池電圧が前記基準電圧より高いとき前記電圧変換部を動作状態とするとともに前記スイッチ部を非導通状態とし、電池電圧が前記基準電圧以下となったとき前記電圧変換部を非動作状態とするとともに前記スイッチ部を導通状態とする。   A first power amplifier power supply device according to the present invention is a power supply device for a power amplifier using a battery as an operation power supply, and supplies a voltage converter for stepping down a battery voltage and the battery voltage directly to the power amplifier. And a voltage detection unit for controlling the voltage conversion unit and the switch unit. The voltage detection unit compares the battery voltage with a predetermined reference voltage, and when the battery voltage is higher than the reference voltage, the voltage conversion unit is set in an operation state and the switch unit is set in a non-conduction state. When the voltage is equal to or lower than the voltage, the voltage conversion unit is set in a non-operating state and the switch unit is set in a conducting state.

すなわち、電池電圧が基準電圧より高い間は電圧変換部により降圧した電圧を出力し、基準電圧より低くなったときには電池電圧を直接利用する。電池電圧を直接利用する際には電圧変換部は非動作状態とするので、電圧変換部による無駄な電力は消費されない。   That is, while the battery voltage is higher than the reference voltage, a voltage stepped down by the voltage conversion unit is output, and when the battery voltage becomes lower than the reference voltage, the battery voltage is directly used. When the battery voltage is directly used, the voltage conversion unit is in a non-operating state, so that useless power by the voltage conversion unit is not consumed.

本発明による第2の電力増幅器用電源装置は、電池を動作電源とする電力増幅器のための電源装置であって、電池電圧を昇圧する電圧変換部と、電池電圧を前記電力増幅器へ直接供給するためのスイッチ部と、電圧変換部およびスイッチ部を制御する電圧検出部とを備える。この電圧検出部は、電池電圧を所定の基準電圧と比較し、電池電圧が前記基準電圧より高いとき前記電圧変換部を非動作状態とするとともに前記スイッチ部を導通状態とし、電池電圧が前記基準電圧以下となったとき前記電圧変換部を動作状態とするとともに前記スイッチ部を非導通状態とする。   A second power amplifier power supply device according to the present invention is a power supply device for a power amplifier using a battery as an operating power supply, and includes a voltage converter for boosting a battery voltage and directly supplying the battery voltage to the power amplifier. And a voltage detection unit for controlling the voltage conversion unit and the switch unit. The voltage detection unit compares the battery voltage with a predetermined reference voltage, and when the battery voltage is higher than the reference voltage, the voltage conversion unit is set in a non-operating state and the switch unit is set in a conducting state. When the voltage is equal to or lower than the voltage, the voltage conversion unit is set in an operating state and the switch unit is set in a non-conductive state.

すなわち、電池電圧が基準電圧より高い間は電池電圧を直接利用し、基準電圧より低くなったときには電圧変換部により昇圧した電圧を出力する。電池電圧を直接利用する際には電圧変換部は非動作状態とするので、電圧変換部による無駄な電力は消費されない。   That is, while the battery voltage is higher than the reference voltage, the battery voltage is directly used, and when the battery voltage becomes lower than the reference voltage, the voltage boosted by the voltage converter is output. When the battery voltage is directly used, the voltage conversion unit is in a non-operating state, so that useless power by the voltage conversion unit is not consumed.

第1および第2の電力増幅器用電源装置は、電力増幅器に必要とする電源電圧にあわせて使い分けることができる。   The power supply devices for the first and second power amplifiers can be used properly according to the power supply voltage required for the power amplifier.

本発明の電力増幅器用電源装置は、電池電圧を検出し、その検出結果に応じて、電池電圧を直接的に使用するかまたは電圧変換部により降圧もしくは昇圧した電圧を用いるかを切り替えるとともに、電池電圧を直接使用する際には電圧変換部を非動作状態とすることにより、電力消費を必要最小限に低減し電池の効率的な電力使用を実現することができる。その結果、低電圧大寿命電池を支障なく使用可能とするとともに、その使用可能時間を延ばすことができる。   The power amplifier power supply device of the present invention detects a battery voltage, and switches between using the battery voltage directly or using a voltage stepped down or boosted by a voltage converter according to the detection result, When the voltage is used directly, the voltage converter is deactivated, so that the power consumption can be reduced to the minimum necessary and the battery can be used efficiently. As a result, the low-voltage, long-life battery can be used without any trouble, and the usable time can be extended.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態に係る電力増幅器用電源装置の構成を示すブロック図である。図1において、電力増幅器用電源装置は、スイッチ部12と、電圧検出部13と、電圧変換部14により構成される。スイッチ部12は図の例ではFETにより構成されている。FETのソース端子は電池11に接続され、ドレイン端子は電力増幅器15に接続される。電池11はスイッチ部12を介して電力増幅器(PA)15に電源電圧Vpaを供給する。スイッチ部12のオンオフは電圧検出部13の制御信号ctlにより制御される。すなわち、FETのゲート端子に制御信号ctlが接続される。電圧検出部13は電池11の電圧Vddを受けて、この電圧を所定の基準電圧と比較し、比較結果に基づいて制御信号ctlを生成する。また、電圧変換部14は電池11の電圧Vddを降圧または昇圧する。電圧変換部14の出力端はスイッチ部12の出力端と接続され、スイッチ部12と選択的に電力増幅器15へ電源電圧Vpaを供給する。電力増幅器15はその入力信号を電力増幅した出力RF_outを生成する。   FIG. 1 is a block diagram showing a configuration of a power amplifier power supply device according to an embodiment of the present invention. In FIG. 1, the power amplifier power supply device includes a switch unit 12, a voltage detection unit 13, and a voltage conversion unit 14. In the example shown in the figure, the switch unit 12 is composed of an FET. The FET has a source terminal connected to the battery 11 and a drain terminal connected to the power amplifier 15. The battery 11 supplies the power supply voltage Vpa to the power amplifier (PA) 15 via the switch unit 12. On / off of the switch unit 12 is controlled by a control signal ctl of the voltage detection unit 13. That is, the control signal ctl is connected to the gate terminal of the FET. The voltage detector 13 receives the voltage Vdd of the battery 11, compares this voltage with a predetermined reference voltage, and generates a control signal ctl based on the comparison result. The voltage conversion unit 14 steps down or boosts the voltage Vdd of the battery 11. The output terminal of the voltage conversion unit 14 is connected to the output terminal of the switch unit 12, and supplies the power supply voltage Vpa to the power amplifier 15 selectively with the switch unit 12. The power amplifier 15 generates an output RF_out obtained by power amplification of the input signal.

図3に、電圧検出部13として互いに逆極性の制御信号ctlを生成する電圧検出部13a,13bの構成例を示す。   FIG. 3 shows a configuration example of the voltage detectors 13 a and 13 b that generate the control signals ctl having opposite polarities as the voltage detector 13.

図3(a)の電圧検出部13aは、電池の電圧Vddを分圧する分圧抵抗131,132と、電圧Vddから基準電圧を生成するレギュレータ134aと、分圧抵抗131,132からなる分圧器の出力電圧をレギュレータ134aの基準電圧と比較する比較器(オペアンプ)133とを備える。比較器133は、その出力する制御信号ctlとして、分圧器の出力電圧が基準電圧より高い間は高レベルを出力し、分圧器の出力電圧が基準電圧より低くなったら低レベルを出力する。   3A includes a voltage dividing resistor 131 and 132 that divides the battery voltage Vdd, a regulator 134a that generates a reference voltage from the voltage Vdd, and a voltage dividing resistor 131 and 132. And a comparator (op-amp) 133 that compares the output voltage with the reference voltage of the regulator 134a. As the control signal ctl output, the comparator 133 outputs a high level while the output voltage of the voltage divider is higher than the reference voltage, and outputs a low level when the output voltage of the voltage divider becomes lower than the reference voltage.

図3(b)の電圧検出部13bは、電池の電圧Vddを分圧する分圧抵抗131,132と、電圧Vddから基準電圧を生成するレギュレータ134bと、分圧抵抗131,132からなる分圧器の出力電圧をレギュレータ134bの基準電圧と比較する比較器(オペアンプ)133とを備える。比較器133は、その出力する制御信号ctlとして、分圧器の出力電圧が基準電圧より高い間は低レベルを出力し、分圧器の出力電圧が基準電圧より低くなったら高レベルを出力する。   3B includes a voltage dividing resistor 131 and 132 that divides the battery voltage Vdd, a regulator 134b that generates a reference voltage from the voltage Vdd, and a voltage dividing resistor 131 and 132. And a comparator (op-amp) 133 that compares the output voltage with the reference voltage of the regulator 134b. The comparator 133 outputs a low level as the control signal ctl that is output while the output voltage of the voltage divider is higher than the reference voltage, and outputs a high level when the output voltage of the voltage divider becomes lower than the reference voltage.

図4(a)(b)に、それぞれ電圧変換部14の降圧型と昇圧型の具体的な回路構成例を示す。但し、これらは例示であり、本発明はこれらの具体的な回路構成に限定されるものではない。   4A and 4B show specific circuit configuration examples of the step-down type and the step-up type of the voltage conversion unit 14, respectively. However, these are merely examples, and the present invention is not limited to these specific circuit configurations.

図4(a)の降圧型の電圧変換部14は、電源電圧Vddとグランドとの間にPMOSFET142とNMOSFET143とを直列に接続したCMOS回路と、このCMOS回路のスイッチングを制御信号ctlに従って制御するDD(DC-DC)制御回路141と、CMOS回路のスイッチング出力を平滑するインダクタ146および平滑コンデンサ147からなる平滑回路とにより構成される。インダクタ146と平滑コンデンサ147の接続点が出力端子145となる。   The step-down voltage converter 14 in FIG. 4A includes a CMOS circuit in which a PMOSFET 142 and an NMOSFET 143 are connected in series between a power supply voltage Vdd and the ground, and a DD that controls switching of the CMOS circuit according to a control signal ctl. The (DC-DC) control circuit 141 and a smoothing circuit including an inductor 146 and a smoothing capacitor 147 that smooth the switching output of the CMOS circuit are configured. A connection point between the inductor 146 and the smoothing capacitor 147 is an output terminal 145.

DD制御回路141は、発振器を内蔵しており、制御信号ctlが高レベルのとき、CMOS回路を所定の周波数でスイッチングする。すなわち、PMOSFET142とNMOSFET143とを交互に導通させる。これにより、インダクタ146は電圧Vddとグランドに交互に接続され、電圧Vddが降圧され平滑化された所定の直流電圧が出力端145から出力される。   The DD control circuit 141 incorporates an oscillator, and switches the CMOS circuit at a predetermined frequency when the control signal ctl is at a high level. That is, the PMOSFET 142 and the NMOSFET 143 are turned on alternately. Thereby, the inductor 146 is alternately connected to the voltage Vdd and the ground, and a predetermined DC voltage obtained by stepping down and smoothing the voltage Vdd is output from the output terminal 145.

他方、制御信号ctlが低レベルのとき、DD制御回路141は、PMOSFET142とNMOSFET143の両ゲート電圧を深くバイアスして両者共に非導通状態とする。このとき、DD制御回路141も上記バイアス電圧を維持したまま停止するので、消費電力を最低限に抑えることができる。   On the other hand, when the control signal ctl is at a low level, the DD control circuit 141 deeply biases both the gate voltages of the PMOSFET 142 and the NMOSFET 143 to make them non-conductive. At this time, the DD control circuit 141 is also stopped while maintaining the bias voltage, so that power consumption can be minimized.

図4(b)の昇圧型の電圧変換部14は、一端が電源電圧Vddに接続されたインダクタ154と、この他端にチャネルの一端が接続され他端が接地されたNMOSFET152と、インダクタ154の他端にチャネルの一端が接続され他端が出力端156に接続されたPMOSFET153と、出力端156とグランドとの間に接続された平滑コンデンサ155と、制御信号ctlに従って両MOSFETをスイッチング制御するDD制御回路151とにより構成される。   4B includes an inductor 154 having one end connected to the power supply voltage Vdd, an NMOSFET 152 having one end connected to the other end and the other end grounded, and an inductor 154. A PMOSFET 153 having one end of the channel connected to the other end and the other end connected to the output end 156, a smoothing capacitor 155 connected between the output end 156 and the ground, and a switching control of both MOSFETs according to the control signal ctl And a control circuit 151.

DD制御回路151は、発振器を内蔵しており、制御信号ctlが高レベルのとき、CMOS回路を所定の周波数でスイッチングする。すなわち、PMOSFET152とNMOSFET153とを交互に導通させる。スイッチングによりインダクタ154に発生する逆起電力を利用してVddより高い電圧を発生させ平滑コンデンサ155にて出力電圧を平滑化させる。   The DD control circuit 151 includes an oscillator, and switches the CMOS circuit at a predetermined frequency when the control signal ctl is at a high level. That is, the PMOSFET 152 and the NMOSFET 153 are alternately conducted. A voltage higher than Vdd is generated using the back electromotive force generated in the inductor 154 by switching, and the output voltage is smoothed by the smoothing capacitor 155.

他方、制御信号ctlが低レベルのとき、DD制御回路151は、PMOSFET152とNMOSFET153の両ゲート電圧を深くバイアスして両者共に非導通状態とする。このとき、DD制御回路151も上記バイアス電圧を維持したまま停止するので、消費電力を最低限に抑えることができる。   On the other hand, when the control signal ctl is at a low level, the DD control circuit 151 deeply biases both the gate voltages of the PMOSFET 152 and the NMOSFET 153 to make them non-conductive. At this time, the DD control circuit 151 is also stopped while maintaining the bias voltage, so that power consumption can be minimized.

次に、図5(a)(b)により、それぞれ降圧型と昇圧型の電源装置の動作を説明する。   Next, the operation of the step-down and step-up power supply devices will be described with reference to FIGS.

図5(a)の降圧型では、電池がフル充電された当初はスイッチ部12を非導通(カットオフ)状態として降圧された電圧を電力増幅器の電源電圧Vpaとして用いる。降圧型変圧変換部Vcnvの出力電圧は当該降圧された電圧(ここでは2.7V)に設定されているものとする。その後、電池電圧が所定のレベル(ここでは2.9ボルト)まで低下した時点T2で、スイッチ部12を導通状態として電池電圧をそのまま利用し、DC−DCコンバータ141は非動作状態とする。   In the step-down type of FIG. 5A, when the battery is fully charged, the voltage that is stepped down with the switch unit 12 in a non-conduction (cut-off) state is used as the power supply voltage Vpa of the power amplifier. It is assumed that the output voltage of the step-down transformer converter Vcnv is set to the stepped-down voltage (here, 2.7 V). Thereafter, at a time T2 when the battery voltage is lowered to a predetermined level (here, 2.9 volts), the switch unit 12 is turned on and the battery voltage is used as it is, and the DC-DC converter 141 is brought into a non-operating state.

他方、図5(b)の昇圧型では、電池がフル充電された当初はスイッチ部12を導通状態として電池電圧をそのまま利用し、DC−DCコンバータ141は非動作状態とする。その後、電池電圧が所定のレベル(ここでは3.1ボルト)まで低下した時点T1で、スイッチ部12を非道通状態とするとともに、DC−DCコンバータ141を動作状態とし昇圧された電圧(ここでは3.1V)を電力増幅器15の電源電圧Vpaとして用いる。電力増幅器15は、昇圧型の場合には3.5V程度で動作できるものとする。   On the other hand, in the step-up type shown in FIG. 5B, when the battery is fully charged, the switch unit 12 is made conductive to use the battery voltage as it is, and the DC-DC converter 141 is set to a non-operating state. Thereafter, at time T1 when the battery voltage drops to a predetermined level (here, 3.1 volts), the switch unit 12 is turned off, and the DC-DC converter 141 is turned on to increase the voltage (here). 3.1V) is used as the power supply voltage Vpa of the power amplifier 15. It is assumed that the power amplifier 15 can operate at about 3.5 V in the case of the boost type.

上述した降圧型または昇圧型の電圧変換部は、使用する電力増幅器にあわせて使い分けるこができる。   The above-described step-down type or step-up type voltage converter can be selectively used according to the power amplifier to be used.

以上、本発明の好適な実施の形態について説明したが、上記で言及した以外にも種々の変形、変更を行うことができる。例えば、スイッチ部12はFETにより構成したが、リレーを用いて構成することも可能である。   The preferred embodiment of the present invention has been described above, but various modifications and changes other than those mentioned above can be made. For example, although the switch unit 12 is configured by an FET, it can also be configured by using a relay.

本発明の実施の形態に係る電力増幅器用電源装置の構成を示すブロック図である。It is a block diagram which shows the structure of the power supply device for power amplifiers which concerns on embodiment of this invention. 従来の炭素電極系リチウムイオン電池と合金電極系リチウムイオン電池の特性の違いを示すグラフである。It is a graph which shows the difference in the characteristic of the conventional carbon electrode type lithium ion battery and an alloy electrode type lithium ion battery. 図1内に示した電圧検出部として互いに逆極性の制御信号ctlを生成する電圧検出部13a,13bの構成例を示す回路図である。FIG. 3 is a circuit diagram illustrating a configuration example of voltage detection units 13a and 13b that generate control signals ctl having opposite polarities as the voltage detection unit illustrated in FIG. 1; 図1内に示した電圧変換部の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the voltage conversion part shown in FIG. 本発明の実施の形態における降圧型と昇圧型の電源装置の動作の説明図である。It is explanatory drawing of operation | movement of the pressure | voltage fall type | mold and pressure | voltage rise type power supply device in embodiment of this invention.

符号の説明Explanation of symbols

11…電池、12…スイッチ部、13,13a,13b…電圧検出部、14…電圧変換部、15…電力増幅器、131,132…分圧抵抗、133…比較器、134a,134b…レギュレータ DESCRIPTION OF SYMBOLS 11 ... Battery, 12 ... Switch part, 13, 13a, 13b ... Voltage detection part, 14 ... Voltage conversion part, 15 ... Power amplifier, 131, 132 ... Voltage dividing resistor, 133 ... Comparator, 134a, 134b ... Regulator

Claims (2)

電池を動作電源とする電力増幅器のための電源装置であって、
電池電圧を降圧する電圧変換部と、
電池電圧を前記電力増幅器へ直接供給するためのスイッチ部と、
電池電圧を所定の基準電圧と比較し、電池電圧が前記基準電圧より高いとき前記電圧変換部を動作状態とするとともに前記スイッチ部を非導通状態とし、電池電圧が前記基準電圧以下となったとき前記電圧変換部を非動作状態とするとともに前記スイッチ部を導通状態とする電圧検出部と
を備えたことを特徴とする電力増幅器用電源装置。
A power supply device for a power amplifier using a battery as an operating power supply,
A voltage converter for stepping down the battery voltage;
A switch unit for supplying battery voltage directly to the power amplifier;
When the battery voltage is compared with a predetermined reference voltage, and when the battery voltage is higher than the reference voltage, the voltage conversion unit is set in an operating state and the switch unit is set in a non-conductive state, and the battery voltage is equal to or lower than the reference voltage. A power detection power supply apparatus comprising: a voltage detection unit that sets the voltage conversion unit in a non-operating state and sets the switch unit in a conductive state.
電池を動作電源とする電力増幅器のための電源装置であって、
電池電圧を昇圧する電圧変換部と、
電池電圧を前記電力増幅器へ直接供給するためのスイッチ部と、
電池電圧を所定の基準電圧と比較し、電池電圧が前記基準電圧より高いとき前記電圧変換部を非動作状態とするとともに前記スイッチ部を導通状態とし、電池電圧が前記基準電圧以下となったとき前記電圧変換部を動作状態とするとともに前記スイッチ部を非導通状態とする電圧検出部と
を備えたことを特徴とする電力増幅器用電源装置。
A power supply device for a power amplifier using a battery as an operation power supply,
A voltage converter for boosting the battery voltage;
A switch for directly supplying battery voltage to the power amplifier;
When the battery voltage is compared with a predetermined reference voltage, and when the battery voltage is higher than the reference voltage, the voltage conversion unit is set to a non-operating state and the switch unit is turned on, and the battery voltage is equal to or lower than the reference voltage. A power detection power supply device comprising: a voltage detection unit that sets the voltage conversion unit to an operating state and sets the switch unit to a non-conductive state.
JP2005085630A 2005-03-24 2005-03-24 Power supply device for power amplifier Pending JP2006271112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085630A JP2006271112A (en) 2005-03-24 2005-03-24 Power supply device for power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085630A JP2006271112A (en) 2005-03-24 2005-03-24 Power supply device for power amplifier

Publications (1)

Publication Number Publication Date
JP2006271112A true JP2006271112A (en) 2006-10-05

Family

ID=37206476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085630A Pending JP2006271112A (en) 2005-03-24 2005-03-24 Power supply device for power amplifier

Country Status (1)

Country Link
JP (1) JP2006271112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100623A (en) * 2007-10-19 2009-05-07 Oki Electric Ind Co Ltd Power supply circuit
CN103378616A (en) * 2012-04-18 2013-10-30 启攀微电子(上海)有限公司 Lithium battery power supply management circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100623A (en) * 2007-10-19 2009-05-07 Oki Electric Ind Co Ltd Power supply circuit
CN103378616A (en) * 2012-04-18 2013-10-30 启攀微电子(上海)有限公司 Lithium battery power supply management circuit

Similar Documents

Publication Publication Date Title
US7714546B2 (en) Step-up regulator with multiple power sources for the controller
CN112954544B (en) Driving circuit
US7928715B2 (en) Switching regulator
US7298117B2 (en) Step-up (boost) DC regulator with two-level back-bias switch gate voltage
EP1813011B1 (en) A power converter
CN109756110B (en) Power supply modulator, modulation power supply circuit and control method thereof
JP2006246598A (en) Dc-dc converter, its controller, power supply, electronic device and control method of dc-dc converter
TW201713031A (en) Apparatus for and method of a supply modulator for a power amplifier
JP5941656B2 (en) Charging circuit and electronic device using the same
JP2006050888A (en) Power supply device, power amplifier using same, and portable telephone terminal
JP2012161117A (en) Dc/dc converter, and power supply device and electronic apparatus using the same
US9837845B2 (en) Charging controlling circuit and charging controlling system
KR20230125219A (en) Method for input current regulation and active-power filter with input voltage feedforward and output load feedforward
JP2008060492A (en) Light-emitting device drive
JP2006271112A (en) Power supply device for power amplifier
JP5843589B2 (en) Charging circuit and electronic device using the same
CN102761243B (en) adaptive charge pump
US10230300B2 (en) Power converter predriver system with multiple power modes
JP6072881B2 (en) DC / DC converter, power supply device using the same, and electronic device
JP2006067714A (en) Step-up switching regulator circuit
JP2005124269A (en) High efficiency power supply system
KR20100116969A (en) Fixed on time pfm mode controller using ramp generator circuit
JP4660139B2 (en) Step-up switching regulator circuit
JP2005287255A (en) Switching regulator
KR102077860B1 (en) Converter and controlling method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090604