JP2005326705A - Liquid crystal aberration correction device and optical head - Google Patents

Liquid crystal aberration correction device and optical head Download PDF

Info

Publication number
JP2005326705A
JP2005326705A JP2004145885A JP2004145885A JP2005326705A JP 2005326705 A JP2005326705 A JP 2005326705A JP 2004145885 A JP2004145885 A JP 2004145885A JP 2004145885 A JP2004145885 A JP 2004145885A JP 2005326705 A JP2005326705 A JP 2005326705A
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
aberration correction
optical axis
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004145885A
Other languages
Japanese (ja)
Other versions
JP4459714B2 (en
Inventor
Hiroisa Nakahara
宏勲 中原
Nobuo Takeshita
伸夫 竹下
Toshiya Matosaki
俊哉 的崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004145885A priority Critical patent/JP4459714B2/en
Publication of JP2005326705A publication Critical patent/JP2005326705A/en
Application granted granted Critical
Publication of JP4459714B2 publication Critical patent/JP4459714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal aberration correction device, with which optical axis deviation aberration produced by a deviation between an optical axis of an objective lens and that of a spherical aberration correcting device is appropriately corrected, and an optical head. <P>SOLUTION: The liquid crystal aberration correction device 4 corrects wave aberration of a light beam advancing to the objective lens, and has a liquid crystal molecule layer 24, a first electrode pattern 41-45 arranged on one surface of the liquid crystal molecule layer and a second electrode pattern arranged on the other surface thereof. The second electrode pattern has electrodes 31, 34 on the outside of an effective diameter of the objective lens, transparent electrodes 32a, 33b, 32b, 33a aligned along a moving direction of the objective lens, and a transparent electrode 35 with high resistance connecting them, wherein a pair of the transparent electrodes 32a and 33a and another pair of the transparent electrodes 33b and 32b are arranged in positions in which one is symmetrical to its counterpart in the pair with an optical axis of the liquid crystal aberration correction device interposed inbetween. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、光ヘッド等の光学系で発生する波面収差を補正する液晶収差補正装置及び光ヘッドに関し、特に、光ディスクの光透過層の厚み誤差により生じる球面収差の補正と同時に、対物レンズの光軸と液晶収差補正装置の光軸のずれにより発生する光軸ずれ収差を補正する技術に関する。   The present invention relates to a liquid crystal aberration correction apparatus and an optical head for correcting wavefront aberration generated in an optical system such as an optical head, and more particularly to an objective lens simultaneously with correction of spherical aberration caused by a thickness error of a light transmission layer of an optical disk. The present invention relates to a technique for correcting an optical axis deviation aberration caused by an optical axis deviation of the liquid crystal aberration correction apparatus.

従来の液晶収差補正装置を用いた球面収差の補正には、トラッキング動作により対物レンズが光ディスク径方向に移動して液晶収差補正装置の光軸と対物レンズの光軸のずれが発生すると、光軸ずれによる波面収差が発生し、球面収差補正の補正効果が低下するという問題があった。この改善策として、液晶収差補正装置のコマ収差補正機能を用いて、液晶収差補正装置の光軸と対物レンズの光軸のずれによる光軸ずれ収差を補正し、球面収差補正の補正効果低下を防いでいるものがある(例えば、特許文献1及び特許文献2参照)。   In the correction of spherical aberration using the conventional liquid crystal aberration correction device, when the objective lens moves in the radial direction of the optical disk by the tracking operation and the optical axis of the liquid crystal aberration correction device deviates from the optical axis of the objective lens, the optical axis There is a problem that wavefront aberration due to deviation occurs and the correction effect of spherical aberration correction decreases. As an improvement measure, the coma aberration correction function of the liquid crystal aberration correction apparatus is used to correct the optical axis deviation aberration caused by the deviation of the optical axis of the liquid crystal aberration correction apparatus and the optical axis of the objective lens, thereby reducing the correction effect of the spherical aberration correction. There are things that prevent (see, for example, Patent Document 1 and Patent Document 2).

特開2002−133697号公報(段落0010、図1及び図5)JP 2002-133697 A (paragraph 0010, FIGS. 1 and 5) 特開2002−358690号公報(段落0006、図6及び図7)JP 2002-358690 A (paragraph 0006, FIG. 6 and FIG. 7)

しかし、液晶収差補正装置の光軸と対物レンズの光軸のずれにより発生する光軸ずれ収差をコマ収差補正機能を用いて補正する方法では、光軸ずれの量が大きくなると光軸ずれ収差を十分に補正できず、球面収差補正の補正効果の低下を十分に防止できないという問題があった。なお、このような問題が生じる理由については、「発明を実施するための最良の形態」の欄において、図4乃至図15を用いて詳細に説明する。   However, in the method of correcting the optical axis deviation caused by the deviation between the optical axis of the liquid crystal aberration correcting apparatus and the optical axis of the objective lens by using the coma aberration correcting function, the optical axis deviation aberration is increased when the amount of optical axis deviation increases. There is a problem that the correction cannot be sufficiently performed, and the deterioration of the correction effect of the spherical aberration correction cannot be sufficiently prevented. The reason why such a problem occurs will be described in detail with reference to FIGS. 4 to 15 in the column “Best Mode for Carrying Out the Invention”.

そこで、本発明は、上記したような従来技術の課題を解決するめになされたものであり、その目的は、対物レンズの光軸と球面収差補正装置の光軸のずれにより発生する光軸ずれ収差を適切に補正することができる液晶収差補正装置及びこの液晶収差補正装置を搭載した光ヘッドを提供することにある。   Therefore, the present invention has been made to solve the above-described problems of the prior art, and the object thereof is optical axis deviation aberration caused by deviation between the optical axis of the objective lens and the optical axis of the spherical aberration corrector. It is an object of the present invention to provide a liquid crystal aberration correction apparatus capable of appropriately correcting the above and an optical head equipped with the liquid crystal aberration correction apparatus.

本発明による液晶収差補正装置は、光軸に直交する所定方向に変位可能に支持された対物レンズに向かう光線の波面収差を補正する液晶収差補正装置であって、液晶分子層と、前記液晶分子層の一方の面に備えられた第1の電極パターンと、前記液晶分子層の他方の面に備えられた第2の電極パターンとを有し、前記第2の電極パターンが、前記対物レンズの有効径外であって、前記液晶収差補正装置の光軸を挟んで互いに反対側に配置された第1の電極及び第2の電極と、光透過性材料からなり、前記液晶収差補正装置の光軸に直交する前記対物レンズの移動方向に沿って配列された第3の電極、第4の電極、第5の電極、及び第6の電極と、前記第1乃至第6の電極よりも高抵抗の光透過性材料からなり、前記第1乃至第6の電極の間を接続する第7の電極とを有し、前記第3の電極と前記第6の電極が前記液晶収差補正装置の光軸を挟んで互いに対称な位置に配置され、前記第4の電極と前記第5の電極が前記液晶収差補正装置の光軸を挟んで互いに対称な位置に配置されていることを特徴とするものである。   A liquid crystal aberration correction apparatus according to the present invention is a liquid crystal aberration correction apparatus that corrects wavefront aberration of a light beam toward an objective lens that is supported so as to be displaceable in a predetermined direction orthogonal to an optical axis, the liquid crystal molecule layer, and the liquid crystal molecule A first electrode pattern provided on one surface of the layer and a second electrode pattern provided on the other surface of the liquid crystal molecule layer, wherein the second electrode pattern is formed on the objective lens. A first electrode and a second electrode that are outside the effective diameter and are disposed on opposite sides of the optical axis of the liquid crystal aberration correction apparatus, and are made of a light-transmitting material, and the light of the liquid crystal aberration correction apparatus Third electrode, fourth electrode, fifth electrode, and sixth electrode arranged along the moving direction of the objective lens orthogonal to the axis, and higher resistance than the first to sixth electrodes Between the first to sixth electrodes. The third electrode and the sixth electrode are arranged at symmetrical positions with respect to the optical axis of the liquid crystal aberration correction device, and the fourth electrode and the sixth electrode 5 electrodes are arranged symmetrically with respect to the optical axis of the liquid crystal aberration correction apparatus.

本発明によれば、光軸ずれ収差補正用の第2の電極パターンに印加された電圧により液晶分子層の屈折率を変化させているので、光軸ずれの量が大きい場合であっても光軸ずれ収差を適切に補正することができ、光軸ずれに起因する球面収差補正の補正効果の低下を抑制できるという効果を得ることができる。   According to the present invention, since the refractive index of the liquid crystal molecular layer is changed by the voltage applied to the second electrode pattern for correcting the optical axis deviation aberration, even if the amount of optical axis deviation is large, It is possible to appropriately correct the axial deviation aberration, and to obtain an effect of suppressing a reduction in the correction effect of the spherical aberration correction caused by the optical axis deviation.

以下に、本発明を実施するための最良の形態を図面に基づいて説明する。
<光ヘッドの構成と動作>
図1は、本発明の実施の形態1に係る液晶収差補正装置4を搭載した光ヘッドの構成を概略的に示す図である。図1に示されるように、レーザ光源1から射出されたレーザ光は、コリメータレンズ2、偏光ビームスプリッタ3、液晶収差補正装置4、1/4波長板5を通って、対物レンズ6で集光され、光ディスク7の光透過層12を通り、光ディスク情報記録面8に焦点を結ぶ。光ディスク情報記録面8で反射した反射光は、光透過層12、対物レンズ6、1/4波長板5、液晶収差補正装置4、偏光ビームスプリッタ3を通り、集光レンズ9でフォトダイオード10上に像を結ぶ。なお、以下の説明又は計算においては、レーザの発振波長は405nm、対物レンズ6の開口数(NA)は0.85を用いる。また、本発明の液晶収差補正装置4が適用可能な装置は、図1の光ヘッドに限定されず、他の構成の光ヘッドにも適用可能である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
<Configuration and operation of optical head>
FIG. 1 is a diagram schematically showing a configuration of an optical head equipped with a liquid crystal aberration correction apparatus 4 according to Embodiment 1 of the present invention. As shown in FIG. 1, the laser light emitted from the laser light source 1 passes through the collimator lens 2, the polarization beam splitter 3, the liquid crystal aberration correction device 4, and the quarter wavelength plate 5 and is condensed by the objective lens 6. Then, the light passes through the light transmission layer 12 of the optical disc 7 and is focused on the optical disc information recording surface 8. The reflected light reflected by the optical disk information recording surface 8 passes through the light transmission layer 12, the objective lens 6, the quarter wavelength plate 5, the liquid crystal aberration correction device 4, and the polarization beam splitter 3, and is collected on the photodiode 10 by the condenser lens 9. Tie a statue to. In the following description or calculation, the laser oscillation wavelength is 405 nm, and the numerical aperture (NA) of the objective lens 6 is 0.85. Further, an apparatus to which the liquid crystal aberration correcting apparatus 4 of the present invention can be applied is not limited to the optical head of FIG. 1, but can be applied to optical heads having other configurations.

光ディスク情報記録面8に記録された情報の再生は以下のように行われる。レーザ光源1から射出されたレーザ光が光ディスク情報記録面8により反射される際に、光ディスク情報記録面8上に記録された情報によって、反射光は強度変調される。フォトダイオード10により反射光の光強度を電気信号として取り出し、光ディスク情報記録面8に記録された情報を再生する。   The information recorded on the optical disk information recording surface 8 is reproduced as follows. When the laser light emitted from the laser light source 1 is reflected by the optical disc information recording surface 8, the reflected light is intensity-modulated by the information recorded on the optical disc information recording surface 8. The light intensity of the reflected light is extracted as an electrical signal by the photodiode 10 to reproduce the information recorded on the optical disc information recording surface 8.

光ディスク情報記録面8への情報の記録は以下のように行われる。レーザ光源1から射出するレーザ光は強度変調され、対物レンズ6によって光ディスク情報記録面8上に焦点が結ばれる。強度変調されたレーザ光により焦点で発生する熱によって、光ディスク情報記録面8が変形又は変質することにより、情報が記録される。   Information is recorded on the optical disk information recording surface 8 as follows. The laser light emitted from the laser light source 1 is intensity-modulated and focused on the optical disc information recording surface 8 by the objective lens 6. Information is recorded by deforming or altering the optical disk information recording surface 8 by heat generated at the focal point by the intensity-modulated laser light.

<スポット径と波面収差>
情報の記録再生のために、レーザ光は対物レンズ6によってスポット径が回折限界まで絞りこまれる。しかしながら、回折限界のスポット径を得るためには、レーザ光が理想的な球面波で焦点に収束しなければならない。理想的な球面波の位相と実際のレーザ光の波面の位相との差を波面収差と呼ぶ。波面収差の標準偏差をWFErms(Wave Front Error root mean square)と呼ぶ。一般に、回折限界のスポット径を得るためには、波面収差の標準偏差WFErmsを0.07λよりも十分小さくすることが望ましく、0.03λ以下とするのがより望ましいと考えられている。ここで、λは、レーザ光の波長である。
<Spot diameter and wavefront aberration>
In order to record and reproduce information, the spot diameter of the laser beam is narrowed down to the diffraction limit by the objective lens 6. However, in order to obtain a diffraction-limited spot diameter, the laser beam must converge to the focal point with an ideal spherical wave. The difference between the ideal spherical wave phase and the actual wavefront phase of the laser light is called wavefront aberration. The standard deviation of the wavefront aberration is called WFErms (Wave Front Error root mean square). In general, in order to obtain a diffraction-limited spot diameter, it is considered that the standard deviation WFErms of wavefront aberration is desirably sufficiently smaller than 0.07λ, and more desirably 0.03λ or less. Here, λ is the wavelength of the laser beam.

<液晶収差補正装置>
図2は、図1に示される液晶収差補正装置4の断面構造を概略的に示す図である。図2に示されるように、液晶収差補正装置4は、2枚のガラス基板23a,23bで挟まれた液晶分子24aからなる層(液晶分子層)24を有する。2枚のガラス基板23a,23bには配向膜21a,21bと液晶分子層24を構成する液晶分子24aに電界を印加する透明電極22a,22bが配置されている。透明電極22a,22b間に交流駆動電圧(例えば、周波数1kHzの矩形波)を印加すると、印加された電圧の実効値の大きさに従って、液晶分子24aが傾く。液晶分子24aの傾きによって液晶分子層24の屈折率が決まる。
<Liquid crystal aberration corrector>
FIG. 2 is a diagram schematically showing a cross-sectional structure of the liquid crystal aberration correction apparatus 4 shown in FIG. As shown in FIG. 2, the liquid crystal aberration correction device 4 has a layer (liquid crystal molecule layer) 24 composed of liquid crystal molecules 24a sandwiched between two glass substrates 23a and 23b. Transparent electrodes 22a and 22b for applying an electric field to the alignment films 21a and 21b and the liquid crystal molecules 24a constituting the liquid crystal molecule layer 24 are arranged on the two glass substrates 23a and 23b. When an AC drive voltage (for example, a rectangular wave having a frequency of 1 kHz) is applied between the transparent electrodes 22a and 22b, the liquid crystal molecules 24a are tilted according to the magnitude of the effective value of the applied voltage. The refractive index of the liquid crystal molecular layer 24 is determined by the inclination of the liquid crystal molecules 24a.

図3は、図1に示される液晶収差補正装置4の収差補正原理を説明するための図である。図3に示されるように、レーザ光源から射出された光線Aは液晶収差補正装置4を通過する。液晶収差補正装置4の屈折率変化Δnは、液晶分子層24に印加される電圧により制御される。液晶収差補正装置4の厚さをdとすると、光線Aの光路長はΔn・dだけ変化する。このように光線Aの光路長を変化させることによって、波面収差を制御することができる。   FIG. 3 is a diagram for explaining the principle of aberration correction of the liquid crystal aberration correction apparatus 4 shown in FIG. As shown in FIG. 3, the light beam A emitted from the laser light source passes through the liquid crystal aberration correction device 4. The refractive index change Δn of the liquid crystal aberration correction device 4 is controlled by the voltage applied to the liquid crystal molecular layer 24. If the thickness of the liquid crystal aberration correction device 4 is d, the optical path length of the light beam A changes by Δn · d. Thus, by changing the optical path length of the light beam A, the wavefront aberration can be controlled.

<液晶収差補正装置による球面収差補正>
図4は、光線(レーザ光)を光軸に直交する面で切った断面形状(左側)と球面収差(右側)の説明図である。球面収差と呼ばれる波面収差は、光ディスク7の光透過層12の厚み誤差によって発生する。図4の右側において、縦軸を波面収差とすると、波面は、光束の中心(点0)に対して回転対称の形状をしている。
<Spherical aberration correction by liquid crystal aberration correction device>
FIG. 4 is an explanatory diagram of a cross-sectional shape (left side) and spherical aberration (right side) obtained by cutting a light beam (laser light) by a plane orthogonal to the optical axis. Wavefront aberration called spherical aberration is caused by a thickness error of the light transmission layer 12 of the optical disc 7. On the right side of FIG. 4, when the vertical axis is wavefront aberration, the wavefront has a rotationally symmetric shape with respect to the center of the light beam (point 0).

図5は、球面収差補正のための従来の液晶収差補正装置(本発明の比較例)の構造を概略的に示す図である。図5に示されるように、従来の液晶収差補正装置においては、透明電極(図2における符号22aに相当する電極)として球面収差補正電極(上面電極)41〜45が形成され、透明電極(図2における符号22bに相当する電極)としてコマ収差補正電極(下面電極)51a,52b,53,52a,51bが形成されている。透明電極41,42,43(図5において、黒色の箇所)は、10−8〜10−7Ω・m程度の抵抗値の小さい材料を用い、透明電極41,42,43の間を接続する透明電極44,45は、シート抵抗100Ω/□以上の抵抗値の高い材料を用いる。 FIG. 5 is a diagram schematically showing the structure of a conventional liquid crystal aberration correction apparatus (comparative example of the present invention) for correcting spherical aberration. As shown in FIG. 5, in the conventional liquid crystal aberration correction apparatus, spherical aberration correction electrodes (upper surface electrodes) 41 to 45 are formed as transparent electrodes (electrodes corresponding to reference numeral 22a in FIG. 2), and transparent electrodes (FIG. 2), coma aberration correction electrodes (lower surface electrodes) 51a, 52b, 53, 52a, 51b are formed. The transparent electrodes 41, 42, and 43 (black portions in FIG. 5) connect the transparent electrodes 41, 42, and 43 using a material having a small resistance value of about 10 −8 to 10 −7 Ω · m. The transparent electrodes 44 and 45 are made of a material having a sheet resistance of 100Ω / □ or higher.

図6は、図5に示される従来の液晶収差補正装置の球面収差補正電極に矩形波を印加した状態、上面電極電位(右上)、及び液晶分子に印加される電圧の実効値(右下)を示す図である。上面電極41,43に振幅1.75Vの矩形波を印加し、上面電極42に振幅0.35Vの矩形波を印加し、下面電極51a,52b,53,52a,51bに位相反転された(逆極性の)振幅1.05Vの矩形波を印加する。その結果、液晶分子に印加される電圧は、図6の右下のような電圧の実効値になる。   6 shows a state in which a rectangular wave is applied to the spherical aberration correction electrode of the conventional liquid crystal aberration correction apparatus shown in FIG. 5, the upper surface electrode potential (upper right), and the effective value of the voltage applied to the liquid crystal molecules (lower right). FIG. A rectangular wave having an amplitude of 1.75V was applied to the upper surface electrodes 41 and 43, and a rectangular wave having an amplitude of 0.35V was applied to the upper surface electrode 42, and the phase was inverted to the lower surface electrodes 51a, 52b, 53, 52a and 51b (reverse) A rectangular wave with a polarity of 1.05V is applied. As a result, the voltage applied to the liquid crystal molecules becomes an effective value of the voltage as shown in the lower right of FIG.

図7は、光線を液晶収差補正装置の光軸に直交する面で切った断面形状(左上段)と球面収差(右上段)、球面収差補正電極の平面形状(左中段)と液晶収差補正装置により生じる波面収差(右中段)、及び補正された光線を液晶収差補正装置の光軸に直交する面で切った断面形状(左下段)と補正後の球面収差(右下段)を示す図である。図7において、D−D´は液晶収差補正装置の光軸に直交する方向(光束の径方向であって、光ディスクの径方向でもある。)を示し、0は液晶収差補正装置の光軸の位置を示す。液晶収差補正装置を通過したレーザ光は、図7の中段に示したように、球面収差補正電極に電圧を印加したときに液晶収差補正装置の液晶分子層が発生させた波面収差が付加される。その結果、球面収差は打ち消され、図7の右下段に示されるように、波面収差を小さくすることができる。   FIG. 7 shows a cross-sectional shape (upper left) and spherical aberration (upper right) of a light beam cut by a plane orthogonal to the optical axis of the liquid crystal aberration correction device, a planar shape (left middle) of a spherical aberration correction electrode, and a liquid crystal aberration correction device. FIG. 4 is a diagram showing a wavefront aberration (middle right) caused by, and a cross-sectional shape (lower left) obtained by cutting the corrected light beam by a plane orthogonal to the optical axis of the liquid crystal aberration correction apparatus and a corrected spherical aberration (lower right). . In FIG. 7, DD ′ indicates a direction orthogonal to the optical axis of the liquid crystal aberration correction apparatus (the radial direction of the light beam and the radial direction of the optical disk), and 0 indicates the optical axis of the liquid crystal aberration correction apparatus. Indicates the position. As shown in the middle part of FIG. 7, the laser light that has passed through the liquid crystal aberration correction device is added with wavefront aberration generated by the liquid crystal molecular layer of the liquid crystal aberration correction device when a voltage is applied to the spherical aberration correction electrode. . As a result, the spherical aberration is canceled out, and the wavefront aberration can be reduced as shown in the lower right part of FIG.

<光軸ずれ>
図8(a)及び(b)は、対物レンズ6の光軸と液晶収差補正装置4の光軸のずれを示す図である。対物レンズ6は光ディスクの記録再生時に、光ディスク上の情報トラックの光ディスク径方向のぶれに追従して動く。すなわち、対物レンズ6は対物レンズホルダに備えられた磁気コイルや磁石等を含む対物レンズアクチュエータ11により、対物レンズ6を光ディスク径方向に変位させるトラッキング補正を行う。組立誤差を含めると、図8(a)に示される光ディスク内周方向(すなわち、光ディスク径方向内向き)と、図8(b)に示される光ディスク外周方向(すなわち、光ディスク径方向外き)にそれぞれ数100μm程度動く。そのため、対物レンズ6の移動によって、図8(a)及び(b)に示されるように、液晶収差補正装置4の光軸と対物レンズ6の光軸との位置関係にずれ(図8(a)及び(b)においては、0.4mmのずれとして示している)が生じる。
<Optical axis deviation>
FIGS. 8A and 8B are diagrams showing a deviation between the optical axis of the objective lens 6 and the optical axis of the liquid crystal aberration correction apparatus 4. The objective lens 6 moves following the blurring of the information track on the optical disc in the radial direction of the optical disc during recording and reproduction of the optical disc. That is, the objective lens 6 performs tracking correction for displacing the objective lens 6 in the radial direction of the optical disk by an objective lens actuator 11 including a magnetic coil and a magnet provided in the objective lens holder. Including the assembly error, the optical disk is shown in the inner circumferential direction (that is, inward in the radial direction of the optical disk) shown in FIG. 8A and in the outer peripheral direction of the optical disk shown in FIG. Each moves about several hundred μm. Therefore, due to the movement of the objective lens 6, as shown in FIGS. 8A and 8B, the positional relationship between the optical axis of the liquid crystal aberration correction device 4 and the optical axis of the objective lens 6 is shifted (FIG. 8A ) And (b) are shown as a deviation of 0.4 mm).

<光軸ずれ収差>
図9は、光線を液晶収差補正装置の光軸に直交する面で切った断面形状(左上段)と球面収差(右上段)、球面収差補正電極の平面形状(左中段)と液晶収差補正装置により生じる波面収差(右中段)、及び補正後の球面収差(下段)を示す図である。なお、対物レンズがずれた場合に発生する収差を「光軸ずれ収差」と呼ぶ。この光軸ずれ収差は、対物レンズがずれたことによって、液晶収差補正装置上の光線に換算した球面収差と液晶収差補正装置が与える収差の間に相対的な位置ずれが起きたために生じた収差である。図9の左上段に示されるように、光軸ずれが生じ、球面収差は、図9の右上段のようになる。このとき、図9の左中段のような電圧を球面収差補正電極に印加し、図9の右中段のように波面収差を加えても、図9の下段に示されるような波面収差が残る。
<Optical axis deviation aberration>
FIG. 9 shows a cross-sectional shape (upper left) and spherical aberration (upper right) obtained by cutting a light beam along a plane orthogonal to the optical axis of the liquid crystal aberration correction device, a planar shape of the spherical aberration correction electrode (middle left), and a liquid crystal aberration correction device. FIG. 6 is a diagram showing a wavefront aberration (right middle stage) caused by the above and a spherical aberration after correction (lower stage). The aberration that occurs when the objective lens is displaced is referred to as “optical axis deviation aberration”. This optical axis deviation aberration is caused by a relative positional deviation between the spherical aberration converted to the light beam on the liquid crystal aberration correction device and the aberration given by the liquid crystal aberration correction device due to the deviation of the objective lens. It is. As shown in the upper left part of FIG. 9, an optical axis shift occurs, and the spherical aberration is as shown in the upper right part of FIG. At this time, even if a voltage as shown in the middle left part of FIG. 9 is applied to the spherical aberration correction electrode and wavefront aberration is applied as shown in the middle right part of FIG. 9, the wavefront aberration as shown in the lower part of FIG. 9 remains.

図10は、光ディスクの外周方向に対物レンズが移動した場合(左側)に生じる光軸ずれ収差の形状を3次元図(右側)として示すシミュレーション計算に基づく図である。また、図11は、光ディスクの内周方向に対物レンズが移動した場合(左側)に生じる光軸ずれ収差の形状を3次元図(右側)として示すシミュレーション計算に基づく図である。図10及び図11に示されるように、発生する光軸ずれ収差は回転対称の形状ではないので3次元図で表した。また、収差は、液晶収差補正装置上の光線の収差に換算して示している。   FIG. 10 is a diagram based on simulation calculation showing the shape of the optical axis deviation aberration that occurs when the objective lens moves in the outer peripheral direction of the optical disc (left side) as a three-dimensional view (right side). FIG. 11 is a diagram based on simulation calculation showing a shape of an optical axis deviation aberration generated when the objective lens moves in the inner peripheral direction of the optical disc (left side) as a three-dimensional view (right side). As shown in FIG. 10 and FIG. 11, the generated optical axis deviation aberration is not a rotationally symmetric shape, so it is shown in a three-dimensional view. The aberration is shown in terms of the aberration of the light beam on the liquid crystal aberration correction apparatus.

<従来の電極>
図12は、図5に示される従来の液晶収差補正装置により光軸ずれ収差の補正をするときに各電極に印加する電圧を示す図である。図12に示されるように、球面収差補正電極に矩形波(振幅1.75Vと振幅0.35V)を印加すると同時に、例えば、コマ収差補正電極に図12のような電圧(位相反転された振幅1.25Vと、位相反転された振幅1.05Vと、位相反転された振幅0.85V)の矩形波を加えることで、対物レンズが光ディスク外周方向に光軸ずれを生じたときに光軸ずれ収差を補正することができる。コマ収差補正電極に印加する矩形波の振幅は対物レンズ位置ずれ方向と、位置ずれ量によって決まる。
<Conventional electrode>
FIG. 12 is a diagram showing the voltage applied to each electrode when the optical axis deviation aberration is corrected by the conventional liquid crystal aberration correction apparatus shown in FIG. As shown in FIG. 12, a rectangular wave (amplitude 1.75 V and amplitude 0.35 V) is applied to the spherical aberration correction electrode, and at the same time, for example, a voltage (phase-inverted amplitude) as shown in FIG. 12 is applied to the coma aberration correction electrode. 1. When the objective lens has an optical axis shift in the outer peripheral direction of the optical disk by adding a rectangular wave of 1.25 V, a phase inverted amplitude of 1.05 V, and a phase inverted amplitude of 0.85 V) Aberration can be corrected. The amplitude of the rectangular wave applied to the coma aberration correction electrode is determined by the direction of displacement of the objective lens and the amount of displacement.

図13は、図5に示される従来の液晶収差補正装置によって、光ディスク外周方向に対物レンズが移動した場合の光軸ずれ収差(上段)、補正収差(中段)、及び残留収差(下段)を示すシミュレーション計算に基づく図である。図13において、左列は、光軸ずれが光ディスク外周方向に0.118mmの場合、中列は、光軸ずれが光ディスク外周方向に0.236mmの場合、右列は、光軸ずれが光ディスク外周方向に0.401mmの場合を示している。   FIG. 13 shows optical axis misalignment aberration (upper stage), correction aberration (middle stage), and residual aberration (lower stage) when the objective lens is moved in the outer peripheral direction of the optical disk by the conventional liquid crystal aberration correction apparatus shown in FIG. It is a figure based on simulation calculation. In FIG. 13, the left column indicates the optical axis deviation is 0.118 mm in the optical disc outer peripheral direction, the middle column indicates the optical axis offset is 0.236 mm in the optical disc outer peripheral direction, and the right column indicates the optical axis deviation is the optical disc outer periphery. The case of 0.401 mm is shown in the direction.

また、図14は、図5に示される従来の液晶収差補正装置によって、光ディスク内周方向に対物レンズが移動した場合の光軸ずれ収差(上段)、補正収差(中段)、及び残留収差(下段)を示すシミュレーション計算に基づく図である。図14において、左列は、光軸ずれが光ディスク内周方向に0.401mmの場合、中列は、光軸ずれが光ディスク内周方向に0.236mmの場合、右列は、光軸ずれが光ディスク内周方向に0.118mmの場合を示している。   FIG. 14 shows the optical axis deviation aberration (upper stage), correction aberration (middle stage), and residual aberration (lower stage) when the objective lens is moved in the inner peripheral direction of the optical disk by the conventional liquid crystal aberration correction apparatus shown in FIG. It is a figure based on the simulation calculation which shows). In FIG. 14, the left column shows the optical axis deviation of 0.401 mm in the optical disk inner circumferential direction, the middle column shows the optical axis deviation of 0.236 mm in the optical disk inner circumferential direction, and the right column shows the optical axis deviation. The case of 0.118 mm in the inner peripheral direction of the optical disc is shown.

図15は、図5に示される従来の液晶収差補正装置による補正効果を示す図である。図15の横軸は、光軸のずれ量(位置ずれ量)を示し、縦軸は残留収差の標準偏差WFErmsを示す。光軸のずれ量が正のときは、光ディスク外周方向の光軸ずれを示しており、負の時は光ディスク内周方向の光軸ずれを示している。例えば、光軸ずれ量が、0.4mm発生した場合において、従来の補正方法(図15において、三角印)では残留収差の標準偏差WFErmsは0.045λになり、全く補正をしない場合(補正前)よりは改善されているが(図15において、丸印)、望ましい値である0.030λを満足しないため、不十分である。   FIG. 15 is a diagram showing a correction effect by the conventional liquid crystal aberration correction apparatus shown in FIG. The horizontal axis of FIG. 15 indicates the amount of optical axis shift (position shift amount), and the vertical axis indicates the standard deviation WFErms of residual aberration. When the amount of deviation of the optical axis is positive, it indicates an optical axis deviation in the outer circumferential direction of the optical disk, and when it is negative, it indicates an optical axis deviation in the inner circumferential direction of the optical disk. For example, when the amount of optical axis deviation is 0.4 mm, the standard deviation WFErms of residual aberration is 0.045λ in the conventional correction method (triangle mark in FIG. 15), and no correction is made (before correction) ) (Indicated by a circle in FIG. 15), but it is insufficient because 0.030λ which is a desirable value is not satisfied.

<本発明の液晶収差補正装置>
図16は、本発明の実施の形態1に係る液晶収差補正装置4の構成を概略的に示す図である。図16に示されるように、実施の形態1に係る液晶収差補正装置4は、液晶分子層24と、液晶分子層24の一方の面上に配置された球面収差補正電極41〜45と、液晶分子層24の他方の面上に配置された光軸ずれ収差補正電極31,32a,33b,35,32b,33a,33b,34とを有する。図16に示される球面収差補正電極41〜45は、従来の液晶収差補正装置における球面収差補正電極と同様の構造を持つ。
<Liquid Crystal Aberration Correction Device of the Present Invention>
FIG. 16 is a diagram schematically showing the configuration of the liquid crystal aberration correction apparatus 4 according to Embodiment 1 of the present invention. As shown in FIG. 16, the liquid crystal aberration correction device 4 according to the first embodiment includes a liquid crystal molecular layer 24, spherical aberration correction electrodes 41 to 45 disposed on one surface of the liquid crystal molecular layer 24, and liquid crystal Optical axis misalignment correction electrodes 31, 32 a, 33 b, 35, 32 b, 33 a, 33 b, and 34 are disposed on the other surface of the molecular layer 24. The spherical aberration correction electrodes 41 to 45 shown in FIG. 16 have the same structure as the spherical aberration correction electrode in the conventional liquid crystal aberration correction apparatus.

光軸ずれ収差補正電極31,32a,33b,35,32b,33a,33b,34は、低抵抗(10−8〜10−7Ω・m)の光透過性材料からなる透明電極31,32a,32b,33a,33b,34と、透明電極31,32a,32b,33a,33b,34間を電気的に接続する高抵抗(シート抵抗100Ω/□以上)の光透過性材料からなる透明電極35からなる。なお、透明電極31及び34は、対物レンズ6の有効径外に配置されているので、光透過性ではない不透明な導電性材料からなる電極としてもよい。透明電極32a,33b,32b,33aは、光ディスクの径方向(図16における水平方向)に直線状に配列されている。透明電極32aと透明電極33aとは、液晶収差補正装置4の光軸位置を中心として対称な位置に配置されており、透明電極33bと透明電極32bとは、液晶収差補正装置4の光軸位置を中心として対称な位置に配置されている。また、実施の形態1においては、透明電極32a,32b,33a,33bは、対向するリング状の収差補正電極42の内側に対応する位置に配置されている。また、透明電極31,34は、対向するリング状の収差補正電極41の外側に対応する位置に配置されている。図16においては、透明電極31,34は、透明電極32a,32b,33a,33bに比べて、光ディスク径方向に直交する方向(ディスクトラックの接線方向)に長尺な形状をしている。 The optical axis deviation aberration correcting electrodes 31, 32a, 33b, 35, 32b, 33a, 33b, and 34 are transparent electrodes 31, 32a, made of a light-transmissive material having a low resistance (10 −8 to 10 −7 Ω · m). 32b, 33a, 33b, 34 and the transparent electrode 35 made of a light-transmitting material having a high resistance (sheet resistance of 100Ω / □ or more) that electrically connects the transparent electrodes 31, 32a, 32b, 33a, 33b, 34 Become. Since the transparent electrodes 31 and 34 are disposed outside the effective diameter of the objective lens 6, they may be electrodes made of an opaque conductive material that is not light transmissive. The transparent electrodes 32a, 33b, 32b, and 33a are linearly arranged in the radial direction of the optical disc (the horizontal direction in FIG. 16). The transparent electrode 32a and the transparent electrode 33a are arranged at symmetrical positions around the optical axis position of the liquid crystal aberration correction device 4, and the transparent electrode 33b and the transparent electrode 32b are optical axis positions of the liquid crystal aberration correction device 4. Are arranged at symmetrical positions with respect to the center. In the first embodiment, the transparent electrodes 32a, 32b, 33a, 33b are arranged at positions corresponding to the insides of the opposed ring-shaped aberration correction electrodes 42. The transparent electrodes 31 and 34 are arranged at positions corresponding to the outer sides of the opposed ring-shaped aberration correction electrodes 41. In FIG. 16, the transparent electrodes 31 and 34 have a longer shape in the direction orthogonal to the optical disk radial direction (the tangential direction of the disk track) than the transparent electrodes 32 a, 32 b, 33 a, and 33 b.

図17は、図16に示される実施の形態1に係る液晶収差補正装置4に印加する電圧の一例を示す図である。実施の形態1に係る液晶収差補正装置4においては、光軸ずれ収差の補正のために、例えば、図17に示されるような電圧を印加する。球面収差補正電極41,43への矩形波Vsa1(振幅1.75V)の印加、球面収差補正電極42への矩形波Vsa2(振幅0.35V)の印加に加えて、例えば、光軸ずれ収差補正電極34,32aに位相反転された矩形波Vd2(振幅1.25V)、光軸ずれ収差補正電極31,32bに位相反転された矩形波Vd1(振幅0.85V)、光軸ずれ収差補正電極33a,33bに位相反転された矩形波Vd3(振幅1.05V)を加えることで、対物レンズが外周方向に移動して光軸ずれが生じたときの光軸ずれ収差を補正することができる。   FIG. 17 is a diagram illustrating an example of a voltage applied to the liquid crystal aberration correction apparatus 4 according to the first embodiment illustrated in FIG. In the liquid crystal aberration correction apparatus 4 according to Embodiment 1, for example, a voltage as shown in FIG. 17 is applied to correct the optical axis deviation aberration. In addition to the application of the rectangular wave Vsa1 (amplitude 1.75V) to the spherical aberration correction electrodes 41 and 43 and the application of the rectangular wave Vsa2 (amplitude 0.35V) to the spherical aberration correction electrode 42, for example, optical axis deviation aberration correction The rectangular wave Vd2 (amplitude 1.25V) phase-inverted to the electrodes 34 and 32a, the rectangular wave Vd1 (amplitude 0.85V) phase-inverted to the optical axis deviation aberration correcting electrodes 31 and 32b, and the optical axis deviation aberration correcting electrode 33a. , 33b, a phase-inverted rectangular wave Vd3 (amplitude 1.05V) can be used to correct optical axis deviation aberration when the objective lens moves in the outer peripheral direction and optical axis deviation occurs.

図18(a)及び(b)は、液晶収差補正装置4の光軸ずれ収差補正電極に印加する電圧と液晶収差補正装置4が発生させる補正収差を示すシミュレーション計算に基づく図である。図18(a)に示されるように、光ディスク外周方向への対物レンズ6の移動による光軸ずれ収差を補正するためには、例えば、光軸ずれ収差補正電極34,32aに位相反転された矩形波Vd2(振幅1.25V)、光軸ずれ収差補正電極31,32bに位相反転された矩形波Vd1(振幅0.85V)、光軸ずれ収差補正電極33a,33bに位相反転された矩形波Vd3(振幅1.05V)を加える。また、図18(b)に示されるように、光ディスク内周方向への対物レンズ6の移動による光軸ずれ収差を補正するためには、例えば、光軸ずれ収差補正電極34,33bに位相反転された矩形波Vd2(振幅0.85V)、光軸ずれ収差補正電極31,33aに位相反転された矩形波Vd1(振幅1.25V)、光軸ずれ収差補正電極32a,32bに位相反転された矩形波Vd3(振幅1.05V)を加える。このように光ディスク内周方向と光ディスク外周方向で矩形波Vd1,Vd2,Vd3を印加する電極と、矩形波Vd1,Vd2,Vd3の振幅を切り替える。   18A and 18B are diagrams based on simulation calculation showing the voltage applied to the optical axis deviation aberration correction electrode of the liquid crystal aberration correction device 4 and the correction aberration generated by the liquid crystal aberration correction device 4. FIG. As shown in FIG. 18A, in order to correct the optical axis deviation aberration due to the movement of the objective lens 6 in the outer peripheral direction of the optical disc, for example, a rectangle whose phase is inverted to the optical axis deviation aberration correction electrodes 34 and 32a. Wave Vd2 (amplitude 1.25V), rectangular wave Vd1 (amplitude 0.85V) phase-inverted to optical axis deviation aberration correcting electrodes 31, 32b, rectangular wave Vd3 phase-inverted to optical axis deviation aberration correcting electrodes 33a, 33b (Amplitude 1.05V) is added. Further, as shown in FIG. 18B, in order to correct the optical axis deviation aberration due to the movement of the objective lens 6 in the inner peripheral direction of the optical disc, for example, phase inversion is applied to the optical axis deviation aberration correcting electrodes 34 and 33b. The rectangular wave Vd2 (amplitude 0.85V), the rectangular wave Vd1 (amplitude 1.25V) phase-inverted to the optical axis deviation aberration correction electrodes 31 and 33a, and the phase inverted to the optical axis deviation aberration correction electrodes 32a and 32b. A rectangular wave Vd3 (amplitude 1.05V) is applied. In this way, the electrodes for applying the rectangular waves Vd1, Vd2, and Vd3 and the amplitudes of the rectangular waves Vd1, Vd2, and Vd3 are switched in the inner and outer circumferential directions of the optical disk.

図19は、実施の形態1に係る液晶収差補正装置4によって、光ディスク外周方向に対物レンズ6が移動した場合の光軸ずれ収差(上段)、補正収差(中段)、及び残留収差(下段)を示すシミュレーション計算に基づく図である。図19において、左列は、光軸ずれが光ディスク外周方向に0.118mmの場合、中列は、光軸ずれが光ディスク外周方向に0.236mmの場合、右列は、光軸ずれが光ディスク外周方向に0.401mmの場合を示している。図13(従来)と比較してわかるように、図19(本発明)の場合には、残留収差が小さくなっている。   FIG. 19 shows optical axis deviation aberration (upper stage), correction aberration (middle stage), and residual aberration (lower stage) when the objective lens 6 is moved in the outer peripheral direction of the optical disk by the liquid crystal aberration correction apparatus 4 according to the first embodiment. It is a figure based on the simulation calculation shown. In FIG. 19, the left column indicates the optical axis deviation is 0.118 mm in the optical disc outer peripheral direction, the middle column indicates the optical axis offset is 0.236 mm in the optical disc outer peripheral direction, and the right column indicates the optical axis deviation is the optical disc outer periphery. The case of 0.401 mm is shown in the direction. As can be seen from comparison with FIG. 13 (conventional), the residual aberration is small in the case of FIG. 19 (present invention).

また、図20は、実施の形態1に係る液晶収差補正装置によって、光ディスク内周方向に対物レンズが移動した場合の光軸ずれ収差(上段)、補正収差(中段)、及び残留収差(下段)を示すシミュレーション計算に基づく図である。図20において、左列は、光軸ずれが光ディスク外周方向に0.401mmの場合、中列は、光軸ずれが光ディスク外周方向に0.236mmの場合、右列は、光軸ずれが光ディスク外周方向に0.118mmの場合を示している。図14(従来)と比較してわかるように、図20の(本発明)場合には、残留収差が小さくなっている。   FIG. 20 shows optical axis misalignment aberrations (upper stage), correction aberrations (middle stage), and residual aberrations (lower stage) when the objective lens is moved in the inner circumferential direction of the optical disk by the liquid crystal aberration correction apparatus according to the first embodiment. It is a figure based on the simulation calculation which shows. In FIG. 20, the left column shows the optical axis deviation of 0.401 mm in the optical disc outer peripheral direction, the middle column shows the optical axis deviation of 0.236 mm in the optical disc outer peripheral direction, and the right column shows the optical axis deviation in the optical disc outer periphery direction. The case of 0.118 mm in the direction is shown. As can be seen from comparison with FIG. 14 (conventional), the residual aberration is small in the case of FIG. 20 (present invention).

図21は、実施の形態1に係る液晶収差補正装置4による補正効果を示す図である。図21の横軸は、光軸のずれ量(位置ずれ量)を示し、縦軸は残留収差の標準偏差WFErmsを示す。光軸のずれ量が正のときは、光ディスク外周方向の光軸ずれを示しており、負の時は光ディスク内周方向の光軸ずれを示している。例えば、光軸ずれ量が、0.4mm発生した場合において、従来の補正方法(図21において、三角印)では残留収差の標準偏差WFErmsは0.045λになり、望ましい値である0.030λを満足しないが、本発明(図21において、四角印)においてはWFErmsは0.026λであるため、望ましい値である0.030λ以下を満たしている。図21に示されるように、光軸ずれ量が、0.4mm発生したときには、残留収差の標準偏差WFErmsは、従来例に比べて3/5に低減でき、全く補正を行わない補正前の場合(図21において、丸印)に比べて2/5に低減できている。   FIG. 21 is a diagram showing a correction effect by the liquid crystal aberration correction apparatus 4 according to the first embodiment. The horizontal axis of FIG. 21 indicates the amount of deviation (positional deviation) of the optical axis, and the vertical axis indicates the standard deviation WFErms of residual aberration. When the amount of deviation of the optical axis is positive, it indicates an optical axis deviation in the outer circumferential direction of the optical disk, and when it is negative, it indicates an optical axis deviation in the inner circumferential direction of the optical disk. For example, when the optical axis deviation amount is 0.4 mm, the standard deviation WFErms of residual aberration is 0.045λ in the conventional correction method (triangle mark in FIG. 21), which is a desirable value of 0.030λ. Although not satisfied, the WFErms is 0.026λ in the present invention (indicated by a square in FIG. 21), and therefore satisfies a desirable value of 0.030λ or less. As shown in FIG. 21, when the optical axis deviation amount is 0.4 mm, the standard deviation WFErms of the residual aberration can be reduced to 3/5 as compared with the conventional example. Compared to (circle in FIG. 21), it can be reduced to 2/5.

<本発明の給電線>
図22は、実施の形態1に係る液晶収差補正装置4の透明電極32a,33b,32b,33aに電圧を印加するための給電線を概略的に示す平面図である。透明電極31,32a,32b,33a,33b,34へは電圧を印加するために、配線が必要である。本発明では高抵抗の透明電極35を用いた電位降下を利用しているため、電位降下に悪影響を与えないよう、液晶収差補正装置4上においては、液晶収差補正装置4の光軸位置を中心として点対称の配線構造を採用している。図22に示されるように、透明電極31は給電線71により給電され、透明電極34は給電線74により給電される。また、透明電極32aは、2個の半円形状電極から構成され、それぞれに接続された2本の給電線72aにより給電される。また、透明電極33は、1個の円形状の透明電極であり、給電線73bにより給電される。また、透明電極32bは、1個の円形状の透明電極であり、給電線72bにより給電される。また、透明電極33aは、2個の半円形状電極から構成され、それぞれに接続された2本の給電線73aにより給電される。給電線72a,72b,73a,73bが配置されている箇所には、高抵抗の透明電極35は備えられておらず、給電線72a,72b,73a,73bは高抵抗の透明電極35に接触していない。
<Power supply line of the present invention>
FIG. 22 is a plan view schematically showing power supply lines for applying a voltage to the transparent electrodes 32a, 33b, 32b, and 33a of the liquid crystal aberration correcting apparatus 4 according to the first embodiment. In order to apply a voltage to the transparent electrodes 31, 32a, 32b, 33a, 33b, 34, wiring is necessary. In the present invention, since the potential drop using the high-resistance transparent electrode 35 is used, the optical axis position of the liquid crystal aberration corrector 4 is centered on the liquid crystal aberration corrector 4 so as not to adversely affect the potential drop. A point-symmetric wiring structure is adopted. As shown in FIG. 22, the transparent electrode 31 is supplied with power through a power supply line 71, and the transparent electrode 34 is supplied with power through a power supply line 74. The transparent electrode 32a is composed of two semicircular electrodes and is fed by two feeding lines 72a connected to each. Further, the transparent electrode 33 is a single circular transparent electrode, and is fed by a feeder line 73b. The transparent electrode 32b is a single circular transparent electrode, and is fed by the feeder line 72b. Further, the transparent electrode 33a is composed of two semicircular electrodes and is fed by two feeding lines 73a connected to each of them. The portions where the feeder lines 72a, 72b, 73a, 73b are not provided with the high-resistance transparent electrode 35, and the feeder lines 72a, 72b, 73a, 73b are in contact with the high-resistance transparent electrode 35. Not.

<駆動電圧>
図23は、実施の形態1に係る液晶収差補正装置4の駆動交流電圧を発生させる回路構成を示す図である。矩形波発生器61により発生した矩形波は、振幅調整回路62によって矩形波Vsa1となり、球面収差補正電極41,43に印加される。矩形波発生器61により発生した矩形波は、振幅調整回路63によって矩形波Vsa2となり、球面収差補正電極42に印加される。
<Drive voltage>
FIG. 23 is a diagram showing a circuit configuration for generating a driving AC voltage of the liquid crystal aberration correcting apparatus 4 according to the first embodiment. The rectangular wave generated by the rectangular wave generator 61 becomes a rectangular wave Vsa1 by the amplitude adjustment circuit 62 and is applied to the spherical aberration correction electrodes 41 and 43. The rectangular wave generated by the rectangular wave generator 61 is converted into a rectangular wave Vsa2 by the amplitude adjustment circuit 63 and applied to the spherical aberration correction electrode 42.

矩形波発生器61により発生した矩形波はインバータ64により逆相になり、振幅調整回路65によって矩形波Vd1となり、光軸ずれ収差補正電極31に印加される。また、矩形波Vd1は、切り替え手段68によって、光軸ずれ収差補正電極32b又は33aのいずれかに印加される。   The rectangular wave generated by the rectangular wave generator 61 is reversed in phase by the inverter 64 and becomes a rectangular wave Vd1 by the amplitude adjusting circuit 65 and applied to the optical axis deviation aberration correcting electrode 31. The rectangular wave Vd1 is applied to either the optical axis deviation aberration correcting electrode 32b or 33a by the switching unit 68.

インバータ64により逆相になった矩形波は、振幅調整回路66によって矩形波Vd2となり、光軸ずれ収差補正電極34に印加される。また、矩形波Vd2は、切り替え手段68によって、光軸ずれ収差補正電極32a又は33bのいずれかに印加される。   The rectangular wave reversed in phase by the inverter 64 becomes a rectangular wave Vd2 by the amplitude adjustment circuit 66 and is applied to the optical axis deviation aberration correcting electrode 34. The rectangular wave Vd2 is applied to either the optical axis deviation aberration correcting electrode 32a or 33b by the switching unit 68.

インバータ64により逆相になった矩形波は、振幅調整回路67によって矩形波Vd3となり、光軸ずれ収差補正電極33a,33b又は光軸ずれ収差補正電極32a,32bに印加される。   The rectangular wave reversed in phase by the inverter 64 becomes a rectangular wave Vd3 by the amplitude adjusting circuit 67 and is applied to the optical axis deviation aberration correcting electrodes 33a and 33b or the optical axis deviation aberration correcting electrodes 32a and 32b.

図24(a)は、光ディスク厚み誤差と駆動電圧Vsa1,Vsa2の電圧実効値の関係を示し、図24(b)は、光軸ずれと駆動電圧Vd1,Vd2,Vd3の電圧実効値の関係を示す図である。電圧Vsa1,Vsa2の振幅は、光ディスクの厚み誤差に応じて変化させるが、厚み誤差そのものを検出することはできないので、光ディスク再生信号が最良(例えば、再生RF信号の振幅を最大)にするように、振幅調整回路62,63を制御する。   FIG. 24A shows the relationship between the optical disk thickness error and the voltage effective values of the drive voltages Vsa1 and Vsa2, and FIG. 24B shows the relationship between the optical axis deviation and the voltage effective values of the drive voltages Vd1, Vd2, and Vd3. FIG. The amplitudes of the voltages Vsa1 and Vsa2 are changed according to the thickness error of the optical disc, but the thickness error itself cannot be detected, so that the optical disc playback signal is the best (for example, the amplitude of the playback RF signal is maximized). The amplitude adjustment circuits 62 and 63 are controlled.

また、振幅調整回路65,66,67は、対物レンズ6の位置センサ(図示せず)の出力(光軸ずれ量とずれの方向を示す)に基づいて制御される。振幅調整回路65,66,67の出力電圧の実効値は、図24(b)の電圧Vd1,Vd2,Vd3となる。また、対物レンズ6の位置の検出は、対物レンズアクチュエータに備えられる駆動コイルに流される電流を検出することによって行ってもよい。切り替え手段68は、対物レンズ位置センサの出力に基づいて、対物レンズの移動方向(光軸ずれ方向)に応じて、切り替わる。   The amplitude adjustment circuits 65, 66, and 67 are controlled based on the output of the position sensor (not shown) of the objective lens 6 (indicating the amount of optical axis deviation and the direction of deviation). The effective values of the output voltages of the amplitude adjustment circuits 65, 66, and 67 are the voltages Vd1, Vd2, and Vd3 in FIG. Further, the position of the objective lens 6 may be detected by detecting a current flowing in a drive coil provided in the objective lens actuator. The switching unit 68 switches based on the output direction of the objective lens position sensor in accordance with the movement direction (optical axis deviation direction) of the objective lens.

以上に説明したように、実施の形態1に係る液晶収差補正装置を用いれば、光ディスクの光透過層の厚み誤差により生じる球面収差の補正と同時に、対物レンズ6の光軸と液晶収差補正装置4の光軸のずれにより発生する光軸ずれ収差を適切に補正することができる。   As described above, when the liquid crystal aberration correction apparatus according to the first embodiment is used, the optical axis of the objective lens 6 and the liquid crystal aberration correction apparatus 4 are simultaneously corrected with the spherical aberration caused by the thickness error of the light transmission layer of the optical disk. The optical axis deviation aberration caused by the optical axis deviation can be corrected appropriately.

<変形例>
図25は、実施の形態1に係る液晶収差補正装置の変形例の構成を概略的に示す図である。図25において、図16の構成と同一又は対応する構成には同じ符号を付す。図25に示される液晶収差補正装置は、長尺な光軸ずれ収差補正電極31,34の内側を円弧状に形成した点が、図16の場合と相違する。この点以外は、図25に示される液晶収差補正装置は、図16の液晶収差補正装置と同じである。
<Modification>
FIG. 25 is a diagram schematically showing a configuration of a modification of the liquid crystal aberration correction apparatus according to the first embodiment. 25, the same reference numerals are given to the same or corresponding components as those in FIG. The liquid crystal aberration correction apparatus shown in FIG. 25 is different from the case of FIG. 16 in that the inner sides of the long optical axis deviation correction electrodes 31 and 34 are formed in an arc shape. Except for this point, the liquid crystal aberration correction apparatus shown in FIG. 25 is the same as the liquid crystal aberration correction apparatus shown in FIG.

図26は、実施の形態1に係る液晶収差補正装置の他の変形例の構成を概略的に示す図である。図26において、図16の構成と同一又は対応する構成には同じ符号を付す。図26に示される液晶収差補正装置は、長尺な光軸ずれ収差補正電極31,34の内側を円弧状に形成した点と、光軸ずれ収差補正電極32a,33b,32b,32aを楕円状にした点が、図16の場合と相違する。これらの点以外は、図26に示される液晶収差補正装置は、図16の液晶収差補正装置と同じである。   FIG. 26 is a diagram schematically showing a configuration of another modification of the liquid crystal aberration correction apparatus according to the first embodiment. In FIG. 26, the same reference numerals are given to the same or corresponding components as those in FIG. In the liquid crystal aberration correction apparatus shown in FIG. 26, the inside of the long optical axis deviation aberration correction electrodes 31 and 34 is formed in an arc shape, and the optical axis deviation aberration correction electrodes 32a, 33b, 32b, and 32a are elliptical. This is different from the case of FIG. Except for these points, the liquid crystal aberration correction apparatus shown in FIG. 26 is the same as the liquid crystal aberration correction apparatus shown in FIG.

また、図16、図25、図26において、透明電極32a,33b,32b,32aを、円形、半円形、楕円形、半楕円形以外の自由曲線で描いた形状とすることもできる。   In FIG. 16, FIG. 25, and FIG. 26, the transparent electrodes 32a, 33b, 32b, and 32a can be shaped as free curves other than circular, semicircular, elliptical, and semielliptical.

さらに、上記説明においては、光軸ずれ収差補正電極31,32a,33b,32b,32a,34を液晶分子層24の対物レンズ6から遠い側の面に配置した場合を説明したが、球面収差補正電極41〜45と電極31,32a,33b,32b,32a,34の位置を入れ替えた構造とすることも可能である。   Further, in the above description, the case where the optical axis deviation aberration correcting electrodes 31, 32a, 33b, 32b, 32a, 34 are arranged on the surface of the liquid crystal molecular layer 24 far from the objective lens 6 has been described. A structure in which the positions of the electrodes 41 to 45 and the electrodes 31, 32a, 33b, 32b, 32a, and 34 are interchanged is also possible.

さらにまた、上記説明においては、光軸ずれ収差補正電極31,32a,33b,32b,32a,34が電圧を印加する液晶分子層と、球面収差補正電極41〜45が電圧を印加する液晶分子層とを、共通の液晶分子層とした場合を説明したが、それぞれを別の液晶分子層とすることもできる。   Furthermore, in the above description, the liquid crystal molecular layer to which the optical axis deviation aberration correcting electrodes 31, 32a, 33b, 32b, 32a, and 34 apply a voltage, and the liquid crystal molecular layer to which the spherical aberration correcting electrodes 41 to 45 apply a voltage. Is a common liquid crystal molecular layer, but each may be a separate liquid crystal molecular layer.

また、上記説明においては、球面収差補正を、液晶分子層で行う場合を示したが、球面収差補正のための他の光学手段(例えば、対物レンズ6と、光軸ずれ収差補正用の液晶収差補正装置との間に配置されたレンズとその移動機構等)と併用してもよい。   In the above description, the case where the spherical aberration correction is performed in the liquid crystal molecular layer is shown, but other optical means for correcting the spherical aberration (for example, the objective lens 6 and the liquid crystal aberration for correcting the optical axis deviation aberration). You may use together with the lens arrange | positioned between correction | amendment apparatuses, its moving mechanism, etc.).

さらに、本発明を、光ヘッドのほかに、種々の光学系(例えば、レーザ顕微鏡等)における収差を補正する装置に適用することも可能である。   In addition to the optical head, the present invention can also be applied to an apparatus for correcting aberrations in various optical systems (for example, a laser microscope).

本発明の実施の形態1に係る液晶収差補正装置を搭載した光ヘッドの構成を概略的に示す図である。It is a figure which shows schematically the structure of the optical head carrying the liquid-crystal aberration correction apparatus which concerns on Embodiment 1 of this invention. 図1に示される液晶収差補正装置の断面構造を概略的に示す図である。It is a figure which shows roughly the cross-sectional structure of the liquid-crystal aberration correction apparatus shown by FIG. 図1に示される液晶収差補正装置の収差補正原理を説明するための図である。It is a figure for demonstrating the aberration correction principle of the liquid-crystal aberration correction apparatus shown by FIG. 光線を液晶収差補正装置の光軸に直交する面で切った断面形状(左側)と球面収差(右側)の説明図である。It is explanatory drawing of the cross-sectional shape (left side) and spherical aberration (right side) which cut the light ray with the surface orthogonal to the optical axis of a liquid-crystal aberration correction apparatus. 球面収差補正のための従来の液晶収差補正装置の構造を概略的に示す図である。It is a figure which shows roughly the structure of the conventional liquid-crystal aberration correction apparatus for spherical aberration correction. 図5に示される従来の液晶収差補正装置の球面収差補正電極に矩形波を印加した状態、上面電極電位、及び液晶分子に印加される電圧の実効値を示す図である。FIG. 6 is a diagram illustrating a state in which a rectangular wave is applied to a spherical aberration correction electrode of the conventional liquid crystal aberration correction apparatus illustrated in FIG. 5, an upper surface electrode potential, and an effective value of a voltage applied to liquid crystal molecules. 光線を液晶収差補正装置の光軸に直交する面で切った断面形状(左上段)と球面収差(右上段)、球面収差補正電極の平面形状(左中段)と液晶収差補正装置により生じる波面収差(右中段)、及び補正された光線を液晶収差補正装置の光軸に直交する面で切った断面形状(左下段)と補正後の球面収差(右下段)を示す図である。Cross-sectional shape (upper left) and spherical aberration (upper right) of the light beam cut by a plane orthogonal to the optical axis of the liquid crystal aberration correction device, planar shape of the spherical aberration correction electrode (middle left) and wavefront aberration caused by the liquid crystal aberration correction device It is a figure which shows the cross-sectional shape (lower left stage) which cut | disconnected the light ray corrected by the surface orthogonal to the optical axis of a liquid crystal aberration correction apparatus (lower left stage), and the spherical aberration after correction | amendment (lower right stage). (a)及び(b)は、対物レンズの光軸と液晶収差補正装置の光軸のずれを示す図である。(A) And (b) is a figure which shows the shift | offset | difference of the optical axis of an objective lens, and the optical axis of a liquid-crystal aberration correction apparatus. 光線を液晶収差補正装置の光軸に直交する面で切った断面形状(左上段)と球面収差(右上段)、球面収差補正電極の平面形状(左中段)と液晶収差補正装置により生じる波面収差(右中段)、及び補正後の球面収差(下段)を示す図である。Cross-sectional shape (upper left) and spherical aberration (upper right) of the light beam cut by a plane orthogonal to the optical axis of the liquid crystal aberration correction device, planar shape of the spherical aberration correction electrode (middle left) and wavefront aberration caused by the liquid crystal aberration correction device (Right middle) and spherical aberration after correction (lower). 光ディスクの外周方向に対物レンズが移動した場合(左側)に生じる光軸ずれ収差の形状を三次元図(右側)として示す図である。It is a figure which shows the shape of the optical axis deviation aberration which arises when an objective lens moves to the outer peripheral direction of an optical disk (left side) as a three-dimensional figure (right side). 光ディスクの内周方向に対物レンズが移動した場合(左側)に生じる光軸ずれ収差の形状を三次元図(右側)として示す図である。It is a figure which shows the shape of the optical axis offset aberration which arises when an objective lens moves to the inner peripheral direction of an optical disk (left side) as a three-dimensional figure (right side). 図5に示される従来の液晶収差補正装置により光軸ずれ収差の補正をするときに各電極に印加する電圧を示す図である。It is a figure which shows the voltage applied to each electrode, when correcting an optical axis offset aberration with the conventional liquid-crystal aberration correction apparatus shown by FIG. 図5に示される従来の液晶収差補正装置によって、光ディスク外周方向に対物レンズが移動した場合の光軸ずれ収差(上段)、補正収差(中段)、及び残留収差(下段)を示す図である。FIG. 6 is a diagram showing optical axis misalignment aberration (upper stage), correction aberration (middle stage), and residual aberration (lower stage) when the objective lens is moved in the outer peripheral direction of the optical disk by the conventional liquid crystal aberration correction apparatus shown in FIG. 図5に示される従来の液晶収差補正装置によって、光ディスク内周方向に対物レンズが移動した場合の光軸ずれ収差(上段)、補正収差(中段)、及び残留収差(下段)を示す図である。FIG. 6 is a diagram showing optical axis misalignment aberration (upper stage), correction aberration (middle stage), and residual aberration (lower stage) when the objective lens is moved in the inner peripheral direction of the optical disc by the conventional liquid crystal aberration correction apparatus shown in FIG. . 図5に示される従来の液晶収差補正装置による補正効果を示す図である。It is a figure which shows the correction effect by the conventional liquid-crystal aberration correction apparatus shown by FIG. 本発明の実施の形態1に係る液晶収差補正装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the liquid-crystal aberration correction apparatus which concerns on Embodiment 1 of this invention. 図16に示される実施の形態1に係る液晶収差補正装置に印加する電圧の一例を示す図である。It is a figure which shows an example of the voltage applied to the liquid-crystal aberration correction apparatus which concerns on Embodiment 1 shown by FIG. (a)及び(b)は、液晶収差補正装置の光軸ずれ収差補正電極に印加する電圧と液晶収差補正装置が発生させる補正収差を示す図である。(A) And (b) is a figure which shows the correction aberration which the voltage applied to the optical axis deviation aberration correction electrode of a liquid crystal aberration correction apparatus, and the liquid crystal aberration correction apparatus generate | occur | produce. 実施の形態1に係る液晶収差補正装置によって、光ディスク外周方向に対物レンズが移動した場合の光軸ずれ収差(上段)、補正収差(中段)、及び残留収差(下段)を示す図である。FIG. 6 is a diagram illustrating optical axis misalignment aberration (upper stage), correction aberration (middle stage), and residual aberration (lower stage) when the objective lens moves in the outer peripheral direction of the optical disc by the liquid crystal aberration correction apparatus according to the first embodiment. 実施の形態1に係る液晶収差補正装置によって、光ディスク内周方向に対物レンズが移動した場合の光軸ずれ収差(上段)、補正収差(中段)、及び残留収差(下段)を示す図である。It is a figure which shows the optical axis deviation aberration (upper stage), correction | amendment aberration (middle stage), and residual aberration (lower stage) when an objective lens moves to the inner peripheral direction of an optical disk with the liquid crystal aberration correction apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る液晶収差補正装置による補正効果を示す図である。It is a figure which shows the correction effect by the liquid-crystal aberration correction apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る液晶収差補正装置の給電線を概略的に示す図である。FIG. 3 is a diagram schematically showing a power supply line of the liquid crystal aberration correction apparatus according to the first embodiment. 実施の形態1に係る液晶収差補正装置の駆動交流電圧を発生させる回路構成を示す図である。3 is a diagram illustrating a circuit configuration for generating a drive AC voltage of the liquid crystal aberration correction apparatus according to Embodiment 1. FIG. (a)は、光ディスク厚み誤差と駆動交流電圧の関係を示し、(b)は、光軸ずれと駆動交流電圧の関係を示す図である。(A) shows the relationship between the optical disc thickness error and the drive AC voltage, and (b) shows the relationship between the optical axis deviation and the drive AC voltage. 実施の形態1に係る液晶収差補正装置の変形例の構成を概略的に示す図である。It is a figure which shows schematically the structure of the modification of the liquid crystal aberration correction apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る液晶収差補正装置の他の変形例の構成を概略的に示す図である。It is a figure which shows schematically the structure of the other modification of the liquid-crystal aberration correction apparatus which concerns on Embodiment 1. FIG.

符号の説明Explanation of symbols

1 レーザ光源、 2 コリメータレンズ、 3 偏光ビームスプリッタ、 4 液晶収差補正装置、 5 1/4波長板、 6 対物レンズ、 7 光ディスク、 8 光ディスク情報記録面、 9 集光レンズ、 10 フォトダイオード、 11 対物レンズアクチュエータ、 12 光透過層、 21a,21b 配向膜、 22a 透明電極、 22b 透明電極、 23a,23b ガラス基板、 24 液晶分子層、 24a 液晶分子、 31〜35 光軸ずれ収差補正電極(透明電極)、 41〜45 球面収差補正電極(透明電極)、 51〜53 コマ収差補正電極、 61 矩形波発生器、 62 振幅調整回路、 63 振幅調整回路、 64 インバータ、 65 振幅調整回路、 66 振幅調整回路、 67 振幅調整回路、 68 切り替え手段。
DESCRIPTION OF SYMBOLS 1 Laser light source, 2 Collimator lens, 3 Polarization beam splitter, 4 Liquid crystal aberration correction apparatus, 5 1/4 wavelength plate, 6 Objective lens, 7 Optical disk, 8 Optical disk information recording surface, 9 Condensing lens, 10 Photodiode, 11 Objective Lens actuator, 12 light transmission layer, 21a, 21b alignment film, 22a transparent electrode, 22b transparent electrode, 23a, 23b glass substrate, 24 liquid crystal molecular layer, 24a liquid crystal molecule, 31-35 optical axis deviation aberration correcting electrode (transparent electrode) 41 to 45 Spherical aberration correction electrode (transparent electrode), 51 to 53 coma aberration correction electrode, 61 rectangular wave generator, 62 amplitude adjustment circuit, 63 amplitude adjustment circuit, 64 inverter, 65 amplitude adjustment circuit, 66 amplitude adjustment circuit, 67 Amplitude adjustment circuit, 68 switching means.

Claims (5)

光軸に直交する所定方向に変位可能に支持された対物レンズに向かう光線の波面収差を補正する液晶収差補正装置であって、
液晶分子層と、
前記液晶分子層の一方の面に備えられた第1の電極パターンと、
前記液晶分子層の他方の面に備えられた第2の電極パターンと
を有し、
前記第2の電極パターンが、
前記対物レンズの有効径外であって、前記液晶収差補正装置の光軸を挟んで互いに反対側に配置された第1の電極及び第2の電極と、
光透過性材料からなり、前記液晶収差補正装置の光軸に直交する前記対物レンズの移動方向に沿って配列された第3の電極、第4の電極、第5の電極、及び第6の電極と、
前記第1乃至第6の電極よりも高抵抗の光透過性材料からなり、前記第1乃至第6の電極の間を接続する第7の電極と
を有し、
前記第3の電極と前記第6の電極が前記液晶収差補正装置の光軸を挟んで互いに対称な位置に配置され、前記第4の電極と前記第5の電極が前記液晶収差補正装置の光軸を挟んで互いに対称な位置に配置されている
ことを特徴とする液晶収差補正装置。
A liquid crystal aberration correction apparatus that corrects wavefront aberration of a light beam toward an objective lens that is supported so as to be displaceable in a predetermined direction orthogonal to an optical axis,
A liquid crystal molecular layer;
A first electrode pattern provided on one surface of the liquid crystal molecular layer;
A second electrode pattern provided on the other surface of the liquid crystal molecular layer,
The second electrode pattern is
A first electrode and a second electrode arranged outside the effective diameter of the objective lens and on opposite sides of the optical axis of the liquid crystal aberration correction device;
A third electrode, a fourth electrode, a fifth electrode, and a sixth electrode, which are made of a light transmissive material and are arranged along the moving direction of the objective lens orthogonal to the optical axis of the liquid crystal aberration correction device When,
A seventh electrode made of a light transmissive material having a resistance higher than that of the first to sixth electrodes, and connecting between the first to sixth electrodes;
The third electrode and the sixth electrode are arranged symmetrically with respect to the optical axis of the liquid crystal aberration correction device, and the fourth electrode and the fifth electrode are light beams of the liquid crystal aberration correction device. A liquid crystal aberration correction apparatus, characterized in that the liquid crystal aberration correction apparatus is disposed at positions symmetrical to each other across the axis.
前記第1の電極パターンが、
光透過性材料からなり、前記液晶収差補正装置の光軸を中心とする環状の第8の電極と、
光透過性材料からなり、前記第8の電極の内側に配置され、前記液晶収差補正装置の光軸を中心とする環状の第9の電極と、
光透過性材料からなり、前記第9の電極の内側に配置された第10の電極と、
前記第8の電極及び前記第9の電極よりも高抵抗の光透過性材料からなり、前記第8の電極と前記第9の電極の間を接続する第11の電極と、
前記第9の電極及び前記第10の電極よりも高抵抗の光透過性材料からなり、前記第9の電極と前記第10の電極の間を接続する第12の電極と
を有することを特徴とする請求項1に記載の液晶収差補正装置。
The first electrode pattern is
An annular eighth electrode made of a light transmissive material and centered on the optical axis of the liquid crystal aberration correction device;
An annular ninth electrode made of a light transmissive material, disposed inside the eighth electrode, and centered on the optical axis of the liquid crystal aberration correction device;
A tenth electrode made of a light transmissive material and disposed inside the ninth electrode;
An eleventh electrode made of a light-transmitting material having a higher resistance than the eighth electrode and the ninth electrode, and connecting between the eighth electrode and the ninth electrode;
The ninth electrode and the tenth electrode are made of a light transmissive material having a higher resistance than the ninth electrode and the tenth electrode, and the ninth electrode has a twelfth electrode that connects the tenth electrode. The liquid crystal aberration correction apparatus according to claim 1.
前記第2の電極パターンが、前記第1乃至第6の電極のそれぞれに電圧を印加するための給電線を有し、
前記第2の電極パターンが、前記液晶収差補正装置の光軸を中心に点対称な形状を有する
ことを特徴とする請求項1又は2のいずれかに記載の液晶収差補正装置。
The second electrode pattern has a power supply line for applying a voltage to each of the first to sixth electrodes;
The liquid crystal aberration correction device according to claim 1, wherein the second electrode pattern has a point-symmetric shape about the optical axis of the liquid crystal aberration correction device.
前記第1乃至第6の電極のそれぞれに電圧を印加する電圧印加回路を有し、
前記対物レンズが、前記対物レンズの移動方向に沿う第1の方向にずれた場合に生じる光軸ずれ収差を補正するときには、前記第3の電極に第1の電位を印加し、前記第4の電極と前記第6の電極に前記第1の電位よりも低い第2の電位を印加し、前記第5の電極(32b)に前記第2の電位よりも低い第3の電位を印加し
前記対物レンズが、前記第1の方向の逆方向である第2の方向にずれた場合に生じる光軸ずれ収差を補正するときには、前記第6の電極に第4の電位を印加し、前記第3の電極と前記第5の電極に前記第4の電位よりも低い第5の電位を印加し、前記第4の電極に前記第5の電位よりも低い第6の電位を印加する
ことを特徴とする請求項1から3までのいずれかに記載の液晶収差補正装置。
A voltage application circuit for applying a voltage to each of the first to sixth electrodes;
When correcting the optical axis deviation aberration that occurs when the objective lens is displaced in the first direction along the moving direction of the objective lens, a first potential is applied to the third electrode, A second potential lower than the first potential is applied to the electrode and the sixth electrode, and a third potential lower than the second potential is applied to the fifth electrode (32b). When correcting an optical axis misalignment aberration that occurs when the lens is displaced in a second direction that is opposite to the first direction, a fourth potential is applied to the sixth electrode, A fifth potential lower than the fourth potential is applied to the electrode and the fifth electrode, and a sixth potential lower than the fifth potential is applied to the fourth electrode. The liquid crystal aberration correction apparatus according to claim 1.
光源と、
所定方向に変位可能に支持され、前記光源からの光線を光ディスクの情報記録面に集光させる対物レンズと、
前記光源と前記対物レンズの間に配置され、透過する光線の波面収差を補正する請求項1から4までのいずれかに記載の液晶収差補正装置と、
前記情報記録面で反射された光線を検出する受光素子と
を有することを特徴とする光ヘッド。
A light source;
An objective lens that is supported so as to be displaceable in a predetermined direction, and that focuses the light beam from the light source on the information recording surface of the optical disc;
The liquid crystal aberration correction device according to any one of claims 1 to 4, wherein the liquid crystal aberration correction device is disposed between the light source and the objective lens and corrects a wavefront aberration of a transmitted light beam.
An optical head comprising: a light receiving element that detects a light beam reflected by the information recording surface.
JP2004145885A 2004-05-17 2004-05-17 Liquid crystal aberration correction apparatus and optical head Expired - Fee Related JP4459714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145885A JP4459714B2 (en) 2004-05-17 2004-05-17 Liquid crystal aberration correction apparatus and optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145885A JP4459714B2 (en) 2004-05-17 2004-05-17 Liquid crystal aberration correction apparatus and optical head

Publications (2)

Publication Number Publication Date
JP2005326705A true JP2005326705A (en) 2005-11-24
JP4459714B2 JP4459714B2 (en) 2010-04-28

Family

ID=35473091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145885A Expired - Fee Related JP4459714B2 (en) 2004-05-17 2004-05-17 Liquid crystal aberration correction apparatus and optical head

Country Status (1)

Country Link
JP (1) JP4459714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091488A1 (en) * 2006-02-08 2007-08-16 Pioneer Corporation Optical pickup and program for optical pickup

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091488A1 (en) * 2006-02-08 2007-08-16 Pioneer Corporation Optical pickup and program for optical pickup
JPWO2007091488A1 (en) * 2006-02-08 2009-07-02 パイオニア株式会社 Optical pickup and optical pickup program
JP4531822B2 (en) * 2006-02-08 2010-08-25 パイオニア株式会社 Optical pickup and optical pickup program

Also Published As

Publication number Publication date
JP4459714B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4792462B2 (en) Optical head
JP4345814B2 (en) Aberration correction apparatus, aberration correction method, optical pickup
JP2009037711A (en) Liquid lens, pickup device, aberration correcting method and the like
JPWO2006092968A1 (en) Liquid crystal optical element
JP2002251774A (en) Optical pickup and its wave front aberration correcting device
US20070183274A1 (en) Optical disk apparatus
JP2007164821A (en) Optical pickup device
JP4459714B2 (en) Liquid crystal aberration correction apparatus and optical head
JP4180564B2 (en) Optical pickup device
JP2006302462A (en) Phase control component and optical head device
US8254238B2 (en) Optical information recording/ reproducing apparatus and optical information recording and reproducing method
JP2004152446A (en) Optical pickup device and liquid crystal element
JP4489131B2 (en) Aberration correction element, optical head, and optical disc apparatus
JP4648633B2 (en) Liquid crystal optical element and optical device
JP2003338070A (en) Optical head apparatus
JP4581969B2 (en) Liquid crystal device and optical pickup
JPWO2008105281A1 (en) Optical head device and optical information recording / reproducing device
JPWO2008108138A1 (en) Optical head device, optical information recording / reproducing apparatus, and optical information recording / reproducing method
JP4583444B2 (en) Aberration correction apparatus, optical pickup, and spherical aberration correction method
JPH09161306A (en) Optical disk device
JP2007018558A (en) Aberration correcting element, optical head, optical disk device, and aberration correcting method
JP2006031829A (en) Abberation compensation device and optical head device
JP2001004972A (en) Optical element, optical pickup and optical disk device
JP2009043350A (en) Optical pickup device
JP2007172774A (en) Optical pickup and optical information reproducing device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees