JP2005017101A - Underground radar device - Google Patents

Underground radar device Download PDF

Info

Publication number
JP2005017101A
JP2005017101A JP2003182032A JP2003182032A JP2005017101A JP 2005017101 A JP2005017101 A JP 2005017101A JP 2003182032 A JP2003182032 A JP 2003182032A JP 2003182032 A JP2003182032 A JP 2003182032A JP 2005017101 A JP2005017101 A JP 2005017101A
Authority
JP
Japan
Prior art keywords
ground
excavator
underground
signal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182032A
Other languages
Japanese (ja)
Inventor
Tetsuya Hirahara
徹也 平原
Tetsumasa Ono
哲雅 大野
Toshimitsu Nozu
俊光 野津
Morio Suzuki
盛雄 鈴木
Kenji Kushima
建司 久島
Norito Hamada
憲人 濱田
Keijiro Ishii
啓二朗 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Koden Electronics Co Ltd
Original Assignee
Kyushu Electric Power Co Inc
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Koden Electronics Co Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2003182032A priority Critical patent/JP2005017101A/en
Publication of JP2005017101A publication Critical patent/JP2005017101A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and sure data transmission system, in an underground radar device installed on an underground excavating device used for a non-excavation drilling method or the like wherein a metal pipe is formed by connecting metal cylindrical rods, and an underground excavator is mounted on the tip, and a torque and a driving force are transferred to the excavator from the ground through the metal pipe. <P>SOLUTION: This device is equipped in the underground excavator P with underground antennas TX, RX for transmitting a radio wave into the underground and receiving a reflection signal, and a signal transmission part ST for transmitting an electric signal such as the received reflection signal received by the underground antennas to the metal pipe R extending from the back of the underground excavator P to the ground, and connecting a grounding terminal to a grounding point through a signal wire having the proper length. The device is also equipped on the ground with a signal reception part A, D, SP for receiving through a noncontact type electromagnetic coupler C, the electric signal transferred to the ground through the metal pipe R. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、地中掘削機などに搭載される地中レーダ装置に関するものであり、特に、地中で得られた受信反射信号を地上の受信装置に伝達するための簡易・安価な伝送システムを実現した地中レーダ装置に関するものである。
【0002】
【従来の技術】
近年、地上からの開削を行うことなく地上からの操作によって地中に小径のトンネルを掘削するという非開削ドリリング工法が開発されている。この非開削ドリリング工法では、ロッドと称される3メートルほどの長さの可撓性の金属製の円筒体の先端部に、掘削刃が先端に取付けられた直径数cmから数十cmの地中掘削機が取付けられる。また、このロッドの根元側を地上に設置した駆動装置に取付け、このロッドに回転力と推進力とを与えることにより、トンネルの掘削が行われる。トンネルの掘削の進行に伴い、根元側でロッドが1本ずつ螺合によって継ぎ足されることにより複数のロッドが連結された金属パイプが形成され,その長さが増大せしめられる。
【0003】
このような非開削ドリリング工法では、地中に埋設されている水道管やガス管などの障害物への地中掘削機の接触を回避するために、地中掘削機の先端部や側部に地中レーダ装置を設置し、障害物の検出を行うという方法が開発されてきている。このような地中レーダ装置では、地中掘削機の先端部や側部に取付けられた地中アンテナから地中掘削機の前方や側方の地中にパルス状の電波が放出され、地中の障害物によって生じた反射波がアンテナに受信される(特許文献1乃至6)。
【0004】
【特許文献1】
特開2000−147137号公報
【特許文献2】
特開2000−204883号公報
【特許文献3】
特開2001− 21663号公報
【特許文献4】
特開2001− 51066号公報
【特許文献5】
特開2001− 56373号公報
【特許文献6】
特開2002− 16553号公報
【0005】
【発明が解決しようとする課題】
上記先行技術の地中レーダ装置では、地中アンテナが受信した受信反射信号は、金属パイプの内部に形成した有線伝送路を通して地上の受信装置に伝送されるか、あるいは、地中掘削機に設置したアンテナから地中の無線伝送路を通して地上の無線受信装置に直接伝送される。前者の有線伝送路を形成する方式では、互いに螺合されるロッドの端部ごとに、非接触型の電磁結合器を有線伝送路に設置する必要があり、有線伝送路が高価になるという問題がある。
【0006】
後者の地中を無線伝送する方式では、掘削機の近傍の地上に無線受信装置を設置しなければならない。しかしながら、トンネルを高速道路や河川などの下に形成する場合などは、掘削機の近傍の地上に無線受信装置を設置することが困難になるという問題がある。従って、本発明の目的は、上記問題点を伴わない掘削機から地上の受信装置への反射信号の伝送方法を採用した地中レーダ装置を提供することにある。
【0007】
【課題を解決するための手段】
上記従来技術の課題を解決する本発明の地中レーダ装置は、金属製の円筒形状のロッドを継ぎ足して金属パイプを形成し、その先端に地中掘削機を取付け、この掘削機に前記金属パイプを介して地上から回転力と推進力とを伝達する非開削ドリリング工法またはそれに類する工法に用いる地中掘削装置に設置される地中レーダ装置である。そして、この地中レーダ装置は、地中に電波を送信し反射信号を受信する地中アンテナと、この地中アンテナが受信した反射信号等の電気信号を前記地中掘削機の後方から地上まで延長される前記金属パイプに伝達しかつ接地端子を適宜な長さの信号線を介して接地点に接続する信号送信部とを前記地中掘削機内に備えるとともに、前記金属パイプを通して地上に伝達された前記電気信号を非接触型の電磁結合器を介して受信する信号受信部とを地上に備え、掘削のための回転力と推進力を伝達する金属パイプそのものを伝送路としても利用するという簡易・安価な構成により、前記電気信号が地上に伝送される。
【0008】
【発明の実施の形態】
本発明の好適な実施の形態によれば、接地端子と接地点とを接続する信号線の長さは調整可能に設定され、受信感度の最適化が行われる。
【0009】
本発明の他の好適な実施の形態によれば、上記掘削機は金属製であり、上記接地点は上記掘削機の後部から電気的に絶縁された先端部に設定される。
【0010】
本発明のさらに他の好適な実施の形態によれば、上記掘削機は金属製であり、上記接地点はこの金属製の掘削機から電気的に絶縁された状態で地中に突出された金属体で実現される。
【0011】
【実施例】
図1は、本発明の一実施例の地中レーダ装置の地中部分の構成を掘削機との関係と共に示す機能ブロック図である。この地中レーダ装置の地中部分は、非開削ドリリング工法に使用される概ね円筒形状の金属製の地中掘削機Pの内部に設置され、送信アンテナTX、受信アンテナRX、レーダ送受信部TR、周波数変調部FM、信号送信部STおよび信号線L,Loを備えている。
【0012】
概ね円筒形状を呈する3メートル程の長さの金属製のロッドQが螺合により複数本結合されて金属パイプが形成され、この金属パイプの先端部分に地中掘削機Pが螺合によって取付けられる。この金属パイプの根元側は地上に設置された駆動装置に結合されており、この駆動装置から回転力と推進力を受ける。掘削の進展に伴い根元側に新たなロッドRが追加されるることによりこの金属パイプの長さが増加せしめられる。地中掘削機Pの先端部には、掘削刃BLがこの地中掘削機Pの軸線方向に傾斜した状態で取付けられている。
【0013】
送信アンテナTXと受信アンテナRXは、金属製の掘削刃BLの中央部に形成された窓の内部にはめ込まれた平面型アンテナにより構成される。レーダ送受信部TRは、送信アンテナTXにパルス状の送信電力を供給し、この送信アンテナTXから地中に電波を放射させる。地中に放射された電波のうち地中の障害物で生じた反射波が受信アンテナRXに受信され、レーダ送受信部TRに供給される。レーダ送受信部TRに受信された受信信号は、後段の周波数変調部FMにおいて周波数変調が施され、信号送信部STに供給される。
【0014】
信号送信部STは、周波数変調部FMから受け取った周波数変調された反射信号を信号側端子に接続される信号線L上に送出する。この信号線Lは、金属製の地中掘削機Pに螺合される金属製のロッドQの先端部分に接続される。信号送信部STの接地側端子は、信号線Loを介して金属製の掘削機Pの先端部に接続される。金属製の掘削機Pの先端部は、FRPやセラミックなどの電気絶縁性の素材で構成される絶縁接合部Iによって掘削機Pの後部とは電気的に絶縁されている。信号線Lが接続された金属製のロッドRの外周面には、FM反射信号の振幅に応じた振幅の交流電流がその長手方向に流れる。
【0015】
図2は、上記実施例の地中レーダ装置の地上部分の構成を、金属パイプの根元側部分との関係と共に示す機能ブロック図であり、Cはコイル、Aは増幅部、Dは復調部、SPは信号処理部である。金属パイプRの根元のロッドQのまわりに絶縁体を介在させながらコイルCが巻回され、このコイルCの両端子が増幅部Aに接続されている。金属パイプRの長手方向に沿って流れる交流電流によってコイルCにFM反射信号に対応した交流電圧が誘起される。コイルCに誘起されたFM反射信号は、増幅部Aで増幅され、復調部Dで復調され、信号処理部SPで処理されることにより、障害物の検出が行われる。
【0016】
図3は、上記実施例の信号伝送の原理を説明するための概念図である。(A)は、周知の非対称給電型の円柱ダイポールアンテナである。(B)は上記実施例の信号伝送路について推測される等価回路図である。長い方の導体は、円柱ダイポールアンテナの円柱の代わりに、複数のロッドの継ぎ足しによって構成された円筒形の金属パイプRに置き換えられる。また、円柱ダイポールアンテナの短い方の円柱は、信号線Loに置き換えられる。金属パイプZの側面は、ロッドQと土壌との間の分布定数の接触抵抗rを介して接地される。周波数変調部の被変調周波数は125 kHz で、波長では2.4 kmとなり、通常、金属パイプZの長さよりも大きな値となる。この金属パイプZの軸線方向に沿って交流電流iが流れ、その先端部に巻回されたコイルCに交流電圧が誘起される。
【0017】
図4は、本発明の他の実施例の地中レーダ装置の地中部分の構成を掘削機との関係と共に示す機能ブロック図である。本図において図1と同一の参照符号を付した構成要素は、図1に関して既に説明した構成要素と同一のものであり、これらについては重複する説明を省略する。この実施例は、掘削機Pの先端部を絶縁接合部Iによってその後部と電気的に絶縁する代わりに、金属性の掘削機Pから電気絶縁性の窓dを通して金属棒が地中に突出され、この金属棒に信号線Loを介して信号送信部STの接地端子が接続されている点である。このようにすると金属性の掘削機Pの途中に絶縁接合部Iを形成することが省略可能となる。
【0018】
以上、レーダ送受信部から出力されるFM反射信号を地上装置に伝送する構成の地中レーダ装置を例にとって本発明を説明した。しかしながら、この信号を周波数変調することなくそのまま送信する構成や、回転角度に関する適宜なセンサ信号など他の信号を上記反射信号に重畳して地上の受信装置に伝送する構成や、受信反射信号を処理した障害物に関する解析結果を地上の受信装置に伝送する構成の地中レーダ装置に対しても本発明の伝送方式を適用できることは明らかである。
【0019】
また、信号線Loを金属製の地中掘削機Pの先端部に接続する構成を例示した。しかしながら、この信号線Loの長さを可変したり、地中掘削機Pへの接続点を先端部以外の適宜な箇所に設定することにより、地上の受信部の受信感度を向上させる構成とすることもできる。
【0020】
【発明の効果】
以上詳細に説明したように、本発明の地中レーダ装置は、反射信号等の電気信号を地中掘削機の後方から地上に連なる金属パイプに伝達するとともに、接地側端子を信号線を介して接地点に接続する信号送信部と、この金属パイプを通して地上に伝達された電気信号を非接触型の電磁結合器を介して受信する受信部とを備え、掘削のための回転力と推進両を伝達する金属パイプそのものを信号の伝送路としても利用する構成であるから、ロッドの螺合部に非接触型の電磁結合器を設置したり、地中掘削機の近傍の地上に無線受信装置を設置したりする必要がなくなり、安価な伝送路を構成できるという利点がある。
【図面の簡単な説明】
【図1】本発明の一実施例の地中レーダ装置の地中部分の構成を掘削機との関係とともに示す機能ブロック図である。
【図2】上記実施例の地中レーダ装置の地上部分の構成を、長尺体の根元側部分との関係と共に示す機能ブロック図である。
【図3】上記実施例の信号伝送の原理を説明する概念図である。
【図4】本発明の他の実施例の地中レーダ装置の地中部分の構成を掘削機との関係とともに示す機能ブロック図である。
【符号の説明】
P 掘削機
Q ロッド
R 金属パイプ
BL 掘削刃
TX 送信アンテナ
RX 受信アンテナ
TR レーダ送受信部
FM 周波数変調部
ST 信号伝送部
I 絶縁接合部
d 電気絶縁性の窓
m 金属棒
C コイル
A 増幅部
D 復調部
SP 信号処理部
[0001]
[Industrial application fields]
The present invention relates to a ground penetrating radar device mounted on a ground excavator or the like, and in particular, a simple and inexpensive transmission system for transmitting a received reflection signal obtained in the ground to a ground receiving device. The present invention relates to a realized underground radar apparatus.
[0002]
[Prior art]
In recent years, a non-cutting drilling method has been developed in which a small-diameter tunnel is excavated in the ground by an operation from the ground without excavation from the ground. In this non-open cutting drilling method, a ground having a diameter of several centimeters to several tens of centimeters, in which a drilling blade is attached to the tip of a flexible metal cylindrical body having a length of about 3 meters called a rod. Inside excavator is installed. Moreover, the excavation of the tunnel is performed by attaching the root side of the rod to a drive device installed on the ground and applying a rotational force and a propulsive force to the rod. As the tunnel excavation proceeds, the rods are joined one by one on the root side to form a metal pipe in which a plurality of rods are connected, and its length is increased.
[0003]
In such an uncut drilling method, in order to avoid contact of the underground excavator with obstacles such as water pipes and gas pipes buried in the ground, A method of installing an underground radar device and detecting an obstacle has been developed. In such a ground penetrating radar device, pulsed radio waves are emitted from the underground antenna attached to the tip and side of the underground excavator into the ground in front of and side of the underground excavator, The reflected wave generated by the obstacle is received by the antenna (Patent Documents 1 to 6).
[0004]
[Patent Document 1]
JP 2000-147137 A [Patent Document 2]
JP 2000-204883 A [Patent Document 3]
JP 2001-21663 A [Patent Document 4]
JP 2001-51066 A [Patent Document 5]
JP 2001-56373 A [Patent Document 6]
Japanese Patent Application Laid-Open No. 2002-16553
[Problems to be solved by the invention]
In the above prior art ground penetrating radar device, the received reflected signal received by the ground antenna is transmitted to the ground receiving device through a wired transmission line formed inside the metal pipe or installed in the ground excavator. The signal is directly transmitted from the antenna to the ground radio receiver through the underground radio transmission path. In the former method of forming a wired transmission path, it is necessary to install a non-contact type electromagnetic coupler in the wired transmission path for each end of the rods screwed together, and the wired transmission path becomes expensive There is.
[0006]
In the latter method of wireless transmission through the ground, a wireless receiver must be installed on the ground near the excavator. However, when a tunnel is formed under an expressway or a river, there is a problem that it is difficult to install a wireless receiver on the ground near the excavator. Accordingly, an object of the present invention is to provide a ground penetrating radar apparatus that employs a method of transmitting a reflected signal from an excavator to a ground receiving apparatus without the above-mentioned problems.
[0007]
[Means for Solving the Problems]
The ground penetrating radar apparatus of the present invention that solves the above-described problems of the prior art is formed by adding a metal cylindrical rod to form a metal pipe, and an underground excavator is attached to the tip of the metal pipe, and the metal pipe is attached to the excavator. A ground penetrating radar device installed in a ground excavation device used in a non-open drilling method or similar method for transmitting a rotational force and a propulsive force from the ground via a ground. And this underground radar apparatus transmits an electric signal such as a reflected signal received from the underground excavator from the back of the underground excavator to the ground by transmitting a radio wave to the ground and receiving a reflected signal. The underground excavator includes a signal transmission unit that transmits to the metal pipe to be extended and connects a ground terminal to a ground point through a signal line having an appropriate length, and is transmitted to the ground through the metal pipe. In addition, a signal receiving unit that receives the electrical signal via a non-contact type electromagnetic coupler is provided on the ground, and the metal pipe itself that transmits the rotational force and the propulsive force for excavation is also used as a transmission path. -The electric signal is transmitted to the ground with an inexpensive configuration.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the preferred embodiment of the present invention, the length of the signal line connecting the ground terminal and the ground point is set to be adjustable, and the reception sensitivity is optimized.
[0009]
According to another preferred embodiment of the present invention, the excavator is made of metal, and the grounding point is set at a tip portion that is electrically insulated from a rear portion of the excavator.
[0010]
According to still another preferred embodiment of the present invention, the excavator is made of metal, and the grounding point protrudes into the ground while being electrically insulated from the metal excavator. Realized by the body.
[0011]
【Example】
FIG. 1 is a functional block diagram showing a configuration of an underground portion of an underground radar apparatus according to an embodiment of the present invention together with a relationship with an excavator. The underground part of this underground radar device is installed inside a substantially cylindrical metal underground excavator P used in the non-open drilling method, and includes a transmission antenna TX, a reception antenna RX, a radar transmission / reception unit TR, A frequency modulation unit FM, a signal transmission unit ST, and signal lines L and Lo are provided.
[0012]
A plurality of metal rods Q each having a length of about 3 meters and having a substantially cylindrical shape are joined by screwing to form a metal pipe, and an underground excavator P is attached to the tip portion of the metal pipe by screwing. . The base side of the metal pipe is coupled to a drive device installed on the ground, and receives rotational force and propulsive force from the drive device. As the excavation progresses, the length of the metal pipe is increased by adding a new rod R to the base side. At the tip of the underground excavator P, the excavating blade BL is attached in a state of being inclined in the axial direction of the underground excavator P.
[0013]
The transmission antenna TX and the reception antenna RX are configured by a planar antenna fitted in a window formed in the central portion of the metal excavation blade BL. The radar transmission / reception unit TR supplies pulsed transmission power to the transmission antenna TX, and radiates radio waves from the transmission antenna TX into the ground. Of the radio waves radiated into the ground, a reflected wave generated by an obstacle in the ground is received by the receiving antenna RX and supplied to the radar transceiver unit TR. The received signal received by the radar transmitter / receiver TR is subjected to frequency modulation in the subsequent frequency modulator FM and supplied to the signal transmitter ST.
[0014]
The signal transmission unit ST transmits the frequency-modulated reflected signal received from the frequency modulation unit FM onto the signal line L connected to the signal side terminal. The signal line L is connected to the tip of a metal rod Q that is screwed into the metal underground excavator P. The ground-side terminal of the signal transmission unit ST is connected to the distal end portion of the metal excavator P through the signal line Lo. The tip portion of the metal excavator P is electrically insulated from the rear portion of the excavator P by an insulating joint I made of an electrically insulating material such as FRP or ceramic. On the outer peripheral surface of the metal rod R to which the signal line L is connected, an alternating current having an amplitude corresponding to the amplitude of the FM reflected signal flows in the longitudinal direction.
[0015]
FIG. 2 is a functional block diagram showing the structure of the ground portion of the ground penetrating radar apparatus of the above embodiment together with the relationship with the base side portion of the metal pipe, where C is a coil, A is an amplification unit, D is a demodulation unit, SP is a signal processing unit. A coil C is wound around the rod Q at the base of the metal pipe R with an insulator interposed therebetween, and both terminals of the coil C are connected to the amplification unit A. An AC voltage corresponding to the FM reflected signal is induced in the coil C by the AC current flowing along the longitudinal direction of the metal pipe R. The FM reflected signal induced in the coil C is amplified by the amplification unit A, demodulated by the demodulation unit D, and processed by the signal processing unit SP, thereby detecting an obstacle.
[0016]
FIG. 3 is a conceptual diagram for explaining the principle of signal transmission in the above embodiment. (A) is a well-known asymmetrical feed type cylindrical dipole antenna. (B) is an equivalent circuit diagram inferred for the signal transmission line of the above embodiment. The longer conductor is replaced with a cylindrical metal pipe R formed by adding a plurality of rods instead of the cylinder of the cylindrical dipole antenna. Further, the shorter cylinder of the cylindrical dipole antenna is replaced with the signal line Lo. The side surface of the metal pipe Z is grounded via a contact resistance r having a distributed constant between the rod Q and the soil. The modulated frequency of the frequency modulation unit is 125 kHz, and the wavelength is 2.4 km, which is usually larger than the length of the metal pipe Z. An alternating current i flows along the axial direction of the metal pipe Z, and an alternating voltage is induced in the coil C wound around the tip.
[0017]
FIG. 4 is a functional block diagram showing the configuration of the underground part of the underground radar apparatus according to another embodiment of the present invention together with the relationship with the excavator. In this figure, the components denoted by the same reference numerals as those in FIG. 1 are the same as those already described with reference to FIG. 1, and redundant description thereof will be omitted. In this embodiment, instead of electrically insulating the tip portion of the excavator P from the rear portion thereof by the insulating joint I, a metal bar is protruded from the metal excavator P through the electrically insulating window d into the ground. The point that the ground terminal of the signal transmission unit ST is connected to the metal rod via the signal line Lo. In this way, it is possible to omit the formation of the insulating joint I in the middle of the metallic excavator P.
[0018]
The present invention has been described above by taking as an example a ground penetrating radar apparatus configured to transmit the FM reflected signal output from the radar transceiver to the ground apparatus. However, a configuration in which this signal is transmitted as it is without frequency modulation, a configuration in which another signal such as an appropriate sensor signal related to the rotation angle is superimposed on the reflected signal and transmitted to the ground receiving device, and a received reflected signal is processed. It is apparent that the transmission method of the present invention can be applied to a ground penetrating radar apparatus configured to transmit the analysis result regarding the obstacle to the ground receiving apparatus.
[0019]
Moreover, the structure which connects the signal wire | line Lo to the front-end | tip part of metal underground excavator P was illustrated. However, by changing the length of the signal line Lo or setting the connection point to the underground excavator P at an appropriate location other than the tip, the receiving sensitivity of the ground receiving unit is improved. You can also.
[0020]
【The invention's effect】
As described above in detail, the ground penetrating radar apparatus of the present invention transmits an electrical signal such as a reflected signal from the back of the underground excavator to the metal pipe connected to the ground, and the ground side terminal via the signal line. A signal transmission unit connected to the grounding point and a reception unit that receives an electric signal transmitted to the ground through the metal pipe via a non-contact type electromagnetic coupler, and provides both rotational force and propulsion for excavation. Since the metal pipe itself is also used as a signal transmission path, a non-contact type electromagnetic coupler is installed at the threaded part of the rod, or a wireless receiver is installed on the ground near the underground excavator. There is an advantage that an inexpensive transmission line can be configured without the need for installation.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing a configuration of an underground part of an underground radar apparatus according to an embodiment of the present invention together with a relationship with an excavator.
FIG. 2 is a functional block diagram showing the configuration of the ground portion of the ground penetrating radar apparatus according to the embodiment together with the relationship with the base portion of the long body.
FIG. 3 is a conceptual diagram illustrating the principle of signal transmission according to the embodiment.
FIG. 4 is a functional block diagram showing a configuration of an underground portion of a ground radar device according to another embodiment of the present invention together with a relationship with an excavator.
[Explanation of symbols]
P excavator Q rod R metal pipe BL excavating blade TX transmitting antenna RX receiving antenna TR radar transmitting / receiving unit FM frequency modulating unit ST signal transmitting unit I insulating joint d electric insulating window m metal bar C coil A amplifying unit D demodulating unit SP signal processor

Claims (4)

金属製の円筒形状のロッドを継ぎ足して金属パイプを形成し、その先端に地中掘削機を取付け、この掘削機に前記金属パイプを介して地上から回転力と推進力とを伝達する非開削ドリリング工法またはそれに類する工法に用いる地中掘削装置に設置される地中レーダ装置であって、
地中に電波を送信し反射信号を受信する地中アンテナと、この地中アンテナが受信した反射信号等の電気信号を前記地中掘削機の後方から地上まで延長される前記金属パイプに伝達しかつ接地端子を適宜な長さの信号線を介して接地点に接続する信号送信部とを前記地中掘削機内に備えるとともに、
前記金属パイプを通して地上に伝達された前記電気信号を非接触型の電磁結合器を介して受信する信号受信部を地上に備えたことを特徴とする地中レーダ装置。
Non-cut drilling that adds a metal cylindrical rod to form a metal pipe, attaches an underground excavator to its tip, and transmits rotational force and propulsive force to the excavator from the ground via the metal pipe An underground radar device installed in an underground excavation device used in a construction method or a similar method,
A ground antenna that transmits radio waves to the ground and receives reflected signals, and an electrical signal such as a reflected signal received by the ground antenna is transmitted to the metal pipe that extends from the back of the underground excavator to the ground. In addition, the ground excavator includes a signal transmission unit that connects a grounding terminal to a grounding point through a signal line having an appropriate length, and
A ground penetrating radar apparatus comprising a signal receiving unit on the ground for receiving the electric signal transmitted to the ground through the metal pipe via a non-contact electromagnetic coupler.
請求項1において、
前記信号送信部の接地端子と前記接地点とを接続する信号線の長さは調整可能であることを特徴とする地中レーダ装置。
In claim 1,
A ground penetrating radar apparatus characterized in that a length of a signal line connecting a ground terminal of the signal transmission unit and the ground point is adjustable.
請求項1と2のそれぞれにおいて、
前記掘削機は金属製であり、前記接地点は前記掘削機の後部から電気的に絶縁された先端部に設定されることを特徴とする地中レーダ装置。
In each of claims 1 and 2,
The ground excavator is characterized in that the excavator is made of metal, and the grounding point is set at a tip portion electrically insulated from a rear portion of the excavator.
請求項1乃至3のそれぞれにおいて、
前記掘削機は金属製であり、前記接地点はこの金属製の掘削機から電気的に絶縁された状態で地中に突出された金属体で実現されることを特徴とする地中レーダ装置。
In each of claims 1 to 3,
The ground excavator is made of metal, and the grounding point is realized by a metal body protruding into the ground while being electrically insulated from the metal excavator.
JP2003182032A 2003-06-26 2003-06-26 Underground radar device Pending JP2005017101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182032A JP2005017101A (en) 2003-06-26 2003-06-26 Underground radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182032A JP2005017101A (en) 2003-06-26 2003-06-26 Underground radar device

Publications (1)

Publication Number Publication Date
JP2005017101A true JP2005017101A (en) 2005-01-20

Family

ID=34182525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182032A Pending JP2005017101A (en) 2003-06-26 2003-06-26 Underground radar device

Country Status (1)

Country Link
JP (1) JP2005017101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184828A (en) * 2017-04-26 2018-11-22 トラクト−テヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトTRACTO−TECHNIK GmbH & Co. KG Drill head for underground excavation, drill device for underground excavation, having drill head, and method for detecting object during underground excavation
US11242745B2 (en) 2017-04-26 2022-02-08 Tracto-Technik Gmbh & Co. Kg Drill head for earth boring, drilling device for earth boring having the drill head, method to detect objects while earth boring, and use of direct digital synthesizer as a signal in detecting an obstacle in earth boring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184828A (en) * 2017-04-26 2018-11-22 トラクト−テヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトTRACTO−TECHNIK GmbH & Co. KG Drill head for underground excavation, drill device for underground excavation, having drill head, and method for detecting object during underground excavation
US11242745B2 (en) 2017-04-26 2022-02-08 Tracto-Technik Gmbh & Co. Kg Drill head for earth boring, drilling device for earth boring having the drill head, method to detect objects while earth boring, and use of direct digital synthesizer as a signal in detecting an obstacle in earth boring

Similar Documents

Publication Publication Date Title
EP0930518A3 (en) Downhole tool using electromagnetic waves
GB2344896A (en) Conductive loop for short hop telemetry along a drill string
NO20170836A1 (en) Band-gap communications across a well tool with a modified exterior
CN2900781Y (en) Electromagnetic wave path type radio measurer while drilling
JP2005017101A (en) Underground radar device
US6972690B1 (en) System and method for transmission of electrical signals in imperfectly-conducting media
GB2083321A (en) A method of signalling along drill shafts
US20030016184A1 (en) Resonant length multi-element helical antenna
NO20170733A1 (en) Electromagnetically Coupled Band-Gap Transceivers
US9638027B2 (en) Antenna for downhole communication using surface waves
EP0919974A3 (en) Method and apparatus for detecting magnetostrictive resonator and traffic system
JP6785817B2 (en) Drill head for underground drilling, drilling device for underground drilling with a drill head, method for detecting an object in underground drilling, and receiving radio signals in the drill head for underground drilling Use of receiver to
JP2018184828A (en) Drill head for underground excavation, drill device for underground excavation, having drill head, and method for detecting object during underground excavation
WO2007038940A1 (en) A boring head, a method and an apparatus for accomplishing a conveyance line boring operation
JP6657292B2 (en) Drill head for underground drilling, drilling device for underground drilling with drill head, method of detecting object during underground drilling, and signal as detection of object during underground drilling Using a direct digital synthesizer
JP3933984B2 (en) Signal transmission system in non-cutting propulsion equipment
JP3159761B2 (en) Object detection device
JPH1183995A (en) Obstacle detector and detecting method in underground propelling work
JP3689879B2 (en) Digital signal transmission method by antenna coupling
JP4086379B2 (en) Obstacle detection device in underground propulsion method
JP3629385B2 (en) Radar equipment for underground exploration
JP2000204883A (en) Underground excavating device
JPH0349196Y2 (en)
JP2866912B2 (en) Obstacle Detector for Civil Excavation Propulsion Machine
JPH0633724Y2 (en) Close-up transmission antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111