JP2004353243A - Soil hardening object site formation pile, construction method of prefabricated pile and auger screw used therefor - Google Patents

Soil hardening object site formation pile, construction method of prefabricated pile and auger screw used therefor Download PDF

Info

Publication number
JP2004353243A
JP2004353243A JP2003150885A JP2003150885A JP2004353243A JP 2004353243 A JP2004353243 A JP 2004353243A JP 2003150885 A JP2003150885 A JP 2003150885A JP 2003150885 A JP2003150885 A JP 2003150885A JP 2004353243 A JP2004353243 A JP 2004353243A
Authority
JP
Japan
Prior art keywords
pile
soil
slag
ready
auger screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003150885A
Other languages
Japanese (ja)
Inventor
Sadao Yabuuchi
貞男 藪内
Hideaki Kishida
英明 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geotop Corp
Original Assignee
Geotop Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geotop Corp filed Critical Geotop Corp
Priority to JP2003150885A priority Critical patent/JP2004353243A/en
Publication of JP2004353243A publication Critical patent/JP2004353243A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method of a prefabricated pile capable of being constructed without producing any surplus soil as an industrial waste, at the same time, getting a construction cost over at a lower price and obtaining a soil hardening object with stabilized quality. <P>SOLUTION: In the construction method of the prefabricated pile driving the prefabricated pile in the soil hardening object injecting a hardener into an excavated soil, a pile hole 6 is excavated by an auger screw 5 to move the excavated soil corresponding to an injection amount of the hardener and volume of the prefabricated pile to the ground surface, and then, the pile hole 6 by the preceding excavation is further excavated, the hardener 2 is injected into the excavated soil in the pile 6 to perform mixed agitation by repeatedly reciprocating while forward and reverse rotating the auger screw 5, and after the auger screw 5 has been pulled up, the prefabricated pile 4 is driven into the pile hole 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ソイル硬化物現場造成杭及び既製杭の施工法並びにそれに用いるオーガスクリューに関し、特に、産業廃棄物となる残土をほとんど発生させることなく施工するとともに、工費も低廉で済むソイル硬化物現場造成杭及び既製杭の施工法並びにそれに用いるオーガスクリューに関するものである。
【0002】
【従来の技術】
従来、例えば、建物の基礎杭としてコンクリートパイル等の既製杭を使用する場合、オーガスクリューによりプレボーリングをして杭孔を造成し、この杭孔に既製杭を建て込む方法が取られる。
また、杭孔の中に既製杭を建て込む際に、オーガスクリューを引き上げながら、掘削ヘッドの先端からセメントミルク等の硬化材を注入することにより、杭孔中の掘削土をソイルセメントとなし、このソイルセメント中に既製杭を挿入するこにより、既製杭の周囲を硬化性材料で定着させることも行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の既製杭の施工法は、セメントミルク等の硬化材と掘削土とを混練したソイルセメント中に既製杭を挿入することから、セメントミルク等の硬化材を注入したり、既製杭を挿入する際に、ソイルセメントが杭孔から地上へあふれ出して残土(産業廃棄物)となり、これを処分するために大きな費用が発生するという問題を有していた。
なお、この問題は、既製杭を挿入しないソイルセメント現場造成杭の場合も、同様に有していた。
【0004】
一方、産業廃棄物となる残土をほとんど発生させない施工法として、ソイルセメント中に既製杭を挿入する施工法では、特許文献1に記載の施工法が、また、ソイルセメント現場造成杭では、特許文献2に記載の施工法が、それぞれ提案されている。
【0005】
【特許文献1】
特許第3099041号公報
【特許文献2】
特許第2700781号公報
【0006】
しかしながら、これらの施工法の場合、セメントミルク等の硬化材と掘削土との混練が不足することによって、品質が安定したソイル硬化物を得にくいという問題があった。
【0007】
本発明は、上記従来の既製杭の施工法が有する問題点に鑑み、産業廃棄物となる残土をほとんど発生させることなく施工するとともに、工費も低廉で済み、かつ、品質が安定したソイル硬化物を得られるソイル硬化物現場造成杭及び既製杭の施工法並びにそれに用いるオーガスクリューを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明のソイル硬化物現場造成杭の施工法は、掘削土に硬化材を注入するソイル硬化物現場造成杭の施工法において、オーガスクリューにより杭孔を掘削して、硬化材の注入量に応じた量の掘削土を地上に排土し、その後、この先行掘削による杭孔をさらに掘削し、杭孔中の掘削土に硬化材を注入し、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げることを特徴とする。
【0009】
また、同じ目的を達成するため、本発明の既製杭の施工法は、掘削土に硬化材を注入したソイル硬化物に既製杭を建て込む既製杭の施工法において、オーガスクリューにより杭孔を掘削して、硬化材の注入量と既製杭の体積に応じた量の掘削土を地上に排土し、その後、この先行掘削による杭孔をさらに掘削し、杭孔中の掘削土に硬化材を注入し、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げた後、杭孔に既製杭を建て込むことを特徴とする。
【0010】
このソイル硬化物現場造成杭及び既製杭の施工法は、オーガスクリューにより杭孔を掘削して、硬化材の注入量と既製杭の体積に応じた量の産業廃棄物とならない掘削土を地上に排土し、その後、この先行掘削による杭孔をさらに掘削し、杭孔中の掘削土に硬化材を注入して、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げることから、ソイル硬化物の杭孔からの溢れ出しを防止することによって、産業廃棄物となる残土の発生を抑制して、産業廃棄物の処理費用を大幅に削減するとともに、余分な硬化材を使用することなく施工費用を低減することができ、また、硬化材と掘削土とが十分に混練され、品質が安定したソイル硬化物を得ることができる。
さらに、既製杭の施工法の場合、杭孔中の掘削土に硬化材を注入して、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げた後、杭孔に既製杭を建て込むことから、十分に混練されかつ品質が安定したソイル硬化物層を既製杭の周囲に形成することができ、これにより、ソイル硬化物と既製杭との付着を密に行い、杭1本当たりの確かな設計支持力を発現することができる。
【0011】
この場合において、前記既製杭に、節杭又は螺旋杭を用いることができる。
【0012】
これにより、節杭又は螺旋杭の支圧によって鉛直支持力を増大させることができる。
【0013】
また、前記硬化材には、遊離CaOや遊離MgO等の膨張、固化成分を含有する膨張性及び固化性を有するスラグ粉粒体とセメントとの混合物を用いることができる。
ここで、粉体と粒体の区別として、粒と粉の境界は粒子の自重と付着力が等しくなる付着平衡粒径30〜50μmとする。
そして、前記膨張性及び固化性を有するスラグ粉粒体に、製鋼スラグ(転炉スラグ及び/又は電気炉スラグ(酸化スラグ及び/又は還元スラグ)をいい、ここでは、特に、エージング処理を行っていない製鋼スラグのほか、エージング処理を部分的に行うことにより膨張性を調整した製鋼スラグ等の膨張性を消失させていない製鋼スラグをいう。)、ゴミ焼却スラグ、汚泥スラグの1種若しくは2種以上の混合物を用いることができる。
さらに、前記膨張性及び固化性を有するスラグ粉粒体に、膨張性を消失した製鋼スラグ、高炉スラグ、フェロアロイスラグ、水砕スラグ、銅製錬スラグ、赤泥、フライアッシュ、ゴミ焼却灰、ガラス破砕物、コンクリート廃材、廃石膏等の産業廃棄物、石膏、生石灰、砕石等の建築用材料、人工材料、鉱物の粉粒体を1種若しくは2種以上を混合した、膨張性及び固化性を有するスラグ粉粒体の膨張性及び固化性を利用できるものを用いることができる。
【0014】
これにより、膨張性及び固化性を有するスラグ粉粒体が吸水し、膨張、固化することによって、杭の周囲の地盤を容易に、静的に、かつ確実に締め固めることができ、さらに、既製杭の施工法の場合、ソイル硬化物層と既製杭との付着を一層密に行い、これによって、膨張力が杭の支持力を高めることができ、また、セメントの使用量を減らすことができる。
また、産業廃棄物である製鋼スラグ等の有効利用を図ることができる。
【0015】
また、上記ソイル硬化物現場造成杭及び既製杭の施工法に用いる本発明のオーガスクリューは、オーガシャフトの上部に配設したスクリューの外周部に螺旋帯を立設するとともに、その下方のオーガシャフトに攪拌棒及びスリットスクリューを配設し、さらに、オーガシャフトの下端に掘削ヘッドを配設したことを特徴とする。
【0016】
このオーガスクリューは、オーガシャフトの上部に配設したスクリューの外周部に螺旋帯を立設することにより、硬化材の注入量、さらには、既製杭の体積に応じた量の掘削土を、こぼれ落ちることなくスクリュー上に載せて確実に地上に排土することができるとともに、螺旋帯によって孔壁の崩壊を防止することができる。また、その下方のオーガシャフトに攪拌棒及びスリットスクリューを配設することにより、オーガスクリューを正逆回転させながら反復して往復移動させる際に、硬化材を注入した掘削土が排土させることを防止し、所定量の掘削土と硬化材との混合攪拌をより確実に行うことができる。
【0017】
【発明の実施の形態】
以下、本発明のソイル硬化物現場造成杭及び既製杭の施工法並びにそれに用いるオーガスクリューの実施の形態を、図面に基づいて説明する。
【0018】
図1〜図2に、本発明の既製杭の施工法の1実施例を示す。
この既製杭の施工法は、掘削土1に硬化材2を注入したソイル硬化物3に、例えば、PC杭、PHC杭、鋼管杭、コンクリート製節杭、鋼管螺旋杭等の既製杭4を建て込むようにしたものである。
【0019】
この場合、支圧を高め、鉛直支持力を増大させることができるコンクリート製節杭、鋼管螺旋杭を用いることが好ましい。
すなわち、杭頭からの荷重は、杭と充填したソイル硬化物3との付着によって伝達、支持される。この場合、付着だけに頼るストレート杭に比べて、杭本体部の付着と節部又は螺旋翼の支圧も併せて働く節杭や螺旋杭の方が、より一体性が高く、確実に杭頭部からの荷重を地盤に伝えることができる。
なお、以下に記載する実施例においては、コンクリート製節杭を用いるようにしている。
【0020】
そして、この既製杭の施工法は、オーガスクリュー5により杭孔6を掘削するとともに、オーガスクリュー5を一旦地上に引き上げて、硬化材2の注入量と既製杭4の体積に応じた量の掘削土(図示省略)を地上に排土し、その後、オーガスクリュー5を杭孔6中に挿入して、杭孔6内に残存する掘削土1に硬化材2を注入し、オーガスクリュー5を正逆回転させながら反復して往復移動させることにより混合攪拌を行い、再度オーガスクリュー5を引き上げた後、杭孔6に既製杭4を建て込むようにする。
なお、図示はしないが、オーガスクリュー5により所定深度まで杭孔6を掘削し、オーガスクリュー5の螺旋翼52cの下部を杭孔6中に位置させ、螺旋翼52cの一部を地上に引き上げた状態で、螺旋翼52cの下端にヘラ等を差し入れて掘削土を掻き出してもよい。
【0021】
また、硬化材2としては、セメント(普通ポルトランドセメント、混合セメント(高炉セメント、フライアッシュセメント))のほか、膨張性及び固化性を有するスラグ粉粒体とセメントとの混合物を用いることができる。
そして、膨張性及び固化性を有するスラグ粉粒体に、製鋼スラグ(転炉スラグ及び/又は電気炉スラグ(酸化スラグ及び/又は還元スラグ)をいい、ここでは、特に、エージング処理を行っていない製鋼スラグのほか、エージング処理を部分的に行うことにより膨張性を調整した製鋼スラグ等の膨張性を消失させていない製鋼スラグをいう。)、ゴミ焼却スラグ、汚泥スラグの1種若しくは2種以上の混合物を用いることができる。
さらに、膨張性及び固化性を有するスラグ粉粒体に、膨張性を消失した製鋼スラグ、高炉スラグ、フェロアロイスラグ、水砕スラグ、銅製錬スラグ、赤泥、フライアッシュ、ゴミ焼却灰、ガラス破砕物、コンクリート廃材、廃石膏等の産業廃棄物、石膏、生石灰、砕石等の建築用材料、人工材料、鉱物の微粉末を1種若しくは2種以上を混合した、膨張性及び固化性を有するスラグ粉粒体の膨張性及び固化性を利用できるものを用いることができる。
【0022】
これにより、膨張性及び固化性を有するスラグ粉粒体が吸水し、膨張、固化することによって、杭の周囲の地盤を容易に、静的に、かつ確実に締め固めることができ、さらに、既製杭の施工法の場合、ソイル硬化物層と既製杭との付着を一層密に行い、これによって、膨張力が杭の支持力を高めることができ、また、セメントの使用量を減らすことができる。
また、産業廃棄物である製鋼スラグ等の有効利用を図ることができる。
【0023】
オーガスクリュー5は、掘削ビットを備えた掘削ヘッド51を螺旋翼52a、52b、52cの先端に設け、駆動装置53により正逆回転可能に構成するとともに、図示省略する昇降装置により昇降可能に支持するようにしている。
【0024】
ところで、本実施例で用いるオーガスクリュー5は、図3に詳示するように、中間部50b1、50b2(特に限定されるものではない(以下、同様)が、オーガスクリュー5の全長の約1/4程度)において、下部50a(オーガスクリュー5の全長の約1/4程度)の螺旋翼(スリットスクリュー)52aの径よりも小径(下部50aの螺旋翼の径の約1/2〜1/3程度)の螺旋翼52bを欠如(中間部50b1)するようにするか、螺旋翼を形成(中間部50b2)させて攪拌翼54を略水平に突設するようにして、あるいは、構成するようにしている。
これにより、オーガスクリュー5を正逆回転させながら反復して往復移動させる際に、硬化材を注入した掘削土が排土させることを防止し、所定量の掘削土と硬化材との混合攪拌をより確実に行うことができるものとなる。
さらに、オーガスクリュー5の上部50c(オーガスクリュー5の全長の約1/2程度)の螺旋翼52cは、ピッチHを0.5〜0.7D程度(D:螺旋翼52cの直径)、より好ましくは、0.5〜0.6D程度と、通常のオーガスクリュー5よりも小さく設定するとともに、その外周縁に螺旋翼52cのピッチHの1/4〜2/3の高さH1を有する螺旋帯55を立設するようにしている。
これにより、掘削土を螺旋翼52cに載せた状態で、螺旋帯55によって安定的に保持することができ、掘削土を確実に地上に排土することができるとともに、螺旋帯55によって孔壁の崩壊を防止し、設計した混合比のソイル硬化物を正確に造成することができ、さらに、螺旋帯55がスタビライザの役割を果たし、掘削中に掘削孔の芯位置にずれが生じることを防止することができる。
【0025】
以下、この既製杭の施工法を具体的に説明する。
先ず、図1(a)に示すように、杭打機を施工位置に据え付け、オーガスクリュー5の中心を杭芯にセットし、鉛直性を確認する。
【0026】
掘削作業は、図1(b)に示すように、掘削芯を確認しつつ、必要に応じて、適量の掘削水を供給しながら、オーガスクリュー5を正回転させ、地盤に適した速度で、図1(c)に示すように、レベルで確認を行い、杭孔6を所定の深さまで掘削する。
【0027】
そして、図1(d)に示すように、後工程で硬化材として注入する硬化材ミルク量と杭体積分(ソイル硬化物現場造成杭を施工する場合は、後工程で硬化材として注入する硬化材ミルク量)の掘削土を、オーガスクリュー5に乗せた状態でオーガスクリュー5ごと地上に上げて排土する。
なお、図示はしないが、オーガスクリュー5により所定深度まで杭孔6を掘削し、オーガスクリュー5の螺旋翼52cの下部を杭孔6中に位置させ、螺旋翼52cの一部を地上に引き上げた状態で、螺旋翼52cの下端にヘラ等を差し入れて掘削土を掻き出してもよい。
【0028】
この場合、硬化材の配合は、1例として、セメント、膨張性及び固化性を有する製鋼スラグ(転炉スラグ、電気炉スラグ(酸化スラグ、還元スラグ))の粉粒体、石膏粉粒体、石灰粉粒体を好適に用いることができる。
膨張性及び固化性を有する製鋼スラグ等を粉粒状にして用いることにより、掘削土、水分及びセメントとの反応を早め、早期の強度の発現を期待できる。
また、硬化材ミルクに用いるスラグ粉粒体及び混合物のブレーン値は、スラグ粉粒体及び混合物の膨張性及び固化性を考慮して、3000〜4500cm/g程度(通常は、3000〜3500cm/g程度、早期に膨張、固化させる場合は、4000〜5000cm/g程度)にする。
また、図示はしないが、
【0029】
次に、図2(e)に示すように、オーガスクリュー5を逆回転させながら引き上げるとともに、オーガスクリュー5の先端から硬化材ミルク等の硬化材2を注入することによって、掘削土1と硬化材2とを混合攪拌する。
この場合、硬化材2の注入量は、予め施工現地盤ボーリングデータの土質サンプルにより、所定掘削長の土質の種類や層厚、N値、地下水位等により決める。
【0030】
例えば、水位の低い砂質土では、透水性の大きい砂質土層がある場合、充填液が流出し、掘削土1との混合攪拌に影響を及ぼすことから、ベントナイト等の添加剤も含め、硬化材2を多め(10〜20%)にする。
また、砂質土では、一旦地盤を緩めると、1.1〜1.2倍体積が増えるため、硬化材2を少なめ(10〜20%)にする。
腐植土層では、成層状態に空隙が多いため逸液になりやすく、このため、ベントナイト等の添加剤も含め、硬化材2を多めにする。
粘性土層では、N値にもよるが、10以下の粘性土層では、適宜注水しながら掘削、混合攪拌する場合があるので、硬化材2を注水分減量する。分散剤等の添加剤も含む。
比較的硬質な粘性土又は崩壊しない砂質土については、孔壁が自立して崩壊の可能性が少ないので、それに応じた所定量の硬化材2を注入する。
【0031】
このようにして、掘削土1と硬化材2とを一旦混合攪拌した後、杭長の1/2程度のストロークで、杭孔底部まで、オーガスクリュー5を往復移動させ(オーガスクリュー5は、下降時に正回転させ、上昇時に逆回転させる。)、掘削土1と硬化材2とをさらに混合攪拌し、以下、掘削土1と硬化材2との混合攪拌をより確実にするため、3回以上これを繰り返す。
なお、杭孔底部のN値に応じて、杭周囲よりもセメント量が富配合の根固液を注入することができる。
【0032】
このようにして、ソイル硬化物の造成が完了すると、図2(f)に示すように、オーガスクリュー5を引き上げる。
【0033】
そして、オーガスクリュー5を引き上げた杭孔6に、図2(g)に示すように、鉛直性を確認しながら既製杭4を建て込む。
継ぎ杭の場合は、下杭を保持装置で保持し、上下杭の軸芯と鉛直性を確認して接続した後、建て込むようにする。
【0034】
最後に、図2(h)に示すように、回転圧入又はモンケンでの軽打・圧入により、所定の深度まで杭を押し込み、杭孔6に定着させる。
【0035】
このように、本実施例の既製杭の施工法は、オーガスクリュー5により杭孔6を掘削して、硬化材2の注入量と既製杭4の体積に応じた量の掘削土を地上に排土し、その後、この先行掘削による杭孔6をさらに掘削し、杭孔6中の掘削土1に硬化材2を注入して、オーガスクリュー5を正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリュー5を引き上げた後、杭孔6に既製杭4を建て込むことから、ソイル硬化物3の杭孔6からの溢れ出しを防止することによって、産業廃棄物となる残土の発生を抑制して、産業廃棄物の処理費用を大幅に削減するとともに、余分な硬化材2を使用することなく施工費用を低減することができる。
また、産業廃棄物である製鋼スラグ等の有効利用を図ることができ、循環型社会の形成に寄与することができる。
さらに、この既製杭の施工法は、杭孔6中の掘削土1に硬化材2を注入して、オーガスクリュー5を正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリュー5を引き上げた後、杭孔6に既製杭4を建て込むことから、十分に混練されかつ品質が安定したソイル硬化物層を既製杭4の周囲に形成することができ、これにより、ソイル硬化物3と既製杭4との付着を密に行い、杭1本当たりの確かな設計支持力を発現することができる。
【0036】
以上、本発明の実施例を説明したが、本発明の既製杭の施工法は、この実施例の記載に限定されるものではなく、その趣旨を逸脱しない範囲において適宜に変更することが可能であり、また、同様にして(図2(g)、(h)の工程を省略することにより)、ソイル硬化物現場造成杭を施工することができる。
【0037】
【発明の効果】
本発明のソイル硬化物現場造成杭及び既製杭の施工法によれば、オーガスクリューにより杭孔を掘削して、硬化材の注入量と既製杭の体積に応じた量の産業廃棄物とならない掘削土を地上に排土し、その後、この先行掘削による杭孔をさらに掘削し、杭孔中の掘削土に硬化材を注入して、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げることから、ソイル硬化物の杭孔からの溢れ出しを防止することによって、産業廃棄物となる残土の発生を抑制して、産業廃棄物の処理費用を大幅に削減するとともに、余分な硬化材を使用することなく施工費用を低減することができ、また、硬化材と掘削土とが十分に混練され、品質が安定したソイル硬化物を得ることができる。
さらに、既製杭の施工法の場合、杭孔中の掘削土に硬化材を注入して、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げた後、杭孔に既製杭を建て込むことから、十分に混練されかつ品質が安定したソイル硬化物層を既製杭の周囲に形成することができ、これにより、ソイル硬化物と既製杭との付着を密に行い、杭1本当たりの確かな設計支持力を発現することができる。
【0038】
また、既製杭に、節杭又は螺旋杭を用いることにより、節杭又は螺旋杭の支圧によって鉛直支持力を増大させることができる。
【0039】
また、前記硬化材には、遊離CaOや遊離MgO等の膨張、固化成分を含有する膨張性及び固化性を有するスラグ粉粒体とセメントとの混合物を用いることができる。
そして、前記膨張性及び固化性を有するスラグ粉粒体に、製鋼スラグ(転炉スラグ及び/又は電気炉スラグ(酸化スラグ及び/又は還元スラグ)をいい、ここでは、特に、エージング処理を行っていない製鋼スラグのほか、エージング処理を部分的に行うことにより膨張性を調整した製鋼スラグ等の膨張性を消失させていない製鋼スラグをいう。)、ゴミ焼却スラグ、汚泥スラグの1種若しくは2種以上の混合物を用いることができる。
さらに、前記膨張性及び固化性を有するスラグ粉粒体に、膨張性を消失した製鋼スラグ、高炉スラグ、フェロアロイスラグ、水砕スラグ、銅製錬スラグ、赤泥、フライアッシュ、ゴミ焼却灰、ガラス破砕物、コンクリート廃材、廃石膏等の産業廃棄物、石膏、生石灰、砕石等の建築用材料、人工材料、鉱物の粉粒体を1種若しくは2種以上を混合した、膨張性及び固化性を有するスラグ粉粒体の膨張性及び固化性を利用できるものを用いることができる。
これにより、膨張性及び固化性を有するスラグ粉粒体が吸水し、膨張、固化することによって、杭の周囲の地盤を容易に、静的に、かつ確実に締め固めることができ、さらに、既製杭の施工法の場合、ソイル硬化物層と既製杭との付着を一層密に行い、これによって、膨張力が杭の支持力を高めることができる。
さらに、膨張性及び固化性を有するスラグ粉粒体をセメントと併用することによって、セメントの使用量を減らし、施工コストを低減できるほか、硬化材ミルク(硬化材)の流動性を向上することができる。
また、産業廃棄物である製鋼スラグ等の有効利用を図ることができ、循環型社会の形成に寄与することができる。
【0040】
また、本発明のオーガスクリューによれば、オーガシャフトの上部に配設したスクリューの外周部に螺旋帯を立設することにより、硬化材の注入量、さらには、既製杭の体積に応じた量の掘削土を、こぼれ落ちることなくスクリュー上に載せて確実に地上に排土することができるとともに、螺旋帯によって孔壁の崩壊を防止することができる。また、その下方のオーガシャフトに攪拌棒及びスリットスクリューを配設することにより、オーガスクリューを正逆回転させながら反復して往復移動させる際に、硬化材を注入した掘削土が排土させることを防止し、所定量の掘削土と硬化材との混合攪拌をより確実に行うことができる。
【図面の簡単な説明】
【図1】本発明の既製杭の施工法の1実施例を示す前半の工程図である。
【図2】本発明の既製杭の施工法の1実施例を示す後半の工程図である。
【図3】オーガスクリューの1例を示す正面図である。
【符号の説明】
1 掘削土
2 硬化材
3 ソイル硬化物
4 既製杭
5 オーガスクリュー
51 掘削ヘッド
52a 螺旋翼
52b 螺旋翼
52c 螺旋翼
53 駆動装置
54 攪拌翼
55 螺旋帯
6 杭孔
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for constructing a soil hardened material site forming pile and a prefabricated pile, and an auger screw used therefor, and in particular, works with hardly any remaining soil as industrial waste and reduces the cost of soil hardened material site. The present invention relates to a method for constructing a built pile and a ready-made pile and an auger screw used for the method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, in the case of using a ready-made pile such as a concrete pile as a foundation pile of a building, a method of pre-boring with an auger screw to form a pile hole, and embedding a ready-made pile in the pile hole is used.
Also, when building a ready-made pile into a pile hole, by raising the auger screw and injecting hardening material such as cement milk from the tip of the drilling head, the excavated soil in the pile hole is made into soil cement, By inserting a ready-made pile into this soil cement, the periphery of the ready-made pile is fixed with a hardening material.
[0003]
[Problems to be solved by the invention]
However, the conventional method of constructing a ready-made pile described above involves inserting the ready-made pile into soil cement obtained by kneading hardened material such as cement milk and excavated soil. When the soil is inserted, the soil cement overflows from the pile hole to the ground to form residual soil (industrial waste), and there is a problem that a large cost is required for disposal.
In addition, this problem also existed in the case of the soil cement in-situ prepared pile without inserting a ready-made pile.
[0004]
On the other hand, as a construction method that hardly generates residual soil that becomes industrial waste, in the construction method of inserting a ready-made pile into soil cement, the construction method described in Patent Document 1 is used. 2 has been proposed respectively.
[0005]
[Patent Document 1]
Japanese Patent No. 3099041 [Patent Document 2]
Japanese Patent No. 2700781 [0006]
However, in the case of these construction methods, there is a problem that it is difficult to obtain a hardened product of stable quality due to insufficient kneading of the hardened material such as cement milk and the excavated soil.
[0007]
The present invention has been made in view of the above-mentioned problems of the conventional method of constructing a ready-made pile, and is constructed with almost no remaining soil as industrial waste, has a low construction cost, and has a stable quality cured soil. It is an object of the present invention to provide a method for constructing a soil-cured material on-site development pile and a ready-made pile, and an auger screw used therefor.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method of constructing a soil-hardened material on-site formation pile of the present invention is a method of constructing a soil-cured material on-site formation pile injecting a hardening material into excavated soil, by excavating a pile hole with an auger screw, The amount of excavated soil according to the amount of hardened material injected is discharged to the ground, and then the pile hole from the preceding excavation is further excavated, the hardened material is injected into the excavated soil in the pile hole, and the auger screw is reversed. It is characterized in that mixing and stirring are performed by repeatedly reciprocating while rotating, and the auger screw is pulled up.
[0009]
In order to achieve the same object, the method for constructing a ready-made pile according to the present invention is a method for constructing a ready-made pile in a soil-hardened material obtained by injecting hardening material into excavated soil. Then, the excavated soil in the amount according to the amount of hardened material injected and the volume of the ready-made pile is discharged to the ground, and then the drilled hole from the preceding excavation is further excavated, and the hardened material is excavated in the excavated soil in the piled hole. It is characterized in that mixing and stirring are performed by injecting and repeatedly moving back and forth while rotating the auger screw forward and reverse, and after raising the auger screw, a ready-made pile is erected in the pile hole.
[0010]
The method of constructing the soil hardened material construction site pile and the ready-made pile is as follows: excavation of the pile hole with an auger screw, and excavation soil that does not become industrial waste in the amount corresponding to the amount of hardened material injected and the volume of the ready-made pile is grounded. The soil is discharged, and then the pile hole from the preceding excavation is further excavated, the hardening material is injected into the excavated soil in the pile hole, and the mixing and agitation is performed by repeatedly reciprocating while rotating the auger screw forward and reverse. By raising the auger screw, it is possible to prevent the hardened soil from overflowing from the pile hole, thereby suppressing the generation of residual soil that becomes industrial waste, and significantly reducing the cost of treating industrial waste. The construction cost can be reduced without using an extra hardened material, and the hardened material and the excavated soil can be sufficiently kneaded to obtain a soil hardened product having stable quality.
Furthermore, in the case of the construction method of the ready-made pile, the hardening material was poured into the excavated soil in the pile hole, and the mixing and stirring was performed by repeatedly reciprocating while rotating the auger screw forward and reverse, and the auger screw was pulled up. After that, since the ready-made pile is built into the pile hole, a sufficiently kneaded and stable soil hardened material layer can be formed around the ready-made pile, and thereby the adhesion between the hardened soil and the ready-made pile can be achieved. Is performed densely, and a reliable design supporting force per one pile can be realized.
[0011]
In this case, a knotted pile or a spiral pile can be used for the ready-made pile.
[0012]
Thereby, the vertical supporting force can be increased by the bearing pressure of the node pile or the spiral pile.
[0013]
In addition, as the hardening material, a mixture of slag powder granules having expansion and solidification properties including expansion and solidification components such as free CaO and free MgO and cement can be used.
Here, as a distinction between the powder and the granular material, the boundary between the particle and the powder is set to an adhesion equilibrium particle diameter of 30 to 50 μm at which the self-weight of the particle and the adhesive force are equal.
And, the slag powder having expandability and solidification refers to steelmaking slag (converter slag and / or electric furnace slag (oxidized slag and / or reduced slag), in which aging treatment is particularly performed. One or two types of steelmaking slag that does not lose its expansibility, such as steelmaking slag that does not lose its expandability, such as steelmaking slag whose expandability has been adjusted by partially performing aging treatment in addition to steelmaking slag.), Garbage incineration slag, and sludge slag Mixtures of the above can be used.
Further, the slag powder having the expandability and the solidification property, the steelmaking slag, the blast furnace slag, the ferroalloy slag, the granulated slag, the copper smelting slag, the red mud, the fly ash, the refuse incineration ash, and the glass crushed which have lost the expansibility Swelling and solidifying properties by mixing one or two or more kinds of building materials, artificial materials, mineral powders, industrial wastes such as waste, concrete waste, waste gypsum, gypsum, quicklime, crushed stone, etc. What can utilize the expansion property and solidification property of a slag powder granule can be used.
[0014]
In this way, the slag powder having expandability and solidification absorbs water, expands, and solidifies, so that the ground around the pile can be easily, statically, and securely compacted. In the case of the pile construction method, the soil hardened material layer and the ready-made pile are adhered more densely, whereby the expansion force can increase the pile's bearing capacity and reduce the amount of cement used. .
In addition, it is possible to effectively use steelmaking slag, which is industrial waste.
[0015]
Further, the auger screw of the present invention used for the method of constructing the above-described soil-hardened material on-site formation pile and the ready-made pile is provided with a spiral band erected on an outer peripheral portion of a screw disposed above the auger shaft, and an auger shaft thereunder. , A stir bar and a slit screw are provided, and a drilling head is provided at a lower end of the auger shaft.
[0016]
This auger screw spills an amount of hardened material and further excavated soil according to the volume of the ready-made pile by setting up a spiral band on the outer periphery of the screw arranged on the upper part of the auger shaft. It is possible to reliably remove the soil from the ground by placing it on the screw without any trouble, and prevent the collapse of the hole wall by the spiral band. In addition, by disposing the stirring rod and the slit screw on the auger shaft below, when the auger screw is repeatedly reciprocated while rotating in the forward and reverse directions, the excavated soil injected with the hardening material is discharged. Thus, mixing and stirring of a predetermined amount of excavated soil and hardened material can be performed more reliably.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method for constructing a soil-hardened material on-site formation pile and a ready-made pile according to the present invention and an auger screw used therein will be described with reference to the drawings.
[0018]
1 and 2 show one embodiment of a method for constructing a ready-made pile according to the present invention.
The method of constructing this ready-made pile is to build a ready-made pile 4 such as a PC pile, a PHC pile, a steel pipe pile, a concrete knotted pile, a steel pipe spiral pile, etc. on a soil hardened material 3 in which a hardening material 2 is injected into excavated soil 1. It is intended to be included.
[0019]
In this case, it is preferable to use a concrete knotted pile or a steel pipe spiral pile capable of increasing the bearing pressure and increasing the vertical supporting force.
That is, the load from the pile head is transmitted and supported by the adhesion between the pile and the filled cured soil material 3. In this case, compared with a straight pile that depends only on the attachment, the joint pile and the spiral pile, which work together with the attachment of the pile body and the bearing pressure of the joint or the spiral blade, have higher integrity and ensure the pile head. The load from the part can be transmitted to the ground.
In the examples described below, concrete knots are used.
[0020]
The method of constructing the ready-made pile is to excavate the pile hole 6 with the auger screw 5, raise the auger screw 5 to the ground once, and excavate an amount corresponding to the injection amount of the hardening material 2 and the volume of the ready-made pile 4. The soil (not shown) is discharged to the ground, and then the auger screw 5 is inserted into the pile hole 6, the hardened material 2 is injected into the excavated soil 1 remaining in the pile hole 6, and the auger screw 5 is fixed. Mixing and stirring are performed by repeatedly reciprocating while rotating in the reverse direction, and after the auger screw 5 is pulled up again, the ready-made pile 4 is set in the pile hole 6.
Although not shown, the pile hole 6 was excavated to a predetermined depth by the auger screw 5, the lower part of the spiral blade 52c of the auger screw 5 was positioned in the pile hole 6, and a part of the spiral blade 52c was lifted to the ground. In this state, a spatula or the like may be inserted into the lower end of the spiral blade 52c to scrape out the excavated soil.
[0021]
Further, as the hardening material 2, in addition to cement (ordinary Portland cement, mixed cement (blast furnace cement, fly ash cement)), a mixture of slag powder granules having expandability and solidification properties and cement can be used.
In addition, slag powder having expandability and solidification refers to steelmaking slag (converter slag and / or electric furnace slag (oxidized slag and / or reduced slag). Here, aging treatment is not particularly performed. In addition to steelmaking slag, it refers to steelmaking slag that has not lost its expansibility, such as steelmaking slag whose expansibility has been adjusted by partially performing aging treatment.), Garbage incineration slag, and / or sludge slag Can be used.
Furthermore, slag powder having expansive and solidifying properties is added to steelmaking slag, blast furnace slag, ferroalloy slag, granulated slag, copper smelting slag, red mud, fly ash, garbage incineration ash, and glass crushed slag that have lost expansiveness. Slag powder having expandability and solidification properties by mixing one or two or more kinds of construction waste such as industrial waste such as concrete waste, waste gypsum, gypsum, quicklime, crushed stone, etc., artificial material, and mineral fine powder What can utilize the expandability and solidification of granules can be used.
[0022]
In this way, the slag powder having expandability and solidification absorbs water, expands, and solidifies, so that the ground around the pile can be easily, statically, and securely compacted. In the case of the pile construction method, the soil hardened material layer and the ready-made pile are adhered more densely, whereby the expansion force can increase the pile's bearing capacity and reduce the amount of cement used. .
In addition, it is possible to effectively use steelmaking slag, which is industrial waste.
[0023]
The auger screw 5 is provided with a drilling head 51 having a drilling bit at the tip of the spiral blades 52a, 52b, 52c, configured to be rotatable forward and reverse by a driving device 53, and supported by a lifting device (not shown) to be able to move up and down. Like that.
[0024]
As shown in FIG. 3, the auger screw 5 used in the present embodiment has intermediate portions 50b1 and 50b2 (which are not particularly limited (the same applies hereinafter), but is approximately 1/1 of the total length of the auger screw 5). 4), the diameter of which is smaller than the diameter of the spiral blade (slit screw) 52a of the lower portion 50a (about 1/4 of the total length of the auger screw 5) (about 1/2 to 1/3 of the diameter of the spiral blade of the lower portion 50a). Of the spiral blade 52b (intermediate portion 50b1), or the spiral blade is formed (intermediate portion 50b2), and the stirring blade 54 is provided so as to project substantially horizontally, or is configured. ing.
This prevents the excavated soil into which the hardening material has been injected from being discharged when the auger screw 5 is repeatedly moved back and forth while rotating the auger screw 5 in the normal and reverse directions. It can be performed more reliably.
Further, the spiral blade 52c of the upper part 50c of the auger screw 5 (about 1/2 of the total length of the auger screw 5) has a pitch H of about 0.5 to 0.7D (D: diameter of the spiral blade 52c), more preferably. Is set to about 0.5 to 0.6 D, which is smaller than that of the normal auger screw 5, and a helical band having a height H1 of 1/4 to 2/3 of the pitch H of the helical blade 52c on the outer peripheral edge thereof. 55 is erected.
Thereby, while the excavated soil is placed on the spiral blade 52c, the excavated soil can be stably held by the spiral band 55, and the excavated soil can be reliably discharged to the ground. The collapse can be prevented, the soil hardened material having the designed mixing ratio can be accurately formed, and the helical band 55 serves as a stabilizer, thereby preventing the core position of the borehole from being shifted during excavation. be able to.
[0025]
Hereinafter, a method of constructing this ready-made pile will be specifically described.
First, as shown in FIG. 1A, a pile driver is installed at a construction position, the center of the auger screw 5 is set on a pile core, and the verticality is confirmed.
[0026]
In the excavation work, as shown in FIG. 1 (b), the auger screw 5 is rotated forward while confirming the excavation center and supplying an appropriate amount of excavation water as necessary, and at a speed suitable for the ground, As shown in FIG. 1C, confirmation is performed at the level, and the pile hole 6 is excavated to a predetermined depth.
[0027]
Then, as shown in FIG. 1 (d), the amount of hardening material milk to be injected as a hardening material in the post-process and the pile volume (in the case of constructing a soil hardened material on-site formation pile, the hardening to be injected as a hardening material in the post-process) The excavated soil of the amount of material milk) is raised on the ground together with the auger screw 5 while being placed on the auger screw 5 and discharged.
Although not shown, the pile hole 6 was excavated to a predetermined depth by the auger screw 5, the lower part of the spiral blade 52c of the auger screw 5 was positioned in the pile hole 6, and a part of the spiral blade 52c was lifted to the ground. In this state, a spatula or the like may be inserted into the lower end of the spiral blade 52c to scrape out the excavated soil.
[0028]
In this case, the compounding of the hardening material may be, for example, powder of granules of cement, steelmaking slag having expandability and solidification (converter slag, electric furnace slag (oxidized slag, reduced slag)), gypsum powder, Lime granules can be suitably used.
By using a steelmaking slag or the like having expandability and solidification in the form of powder and granules, the reaction with excavated soil, moisture and cement can be accelerated, and early development of strength can be expected.
Also, the Blaine value of the slags powder granules and mixtures used for curing material milk, taking into account an inflatable and solidification of the slag powder granules and mixtures, 3000~4500cm 2 / g approximately (usually, 3000~3500Cm 2 / G, or about 4000-5000 cm 2 / g in case of early expansion and solidification).
Although not shown,
[0029]
Next, as shown in FIG. 2E, the auger screw 5 is pulled up while rotating in the reverse direction, and the hardened material 2 such as hardened material milk is injected from the tip of the auger screw 5 so that the excavated soil 1 and the hardened material are And 2 are mixed and stirred.
In this case, the injection amount of the hardening material 2 is determined in advance based on the type of soil, the layer thickness, the N value, the groundwater level, and the like of the predetermined excavation length based on the soil sample of the drilling data on the construction site.
[0030]
For example, in a sandy soil with a low water level, if there is a sandy soil layer having high water permeability, the filling liquid flows out and affects the mixing and stirring with the excavated soil 1, and therefore, including an additive such as bentonite, Increase the amount of the hardening material 2 (10 to 20%).
Further, in the case of sandy soil, once the ground is loosened, the volume increases 1.1 to 1.2 times, so that the hardening material 2 is reduced (10 to 20%).
In the humus soil layer, there are many voids in the stratified state, so that the liquid tends to escape, so that the hardening material 2 including an additive such as bentonite is used in a large amount.
In the viscous soil layer, depending on the N value, in the case of a viscous soil layer of 10 or less, since the excavation and mixing and stirring may be performed while appropriately pouring water, the hardener 2 is injected with a reduced amount of water. Additives such as dispersants are also included.
For a relatively hard clayey soil or a non-collapsed sandy soil, the pore wall is self-sustaining and the possibility of collapse is small, so a predetermined amount of the hardening material 2 is injected according to the possibility.
[0031]
In this way, after the excavated soil 1 and the hardened material 2 are once mixed and stirred, the auger screw 5 is reciprocated to the bottom of the pile hole with a stroke of about 1/2 of the pile length (the auger screw 5 At the time of forward rotation, and reverse rotation at the time of ascending). The excavated soil 1 and the hardened material 2 are further mixed and stirred, and thereafter, in order to more reliably mix and stir the excavated soil 1 and the hardened material 2, at least three times. Repeat this.
In addition, according to the N value at the bottom of the pile hole, the root solid solution having a higher cement content than that around the pile can be injected.
[0032]
When the formation of the soil cured product is completed, the auger screw 5 is pulled up as shown in FIG.
[0033]
Then, as shown in FIG. 2 (g), the ready-made pile 4 is erected in the pile hole 6 from which the auger screw 5 is pulled up, while confirming the verticality.
In the case of a joint pile, the lower pile is held by a holding device, and after confirming the verticality with the axis of the upper and lower piles and connecting them, the pile is built.
[0034]
Finally, as shown in FIG. 2 (h), the pile is pushed to a predetermined depth by rotary press-fitting or tapping / press-fitting with Monken and fixed in the pile hole 6.
[0035]
As described above, in the method for constructing the ready-made pile according to the present embodiment, the pile hole 6 is excavated by the auger screw 5 and the excavated soil in an amount corresponding to the injection amount of the hardening material 2 and the volume of the ready-made pile 4 is discharged to the ground. Then, the pile hole 6 formed by the preceding excavation is further excavated, the hardened material 2 is injected into the excavated soil 1 in the pile hole 6, and the auger screw 5 is repeatedly reciprocated while rotating forward and reverse. After the mixing and stirring is performed and the auger screw 5 is pulled up, the ready-made pile 4 is erected in the pile hole 6, thereby preventing the soil hardened material 3 from overflowing from the pile hole 6, resulting in industrial waste. The generation of the residual soil can be suppressed, and the disposal cost of the industrial waste can be significantly reduced, and the construction cost can be reduced without using the extra hardening material 2.
Further, it is possible to effectively use steelmaking slag and the like, which are industrial wastes, and to contribute to the formation of a recycling-oriented society.
Further, in the method of constructing the ready-made pile, the hardening material 2 is poured into the excavated soil 1 in the pile hole 6, and the auger screw 5 is repeatedly reciprocated while rotating forward and reverse to mix and agitate. After the screw 5 is pulled up, the ready-made pile 4 is erected in the pile hole 6, so that a sufficiently kneaded and stable soil hardened material layer can be formed around the ready-made pile 4. The hardened material 3 and the ready-made pile 4 are closely attached to each other, and a reliable design support force per pile can be exhibited.
[0036]
Although the embodiment of the present invention has been described above, the method for constructing a ready-made stake of the present invention is not limited to the description of this embodiment, and can be appropriately changed without departing from the spirit of the present invention. Yes, and similarly (by omitting the steps of FIGS. 2 (g) and 2 (h)), it is possible to construct a soil-cured product on-site formation pile.
[0037]
【The invention's effect】
According to the method for constructing a soil-hardened material on-site formation pile and a ready-made pile according to the present invention, excavation is performed by excavating a pile hole with an auger screw to reduce the amount of hardened material and the amount of industrial waste according to the volume of the ready-made pile. The soil is discharged to the ground, and then the pile hole from the preceding excavation is further excavated, the hardened material is injected into the excavated soil in the pile hole, and the auger screw is repeatedly reciprocated while rotating forward and reverse. By mixing and agitating, the auger screw is pulled up, preventing the hardened soil from spilling out of the pile hole, suppressing the generation of residual soil as industrial waste, and greatly increasing the cost of treating industrial waste. The construction cost can be reduced without using an extra hardening material, and the hardening material and the excavated soil can be sufficiently kneaded to obtain a soil-hardened product having stable quality.
Furthermore, in the case of the construction method of the ready-made pile, the hardening material was poured into the excavated soil in the pile hole, and the mixing and stirring was performed by repeatedly reciprocating while rotating the auger screw forward and reverse, and the auger screw was pulled up. After that, since the ready-made pile is built into the pile hole, a sufficiently kneaded and stable soil hardened material layer can be formed around the ready-made pile, and thereby the adhesion between the hardened soil and the ready-made pile can be achieved. Is performed densely, and a reliable design supporting force per one pile can be realized.
[0038]
In addition, by using the knotted pile or the spiral pile for the ready-made pile, the vertical supporting force can be increased by the bearing pressure of the knotted pile or the spiral pile.
[0039]
In addition, as the hardening material, a mixture of slag powder granules having expansion and solidification properties including expansion and solidification components such as free CaO and free MgO and cement can be used.
And, the slag powder having expandability and solidification refers to steelmaking slag (converter slag and / or electric furnace slag (oxidized slag and / or reduced slag), in which aging treatment is particularly performed. One or two types of steelmaking slag that does not lose its expansibility, such as steelmaking slag that does not lose its expandability, such as steelmaking slag whose expandability has been adjusted by partially performing aging treatment in addition to steelmaking slag.), Garbage incineration slag, and sludge slag Mixtures of the above can be used.
Further, the slag powder having the expandability and the solidification property, the steelmaking slag, the blast furnace slag, the ferroalloy slag, the granulated slag, the copper smelting slag, the red mud, the fly ash, the refuse incineration ash, and the glass crushed which have lost the expansibility. Swelling and solidifying properties by mixing one or two or more kinds of building materials, artificial materials, mineral powders, industrial wastes such as waste, concrete waste, waste gypsum, gypsum, quicklime, crushed stone, etc. What can utilize the expansion property and solidification property of slag powder granules can be used.
In this way, the slag powder having expandability and solidification absorbs water, expands, and solidifies, so that the ground around the pile can be easily, statically, and securely compacted. In the case of the pile construction method, adhesion between the hardened soil layer and the ready-made pile is performed more densely, whereby the expansion force can increase the support force of the pile.
Furthermore, by using slag powder having expandability and solidification properties together with cement, it is possible to reduce the amount of cement used, reduce construction costs, and improve the fluidity of hardened milk (hardened material). it can.
Further, it is possible to effectively use steelmaking slag and the like, which are industrial wastes, and to contribute to the formation of a recycling-oriented society.
[0040]
Further, according to the auger screw of the present invention, the helical band is erected on the outer peripheral portion of the screw disposed on the auger shaft, thereby injecting the hardening material, and furthermore, the amount according to the volume of the ready-made pile. The excavated soil can be surely discharged to the ground by being placed on the screw without spilling, and the collapse of the hole wall can be prevented by the spiral band. In addition, by disposing the stirring rod and the slit screw on the auger shaft below, when the auger screw is repeatedly reciprocated while rotating in the forward and reverse directions, the excavated soil injected with the hardening material is discharged. Thus, mixing and stirring of a predetermined amount of excavated soil and hardened material can be performed more reliably.
[Brief description of the drawings]
FIG. 1 is a first half process chart showing one embodiment of a method for constructing a ready-made pile according to the present invention.
FIG. 2 is a second half process chart showing one embodiment of a method for constructing a ready-made pile according to the present invention.
FIG. 3 is a front view showing an example of an auger screw.
[Explanation of symbols]
Reference Signs List 1 excavated soil 2 hardened material 3 soil hardened material 4 ready-made pile 5 auger screw 51 excavating head 52a spiral blade 52b spiral blade 52c spiral blade 53 drive unit 54 stirring blade 55 spiral band 6 pile hole

Claims (7)

掘削土に硬化材を注入するソイル硬化物現場造成杭の施工法において、オーガスクリューにより杭孔を掘削して、硬化材の注入量に応じた量の掘削土を地上に排土し、その後、この先行掘削による杭孔をさらに掘削し、杭孔中の掘削土に硬化材を注入し、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げることを特徴とするソイル硬化物現場造成杭の施工法。In the construction method of soil hardened material on-site construction pile to inject hardened material into excavated soil, excavate pile hole with auger screw and discharge the amount of excavated soil according to the injected amount of hardened material on the ground, Drilling the pile hole by this pre-drilling further, injecting hardening material into the excavated soil in the pile hole, mixing and stirring by repeatedly reciprocating while rotating the auger screw forward and reverse, pulling up the auger screw The method for constructing piles with soil hardened material on site. 掘削土に硬化材を注入したソイル硬化物に既製杭を建て込む既製杭の施工法において、オーガスクリューにより杭孔を掘削して、硬化材の注入量と既製杭の体積に応じた量の掘削土を地上に排土し、その後、この先行掘削による杭孔をさらに掘削し、杭孔中の掘削土に硬化材を注入し、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げた後、杭孔に既製杭を建て込むことを特徴とする既製杭の施工法。In the construction method of a ready-made pile, in which a ready-made pile is built in a soil hardened material in which hardened material has been injected into the excavated soil, a pile hole is excavated with an auger screw, and excavation of an amount corresponding to the amount of hardened material injected and the volume of the ready-made pile is performed. By excavating the soil on the ground, then excavating the pile hole by this pre-drilling, injecting hardening material into the excavated soil in the pile hole, and repeatedly reciprocating while rotating the auger screw forward and reverse A method for constructing a ready-made pile, which comprises mixing and stirring, raising an auger screw, and then embedding a ready-made pile in a pile hole. 前記既製杭が節杭又は螺旋杭であることを特徴とする請求項2記載の既製杭の施工法。The method for constructing a ready-made pile according to claim 2, wherein the ready-made pile is a knotted pile or a spiral pile. 前記硬化材が、膨張性及び固化性を有するスラグ粉粒体とセメントとの混合物からなることを特徴とする請求項1、2又は3記載のソイル硬化物現場造成杭又は既製杭の施工法。4. The method of claim 1, 2 or 3, wherein the hardening material comprises a mixture of slag powder and cement having expandability and solidification properties and cement. 前記膨張性及び固化性を有するスラグ粉粒体が、製鋼スラグ、ゴミ焼却スラグ、汚泥スラグの1種若しくは2種以上の混合物からなることを特徴とする請求項4記載のソイル硬化物現場造成杭又は既製杭の施工法。5. The soil hardened material on-site formation pile according to claim 4, wherein the slag powder having expandability and solidification property is made of one or a mixture of two or more of steelmaking slag, refuse incineration slag, and sludge slag. Or the method of construction of ready-made piles. 前記膨張性及び固化性を有するスラグ粉粒体に、膨張性を消失した製鋼スラグ、高炉スラグ、フェロアロイスラグ、水砕スラグ、銅製錬スラグ、赤泥、フライアッシュ、ゴミ焼却灰、ガラス破砕物、コンクリート廃材、廃石膏等の産業廃棄物、石膏、生石灰、砕石等の建築用材料、人工材料、鉱物の粉粒体を1種若しくは2種以上を混合した、膨張性及び固化性を有するスラグ粉粒体の膨張性及び固化性を利用できるものであることを特徴とする請求項4又は5記載のソイル硬化物現場造成杭又は既製杭の施工法。The slag powder having expandability and solidification properties, steelmaking slag having lost expansibility, blast furnace slag, ferroalloy slag, granulated slag, copper smelting slag, red mud, fly ash, garbage incineration ash, glass crushed material, Industrial waste such as concrete waste material, waste gypsum, construction material such as gypsum, quicklime, crushed stone, artificial material, and slag powder having one or more kinds of powdered minerals mixed and having expandability and solidification properties The method according to claim 4 or 5, wherein the expansion property and the solidification property of the granules can be utilized. オーガシャフトの上部に配設したスクリューの外周部に螺旋帯を立設するとともに、その下方のオーガシャフトに攪拌棒及びスリットスクリューを配設し、さらに、オーガシャフトの下端に掘削ヘッドを配設したことを特徴とするオーガスクリュー。A spiral band was erected on the outer periphery of the screw provided on the auger shaft, a stirring rod and a slit screw were provided on the auger shaft below the screw band, and a drilling head was provided on the lower end of the auger shaft. An auger screw, characterized in that:
JP2003150885A 2003-05-28 2003-05-28 Soil hardening object site formation pile, construction method of prefabricated pile and auger screw used therefor Pending JP2004353243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150885A JP2004353243A (en) 2003-05-28 2003-05-28 Soil hardening object site formation pile, construction method of prefabricated pile and auger screw used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150885A JP2004353243A (en) 2003-05-28 2003-05-28 Soil hardening object site formation pile, construction method of prefabricated pile and auger screw used therefor

Publications (1)

Publication Number Publication Date
JP2004353243A true JP2004353243A (en) 2004-12-16

Family

ID=34046560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150885A Pending JP2004353243A (en) 2003-05-28 2003-05-28 Soil hardening object site formation pile, construction method of prefabricated pile and auger screw used therefor

Country Status (1)

Country Link
JP (1) JP2004353243A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307628A (en) * 2005-03-31 2006-11-09 Tenox Corp Column replacing construction method and replacing column
JP2013057194A (en) * 2011-09-08 2013-03-28 Chiyoda Geotech Co Ltd Rotary penetration steel pipe pile and construction method of foundation pile having foot protection
CN108343055A (en) * 2018-04-18 2018-07-31 卓典机器人(海南)有限公司 The forward and reverse isometrical screw rod pile of one kind and drilling tool and its pile forming method
CN109400017A (en) * 2018-10-08 2019-03-01 江门市新会华源管桩有限公司 A method of enhancing residual slurry of tubular pile mobility
CN115136754A (en) * 2022-07-05 2022-10-04 李富程 Super-deep rock drilling and soil breaking tillage machine
CN117569302A (en) * 2024-01-15 2024-02-20 中国电建集团西北勘测设计研究院有限公司 Water injection spiral drilling pore-forming construction method suitable for saline-alkali soil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307628A (en) * 2005-03-31 2006-11-09 Tenox Corp Column replacing construction method and replacing column
JP2013057194A (en) * 2011-09-08 2013-03-28 Chiyoda Geotech Co Ltd Rotary penetration steel pipe pile and construction method of foundation pile having foot protection
CN108343055A (en) * 2018-04-18 2018-07-31 卓典机器人(海南)有限公司 The forward and reverse isometrical screw rod pile of one kind and drilling tool and its pile forming method
CN109400017A (en) * 2018-10-08 2019-03-01 江门市新会华源管桩有限公司 A method of enhancing residual slurry of tubular pile mobility
CN115136754A (en) * 2022-07-05 2022-10-04 李富程 Super-deep rock drilling and soil breaking tillage machine
CN115136754B (en) * 2022-07-05 2023-05-30 西南科技大学 Ultra-deep rock drilling and soil breaking tillage implement
CN117569302A (en) * 2024-01-15 2024-02-20 中国电建集团西北勘测设计研究院有限公司 Water injection spiral drilling pore-forming construction method suitable for saline-alkali soil
CN117569302B (en) * 2024-01-15 2024-04-05 中国电建集团西北勘测设计研究院有限公司 Water injection spiral drilling pore-forming construction method suitable for saline-alkali soil

Similar Documents

Publication Publication Date Title
US5378085A (en) Methods for in situ construction of deep soil-cement structures
JPH10204876A (en) Soil improvement method by using pile
JP4852732B2 (en) Column replacement construction method
JP2004353243A (en) Soil hardening object site formation pile, construction method of prefabricated pile and auger screw used therefor
JP2005009240A (en) Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile
JP2000073354A (en) Preparating method of ground improving body and preparating method of continuous walls
JP4010905B2 (en) Pile embedding method and equipment used therefor
JP3668219B2 (en) Construction method of ready-made piles
JP4797147B2 (en) Column replacement construction method and column replacement
JP2001200537A (en) Soil improving method and support pile for soil improvement
JP3920974B2 (en) Earth auger excavator and construction method of deep underground column wall in collapsible gravel layer
JP5466272B2 (en) Construction method of soil cement continuous wall
JP2010053668A (en) Construction method of columnar soil improving body
JP5023320B2 (en) Column replacement construction method
JP2005083151A (en) Work execution method for steel pipe pile, and foundation structure using steel pipe pile
JPH01219212A (en) Pile or continuous wall and its constructing method
JP6918547B2 (en) A method for producing granulated soil and a method for granulating a raised portion using this method.
JP4867044B2 (en) Column replacement construction method
JP4867045B2 (en) Column replacement construction method
JP3706354B2 (en) Construction method of soil cement pile
JP2006307628A (en) Column replacing construction method and replacing column
JP2006312866A (en) Method for replacing and constructing column, and replaced column
JP4118694B2 (en) Ground improvement method
JP2001172956A (en) Soil improvement method
JP2004353310A (en) Method of improving soil with kneaded material including a large quantity of coal ash