JP2004238982A - Method for constructing tunnel - Google Patents

Method for constructing tunnel Download PDF

Info

Publication number
JP2004238982A
JP2004238982A JP2003030825A JP2003030825A JP2004238982A JP 2004238982 A JP2004238982 A JP 2004238982A JP 2003030825 A JP2003030825 A JP 2003030825A JP 2003030825 A JP2003030825 A JP 2003030825A JP 2004238982 A JP2004238982 A JP 2004238982A
Authority
JP
Japan
Prior art keywords
tunnel
ground
water
outer shell
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003030825A
Other languages
Japanese (ja)
Inventor
Yukio Shimomura
行男 下村
Yoshiki Morita
芳樹 森田
Takashi Okuno
隆司 奥野
Tetsuro Shimamoto
哲朗 島本
Kenzo Mizuhara
憲三 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2003030825A priority Critical patent/JP2004238982A/en
Publication of JP2004238982A publication Critical patent/JP2004238982A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently construct a tunnel having a desired diameter and a desired length without having an effect on a ground as a ground subsidence or the like on the ground having a water retentivity. <P>SOLUTION: The small-diameter tunnel (t) is constructed towards the other shaft C from one shaft B created in the ground having the water retentivity, and chemical pouring pipes 4 are driven towards the outer peripheral section of a designed tunnel T' from the inside of the tunnel (t) and an impervious shell wall 1 by the pouring of chemicals such as mortar is created cylindrically on the outer peripheral section of the tunnel T' while bulkheads 2 dividing the wall 1 at every specified interval in the longitudinal direction are created by the pouring of the chemicals from the pipes 4. Water in the ground in a zone section F surrounded by these wall 1 and adjacent bulkheads 2 and 2 is discharged and the tunnel (t) section in the ground and the zone section F is removed and the bulkheads 2 are removed successively, thus constructing the tunnel T having a large diameter. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は滞水性洪積地盤に導水路や上下水道、地下道路、鉄道用のトンネルをを築造する方法に関するものである。
【0002】
【従来の技術】
従来から、トンネル築造方法としては、主として開削工法とシールド工法とが広く知られている。開削工法は、地表から計画トンネル線に沿って地盤を溝状に掘削し、その底部にトンネルを構築した後、埋め戻す方法であるが、この方法によれば、都市域等において地上に道路が存在する場合には交通を遮断しないと工事ができなく、また、非常に深い地盤中にトンネルを構築するには工事費が著しく高騰するという問題点がある。
【0003】
一方、シールド工法は、シールド掘削機によってトンネルを掘進しながら掘削壁面をセグメントによって覆工していく方法であるが、この方法ではシールド掘削機の径によってトンネルの断面形状の大きさが決定されるため、トンネル合流部や道路トンネルの非常駐車帯域のようにトンネル断面形状がトンネル延長方向に変化するトンネルを構築することができなく、また、一般に山岳トンネル工法よりも工事費が高いという問題点がある。
【0004】
さらに、いずれのトンネル築造方法においても、地盤が滞水性を有している洪積地盤の場合には、その地盤中にトンネルを掘削する際に大規模な止水処理を必要とするばかりでなく、地下水を汲み上げると水位が低下して地盤沈下が発生するため、地上の建物等に悪影響を及ぼすことになり、都市区域では採用することができないという問題点がある。
【0005】
このため、築造すべきトンネルに先行して作業用の小径トンネルを1〜数本構築し、この小径トンネル内から計画トンネルの一定長さ区域の地盤内に多数本の凍結管を埋設してこれらの凍結管内に冷媒を循環させることにより、上記区域部内の地盤全体を凍結固化させ、この凍結地盤を掘削して本トンネル部を築造していく工程と、この工程に先行して次の区域部内の地盤の凍結を行う工程とを繰り返し行うことによって本トンネルを築造するいく方法が開発されている(例えば、特許文献1参照)。
【0006】
【特許文献1】
特許第2676011号明細書(第2、3頁、第1図)。
【0007】
【発明が解決しようとする課題】
しかしながら、上記トンネル築造方法では、築造すべきトンネルの地盤全体を冷凍管によって凍結しなければならないために、その凍結作業に多大な手間と労力を要する上に、凍結地盤の掘削効率が悪くて工期が長くなるという問題点がある。
【0008】
本発明は上記のような問題点に鑑みてなされたもので、その目的とするところは、地上側に影響を及ぼすことなく、さらには地下水位を低下させることなく、滞水性地盤中に所望大きさの断面形状を有するトンネルを確実且つ能率よく築造することができるトンネルの築造方法を提供するにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明のトンネルの築造方法は、請求項1に記載したように、滞水性の地盤にトンネルを築造する方法であって、計画トンネル内の地盤中に該計画トンネルの長さ方向に小径のトンネルを築造する第1工程と、この小径のトンネル内から計画トンネルの外周に沿って遮水外殻壁を筒状に造成すると共に計画トンネルの長さ方向に所定間隔毎に外周部が該遮水外殻壁の内周壁部に連続する隔壁を造成する第2工程と、隣接する隔壁とこれらの隔壁間の遮水外殻壁部とで囲まれた区域部内の地盤中の水を排出する第3工程と、隔壁と区域部内の地盤と該区域部内の小径トンネル部とを区域部毎にトンネル長さ方向に順次排除していく第4工程とからなることを特徴とする。
【0010】
上記トンネル築造方法において、請求項2に係る発明は、小径トンネル内から計画トンネルの外周に沿って先に造成された遮水外殻壁部とこの遮水外殻壁部の両端の隔壁間で囲まれた区域部内の地盤中の地下水の排出工程と、この地下水排出工程後における該区域部内の地盤と小径トンネル部との排除工程とに併行して、次の遮水外殻壁部及び隔壁を造成することを特徴とするものである。
【0011】
また、上記トンネルの築造方法において、所定厚みの止水性を有する遮水外殻壁と隔壁の造成は、請求項3に記載したように、小径トンネル内から計画トンネルの外周部地盤と該計画トンネルを長さ方向に所定間隔毎に横断する地盤部分とに複数本の薬液注入管を放射状に打設してこれらの注入管を通じて硬化性薬液を注入することにより行うことができる。
【0012】
【作用】
滞水性を有する地盤にトンネルを築造するに際して、まず、築造すべきトンネル、即ち、計画トンネル内の地盤中にシールド掘削機によって小径のトンネルを築造する。この際、該小径トンネルの掘削壁面はセグメント覆工等によって止水壁に形成しておく。
【0013】
次いで、この小径トンネル内から上記計画トンネルの外周に沿って遮水外殻壁を連続的に造成していくと共に、この遮水外殻壁の所定長さ間隔毎に、外周部を該遮水外殻壁の内周壁部に連続させてこの遮水外殻壁内の地盤を分断する隔壁を造成する。これらの遮水外殻壁及び隔壁の造成は、小径トンネル内から計画トンネルの外周部地盤と該計画トンネルを長さ方向に所定間隔毎に横断する地盤部分とに向かって多数本の薬液注入管を放射状に打設してこれらの薬液注入管の先端部を計画トンネルの外周部と計画トンネルを所定長さ間隔毎に横断する部分との地盤中にトンネル長さ方向及び周方向に小間隔毎に並設した状態とし、小径トンネル内からモルタル等の硬化性薬液を注入管内に供給してこれらの注入管の先端部から地盤中に注入することにより行われる。
【0014】
こうして、計画トンネルの外周に沿って遮水外殻壁を造成すると共に該遮水外殻壁をトンネル長さ方向に所定間隔毎に隔壁によって区画することにより、計画トンネルの長さ方向に隣接する隔壁とこれらの隔壁間の遮水外殻壁部とによって囲まれた区域部を順次、計画トンネルの長さ方向に形成すると共に、区域部内の地盤中に存在する地下水を一方の隔壁を通じて外部に排出する作業工程と、この工程後に該一方の隔壁を排除してこの排除した隔壁側からその区域部内の地盤と小径トンネル部とを排除する作業工程を順次、計画トンネル長さ方向に設けられた区域部に行うことにより大径のトンネル(以下、本トンネルという)を築造するものである。
【0015】
即ち、一つの区域部における遮水外殻壁部内の地盤と小径トンネル部を該区域部における一方の隔壁を除去したのちその除去側から排除すると、該遮水外殻壁部の奥行き側にある他方の隔壁が露出することになり、次に、この隔壁を次の区域部の一方側の隔壁として該隔壁を通じて次の区域部内の地盤中の地下水を排出したのち、該隔壁を除去し、しかるのち、この区域部における遮水外殻壁部内の地盤と小径トンネル部との排除を各区域部に順次行って区域部の長さに相当する本トンネル部を連続させることにより滞水性の地盤中に所定長さの本トンネルを築造するものである。
【0016】
この本トンネルの築造方法において、区域部内の地盤(土砂)中に存在する地下水を一方の隔壁を通じて外部に排出するには、該隔壁から水抜きパイプを区域部内に貫入させることによって行うことができ、この際、排水によって区域部内の地盤が沈下しても、遮水外殻壁によって囲まれた該区域部内の土砂は地上側の地盤から遮断されているから地上側の地盤に影響を及ぼす虞れはない。同様に、排水後に一方の隔壁を除去して区域部内の地盤の掘削、排除とごき区域部内に存在する小径トンネル部の除去を行っても、地上側の地盤に何ら影響を及ぼす虞れはない。掘削された土砂や破壊された小径トンネル部は、排除した一方の隔壁側の先に築造した本トンネル部内を通じて外部に排出される。また、土砂の掘削、排除によって露出した各区域部の遮水外殻壁の内周面には吹き付けコンクリート等によって止水性を有する覆工が施される。
【0017】
なお、築造すべき本トンネルが地上側から地盤中に向かって斜め方向に築造される場合には、隣接する隔壁とこれらの隔壁間の遮水外殻壁部とで囲まれた各区域部内の地盤を掘削する際に、地上側の隔壁を除去しても、先に区域部内を掘削することによって造成した一定長さの本トンネル部側に次に掘削すべき区域部内の地盤中の地下水が浸入する虞れがないので、隔壁を除去したのち、該区域部内の地盤中に水抜きパイプを貫入させてもよい。
【0018】
また、小径トンネルは、計画トンネルの全長に亘って築造したのち、この小径トンネル内から計画トンネルの外周部に遮水外殻壁を造成すると共にこの遮水外殻壁を所定長さ間隔毎に分断する隔壁を造成してもよいが、小径トンネルを築造しながら、この築造に後続して所定長さの遮水外殻壁部と隔壁とを順次、造成していくと共に、先に造成された遮水外殻壁部とこの遮水外殻壁部の両端の隔壁間で囲まれた区域部内の地盤中の地下水の排出工程と、この地下水排出工程後における該区域部内の地盤と小径トンネル部との排除工程とに併行して、次の遮水外殻壁部と隔壁とを造成する方が工期の短縮を図ることができて望ましい。
【0019】
【発明の実施の形態】
次に、本発明の具体的な実施の形態を図面について説明すると、滞水性洪積地盤A中に大径の本トンネルTを築造するに際して、図1に示すように、該本トンネルTの計画線である計画トンネルT’を挟んでトンネル掘削側の立坑Bとトンネル到達側の立坑Cとを地中の所定深さまで掘削し、これらの立坑B、Cの掘削周壁面及び底面に止水壁Dを設けて地下水の浸入を阻止した作業空間を形成する。しかるのち、まず、トンネル掘削側の立坑Bから計画トンネルT’内の地盤中における上部に、シールド掘削機Sによってこの計画トンネルT’の長さ方向に小径のトンネルtを築造する。
【0020】
この際、シールド掘削機Sの掘進に従って該シールド掘削機Sの後端側に露出するトンネル掘削壁面にセグメントを覆工して止水壁Eを形成する。次いで、図3、図4に示すように、この小径トンネルt内から計画トンネルT’の外周に沿ってトンネル掘削側の立坑Bから到達側の立坑Cに向かって遮水外殻壁1を筒状に造成すると共に計画トンネルT’の長さ方向に所定間隔毎に、外周部が遮水外殻壁1の内周壁部に一体に連続した所定厚みの止水性を有する隔壁2を造成することによって、図5、図6に示すように、隣接する隔壁2、2とこれらの隔壁2、2間の遮水外殻壁部1aとで囲まれてなる区域部Fを両立坑B、C間の計画トンネルT’の全長に亘って複数個、形成し、これらの区域部Fによって計画トンネルT’を複数分割した構造とする。
【0021】
なお、遮水外殻壁部1aと隔壁2、2間で囲まれてなる上記区域部Fは、掘削側の立坑Bからシールド掘削機Sによって一定長さのトンネル部分が掘削される毎に順次、形成してもよいが、この実施の形態においては、上記図3、5に示すように、シールド掘削機Sによって両立坑B、C間に全長に亘って小径トンネルtが築造された後に、計画トンネルT’の外周部に沿って上記遮水外殻壁1を造成すると共にこの遮水外殻壁1内で囲まれた地盤を計画トンネルT’の長さ方向に所定間隔毎に隔壁2、2・・・で分断して計画トンネルT’を複数分割した複数個の区域部Fを形成している。
【0022】
上記遮水外殻壁1と隔壁2との造成は、地盤中に薬液注入管4を打設することによって行われる。即ち、図3、図4に示すようにシールド掘削機Sによって掘削された小径トンネルt内に掘削側の立坑Bを通じて穿孔機兼用の管体打設機3を搬入して所定位置に設置し、この管体打設機3によって多数本の薬液注入管4を小径トンネルtの止水壁Eを水密的に貫通させて計画トンネルT’の外周部と計画トンネルT’を横断する地盤部分とに向かって順次、放射状に打設し、小径トンネルt内からこれらの薬液注入管4にモルタル、水ガラス、或いはウレタン樹脂液等の硬化性薬液を供給して管の先端部から滞水性地盤に注入、浸透させたのち、硬化させることにより、計画トンネルT’の外周部地盤と該計画トンネルT’を横断する地盤部分とに一定厚みの止水性を有する筒状の上記遮水外殻壁1と、外周部がこの遮水外殻壁1の内周壁における所定部分に一体に連続してなる一定厚みの止水性を有する円盤形状の隔壁2とを造成するものである。
【0023】
上記管体打設機3は一般的に知られた構造を有しており、上下左右方向に角度調整可能なガイド台上に前後方向に移動可能なドリフターを備えていてこのドリフターによって該ドリフターの先端部に設けている管体のチャック部を回転並びに打撃するように構成している。そして、複数本の薬液注入管4の打設角度や長さを変化させることによって、これらの薬液注入管4の先端が計画トンネルT’のの外周部に周方向並びに長さ方向に一定間隔毎に並ぶように打設する。同様に、計画トンネルT’の所定部分横断する地盤に対しても複数本の薬液注入管4をその先端がトンネル断面方向に一定間隔毎に並ぶように打設する。なお、薬液注入管4は定尺の管体を継ぎ足すことによって所望長さの薬液注入管4に形成され、先端部分のみに薬液注入孔を設けている。
【0024】
この薬液注入管4は、まず、上記管体打設機3を使用して穿孔用ロッド体を薬液注入管4の打設予定位置に順次放射状に打ち込んだのち引き抜くことによって薬液注入管挿入孔を穿設し、この挿入孔に管体打設機3を使用して打設してもよく、或いは、挿入孔を穿設することなく直接、打設してもよい。また、この薬液注入管4は薬液注入後において抜き取られ、次の薬液注入に使用される。
【0025】
なお、トンネル掘削側の立坑Bから計画トンネルT’に沿って最初に形成される区域部Fの遮水外殻壁部1aは、上記立坑B内に管体打設機3を設置してこの立坑B内から計画トンネルT’の外周部に向かって薬液注入管4を放射状に打ち込み、立坑B内からこれらの薬液注入管4内に硬化性薬液を注入することによって形成してもよい。また、最初の隔壁2’はトンネル掘削側の立坑Bの周壁に設けられている止水壁Dによって形成されている。
【0026】
このように、計画トンネルT’に該計画トンネルT’を複数分割するように区域部F、F・・・が形成されると、まず、図5に示すように、一方の立坑B側に面している上記隔壁2’の下端部から最初の区域部F内の地盤中の下層部に数本の水抜き管5を打ち込んで、該水抜き管5を通じて遮水外殻壁部1aと隔壁2、2’で囲まれた区域部F内の地盤中の地下水を立坑B側に排出し、立坑B内から地上に排除する。この際、該区域部F内に存在する小径トンネルt部の一部に空気孔を設けることによって、遮水外殻壁部1と両隔壁2、2’とによって密封されている区域部F内の地盤中の地下水の排出が円滑に行えるようにする。なお、区域部F内の地盤は遮水外殻壁1によって外部の地盤と完全に遮断されているので、区域部F内の地下水を排除しても外部の地盤から地下水が区域部F内に進入する虞れはない。
【0027】
次いで、上記区域部F内の地盤中に存在する地下水が排除されて該地盤が乾燥状態になると、立坑B側の隔壁2’を破壊等によって除去して遮水外殻壁部1aで囲まれた区域部F内の地盤を露出させ、しかるのち、図7〜図10に示すように、この区域部F内の地盤(土砂)を掘削すると共に該区域部F内に存在する小径トンネルt部分を破壊、除去し、掘削された土砂と共に立坑B内を通じて地上側に排出する。
【0028】
上記区域部F内の地盤の掘削方法としては、まず、図7、図8に示すように適宜な土砂掘削機7によって区域部F内の上半地盤の掘削と小径トンネルt部分の破壊、除去を行ったのち、図9、図10に示すように区域部F内の下半部の地盤を掘削しているが、立坑B側から全面的に掘削していってもよい。
【0029】
こうして、遮水外殻壁部1aと隔壁2、2’とで囲まれた区域部F内の地盤の掘削と該区域部F内に存在する小径トンネルt部分の破壊、除去を行ったのち、この区域部Fにおける露出した遮水外殻壁部1aの内周面全面にコンクリートの吹き付けによる一次覆工8を施すと共に内底面にインバートコンクリート8’を施工して計画トンネルT’の最初の区域部F内に遮水外殻壁部1aの長さに相当する長さを有する本トンネル部T1を築造する。
【0030】
引き続いて、この区域部F内の地盤の掘削によって露出した該区域部Fのトンネル奥行き側の隔壁2を次に掘削すべき本トンネル部の切羽側の隔壁として、上記本トンネル部T1側から図11、図12に示すように、この隔壁2を貫通させて次の区域部F内の地盤中の下芽鵜部に数本の水抜き管5を打ち込んで、該水抜き管5を通じて遮水外殻壁部1とこの両端側の隔壁2、2とで囲まれた上記区域部F内の地盤中の地下水を上記本トンネル部T1から立坑B側に排出する。なお、この場合も、上記最初の区域部F内の地盤の排除時と同様に、該区域部F内に存在する小径トンネルt部の一部に空気孔を設けることによって、区域部F内の地盤中の地下水の排出が円滑に行えるようにする。
【0031】
地下水の排除によってこの区域部F内の地盤が乾燥状態になると、上記切羽側の隔壁2を除去して再び、上記同様にしてこの区域部F内の地盤(土砂)と該区域部F内に存在する小径トンネルt部分の破壊、除去を行い、先に、築造した本トンネル部T1から立坑B内を通じて地上側に排出する(図13、図14参照)。しかるのち、この区域部Fにおける露出した遮水外殻壁部1aの内周面全面にコンクリートの吹き付けによる一次覆工8を施すと共に内底面にインバートコンクリート8’を施工して上記最初の本トンネル部T1に連通した本トンネル部T2を築造する。
【0032】
以下、同様に、次の区域部Fにおける切羽側の隔壁2を通じて該区域部F内の地盤(土砂)中の水を排出する作業工程と、該隔壁2を除去すると共にこの区域部F内の地盤と小径トンネル部分とを排除して露出した遮水外殻壁部1aの内周面にコンクリートの吹き付けによる一次覆工8を施し、且つ内底面にインバートコンクリート8’を施工して先の区域部Fに築造した本トンネル部に連通する本トンネル部を築造する工程とを、小径トンネルtの長さ方向に設けている区域部Fに順次行うことによって、図15に示すように、一方の立坑Bから他方の立坑C間に連通した本トンネル部Tを築造するものである。
【0033】
なお、この本トンネルTの内周面に施工されている一次覆工8上には、トンネル全長に亘って鉄筋コンクリート等による二次覆工9が施される。図16は築造された本トンネル部Tの縦断正面図である。
【0034】
上記実施の形態においては、計画トンネルT’の全長に亘って小径トンネルtを築造したのち、この小径トンネルt内から計画トンネルT’の外周部に遮水外殻壁1を造成すると共にこの遮水外殻壁1を長さ方向に複数分割する隔壁2、2・・・を造成して計画トンネルT’を複数分割する複数個の区域部Fを形成し、しかるのち、計画トンネルT’の一方側の区域部Fから順次、上述したように本トンネル部T1、T2・・・・を築造したが、図17、図18に示すように、一方の立坑B側から小径トンネルtを掘削しながら一定長さの小径トンネル部を築造する毎に、この小径トンネル部に後続して該小径トンネル部から計画トンネルT’の外周面に沿って所定長さの遮水外殻壁部1aとこの遮水外殻壁部1aを横断する隔壁2を造成し、一つの区域部Fが形成される毎に、この区域部F内の地盤中の地下水の排除、切羽側の隔壁2の除去後における該区域部F内の地盤の掘削、排除と小径トンネル部の破壊、除去、及び、遮水外殻壁部1aの露出面に対する一次覆工8等を施して本トンネル部を順次、築造してもよい。
【0035】
また、上記いずれのトンネル築造方法においても、計画トンネルの長さ方向の両端側に立坑B、Cを築造してこれらの立坑B、C間の滞水性地盤A中に本トンネルTを掘削、造成したが、立坑などを設けることなく地上側から直接、滞水性地盤内に斜め方向に或いは垂直方向に小径トンネルを築造していくと共にこの小径トンネル内から計画トンネルT’の外周部に遮水外殻壁1とこの遮水外殻壁1を所定長さ間隔毎に分断する隔壁2を造成し、以下、上記同様に、所定長さの遮水外殻壁部1aとこの遮水外殻壁部1aの両端に造成している隔壁2、2とで囲まれた区域部F内の地盤中の地下水の排除、切羽側の隔壁2の除去後における該区域部F内の地盤の掘削、排除と小径トンネル部の破壊、除去、及び、遮水外殻壁部1aの露出面に対する一次覆工8等を施して斜坑或いは垂直な大径本トンネルを築造してもよい。なお、遮水外殻壁1や隔壁2は、上記のように地盤へのモルタルや水ガラス等の薬液注入による造成以外に、注入したモルタル等と地盤とを攪拌、混合することにより造成したり、或いは、モルタル等と地盤との置換によって造成してもよく、さらには、地盤を凍結させることによって造成してもよい。
【0036】
【発明の効果】
以上のように本発明のトンネルの築造方法は、請求項1に記載したように、まず、計画トンネル内の地盤中に該計画トンネルの長さ方向に小径トンネルを築造して該小径トンネル内から計画トンネルの外周に沿って遮水外殻壁を筒状に造成すると共に計画トンネルの長さ方向に所定間隔毎に外周部が該遮水外殻壁の内周壁部に連続する隔壁を造成するものであるから、地上側に影響を及ぼすことなく、小径トンネル内から該小径トンネル内への地下水の浸入を防止しながら薬液注入管等を用いて計画トンネルの外周面に沿った所望径の筒状遮水外殻壁を造成することができると共にこの遮水外殻壁の長さ方向に所定間隔毎に該遮水外殻壁を横断する隔壁を造成することができる。
【0037】
次いで、隣接する隔壁とこれらの隔壁間の遮水外殻壁部とで囲まれた区域部内の地盤中の水を排出するものであるから、遮水外殻壁外の滞水性地盤中の地下水が遮水外殻壁部内の地盤中に浸入するのを該遮水外殻壁部と隔壁とによって確実に防止しながら区域部内の地盤中の水のみを能率よく排除することができ、この遮水外殻壁周囲の地盤を沈下させる虞れもない。
【0038】
さらに、区域部内の地盤中の地下水の排除後に、一方の隔壁を除去して該区域部内の地盤と小径トンネル部とを掘削、排除するものであるから、他方の隔壁によってこの区域部に隣接する次の区域部内の地盤を完全に遮断した状態を維持しながら、該区域部内の地盤の掘削や小径トンネル部の破壊、排除を行うことができて、所定長さの本トンネル部を容易に築造することができるものである。そして、計画トンネルを長さ方向に複数分割してなる上記区域部内の地盤と小径トンネル部との排除をトンネル長さ方向の一方側から他方側に向かって順次、上記作業工程によって行うことにより、滞水性の地盤中に大径の本トンネルを容易に構築することができるものである。
【0039】
また、上記止水性を有する遮水外殻壁と隔壁との造成は、請求項3に記載したように、小径トンネル内から計画トンネルの外周部地盤と該計画トンネルを長さ方向に所定間隔毎に横断する地盤部分とに複数本の薬液注入管を放射状に打設してこれらの注入管を通じて硬化性薬液を上記地盤部分に注入することにより行うものであるから、所望長さと所望径の遮水外殻壁を造成することができ、この遮水外殻壁内の地盤を掘削することによって築造されるトンネル部の径を自由に変更することができるものである。その際、薬液注入管を地上側からではなく、計画トンネル内の地盤中に築造した小径トンネル内から打設するものであるから、薬液注入管の長さも必要最小限度の長さであればよく、打設作業も確実且つ能率よく行えて工期の短縮を図ることができると共に、滞水性の地盤中にトンネルを経済的に築造することができるものである。
【図面の簡単な説明】
【図1】小径トンネルを築造中の状態を示す簡略縦断側面図、
【図2】その縦断正面図、
【図3】小径トンネル内から遮水外殻壁と隔壁を造成している状態の簡略縦断側面図、
【図4】その縦断正面図、
【図5】最初の区域部内の地盤から地下水を排出している状態の簡略縦断側面図、
【図6】その縦断正面図、
【図7】最初の区域部内の上半地盤を掘削している状態の簡略縦断側面図、
【図8】その縦断正面図、
【図9】区域部内によって一定長さの本トンネル部を築造した状態の簡略縦断側面図、
【図10】その縦断正面図、
【図11】次の区域部内の地盤中の地下水を排出している状態の簡略縦断側面図、
【図12】その縦断正面図、
【図13】次の区域部内の地盤と小径トンネル部を排除している状態の簡略縦断側面図、
【図14】その縦断正面図、
【図15】立坑間に本トンネルを築造した状態の簡略縦断側面図、
【図16】その本トンネルの拡大縦断正面図、
【図17】本発明の別な実施の形態を示す簡略縦断側面図、
【図18】本トンネルの築造を開始している状態の簡略縦断側面図。
【符号の説明】
1 遮水外殻壁
1a 遮水外殻壁部
2 隔壁
4 薬液注入管
5 水抜き管
8 一次覆工
A 滞水性地盤
B、C 立坑
F 区域部
T 本トンネル
T’ 計画トンネル
T1、T2 本トンネル部
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for constructing a headrace, a water supply and sewerage system, an underground road, and a tunnel for a railway on a stagnant flooded ground.
[0002]
[Prior art]
Conventionally, as a tunnel construction method, mainly an open-cutting method and a shield method have been widely known. The excavation method is a method in which the ground is excavated in a trench along the planned tunnel line from the surface of the ground, a tunnel is built at the bottom, and then backfilled. If it exists, there is a problem that construction cannot be performed unless traffic is cut off, and construction costs increase significantly when constructing a tunnel in a very deep ground.
[0003]
On the other hand, the shield method is a method of lining the excavated wall with segments while excavating the tunnel with a shield excavator. In this method, the size of the cross-sectional shape of the tunnel is determined by the diameter of the shield excavator. Therefore, it is not possible to construct a tunnel where the cross-sectional shape of the tunnel changes in the direction of the tunnel extension, such as in the emergency parking zone of a tunnel junction or a road tunnel, and construction costs are generally higher than in the mountain tunnel method. is there.
[0004]
Furthermore, in any tunnel construction method, in the case of a flooded ground where the ground has stagnant water, not only a large-scale water stoppage treatment is required when excavating a tunnel in the ground, However, pumping groundwater lowers the water level and causes land subsidence, which adversely affects buildings above the ground and has a problem that it cannot be used in urban areas.
[0005]
For this reason, one or several small-diameter tunnels for work are constructed prior to the tunnel to be constructed, and a large number of freezing pipes are buried in the ground of a fixed length area of the planned tunnel from within this small-diameter tunnel. By circulating the refrigerant in the freezing pipe of the above, the entire ground in the above-mentioned section is frozen and solidified, and this frozen ground is excavated to construct the tunnel section. A method for constructing the tunnel by repeatedly performing the step of freezing the ground has been developed (for example, see Patent Document 1).
[0006]
[Patent Document 1]
Japanese Patent No. 2676011 (pages 2, 3; FIG. 1).
[0007]
[Problems to be solved by the invention]
However, in the above tunnel construction method, since the entire ground of the tunnel to be constructed must be frozen by a freezing pipe, the freezing operation requires a great deal of labor and labor, and the excavation efficiency of the frozen ground is poor, so There is a problem that becomes longer.
[0008]
The present invention has been made in view of the above-mentioned problems, and has as its object the purpose of having a desired size in a stagnant ground without affecting the ground side and further reducing the groundwater level. It is an object of the present invention to provide a method for constructing a tunnel capable of reliably and efficiently constructing a tunnel having a cross-sectional shape of a length.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for constructing a tunnel according to the present invention is a method for constructing a tunnel in a stagnant ground as described in claim 1, wherein the tunnel is installed in the ground in the planned tunnel. A first step of building a small-diameter tunnel in the length direction of the tunnel, and forming a water-impervious outer shell wall from the inside of the small-diameter tunnel along the outer periphery of the planned tunnel and a predetermined interval in the length direction of the planned tunnel A second step of forming a partition wall whose outer peripheral portion is continuous with the inner peripheral wall portion of the water-impervious outer shell wall, and in an area surrounded by adjacent partition walls and a water-impervious outer shell wall portion between these partition walls. A third step of discharging water from the ground, and a fourth step of sequentially removing the partition wall, the ground in the section, and the small-diameter tunnel section in the section in the tunnel length direction for each section. Features.
[0010]
In the above tunnel construction method, the invention according to claim 2 is characterized in that a water-impervious outer shell wall portion previously formed along the outer periphery of the planned tunnel from within the small-diameter tunnel and a partition wall at both ends of the water-impervious outer shell wall portion. In parallel with the step of discharging groundwater from the ground in the enclosed area and the step of removing the ground and the small-diameter tunnel in the area after the groundwater discharging step, the following impermeable outer shell wall and partition It is characterized by forming.
[0011]
Further, in the above tunnel construction method, the formation of the water-impervious outer shell wall and the partition wall having a predetermined thickness of water-blocking is performed as described in claim 3 from the inside of the small diameter tunnel to the outer peripheral ground of the planned tunnel and the planned tunnel. Can be performed by radially driving a plurality of chemical liquid injection pipes into a ground portion that crosses at predetermined intervals in the length direction and injecting a curable chemical liquid through these injection pipes.
[0012]
[Action]
When constructing a tunnel on the ground having water retention, first, a small-diameter tunnel is constructed by a shield excavator in the tunnel to be constructed, that is, the ground in the planned tunnel. At this time, the excavation wall surface of the small-diameter tunnel is formed on the water stop wall by segment lining or the like.
[0013]
Next, a water-impervious outer shell wall is continuously formed from inside the small-diameter tunnel along the outer circumference of the planned tunnel, and the outer peripheral part is impermeable to the water-impervious outer shell wall at predetermined intervals. A partition is formed to be continuous with the inner peripheral wall of the outer shell wall to divide the ground in the impermeable outer shell wall. The formation of these impervious outer shell walls and bulkheads requires a large number of chemical injection pipes from inside the small-diameter tunnel toward the outer peripheral ground of the planned tunnel and the ground section that crosses the planned tunnel at predetermined intervals in the longitudinal direction. Radially, and the tips of these chemical injection pipes are placed at small intervals in the tunnel length direction and circumferential direction in the ground between the outer periphery of the planned tunnel and the portion that crosses the planned tunnel at predetermined intervals. And a curable chemical such as mortar is supplied from the inside of the small-diameter tunnel into the injection pipes and injected into the ground from the tips of these injection pipes.
[0014]
Thus, the impermeable outer shell wall is formed along the outer periphery of the planned tunnel, and the impermeable outer shell wall is partitioned by the partition at predetermined intervals in the tunnel length direction, so that the outer wall is adjacent to the planned tunnel in the length direction. Areas surrounded by the bulkheads and the impermeable outer shell walls between these bulkheads are sequentially formed in the length direction of the planned tunnel, and groundwater existing in the ground in the area is externally exposed through one of the bulkheads. A work process of discharging and a work process of removing the one partition after this process and removing the ground and the small-diameter tunnel portion in the area from the removed partition side are sequentially provided in the planned tunnel length direction. This is to construct a large-diameter tunnel (hereinafter referred to as “the tunnel”) in the area.
[0015]
That is, if the ground and the small-diameter tunnel portion in the water-impervious outer shell wall in one area are removed from the removal side after removing one partition in the area, the small-diameter tunnel is on the depth side of the water-impervious outer shell wall. The other partition will be exposed, and then this partition is used as a partition on one side of the next section, groundwater in the ground in the next section is discharged through the partition, and then the partition is removed. After that, the ground inside the impermeable outer shell wall and the small-diameter tunnel section in this section are eliminated sequentially in each section, and the main tunnel section corresponding to the length of the section is continued, so that the ground in the water-repellent ground is removed. A tunnel of a predetermined length is to be constructed at the same time.
[0016]
In this construction method of the tunnel, groundwater existing in the ground (soil and sand) in the area can be discharged to the outside through one of the partitions by inserting a drain pipe from the partition into the area. However, at this time, even if the ground in the area subsides due to drainage, the earth and sand in the area surrounded by the impermeable outer shell wall is cut off from the ground on the ground side, and may affect the ground on the ground side. Not. Similarly, even if one of the bulkheads is removed after drainage to excavate and remove the ground in the area and remove the small-diameter tunnel in the fire area, there is no danger of affecting the ground on the ground side at all. Absent. Excavated earth and sand and the broken small-diameter tunnel section are discharged to the outside through the inside of the main tunnel section built at the end of one of the excluded bulkheads. In addition, the inner peripheral surface of the water-impervious outer shell wall of each section exposed by excavation and removal of earth and sand is subjected to waterproofing lining by spraying concrete or the like.
[0017]
When the tunnel to be constructed is constructed diagonally from the ground side toward the ground, the inside of each section surrounded by adjacent partitions and the impermeable outer shell wall between these partitions When excavating the ground, even if the bulkhead on the ground side is removed, groundwater in the ground in the area part to be excavated next will be on the side of this tunnel part of a certain length created by excavating the area part first. Since there is no risk of intrusion, the drainage pipe may be penetrated into the ground in the area after the partition is removed.
[0018]
In addition, after the small-diameter tunnel is constructed over the entire length of the planned tunnel, a water-impervious outer shell wall is formed on the outer periphery of the planned tunnel from within the small-diameter tunnel, and the water-impervious outer shell wall is formed at predetermined intervals. Although a partition wall to be divided may be formed, while constructing a small-diameter tunnel, a water-shielding outer shell wall portion and a partition wall of a predetermined length are successively formed following this construction, and are formed first. Draining groundwater in the ground in the area surrounded by the impermeable outer shell wall and the partition walls at both ends of the impervious outer shell wall, and ground and small-diameter tunnel in the area after the groundwater discharging step It is preferable to form the next impermeable outer shell wall and the partition wall in parallel with the step of removing the part because the construction period can be shortened.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a specific embodiment of the present invention will be described with reference to the drawings. When a large-diameter main tunnel T is constructed in a stagnant flooded ground A, as shown in FIG. A shaft B on the tunnel excavation side and a shaft C on the tunnel arrival side are excavated to a predetermined depth in the ground with the planned tunnel T ′ as a line interposed therebetween, and a water blocking wall is formed on the excavation peripheral wall surface and bottom surface of these shafts B and C. D is provided to form a work space in which infiltration of groundwater is prevented. Thereafter, first, a tunnel t having a small diameter is built in the length direction of the planned tunnel T 'from the shaft B on the tunnel excavation side to the upper part of the ground in the planned tunnel T' by the shield excavator S '.
[0020]
At this time, a segment is lining the tunnel excavation wall surface exposed at the rear end side of the shield excavator S in accordance with the excavation of the shield excavator S to form the water stop wall E. Next, as shown in FIGS. 3 and 4, the water-impervious outer shell wall 1 is formed from the inside of the small-diameter tunnel t along the outer periphery of the planned tunnel T ′ from the shaft B on the tunnel excavation side to the shaft C on the arrival side. To form a partition wall 2 having a predetermined thickness and having a predetermined thickness whose outer peripheral portion is integrally connected to the inner peripheral wall portion of the water-impervious outer shell wall 1 at predetermined intervals in the length direction of the planned tunnel T ′. As a result, as shown in FIGS. 5 and 6, the area F surrounded by the adjacent partitions 2 and 2 and the water-impervious outer shell wall 1 a between these partitions 2 and 2 is placed between the shafts B and C. Are formed over the entire length of the planned tunnel T ′, and a plurality of the planned tunnels T ′ are divided by these sections F.
[0021]
The above-mentioned section F surrounded by the impermeable outer shell wall 1a and the partition walls 2 and 2 is successively excavated from the excavation-side shaft B every time a tunnel of a fixed length is excavated by the shield excavator S. In this embodiment, as shown in FIGS. 3 and 5, after the shield excavator S has built the small-diameter tunnel t between the shafts B and C over the entire length, The impervious outer shell wall 1 is formed along the outer periphery of the planned tunnel T ', and the ground surrounded by the impervious outer shell wall 1 is divided into partitions 2 at predetermined intervals in the longitudinal direction of the planned tunnel T'. , 2... Are divided into a plurality of planned tunnels T ′ to form a plurality of section portions F.
[0022]
The formation of the water-impervious outer shell wall 1 and the partition wall 2 is performed by placing a chemical solution injection pipe 4 in the ground. That is, as shown in FIGS. 3 and 4, the pipe driving machine 3 also serving as a drilling machine is loaded into the small diameter tunnel t excavated by the shield excavator S through the shaft B on the excavation side and installed at a predetermined position. A large number of chemical injection pipes 4 are made to penetrate the water blocking wall E of the small-diameter tunnel t in a watertight manner by the pipe driving machine 3 to form an outer peripheral portion of the planned tunnel T 'and a ground portion crossing the planned tunnel T'. A curable liquid such as mortar, water glass, or urethane resin is supplied to these liquid injection pipes 4 from the inside of the small-diameter tunnel t and injected into the water-repellent ground from the tip of the pipe. After being infiltrated and hardened, the tubular impermeable outer shell wall 1 having a certain thickness of waterproofness is formed on the outer peripheral ground of the planned tunnel T ′ and the ground portion traversing the planned tunnel T ′. The outer peripheral portion is located on the inner peripheral wall of the impermeable outer shell wall 1. And a disk-shaped partition wall 2 having a predetermined thickness and having water-stopping property, which is formed integrally and continuously with a predetermined portion.
[0023]
The pipe driving machine 3 has a generally known structure, and includes a drifter movable in the front-rear direction on a guide table capable of adjusting the angle in the vertical and horizontal directions. The chuck portion of the tube provided at the distal end is configured to rotate and strike. Then, by changing the setting angles and lengths of the plurality of chemical injection pipes 4, the tips of these chemical injection pipes 4 are arranged at regular intervals in the circumferential direction and the length direction at the outer peripheral portion of the planned tunnel T '. Pour so as to line up. Similarly, a plurality of chemical liquid injection pipes 4 are cast into the ground crossing a predetermined portion of the planned tunnel T ′ such that the tips thereof are arranged at regular intervals in the tunnel cross-sectional direction. The chemical injection tube 4 is formed into a chemical injection tube 4 having a desired length by adding a fixed-length tube, and a chemical injection hole is provided only at a tip portion.
[0024]
The chemical injection pipe 4 is first inserted into the chemical injection pipe 4 in a radial direction by using the above-described pipe setting machine 3 to sequentially pierce the drilling rod body, and then pulled out, so that the chemical injection pipe insertion hole is formed. It may be perforated and driven into this insertion hole using the pipe driving machine 3, or may be directly driven without perforating the insertion hole. The chemical injection pipe 4 is withdrawn after the injection of the chemical, and is used for the next injection of the chemical.
[0025]
The impermeable outer shell wall 1a of the section F formed first along the planned tunnel T 'from the pit B on the tunnel excavation side is provided by installing a pipe casting machine 3 in the pit B. The chemical liquid injection pipes 4 may be radially driven from the inside of the shaft B toward the outer periphery of the planned tunnel T ′, and the curable chemical liquid may be injected into the chemical liquid injection pipes 4 from the inside of the shaft B. The first partition wall 2 'is formed by a water stop wall D provided on the peripheral wall of the shaft B on the tunnel excavation side.
[0026]
As described above, when the planned tunnels T 'are formed with the divisions F, F ... so as to divide the planned tunnels T' into a plurality of sections, first, as shown in FIG. Several drainage pipes 5 are driven into the lower part of the ground in the first section F from the lower end of the partition wall 2 ′, and the water-impervious outer shell wall 1 a and the partition wall are passed through the drainage pipes 5. The groundwater in the ground in the section F surrounded by 2, 2 'is discharged to the shaft B side, and is discharged from the shaft B to the ground. At this time, by providing an air hole in a part of the small-diameter tunnel t existing in the section F, the inside of the section F sealed by the impermeable outer shell wall 1 and the two partitions 2 and 2 'is provided. To facilitate the drainage of groundwater in the ground. Since the ground in the area F is completely isolated from the external ground by the impermeable outer shell wall 1, even if the groundwater in the area F is removed, the groundwater from the external ground enters the area F. There is no danger of entering.
[0027]
Next, when the groundwater existing in the ground in the section F is removed and the ground is in a dry state, the partition wall 2 'on the shaft B side is removed by destruction or the like and surrounded by the impermeable outer shell wall 1a. 7 to 10, the ground (soil and sand) in the area F is excavated and the small-diameter tunnel t existing in the area F is exposed. Is destroyed, removed, and discharged to the ground side through the shaft B together with the excavated earth and sand.
[0028]
As a method of excavating the ground in the area F, first, as shown in FIGS. 7 and 8, excavation of the upper half ground in the area F and destruction and removal of the small-diameter tunnel t by an appropriate earth and sand excavator 7. After excavation, as shown in FIGS. 9 and 10, the ground in the lower half of the area F is excavated, but it may be excavated entirely from the shaft B side.
[0029]
In this way, after excavation of the ground in the area F surrounded by the impermeable outer shell wall 1a and the partitions 2, 2 ', and destruction and removal of the small diameter tunnel t existing in the area F, The first section of the planned tunnel T 'by applying a primary lining 8 by spraying concrete on the entire inner peripheral surface of the exposed water-impervious outer shell wall 1a in the section F and applying an inverted concrete 8' on the inner bottom face. The tunnel portion T1 having a length corresponding to the length of the water-impervious outer shell wall portion 1a is constructed in the portion F.
[0030]
Subsequently, the partition wall 2 on the depth side of the tunnel in the section F exposed by excavation of the ground in the section F is used as the partition wall on the face side of the main tunnel to be excavated next, as viewed from the main tunnel T1 side. 11. As shown in FIG. 12, several water drainage pipes 5 are driven into the lower buds in the ground in the next area F by penetrating the partition wall 2 and water is impermeable through the water drainage pipes 5. The groundwater in the ground in the section F surrounded by the outer shell wall 1 and the partitions 2 and 2 on both ends is discharged from the main tunnel T1 to the shaft B side. In this case, as in the case of removing the ground in the first section F, an air hole is provided in a part of the small diameter tunnel t existing in the section F to thereby allow the inside of the section F to be removed. To facilitate the discharge of groundwater in the ground.
[0031]
When the ground in the section F becomes dry due to the removal of the groundwater, the partition wall 2 on the face side is removed, and the ground (soil and sand) in the section F and the ground in the section F are removed again in the same manner as described above. The existing small-diameter tunnel t is destroyed and removed, and is discharged to the ground side from the tunnel T1 previously built through the shaft B (see FIGS. 13 and 14). Thereafter, a primary lining 8 by spraying concrete is applied to the entire inner peripheral surface of the exposed water-impervious outer shell wall 1a in the section F, and an inverted concrete 8 'is applied to the inner bottom surface to perform the first main tunnel. The tunnel section T2 communicating with the section T1 is constructed.
[0032]
Hereinafter, similarly, the work process of discharging the water in the ground (soil and sand) in the section F through the partition 2 on the face side in the next section F, the removal of the partition 2 and the inside of the section F A primary lining 8 by spraying concrete is applied to the inner peripheral surface of the water-impervious outer shell wall 1a excluding the ground and the small-diameter tunnel portion, and an invert concrete 8 'is applied to the inner bottom surface of the area. The step of constructing the main tunnel section communicating with the main tunnel section constructed in the section F is sequentially performed on the section section F provided in the longitudinal direction of the small diameter tunnel t, as shown in FIG. The tunnel section T which communicates between the shaft B and the other shaft C is constructed.
[0033]
In addition, on the primary lining 8 constructed on the inner peripheral surface of the main tunnel T, a secondary lining 9 made of reinforced concrete or the like is applied over the entire length of the tunnel. FIG. 16 is a vertical sectional front view of the main tunnel portion T constructed.
[0034]
In the above embodiment, after the small-diameter tunnel t is built over the entire length of the planned tunnel T ′, a water-impervious outer shell wall 1 is formed from the inside of the small-diameter tunnel t to the outer periphery of the planned tunnel T ′, and this shielding is performed. The partition walls 2, 2,... That divide the water outer shell wall 1 in the length direction are formed to form a plurality of section portions F that divide the planned tunnel T ′ into a plurality of sections. The tunnels T1, T2,... Were constructed sequentially from the section F on one side as described above, but as shown in FIGS. However, every time a small-diameter tunnel portion having a fixed length is constructed, the water-impervious outer shell wall portion 1a having a predetermined length is formed along the outer peripheral surface of the planned tunnel T 'from the small-diameter tunnel portion following the small-diameter tunnel portion. The partition wall 2 that crosses the impermeable outer shell wall 1a is created, Every time the zone F is formed, the groundwater in the ground in the zone F is removed, excavation of the ground in the zone F after the removal of the partition wall 2 on the face side, elimination and destruction of the small-diameter tunnel, The tunnel portion may be sequentially constructed by removing and applying the primary lining 8 to the exposed surface of the water-impervious outer shell wall portion 1a.
[0035]
In any of the tunnel construction methods described above, shafts B and C are constructed at both ends in the length direction of the planned tunnel, and the tunnel T is excavated and formed in the water-stagnant ground A between the shafts B and C. However, a small-diameter tunnel was constructed diagonally or vertically in the stagnant ground directly from the ground side without providing a shaft, etc., and from the small-diameter tunnel to the outer periphery of the planned tunnel T '. A shell wall 1 and a partition wall 2 which divides the water-impervious outer shell wall 1 at predetermined intervals are formed. Removal of groundwater in the ground in the section F surrounded by the partitions 2 and 2 formed at both ends of the section 1a, excavation and removal of the ground in the section F after removing the partition 2 on the face side. And removal of the small-diameter tunnel and the exposed surface of the impermeable outer shell wall 1a The primary lining 8 or the like may be applied to construct a shaft or a vertical large-diameter main tunnel. The water-impervious outer shell wall 1 and the partition 2 are formed by stirring and mixing the injected mortar and the like with the ground, in addition to the formation by injection of a mortar or a water glass or the like into the ground as described above. Alternatively, the ground may be formed by replacing the ground with mortar or the like, and further, the ground may be formed by freezing the ground.
[0036]
【The invention's effect】
As described above, the method of constructing a tunnel according to the present invention, as described in claim 1, first constructs a small-diameter tunnel in the length direction of the planned tunnel in the ground in the planned tunnel, and starts from inside the small-diameter tunnel. Forming a water-impervious outer shell wall along the outer periphery of the planned tunnel and forming a partition wall whose outer peripheral part is continuous with the inner peripheral wall of the water-impervious outer wall at predetermined intervals in the length direction of the planned tunnel. Because of this, without affecting the ground side, using a chemical liquid injection pipe etc. while preventing the infiltration of groundwater from inside the small diameter tunnel into the small diameter tunnel, a cylinder with a desired diameter along the outer peripheral surface of the planned tunnel It is possible to form a water-impervious outer shell wall and to form a partition wall that crosses the water-impervious outer shell wall at predetermined intervals in the longitudinal direction of the water-impervious outer shell wall.
[0037]
Next, since the water in the ground in the area surrounded by the adjacent partition walls and the water-impervious outer shell wall between these partition walls is discharged, groundwater in the water-repellent ground outside the water-impervious outer shell walls is discharged. The water impervious shell wall and the partition walls reliably prevent water from penetrating into the ground in the water impervious outer shell wall while efficiently removing only the water in the ground in the area. There is no danger of sinking the ground around the water shell wall.
[0038]
Further, after the groundwater in the ground in the section is removed, one of the bulkheads is removed to excavate and remove the ground and the small-diameter tunnel section in the section, so that the other wall is adjacent to this section. It is possible to excavate the ground in the area and destroy or eliminate the small-diameter tunnel while maintaining the state in which the ground in the next area is completely shut off. Is what you can do. By removing the ground and the small-diameter tunnel part in the above-mentioned area part obtained by dividing the planned tunnel into a plurality of parts in the length direction, sequentially from one side of the tunnel length direction to the other side, by performing the above-described work process, A large-diameter main tunnel can be easily constructed in a stagnant ground.
[0039]
In addition, the formation of the water-impervious outer shell wall and the partition wall having the water blocking property is performed, as described in claim 3, from the inside of the small-diameter tunnel to the outer peripheral ground of the planned tunnel and the planned tunnel at predetermined intervals in the length direction. Since a plurality of chemical liquid injection pipes are radially cast into the ground portion crossing the ground and the curable chemical liquid is injected into the ground portion through these injection pipes, a shield of a desired length and a desired diameter is formed. The water outer shell wall can be formed, and the diameter of the tunnel portion constructed by excavating the ground in the water impervious outer shell wall can be freely changed. At this time, the chemical injection pipe is to be cast not from the ground side but from the small diameter tunnel built in the ground in the planned tunnel, so the length of the chemical injection pipe may be the minimum necessary length In addition, the casting operation can be performed reliably and efficiently, the construction period can be shortened, and the tunnel can be economically constructed in the stagnant ground.
[Brief description of the drawings]
FIG. 1 is a simplified longitudinal side view showing a state in which a small-diameter tunnel is being constructed;
FIG. 2 is a longitudinal front view thereof,
FIG. 3 is a simplified longitudinal side view of a state in which a water-impervious outer shell wall and a partition wall are being created from within a small-diameter tunnel;
FIG. 4 is a longitudinal front view thereof,
FIG. 5 is a simplified longitudinal side view of a state where groundwater is being discharged from the ground in the first section;
FIG. 6 is a longitudinal sectional front view thereof,
FIG. 7 is a simplified longitudinal side view of a state where the upper half ground in the first section is excavated;
FIG. 8 is a longitudinal sectional front view thereof,
FIG. 9 is a simplified longitudinal side view of a state where a fixed length of the tunnel section has been built in the area,
FIG. 10 is a longitudinal front view thereof,
FIG. 11 is a simplified longitudinal side view of a state where groundwater in the ground in the next section is discharged.
FIG. 12 is a longitudinal sectional front view thereof,
FIG. 13 is a simplified longitudinal side view of a state in which the ground and a small-diameter tunnel portion in the next section have been removed;
FIG. 14 is a longitudinal front view thereof,
FIG. 15 is a simplified longitudinal side view of a state where the tunnel is constructed between shafts,
FIG. 16 is an enlarged vertical sectional front view of the tunnel,
FIG. 17 is a simplified vertical sectional side view showing another embodiment of the present invention;
FIG. 18 is a simplified vertical sectional side view of a state where the construction of the tunnel has been started.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Impermeable outer shell wall 1a Impermeable outer shell wall 2 Partition wall 4 Chemical liquid injection pipe 5 Drainage pipe 8 Primary lining A Water-retaining ground B, C Vertical shaft F Area section T Main tunnel T 'Plan tunnel T1, T2 Main tunnel Department

Claims (3)

滞水性の地盤にトンネルを築造する方法であって、計画トンネル内の地盤中に該計画トンネルの長さ方向に小径のトンネルを築造する第1工程と、この小径のトンネル内から計画トンネルの外周に沿って遮水外殻壁を筒状に造成すると共に計画トンネルの長さ方向に所定間隔毎に外周部が該遮水外殻壁の内周壁部に連続する隔壁を造成する第2工程と、隣接する隔壁とこれらの隔壁間の遮水外殻壁部とで囲まれた区域部内の地盤中の水を排出する第3工程と、隔壁と区域部内の地盤と該区域部内の小径トンネル部とを区域部毎に順次排除していく第4工程とからなることを特徴とするトンネルの築造方法。A method for constructing a tunnel in a water-stagnant ground, comprising: a first step of constructing a small-diameter tunnel in the length direction of the planned tunnel in the ground of the planned tunnel; and an outer periphery of the planned tunnel from within the small-diameter tunnel. A second step of forming a water-impervious outer shell wall into a cylindrical shape along the outer wall and forming a partition wall whose outer peripheral part is continuous with the inner peripheral wall part of the water-impervious outer shell wall at predetermined intervals in the length direction of the planned tunnel; A third step of discharging water from the ground in an area surrounded by adjacent partition walls and a water-impervious outer shell wall between the partition walls; a ground in the partition wall, the area in the section, and a small-diameter tunnel in the area; And a fourth step of sequentially eliminating the above for each section. 小径トンネル内から計画トンネルの外周に沿って先に造成された遮水外殻壁部とこの遮水外殻壁部の両端の隔壁間で囲まれた区域部内の地盤中の地下水の排出工程と、この地下水排出工程後における該区域部内の地盤と小径トンネル部との排除工程とに併行して、次の遮水外殻壁部及び隔壁を造成することを特徴とする請求項1に記載のトンネルの築造方法。The process of draining groundwater in the ground in the area surrounded by the impermeable outer shell wall formed earlier along the outer periphery of the planned tunnel from the small diameter tunnel and the partition walls at both ends of the impermeable outer shell wall 2. The following impermeable outer shell wall and partition walls are formed in parallel with the step of removing the ground and the small-diameter tunnel section in the area after the groundwater discharging step. How to build a tunnel. 遮水外殻壁と隔壁の造成は、小径トンネル内から計画トンネルの外周部地盤と該計画トンネルを長さ方向に所定間隔毎に横断する地盤部分とに複数本の薬液注入管を放射状に打設してこれらの注入管を通じて硬化性薬液を上記地盤部分に注入することにより行われることを特徴とする請求項1または請求項2に記載のトンネルの築造方法。The formation of the water-impervious outer shell wall and the partition wall is achieved by radially striking a plurality of chemical injection pipes from the inside of the small-diameter tunnel to the outer peripheral ground of the planned tunnel and the ground portion that traverses the planned tunnel at predetermined intervals in the longitudinal direction. The method according to claim 1 or 2, wherein the method is performed by injecting a curable chemical solution into the ground portion through the injection pipes.
JP2003030825A 2003-02-07 2003-02-07 Method for constructing tunnel Pending JP2004238982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030825A JP2004238982A (en) 2003-02-07 2003-02-07 Method for constructing tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030825A JP2004238982A (en) 2003-02-07 2003-02-07 Method for constructing tunnel

Publications (1)

Publication Number Publication Date
JP2004238982A true JP2004238982A (en) 2004-08-26

Family

ID=32957607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030825A Pending JP2004238982A (en) 2003-02-07 2003-02-07 Method for constructing tunnel

Country Status (1)

Country Link
JP (1) JP2004238982A (en)

Similar Documents

Publication Publication Date Title
CN109026012A (en) Vertical shaft surrounding rock supporting structure and its excavation supporting method
JP4296549B2 (en) Underground support structure, its construction method and tunnel construction method
CA2456303C (en) Continuous method of realization of underground tunnels including peripheral perforations
JP2003206691A (en) Shield machine arrival construction method
JP2869569B2 (en) Construction method of large depth, large scale underground space by ground freezing method and ground freezing pipe
JP2008019663A (en) Tunnel construction method
JP4485006B2 (en) Construction method for underground structures
JP2005120622A (en) Construction method of underground structure
JP2004238981A (en) Method for constructing tunnel
JP2004238982A (en) Method for constructing tunnel
RU2209268C1 (en) Process of development of foundation pit
KR20210002947A (en) Two-side semicircle arch type leading pipe and structure of non-excavation type tunnel using thereof and method of constructing thereof
JPH0313690A (en) Ground improving method for tunnel excavation
JP2005133339A (en) Construction method of shaft
JPH09279985A (en) Freeze expansion pressure reducing structure and building method thereof
JP2002194988A (en) Receiving method of tunnel excavator to arrival shaft and facility for it
JPS601451B2 (en) Water stop mountain stop wall construction method using Benoto pile excavator
JP3003535B2 (en) How to build underground space
JPH05287983A (en) Construction of underground space having long and large diametral dimension
JP2675858B2 (en) Vertical shaft excavation method
JPH03147923A (en) Construction method for underground continuous wall with curvature
JP2006029021A (en) Construction method of large cross section tunnel
IE57077B1 (en) A method of and apparatus for grouting
KR20220167623A (en) the half exit method of the excavator in which excavation is completed in the underground tunnel excavation
JP2006022496A (en) Tunnel construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050802

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Effective date: 20070717

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070914

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113