JP2004202536A - Friction stir welding apparatus and method using bobbin tool - Google Patents

Friction stir welding apparatus and method using bobbin tool Download PDF

Info

Publication number
JP2004202536A
JP2004202536A JP2002374485A JP2002374485A JP2004202536A JP 2004202536 A JP2004202536 A JP 2004202536A JP 2002374485 A JP2002374485 A JP 2002374485A JP 2002374485 A JP2002374485 A JP 2002374485A JP 2004202536 A JP2004202536 A JP 2004202536A
Authority
JP
Japan
Prior art keywords
friction stir
base material
stir welding
shaft
stirring shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002374485A
Other languages
Japanese (ja)
Other versions
JP4326214B2 (en
Inventor
Katsu Kodama
児玉  克
Yasuyuki Fujitani
泰之 藤谷
Yukio Doge
幸雄 道下
Nobumi Hiromoto
悦己 広本
Yujiro Watabe
裕二郎 渡部
Yoshikuni Kato
慶訓 加藤
Hiroaki Sato
広明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002374485A priority Critical patent/JP4326214B2/en
Publication of JP2004202536A publication Critical patent/JP2004202536A/en
Application granted granted Critical
Publication of JP4326214B2 publication Critical patent/JP4326214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enlarge the stirring region of a base metal to an arbitrary region, corresponding to the shape of the welding position of the base metal and its inside state when base metal is subjected to the friction stir welding using a bobbin tool, to attain flexibility and smoothness in friction stir welding, corresponding to the shape of the joined part thus enlarged. <P>SOLUTION: In the friction stir welding apparatus having a bobbin tool 11 which is equipped with a rear face pressing member 11 and a front face pressing member 10 and in which the space between the pressing members is either connected with a fixed or movable base metal stirring shaft (probe shaft), or faced against each other, the shaft line of the base metal stirring shaft is arranged by being changed or displaced relative to the drive shaft line of the stirring shaft 12A which is located on the core shaft of both the pressing members, and the base metal stirring shaft is tilted, bent or curved in the direction away from the center vertical line of the base metal welding or the drive shaft line, corresponding to the stirring property improving position of the base metal, so that the rotational movement of the base metal stirring shaft makes revolving movement centering around the center vertical line of the base metal welding. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車両、航空機、船舶、建物等の構造体を製造する際に用いるシングルスキンやダブルスキンパネル(二面中空パネル)同士を接合する摩擦攪拌接合装置とその製造方法に係り、特にボビンツールを用いた摩擦攪拌接合装置とその接合方法に関する。
【0002】
【従来の技術】
例えば特表平7−505090号公報(特許文献1)には、摩擦攪拌による固相接合方法として長尺材同士の新規な接合方法が開示されており、かかる接合方法は、加工物より実質的に硬い材質からなる回転ツ−ルを加工物の溶接部に挿入し、回転ツ−ルを回転させながら移動することにより、回転ツ−ルと加工物との間に生じる摩擦熱による塑性流動によって加工物を接合する接合方法で、かかる摩擦溶接法は、溶接部材を固相状態で、回転ツ−ルを回転させながら移動させつつ軟化させた固相部分を一体化しながら接合できるために、熱歪みがなく溶接方向に対して実質的に無限に長い長尺材でもその長手方向に連続的に固相接合できる利点がある。さらに、回転ツ−ルと溶接部材との摩擦熱による金属の塑性流動を利用した固相接合のため、接合部を溶融させることなく接合できる。また、加熱温度が低いため、接合後の変形が少ない。接合部は溶融されないため、欠陥が少ない、などの多くの利点がある。
【0003】
次に摩擦撹拌接合に使用される回転工具について説明する。摩擦撹拌接合は前記特許文献1に開示されているように、ブローブ型とボビンツール型の回転工具が存在し、プローブ型工具は、ショルダ部で母材表面より摩擦熱を付与しながら、母材に侵入させたプローブ軸の機械的攪拌により、プローブ軸周囲が塑性流動化し、この状態で回転工具を接合線に沿って移動させることにより、接合線周囲が塑性流動しつつ接合線に沿って2つの素材が圧力を受けながら撹拌混練され、プローブの後方側に移行する。この結果塑性流動した素材は後方側で摩擦熱を失って急速に冷却固化するので両パネル板は素材同士が混じり合って完全に一体化した状態で接合されるものであるが、かかる接合方法では接合時に摩擦熱を発生させるために、回転工具を接合線側に押しつける必要があり、従ってこの反力に対処するために、裏当金が使用されている。この裏当金は被加工物の面板の裏面に密着させて設置するものであり、大きな加圧力を必要とする。
【0004】
かかる欠点を解消するために、図6に示すように、ボビンツール1と呼ばれる回転工具が提案されている。
かかる工具は図6に示すように接合する金属板の表裏両面を挟持するように一定間隔を設けた一対のショルダ10、11が設けられているとともに、該上下一対のショルダ10、11間に攪拌軸12が設けられているので、接合面の両面において摩擦発熱させることが出来、裏面側の融合不良が生じないのみならず、上下一対のショルダ10、11間で互いの反力を受けているために、裏当金が不要になる。
【0005】
そしてこのようなボビンツールを用いた先行技術は種々存在し、例えば特開2002−263863号公報(特許文献2)において、バリや内部欠陥などが生じにくい接合部を容易に形成できる摩擦攪拌接合用ツールが提案されており、かかる技術は図7に示すように、円柱状のツール本体40と、このツール本体40の底面の中心付近から垂下する攪拌ピン42と、この攪拌ピン42の先端に配置される裏当て部41と、を備え、上記ツール本体40の底面および上記裏当て部41における上記ツール本体40の底面と対向する上面には、その周縁と上記攪拌ピン42との間に渦巻き形凸条43がそれぞれ配置されていると共に、上記ツール本体40の底面には、リング状凸部44が形成されているものである。
そしてかかる装置によれば、ツール本体および裏当て部の渦巻き形凸条43が、被接合部材間に攪拌ピンと共に挿入され且つ攪拌ピン42の近傍に押込み力が付加されるので、被接合部材間の接合部に内部欠陥が生じるのを防止できる。
【0006】
しかしながらかかる従来技術は、母材上面若しくは下面よりの摩擦入熱は渦巻き状凸条43によって増加するために、バリ取りには優れているが、攪拌ピン42の軸が母材表面に対し、垂直であるために、ピン軸周囲に位置する攪拌領域が必然的に小さく、接合ギャップ(隙間)が斜めになっていたり、鍵型になっていた場合に従来のボビンツールでは、その全域を攪拌して接合することが出来なかった
更に、ボビンツール10を用いて接合部を接合する際、その接合部に挿入する攪拌軸にねじを位置させて摩擦攪拌接合を行う技術も特開2002−86281号公報(特許文献3)に開示されているが、かかる技術もねじの部分だけ攪拌量が増大するのみで、特段に攪拌幅が増えるわけではない。
【0007】
【特許文献1】
特表平7−505090号公報
【特許文献2】
特開2002−263863号公報
【特許文献3】
特開2002−86281号公報
【0008】
【発明が解決しようとする課題】
本発明はかかる従来技術の欠点に鑑み、母材をボビンツールを用いて摩擦攪拌接合する際に母材の接合部位の形状や母材内部の状態にあわせて母材の攪拌領域を任意の領域に拡大し得、これにより接合部位の形状に合わせて該摩擦攪拌接合の柔軟性と円滑化を計ることのできる摩擦撹拌接合装置とその接合方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、裏面押圧部材と表面押圧部材を備え、該押圧部間が固定若しくは可変の母材攪拌軸(プローブ軸)により連結若しくは対峙されてなるボビンツールを有する摩擦攪拌接合装置において、前記両押圧部材の心軸上に位置する母材接合中心垂直線に対し、前記母材攪拌軸の軸線が変向若しくは変位させて配設され、該母材攪拌軸の回転運動が母材接合中心垂直線を中心として周回する公転運動をなすように構成したことを特徴とする。
【0010】
そしてかかる発明を実施する方法発明として、母材接合部を挟んでその表面側と裏面側より夫々摩擦入熱を加えてその接合部の塑性流動により接合を行う摩擦攪拌接合方法において、前記表面側よりの接合部への摩擦入熱と前記裏面側よりのへの摩擦入熱とともに、該入熱された接合部位が母材攪拌軸の回転駆動軸線を中心とする公転運動により機械攪拌され、該公転軌跡の最も大きい直径部位を、母材の攪拌性を向上させた部位と対応させて攪拌を行うことを特徴とする。
【0011】
本発明を具体的に説明する。
摩擦攪拌接合を行う場合に、母材間の接合ギャップは、必ずしも母材表面に対し垂直ではなく、図1〜図3に示すように接合ギャップが傾斜若しくは屈曲していたり、鍵形状若しくは矩形状になっている場合がある。
このような場合に攪拌軸が公転運動をする基準中心(太陽の位置)はあくまでも駆動軸の中心、即ち前記両押圧部材の心軸上に位置する母材接合中心垂直線でる。
このように構成することにより、公転運動の中心となるのは駆動軸線Cであって従って前記母材攪拌軸の軸線が変向若しくは変位させて配設されている場合であっても、回転トルクが非対称になることなく、正規の回転運動で回転できる。従ってかかる発明によれば、従来技術のように攪拌領域が駆動軸と一致する母材接合中心垂直線周囲に限定されることなく、図1〜図3に示すように接合ギャップが傾斜していたり、鍵形状若しくは矩形状になっている場合においてもその接合領域のほとんどカバーするように公転運動によって攪拌領域を設定でき、確実な内部攪拌と接合面積が広がり強固で且つ確実な攪拌接合が可能となる。
【0012】
更に本発明は、前記攪拌軸の駆動軸が母材接合垂直線に沿って形成されており、該駆動軸の直径を母材攪拌軸の公転軌跡の最大直径より大に構成したことを特徴とする。
【0013】
すなわち、回転駆動時に、駆動軸にかかるせん断応力(ねじれトルクも含む)は(r/k) の変数であるために、駆動軸直径kが公転軌跡の最大直径rより小さい場合はせん断応力(ねじれトルクも含む)が無用に増加し、駆動軸の破断やクラックの発生につながるが、駆動軸直径kが公転軌跡の最大直径rより大きい場合は負荷側である公転軌跡にかかるせん断応力(ねじれトルクも含む)は駆動軸トルクより大きくなることはなく、摩擦攪拌接合のような粘性の高い塑性流動によっても駆動軸の破断やクラックの発生が生じることがないとともに、回転変動の抑制につながり、一層均一な塑性流動が可能となり、接合品質の向上にもつながる。
【0014】
又ブローブ型の工具の場合は、母材表面側を面規制する片面母材面規制であるために、攪拌軸が非対称の状態で公転運動を行うと、攪拌軸側の回転負荷変動によりショルダ面が母材表面から浮き上がるようにばたついてしまうが、本発明は、前記母材表裏両面を摺動する裏面押圧部材と表面押圧部材とにより母材表裏両面側を面規制させた状態で、母材攪拌軸の公転運動を行うために、このようなばたつきを防止でき、円滑に攪拌軸が上下両面規制された状態で、公転運動による母材攪拌を行うことが出来る。
【0015】
そしてこのように公転運動をさせる場合は例えば、母材の攪拌性を向上させた部位が対応する攪拌軸の部位が、駆動軸線から半径方向に遠ざかるように攪拌軸を傾斜、折曲若しくは湾曲させて構成する。即ち言い換えれば、前記母材攪拌軸が、母材の攪拌性を向上させた部位と対応させて母材接合中心垂直線若しくは駆動軸線より遠ざかる方向に傾斜、折曲若しくは湾曲させていることを特徴とする。
【0016】
かかる構成によれば単なる攪拌軸の機械的形状変化により広範囲にわたる攪拌領域を設定でき、確実な内部攪拌と接合面積が広がり、強固で且つ確実な攪拌接合が可能となる。
【0017】
更に本発明は、前記母材攪拌軸を傾斜、折曲若しくは湾曲させてなる軸線が、母材接合中心垂直線若しくは駆動軸線と交差して配設されていることを特徴とする。
【0018】
かかる発明によれば、例え回転駆動軸が非対称であっても回転駆動軸の両側に攪拌軸の公転部位が位置しているために、せん断応力(ねじれトルクも含む)を左右両側でうち消す方向に働きその分軸破断の恐れを防止できるとともに、回転変動の抑制につながる。
【0019】
しかしながら、例えば母材がアルミの場合に400〜570℃前後の軟化(餅のような)状態での温度域で、攪拌軸が回転してくれれば本発明の効果は極めて優れた効果を達成するが、実際の摩擦攪拌接合は一般的に、摩擦入熱を加える前記裏面/表面押圧部材と攪拌軸が同期して回転するものであるために、言い換えれば400℃以下の未だ固体状態にある接合区域を軸回転ではなく、公転運動をさせねばならない。このことは攪拌軸に強い衝撃荷重や大きなせん断トルクを加えることになる。
【0020】
そこで本発明の好ましい実施例によれば、前記裏面押圧部材若しくは前記表面押圧部材の少なくとも1つにヒータを内蔵するか若しくは接合移動線の前方に予熱手段が内蔵されていることを特徴とし、言い換えれば摩擦攪拌接合方法において、前記摩擦攪拌部位が前もって予熱若しくは摩擦付与熱と別異の熱エネルギにより加熱されている状態で攪拌されていることを特徴とする。
【0021】
かかる発明によれば、前記裏面側若しくは表面側を塑性流動可能な温度域に達するまでの間に摩擦熱以外の熱付与手段で予熱することにより攪拌軸を軸回転ではなく駆動軸を中心として周回するような公転運動をさせても攪拌軸に強い衝撃荷重やせん断トルクを加えることなく、円滑に摩擦攪拌接合を行うことができる。
勿論これらを組み合わせて前記塑性流動可能な温度域に達するまでの間に摩擦入熱と摩擦熱以外の熱付与手段の両者で予熱した後、軟化温度域までの立ち上げを早くしてもよい。
【0022】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0023】
図1は本発明の第1実施例にかかる摩擦接合装置のボビンツール部の具体的構成を示し、図中4は接合されるワーク(母材)で、例えばシングルスキンパネル同士を突き合わせて接合する構成をとっている。
母材4の自由端2の接合部は図1(B)に示すようにL字型となっており、このため接合部21は矩形状に嵌合している。このように構成するのは接合面が垂直面の場合に比較して接合ギャップを少なくすることと、表裏両面側に接合部の矩形部21A、21Bで位置規制されるために、母材4同士の上下の面一が容易に出るためである。
【0024】
しかしながらこのような嵌合構成をとると、上側の接合線21A、21Bに対し、下側接合線が左右にずれてしまい、攪拌軸が垂直の軸回転では上下のすべての接合部21領域をカバーできるだけの攪拌領域を得ることが出来ない。
そこで図1(A)に示すように、攪拌軸12Aを下側に拡径したテーパ状の攪拌領域3を得るために、上側円筒ショルダ(上側押圧部材)10の下面軸心位置(回転駆動軸線と一致)より斜めに傾斜させて(所定角度で)延在させ下側円筒ショルダ(下側押圧部材)11の軸心から外れた上面に連設している。そしてその傾斜角度はテーパ状攪拌領域3にあわせて所定角度傾斜して設定している。
【0025】
そしてかかるボビンツ−ル型の回転工具1はシャンク部13によりチャッキングされ、該シャンク部13は更に機械主軸14に上部テーパシャンク部を連結して一体的に主軸14に挟持され、該回転工具1に回転駆動力を付与する主軸14若しくはチャック部の直径kは母材攪拌軸12Aの公転軌跡の最大直径rより大に構成する。
【0026】
かかる構成によれば、主軸14の駆動軸線C/Cと母材4の上側接合線21Aを合致させた状態で、主軸14を回転させて接合を行うことにより、前記母材4表裏両面を摺動する裏面ショルダ10と表面ショルダ11とにより母材4表裏両面側を面規制させた状態で、言い換えれば攪拌軸12Aの上下両面規制された状態で、公転運動による母材4の攪拌を行うことが出来、この結果攪拌軸12Aが駆動軸線Cを中心として下広がりのテーパ状に公転運動をしてテーパ状攪拌領域3が形成され、上下のL型接合線21A、21Bを含むすべての領域が確実に接合される。
【0027】
図2は本発明の第1実施例にかかる摩擦接合装置のボビンツール部の具体的構成を示し、図中4は接合されるワーク(母材)で、例えばシングルスキンパネル同士を突き合わせて接合する構成をとっている。
母材4の自由端の接合部22は図2(B)に示すようにその中段位置22Bの垂直線が回転駆動軸線C/C上に一致する階段状型となっており、このため接合部位22A/22B/22Cは2段階の矩形状に嵌合しているが、このような嵌合構成をとると、中段の接合線22Bに対し、下側と上側の夫々の接合線22A、22Cが左右にずれてしまい、攪拌軸が垂直の軸回転では上中下のすべての領域をカバーできるだけの攪拌領域を得ることが出来ない。
【0028】
そこで図2(A)に示すように、上側と下側に夫々拡径した鼓状の攪拌領域3を得るために、攪拌軸12Bの中央位置の中心を駆動軸線C/C(ショルダ中心線)にあわせて、その位置より「く」の字状に折り曲げて上側円筒ショルダ10の下面右側と下側円筒ショルダ11上面右側の夫々斜めに傾斜させて延在させて軸心から外れた面に連設している。そしてその傾斜角度は鼓状攪拌領域3にあわせて所定角度傾斜して設定している。
【0029】
そしてかかるボビンツ−ル型の回転工具1はシャンク部13によりチャッキングされ、該シャンク部13は更に機械主軸14に上部テーパシャンク部を連結して一体的に主軸2に挟持され、該回転工具1に回転駆動力を付与する主軸14若しくはチャック部の直径kは母材攪拌軸12Bの公転軌跡の最大直径rより大に構成する。
【0030】
そしてかかる構成によれば、主軸の駆動軸線C/Cと中段接合線22Bを合致させた状態で、主軸14を回転させて接合を行うことにより、裏面ショルダ10と表面ショルダ11とにより攪拌軸12Bの上下両面が規制された状態で、公転運動による母材攪拌を行うことが出来、この結果攪拌軸12Bが駆動軸線C/Cを中心として上下下広がりの鼓状に公転運動をして鼓状攪拌領域3が形成され、中段22Bより上下の左右にずれた接合線22A、22Cを含むすべての領域が確実に接合される。
【0031】
図3は本発明の第3実施例にかかる摩擦接合装置のボビンツール部の具体的構成を示し、図中4は接合されるワーク(母材)で、例えばシングルスキンパネル同士を突き合わせて接合する構成をとっている点は前記実施例と同様である。
母材4の自由端の接合部23は図3(B)に示すようにその母材4中央位置が回転駆動軸線C/C上から最も遠ざかるように「く」形状に凹凸嵌合した構造となっており、このような嵌合構成をとると、前記2つの実施例と同様に上下の面一での位置あわせが容易になるとともに、嵌合部が楔状(くの字状)であるために、2つのパネル同士を面板方向に接近するだけで、簡単に面一状態での接合が容易である。
【0032】
そこで図3(A)に示すように、上側と下側より中央側に膨出させた球状の攪拌領域3を得るために、攪拌軸12Cの軸線に上側円筒ショルダ10の下面中心と下側円筒ショルダ11下面中心をあわせて、且つ該攪拌軸12C中央位置の中心を駆動軸線C/Cより最も遠ざかる方向に「く」の字状に折り曲げた折曲攪拌軸12Cを設けて、その傾斜角度は球状攪拌領域にあわせて所定角度傾斜して設定している。
そして、該回転工具1に回転駆動力を付与する主軸14若しくはチャック部の直径kは母材攪拌軸12Cの公転軌跡の最大直径rより大に構成する。
【0033】
かかる構成によれば、主軸14の駆動軸線と、裏面ショルダ11と表面ショルダ10中心線を合致させた状態で、主軸14を回転させて接合を行うことにより、裏面ショルダ11と表面ショルダ10とにより攪拌軸12Cの上下両面が規制された状態で、公転運動による母材攪拌を行うことが出来、この結果攪拌軸12Cが駆動軸線を中心として中央に広がりの球状に公転運動をして球状攪拌領域が形成され、中段より上下の左右にずれた接合線を含むすべての領域が確実に接合される。
【0034】
さて、本実施例によれば、前記したように、例えば母材がアルミの場合に400〜570℃前後の軟化(餅のような)状態での温度域で、攪拌軸12A〜12Cが回転してくれれば本発明の効果は極めて優れた効果を達成するが、実際の摩擦攪拌接合は一般的に、摩擦入熱を加える前記裏面/表面ショルダ10、11と攪拌軸12A〜12Cが同期して回転するものであるために、言い換えれば常温の固体状態にある接合区域を軸回転ではなく、公転運動をさせねばならない。このことは攪拌軸に強い衝撃荷重や大きなせん断トルクを加えることになる。
【0035】
そこで本実施例によれば、前記接合移動線の前方に予熱手段を配設して前記課題の解決を図っている。
図4は接合線上の前方位置で母材上下に配した高周波誘導加熱装置31と前記摩擦攪拌接合による接合後、該接合位置後方の熱的影響残存位置を冷却する後冷却段32を備えた本発明の実施構成図である。
【0036】
予備加熱装置31は上下に設けた一対の円盤31a間に磁束棒31bを配設し、その周囲にコイル31cを巻回して高周波加熱コイルを生成する。
高周波誘導加熱は、母材4に磁束が貫通し、電磁誘導により渦電流がながれ、その電流と金属自身の抵抗によりジュール熱が発生し、その温度は300℃以上に急速加熱され、従って熱温度と範囲は、その磁界の強さ及び交番周期、即ち出力/周波数によって容易に制御可能であり、しかも自己加熱であるために、急速加熱が可能でしかも制御性がよい。従ってアルミの軟化点温度以下200〜400℃、好ましくは300〜400℃の温度に制御でき、結果として高周波加熱後の軟化状態に近い温度域で摩擦攪拌接合が出来、公転運動の攪拌軸に強い衝撃荷重や大きなせん断トルクを加えることなく回転工具1の寿命を長くすることができる。
【0037】
又前記回転工具のショルダ10、11の外周には直流端子33aがショルダの周面に摺動するごとく位置固定され、制御装置35により制御された直流電源33が印加されるように構成されている。この結果直流電源33の電圧印加により、攪拌軸12A〜12Cが変形抵抗となって電気接触抵抗による塑性流動が促進される。
そしてこの抵抗加熱の温度は制御装置35より接合位置直前温度T及び直後の温度Tを取り込んで接合位置の温度が、軟化最適温度450〜560℃、好ましくは460〜480℃の温度になるように直流電圧を制御でき、これにより前記攪拌軸12A〜12Cの公転運動とともに、電気接触抵抗による塑性流動化が促進され回転工具1の寿命を長くすることができる。
【0038】
更に本実施例では、前記摩擦攪拌接合による接合後、該接合位置後方の熱的影響残存位置を冷却する冷却装置32を設ける。
これにより攪拌接合接合された部分の冷却固化が速やかに行われ、熱変形や残留応力の発生がない良好な接合状態の接合品が得られる。
又前記冷却装置32は、冷媒が循環する円筒状冷却体を用いてもよく、又冷却した非酸化性ガスを前記被加工物表面に噴射させるようにしてもよく、更に、前記液体冷媒噴射手段を用いてもよく、更には潜熱冷却手段を用いてもよく、いずれも接合位置直後の温度Tを取り込んだ制御装置5よりの信号にもとづいて冷媒制御回路34で冷媒量の制御が行われる。
これにより、接合位置、その接合方向後方の温度検知信号、接合速度、若しくは接合距離に応じて冷媒の潤滑量を制御することで、接合部は熱変形や残留応力の発生がなく、熱歪みの小さく良好な接合状態の接合品が得られる。
【0039】
図5は、接合位置上の摩擦攪拌熱以外の加熱手段と、前記摩擦攪拌接合による接合後、該接合位置後方の熱的影響残存位置を冷却する手段を備え、これらの制御を行う本発明の第2制御構成図である。
本実施例は、図1〜3に示した回転工具1内に加熱手段、本実施例では、表面と裏面のショルダ10、11にヒータ80を内蔵して接合位置直前の温度検知センサTよりの信号を取り込んで、接合位置直前の温度が軟化点より相当低い場合は、ヒータ制御回路38にてヒータ80に通電して加熱制御を行っている。接合位置直前の温度検知センサT信号に応じて前記ヒータ80の電圧を制御回路38で制御しての加熱量を制御することにより、回転工具1が200〜400℃で回転させて、攪拌軸12A〜12Cを軸回転ではなく主軸14(図1〜図3)を中心として周回するような公転運動をさせても攪拌軸に強い衝撃荷重やせん断トルクを加えることなく、円滑に摩擦攪拌接合を行うことができる。
勿論これらを組み合わせて前記塑性流動可能な温度域に達するまでの間に摩擦入熱と摩擦熱以外の熱付与手段の両者で予熱した後、軟化温度域までの立ち上げを早くしてもよい。
【0040】
【発明の効果】
以上記載のごとく本発明によれば、母材をボビンツールを用いて摩擦攪拌接合する際に母材の接合部位の形状や母材内部の状態にあわせて母材の攪拌領域を任意の領域に拡大し得、これにより接合部位の形状に合わせて該摩擦攪拌接合の柔軟性と円滑化を計ることができる。
特に車両、航空機、船舶建物等の大型構造体を製造する際の側構体、床構体、屋根構体等の広幅パネル体の製造に用いるスキンパネル同士をボビンツールを用いて摩擦攪拌接合する際に接合部が確実に接合され、接合ギャップに接合漏れのないしかもその接合部の表面が平坦な平面状の接合面を得る事ができる。
【図面の簡単な説明】
【図1】本発明の第1実施例にかかる摩擦接合装置のボビンツール部の具体的構成を示し、(A)はボビンツールを、(B)は母材接合部と攪拌領域を示す。
【図2】本発明の第2実施例にかかる摩擦接合装置のボビンツール部の具体的構成を示し、(A)はボビンツールを、(B)は母材接合部と攪拌領域を示す。
【図3】本発明の第1実施例にかかる摩擦接合装置のボビンツール部の具体的構成を示し、(A)はボビンツールを、(B)は母材接合部と攪拌領域を示す。
【図4】本発明の実施例に係るボビンツールを用いて接合線上の前方位置で高周波誘導加熱等の自己加熱による入熱手段であり、接合位置上で回転工具小径部より母材側に印加される電気抵抗加熱及び前記摩擦攪拌接合による接合後、該接合位置後方の熱的影響残存位置を冷却する手段を含む本発明の制御構成図である。
【図5】本発明の実施例に係るボビンツールを用いて接合位置上の摩擦攪拌熱以外の加熱手段と、前記摩擦攪拌接合による接合後、該接合位置後方の熱的影響残存位置を冷却する手段を含み、これらの制御を行う本発明の第2制御構成図である。表裏両面側の押し付け力若しくはショルダの回転速度を独立して制御可能に構成した摩擦攪拌接合装置の第3例を示す全体概略図である。
【図6】従来技術に係る摩擦撹拌接合のボビンツールの基本構成図である。
【図7】他の従来技術に係るボビンツールの構成図である。
【符号の説明】
11 ボビンツール
11 裏面側ショルダ
10 表面側ショルダ
12A、12B、12C 攪拌軸
13、14 回転駆動部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a friction stir welding apparatus for joining single-skin or double-skin panels (two-sided hollow panels) used in manufacturing a structure such as a vehicle, an aircraft, a ship, and a building, and a method for manufacturing the friction stir welding apparatus. The present invention relates to a friction stir welding apparatus using a tool and a welding method thereof.
[0002]
[Prior art]
For example, Japanese Patent Application Publication No. 7-505090 (Patent Document 1) discloses a novel joining method of long materials as a solid-state joining method by friction stirring, and such a joining method is substantially more effective than a workpiece. By inserting a rotary tool made of a hard material into the welded part of the workpiece and moving the rotary tool while rotating it, plastic flow due to frictional heat generated between the rotary tool and the workpiece This friction welding method is a joining method for joining workpieces. In such a friction welding method, since a welding member can be joined in a solid state while rotating and rotating a rotary tool while integrating a softened solid portion, the welding member can be joined by heat. There is an advantage that even a long material that is substantially infinitely long in the welding direction without distortion can be continuously solid-phase bonded in the longitudinal direction. Furthermore, since solid-state welding is performed using plastic flow of metal due to frictional heat between the rotating tool and the welding member, joining can be performed without melting the joint. Further, since the heating temperature is low, deformation after bonding is small. Since the joint is not melted, there are many advantages such as fewer defects.
[0003]
Next, a rotary tool used for friction stir welding will be described. As disclosed in Patent Document 1, friction stir welding includes rotary tools of a probe type and a bobbin tool type, and a probe type tool applies frictional heat from a surface of a base material at a shoulder portion to a base material. Due to the mechanical agitation of the probe shaft that has penetrated into the pipe, the periphery of the probe shaft plastically flows, and in this state, the rotary tool is moved along the joining line, whereby the periphery of the joining line plastically flows along the joining line. The two materials are stirred and kneaded under pressure, and move to the rear side of the probe. As a result, the plastically flowed material loses frictional heat on the rear side and rapidly cools and solidifies, so both panel plates are joined together in a state where the materials are mixed together and completely integrated. In order to generate frictional heat during welding, it is necessary to press the rotating tool against the welding line, and therefore, a backing metal is used to cope with this reaction force. The backing metal is placed in close contact with the back surface of the face plate of the workpiece, and requires a large pressing force.
[0004]
In order to solve such a drawback, a rotary tool called a bobbin tool 1 has been proposed as shown in FIG.
As shown in FIG. 6, this tool is provided with a pair of shoulders 10 and 11 provided at regular intervals so as to sandwich the front and back surfaces of a metal plate to be joined, and agitating between the pair of upper and lower shoulders 10 and 11. Since the shaft 12 is provided, it is possible to generate frictional heat on both surfaces of the joint surface, and not only does the back surface side have poor fusion, but also receives mutual reaction force between the pair of upper and lower shoulders 10 and 11. Therefore, no backing money is required.
[0005]
There are various prior arts using such a bobbin tool. For example, in Japanese Patent Application Laid-Open No. 2002-263863 (Patent Document 2), a friction stir welding method that can easily form a welded portion in which burrs and internal defects are less likely to be generated. As shown in FIG. 7, a tool has been proposed. As shown in FIG. 7, a cylindrical tool body 40, a stirring pin 42 hanging down from near the center of the bottom surface of the tool body 40, A backing portion 41 formed on the bottom surface of the tool body 40 and an upper surface of the backing portion 41 facing the bottom surface of the tool body 40. The convex ridges 43 are arranged, and a ring-shaped convex portion 44 is formed on the bottom surface of the tool main body 40.
According to such an apparatus, the spiral ridge 43 of the tool body and the backing portion is inserted between the members to be joined together with the stirring pin and a pushing force is applied in the vicinity of the stirring pin 42, so that the force between the members to be joined is reduced. Internal defects can be prevented from being generated at the joints.
[0006]
However, such a conventional technique is excellent in deburring because the frictional heat input from the upper surface or lower surface of the base material is increased by the spiral ridge 43, but the axis of the stirring pin 42 is perpendicular to the base material surface. Therefore, when the stir area around the pin axis is necessarily small, and the joining gap (gap) is oblique or key-shaped, the conventional bobbin tool stirs the entire area. Furthermore, when joining a joint using the bobbin tool 10, a technique of performing friction stir welding by positioning a screw on a stirring shaft inserted into the joint is also disclosed in JP-A-2002-86281. Although disclosed in the official gazette (Patent Document 3), such a technique also increases the stirring amount only in the screw portion, but does not increase the stirring width particularly.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 7-5050590 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-238663 [Patent Document 3]
JP-A-2002-86281
[Problems to be solved by the invention]
In view of the drawbacks of the prior art, the present invention provides an arbitrary area for the stirring area of the base material when the base material is friction stir welded by using a bobbin tool in accordance with the shape of the joining portion of the base material and the state inside the base material. It is an object of the present invention to provide a friction stir welding apparatus and a joining method thereof capable of measuring the flexibility and smoothness of the friction stir welding according to the shape of the joining portion.
[0009]
[Means for Solving the Problems]
The present invention provides a friction stir welding apparatus having a bobbin tool including a back surface pressing member and a front surface pressing member, wherein the pressing portions are connected or opposed by a fixed or variable base material stirring shaft (probe shaft). The axis of the base material stirring shaft is disposed so as to be deflected or displaced with respect to the base material joining center vertical line located on the core axis of the pressing member, and the rotation of the base material stirring shaft is perpendicular to the base material joining center. It is characterized in that it is configured to make a revolving motion orbiting around a line.
[0010]
As a method invention for carrying out the invention, the friction stir welding method in which frictional heat input is applied from the front side and the back side, respectively, with the base material joint being interposed therebetween to perform joining by plastic flow of the joint, Along with the frictional heat input to the joining portion and the frictional heat input from the back side, the heat-joined portion is mechanically agitated by a revolving motion about a rotation drive axis of the base material stirring shaft. Stirring is performed in such a manner that the diameter portion having the largest revolution trajectory corresponds to the portion of the base material in which the stirring property is improved.
[0011]
The present invention will be specifically described.
When performing friction stir welding, the joining gap between the base materials is not necessarily perpendicular to the surface of the base material, and the joining gap is inclined or bent, as shown in FIGS. It may be.
In such a case, the reference center (the position of the sun) at which the agitating shaft revolves is the center of the drive shaft, that is, the base material joining center vertical line located on the center axes of the pressing members.
With such a configuration, the center of the revolving motion is the drive axis C, and therefore, even when the axis of the base material stirring shaft is arranged to be deflected or displaced, the rotational torque Can be rotated with regular rotation without becoming asymmetric. Therefore, according to this invention, the joining gap is inclined as shown in FIGS. 1 to 3 without being limited to the periphery of the base metal joining center perpendicular to the drive shaft as in the prior art. Even in the case of a key shape or a rectangular shape, the stirring area can be set by revolving motion so as to cover most of the joining area, so that reliable internal stirring and the joining area are widened and strong and reliable stirring joining is possible. Become.
[0012]
Further, the present invention is characterized in that the drive shaft of the stirring shaft is formed along a base metal joining vertical line, and the diameter of the drive shaft is configured to be larger than the maximum diameter of the revolving locus of the base material stirring shaft. I do.
[0013]
That is, since the shear stress (including the torsional torque) applied to the drive shaft during the rotation drive is a variable of (r / k) 2 , if the drive shaft diameter k is smaller than the maximum diameter r of the orbit, the shear stress ( Useless torque increases (including torsion torque), leading to breakage or cracking of the drive shaft. However, when the drive shaft diameter k is larger than the maximum diameter r of the revolving locus, the shear stress (torsion) applied to the revolving locus on the load side is increased. (Including torque) does not become larger than the drive shaft torque, and the viscous plastic flow such as friction stir welding does not cause breakage or cracking of the drive shaft and leads to suppression of rotation fluctuation, More uniform plastic flow becomes possible, which leads to improvement in joining quality.
[0014]
In the case of a probe-type tool, since the surface of the base material is regulated on one side, the surface of the base material is regulated. Flutters so as to rise from the surface of the base material.However, in the present invention, the base material front and back surfaces are regulated by the back surface pressing member and the surface pressing member sliding on the front and back surfaces of the base material. Since the revolving motion of the material agitation shaft is performed, such fluttering can be prevented, and the base material can be agitated by the revolving motion in a state where the agitating shaft is smoothly controlled on both upper and lower surfaces.
[0015]
When the revolving motion is performed in this manner, for example, the stirring shaft is inclined, bent or curved so that the portion of the stirring shaft corresponding to the portion in which the stirring property of the base material is improved is away from the drive axis in the radial direction. Configure. That is, in other words, the base material stirring shaft is inclined, bent, or curved in a direction away from the base material joining center vertical line or the drive axis in correspondence with a portion of the base material having improved stirring performance. And
[0016]
According to such a configuration, a wide range of agitation area can be set by a mere change in the mechanical shape of the agitation shaft, a reliable internal agitation and a bonding area are widened, and a strong and reliable agitation bonding is possible.
[0017]
Further, the present invention is characterized in that an axis formed by inclining, bending or bending the base material stirring shaft is disposed to intersect with a base material joining center vertical line or a drive axis.
[0018]
According to this invention, even if the rotary drive shaft is asymmetric, since the revolving parts of the stirring shaft are located on both sides of the rotary drive shaft, the direction in which shear stress (including torsion torque) is eliminated on both the left and right sides. To prevent the possibility of shaft breakage, and to suppress the rotation fluctuation.
[0019]
However, for example, when the stirring shaft rotates in a softened (like rice cake) temperature range of about 400 to 570 ° C. when the base material is aluminum, the effect of the present invention achieves an extremely excellent effect. However, in actual friction stir welding, since the back / surface pressing member for applying frictional heat input and the stirring shaft rotate synchronously, in other words, welding in a still solid state at 400 ° C. or lower is performed. The area must be revolved, not pivoted. This imposes a strong impact load and a large shear torque on the stirring shaft.
[0020]
Therefore, according to a preferred embodiment of the present invention, a heater is built in at least one of the back surface pressing member or the front surface pressing member, or a preheating means is built in front of the joining movement line. For example, in the friction stir welding method, the friction stir section is stirred in a state where the friction stir section has been heated in advance by heat energy different from preheating or friction imparting heat.
[0021]
According to this invention, the stirring shaft is rotated around the drive shaft, not the shaft rotation, by preheating the back surface or the front surface with a heat applying means other than frictional heat until the temperature reaches the temperature range where plastic flow is possible. Even if such a revolving motion is performed, friction stir welding can be performed smoothly without applying a strong impact load or shear torque to the stirring shaft.
Of course, these may be combined and preheated by both the frictional heat input and the heat application means other than the frictional heat until the temperature reaches the plastic flowable temperature range, and then the rise to the softening temperature range may be accelerated.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples.
[0023]
FIG. 1 shows a specific configuration of a bobbin tool portion of a friction welding device according to a first embodiment of the present invention. In the drawing, reference numeral 4 denotes a workpiece (base material) to be joined, for example, by abutting single skin panels to each other. It has a configuration.
The joint of the free end 2 of the base material 4 is L-shaped as shown in FIG. 1 (B), so that the joint 21 is fitted in a rectangular shape. This configuration reduces the bonding gap as compared with the case where the bonding surface is a vertical surface, and the position of the base material 4 is regulated by the rectangular portions 21A and 21B of the bonding portion on both front and back sides. This is because the upper and lower planes can easily come out.
[0024]
However, when such a fitting configuration is adopted, the lower joining line is shifted left and right with respect to the upper joining lines 21A and 21B, and all the upper and lower joining portions 21 areas are covered when the stirring shaft is rotated vertically. It is not possible to obtain a sufficient stirring area.
Therefore, as shown in FIG. 1 (A), in order to obtain a tapered stirring region 3 in which the diameter of the stirring shaft 12A is enlarged downward, the position of the lower axis of the upper cylindrical shoulder (upper pressing member) 10 (rotational driving axis line). The lower cylindrical shoulder (lower pressing member) 11 is connected to the upper surface off the axis of the lower cylindrical shoulder (lower pressing member) 11 while being obliquely inclined (at a predetermined angle). The inclination angle is set at a predetermined angle in accordance with the tapered stirring region 3.
[0025]
The bobbin tool-type rotary tool 1 is chucked by a shank portion 13, and the shank portion 13 is further connected to an upper taper shank portion by a machine main shaft 14 and integrally clamped by the main shaft 14. The diameter k of the main shaft 14 or the chuck portion that applies the rotational driving force to the base material is configured to be larger than the maximum diameter r of the revolving locus of the base material stirring shaft 12A.
[0026]
According to such a configuration, the main shaft 14 is rotated and joined in a state where the drive axis C / C of the main shaft 14 and the upper joining line 21A of the base material 4 are aligned, so that the front and back surfaces of the base material 4 are slid. Stirring of the base material 4 by revolving motion in a state where the front and back surfaces of the base material 4 are regulated by the moving back shoulder 10 and the front shoulder 11, in other words, with the upper and lower surfaces of the stirring shaft 12 </ b> A regulated. As a result, the stirring shaft 12A orbits around the drive axis C and revolves in a tapered shape to form a tapered stirring region 3, and all the regions including the upper and lower L-shaped joining lines 21A and 21B are formed. Securely joined.
[0027]
FIG. 2 shows a specific configuration of a bobbin tool portion of the friction welding device according to the first embodiment of the present invention. In the drawing, reference numeral 4 denotes a workpiece (base material) to be welded, for example, by abutting single skin panels. It has a configuration.
As shown in FIG. 2 (B), the joint 22 at the free end of the base material 4 has a stepped shape in which the vertical line at the middle position 22B coincides with the rotational drive axis C / C. 22A / 22B / 22C are fitted in a two-step rectangular shape. With such a fitting configuration, the lower and upper bonding lines 22A and 22C are respectively connected to the middle bonding line 22B. It is shifted to the left and right, and it is not possible to obtain a stirring area that can cover all the upper, middle, and lower areas by rotation of the axis with the vertical stirring axis.
[0028]
Therefore, as shown in FIG. 2A, the center of the center position of the stirring shaft 12B is set to the drive axis C / C (shoulder center line) in order to obtain the drum-shaped stirring region 3 whose diameter has been increased upward and downward, respectively. At the same time, it is bent from the position into a “U” shape, and is extended obliquely to the right side of the lower surface of the upper cylindrical shoulder 10 and the right side of the upper surface of the lower cylindrical shoulder 11 to extend to the surface off the axis. Has been established. The inclination angle is set to be a predetermined angle in accordance with the drum-shaped stirring area 3.
[0029]
The bobbin tool type rotary tool 1 is chucked by a shank portion 13, and the shank portion 13 is further connected to an upper taper shank portion by a machine main shaft 14 and integrally clamped by the main shaft 2. The diameter k of the main shaft 14 or the chuck portion that applies the rotational driving force to the base material is larger than the maximum diameter r of the revolution locus of the base material stirring shaft 12B.
[0030]
According to this configuration, the main shaft 14 is rotated and joined in a state where the drive axis C / C of the main shaft is aligned with the middle joining line 22B, so that the stirring shaft 12B is formed by the back shoulder 10 and the front shoulder 11. In a state where the upper and lower surfaces are regulated, the base material can be agitated by the revolving motion. As a result, the agitating shaft 12B revolves around the driving axis C / C in an up-and-down and spreading manner in a drum shape. The stirring region 3 is formed, and all the regions including the joining lines 22A and 22C shifted vertically and horizontally from the middle stage 22B are securely joined.
[0031]
FIG. 3 shows a specific configuration of a bobbin tool portion of a friction welding device according to a third embodiment of the present invention. In the drawing, reference numeral 4 denotes a workpiece (base material) to be welded, for example, by abutting single skin panels to each other. The configuration is the same as in the above embodiment.
As shown in FIG. 3 (B), the joint 23 at the free end of the base material 4 has a structure in which the center position of the base material 4 is unevenly fitted in a “ku” shape so that the center position is farthest from the rotation drive axis C / C. With such a fitting configuration, the upper and lower surfaces are easily aligned in the same manner as in the above two embodiments, and the fitting portion has a wedge-like shape. In addition, the two panels can be easily joined in the same plane simply by approaching each other in the face plate direction.
[0032]
Therefore, as shown in FIG. 3 (A), in order to obtain a spherical stirring area 3 bulging from the upper side and the lower side to the center side, the center of the lower surface of the upper cylindrical shoulder 10 and the lower cylinder are positioned on the axis of the stirring shaft 12C. A bent stirrer shaft 12C is provided in which the center of the lower surface of the shoulder 11 is aligned and the center of the center position of the stirrer shaft 12C is bent in a "<" shape in the direction farthest from the drive axis C / C. It is set at a predetermined angle in accordance with the spherical stirring area.
The diameter k of the main shaft 14 or the chuck portion that applies the rotational driving force to the rotary tool 1 is configured to be larger than the maximum diameter r of the revolving locus of the base material stirring shaft 12C.
[0033]
According to this configuration, by joining the main shaft 14 by rotating the main shaft 14 in a state where the drive axis of the main shaft 14 is aligned with the center line of the back shoulder 11 and the front shoulder 10, the back shoulder 11 and the front shoulder 10 can be used. While the upper and lower surfaces of the stirring shaft 12C are regulated, the base material can be stirred by the revolving motion. As a result, the stirring shaft 12C revolves in a spherical shape that expands in the center around the drive axis, and the spherical stirring area. Is formed, and all the regions including the joining lines shifted up and down and left and right from the middle stage are securely joined.
[0034]
According to the present embodiment, as described above, for example, when the base material is aluminum, the stirring shafts 12A to 12C rotate in a temperature range of about 400 to 570 ° C. in a softened state (like a rice cake). The effect of the present invention achieves an extremely excellent effect if it is provided, but in actual friction stir welding, generally, the back / surface shoulders 10 and 11 which apply frictional heat input and the stirring shafts 12A to 12C are synchronized. In order to rotate, in other words, the joining area in the solid state at room temperature must revolve rather than rotate. This imposes a strong impact load and a large shear torque on the stirring shaft.
[0035]
Therefore, according to the present embodiment, the problem is solved by disposing a preheating means in front of the joining movement line.
FIG. 4 shows a book provided with a high-frequency induction heating device 31 arranged above and below a base material at a front position on a joining line, and a post-cooling stage 32 for cooling the remaining position affected by heat after joining by the friction stir welding. FIG. 3 is a configuration diagram of an embodiment of the invention.
[0036]
The preheating device 31 has a magnetic flux bar 31b disposed between a pair of disks 31a provided above and below, and a coil 31c is wound therearound to generate a high-frequency heating coil.
In the high-frequency induction heating, magnetic flux penetrates through the base material 4, an eddy current flows through the electromagnetic induction, and Joule heat is generated by the current and the resistance of the metal itself. The range can be easily controlled by the strength of the magnetic field and the alternation cycle, that is, the output / frequency, and because of self-heating, rapid heating is possible and the controllability is good. Therefore, the temperature can be controlled to a temperature of 200 to 400 ° C., preferably 300 to 400 ° C. or lower, which is lower than the softening point of aluminum. As a result, friction stir welding can be performed in a temperature range close to the softened state after high-frequency heating, and is strong against the stirring shaft of the revolving motion. The life of the rotary tool 1 can be extended without applying an impact load or a large shear torque.
[0037]
A DC terminal 33a is fixed on the outer periphery of the shoulders 10 and 11 of the rotary tool as if it slides on the peripheral surface of the shoulder, and a DC power supply 33 controlled by a controller 35 is applied. . As a result, the application of the voltage of the DC power supply 33 causes the agitating shafts 12A to 12C to become deformation resistance, and plastic flow due to electric contact resistance is promoted.
The temperature of the temperature of the resistance heating joining position captures the temperature T 1 of the joint position immediately before the temperature T 2 and immediately from the control device 35, the softening temperature optimum four hundred fifty to five hundred sixty ° C., preferably to a temperature of 460-480 ° C. As described above, the DC voltage can be controlled, whereby the revolving motion of the stirring shafts 12A to 12C and plastic fluidization due to electric contact resistance are promoted, and the life of the rotary tool 1 can be extended.
[0038]
Further, in this embodiment, after the joining by the friction stir welding, a cooling device 32 is provided for cooling the position where the thermal influence remains behind the joining position.
As a result, cooling and solidification of the portions joined by the stir welding are quickly performed, and a joined product in a good joining state without generation of thermal deformation and residual stress can be obtained.
The cooling device 32 may use a cylindrical cooling body through which a refrigerant circulates, or may inject a cooled non-oxidizing gas onto the surface of the workpiece, and further include a liquid refrigerant injection unit. may be used, control of the refrigerant quantity is performed well, with the refrigerant control circuit 34 based on a signal from the control device 5 that both incorporate temperature T 1 of the immediately following bonding position be further using latent cooling means .
By controlling the lubrication amount of the refrigerant in accordance with the joining position, the temperature detection signal behind the joining direction, the joining speed, or the joining distance, the joint has no thermal deformation or residual stress, and has no thermal distortion. A small and good bonded product can be obtained.
[0039]
FIG. 5 shows a heating means other than the friction stir heat on the welding position, and a means for cooling the remaining thermal influence position behind the welding position after the welding by the friction stir welding, and controlling these parts. It is a 2nd control block diagram.
This embodiment, the heating means to the rotating tool 1 shown in FIGS. 1-3, in this embodiment, the surface temperature sensor T 2 of the immediately preceding joining position by a heater 80 on the rear surface of the shoulder 10, 11 If the temperature immediately before the joining position is considerably lower than the softening point, the heater control circuit 38 supplies electric power to the heater 80 to perform heating control. By controlling the amount of heating by controlling the voltage of the heater 80 by the control circuit 38 in response to the temperature sensor T 2 signal immediately before the joining position, and the tool 1 is rotated at 200 to 400 ° C., stirring shaft Even if a revolving motion is performed such that the shafts 12A to 12C orbit around the main shaft 14 (FIGS. 1 to 3) instead of rotating, friction stir welding can be performed smoothly without applying a strong impact load or shear torque to the stirring shaft. It can be carried out.
Of course, these may be combined and preheated by both the frictional heat input and the heat application means other than the frictional heat until the temperature reaches the plastic flowable temperature range, and then the rise to the softening temperature range may be accelerated.
[0040]
【The invention's effect】
As described above, according to the present invention, when friction stir welding is performed on a base material using a bobbin tool, the stirring region of the base material is changed to an arbitrary region in accordance with the shape of the joining portion of the base material and the state inside the base material. The friction stir welding can be made flexible and smooth according to the shape of the welding portion.
Especially when skin panels used for manufacturing wide panels such as side structures, floor structures, and roof structures when manufacturing large structures such as vehicles, aircraft, and ship buildings are joined by friction stir welding using bobbin tools. It is possible to obtain a flat joint surface in which the joints are securely joined, the joining gap is not leaked, and the surface of the joint is flat.
[Brief description of the drawings]
FIGS. 1A and 1B show a specific configuration of a bobbin tool portion of a friction welding device according to a first embodiment of the present invention, wherein FIG. 1A shows a bobbin tool, and FIG.
FIGS. 2A and 2B show a specific configuration of a bobbin tool portion of a friction welding device according to a second embodiment of the present invention, wherein FIG. 2A shows a bobbin tool, and FIG.
3A and 3B show a specific configuration of a bobbin tool portion of the friction welding device according to the first embodiment of the present invention, wherein FIG. 3A shows a bobbin tool, and FIG.
FIG. 4 shows a heat input means by self-heating such as high-frequency induction heating at a front position on a joining line using a bobbin tool according to an embodiment of the present invention, and is applied to a base material side from a small diameter portion of a rotary tool at a joining position. FIG. 4 is a control configuration diagram of the present invention including a unit for cooling the position where the thermal effect remains behind the welding position after the electrical resistance heating and the welding by the friction stir welding.
FIG. 5 is a view showing a heating means other than friction stir heat at a welding position using a bobbin tool according to an embodiment of the present invention, and after welding by the friction stir welding, a heat affected remaining position behind the welding position is cooled. It is a 2nd control block diagram of the present invention including means and performing these controls. It is the whole schematic which shows the 3rd example of the friction stir welding apparatus comprised so that the pressing force of both front and back sides or the rotation speed of a shoulder could be controlled independently.
FIG. 6 is a basic configuration diagram of a bobbin tool of friction stir welding according to the related art.
FIG. 7 is a configuration diagram of a bobbin tool according to another related art.
[Explanation of symbols]
11 bobbin tool 11 back side shoulder 10 front side shoulders 12A, 12B, 12C Stirring shafts 13, 14 Rotary drive unit

Claims (9)

裏面押圧部材と表面押圧部材を備え、該押圧部間が固定若しくは可変の母材攪拌軸(プローブ軸)により連結若しくは対峙されてなるボビンツールを有する摩擦攪拌接合装置において、
前記両押圧部材の心軸上に位置する攪拌軸の駆動軸線に対し、前記母材攪拌軸の軸線が変向若しくは変位させて配設され、該母材攪拌軸の回転運動が母材接合中心垂直線を中心として周回する公転運動をなすように構成したことを特徴とする摩擦攪拌接合装置。
A friction stir welding apparatus having a bobbin tool including a back pressing member and a front pressing member, wherein the pressing portions are connected or opposed by a fixed or variable base material stirring shaft (probe shaft),
The axis of the base material stirring shaft is disposed so as to be deviated or displaced with respect to the drive axis of the stirring shaft located on the center axes of the two pressing members, and the rotational movement of the base material stirring shaft is caused by the rotation of the base material joining center. A friction stir welding apparatus characterized by being configured to make a revolving motion orbiting around a vertical line.
請求項1記載の摩擦攪拌接合装置において、
前記攪拌軸の駆動軸が母材接合垂直線に沿って形成されており、該駆動軸の直径を母材攪拌軸の公転軌跡の最大直径より大に構成したことを特徴とする摩擦攪拌接合装置。
The friction stir welding apparatus according to claim 1,
A friction stir welding apparatus, wherein a drive shaft of the stirring shaft is formed along a vertical line of the base material joining shaft, and a diameter of the drive shaft is configured to be larger than a maximum diameter of a revolution locus of the base material stirring shaft. .
請求項1若しくは2記載の摩擦攪拌接合装置において、
前記母材攪拌軸が、母材の攪拌性向上部位と対応させて母材接合中心垂直線若しくは駆動軸線より遠ざかる方向に傾斜、折曲若しくは湾曲させていることを特徴とする摩擦攪拌接合装置。
The friction stir welding apparatus according to claim 1 or 2,
A friction stir welding apparatus, wherein the base material stirring shaft is inclined, bent or curved in a direction away from a base material joining center vertical line or a drive axis in correspondence with a portion of the base material in which the stirring property is improved.
請求項1、2、若しくは3記載の摩擦攪拌接合装置において、
前記母材攪拌軸を傾斜、折曲若しくは湾曲させてなる軸線が、母材接合中心垂直線若しくは駆動軸線と交差して配設されていることを特徴とする摩擦攪拌接合装置。
The friction stir welding apparatus according to claim 1, 2, or 3,
A friction stir welding apparatus, wherein an axis formed by inclining, bending, or bending the base material stirring shaft is disposed to intersect a base material joining center vertical line or a drive axis.
前記裏面押圧部材若しくは前記表面押圧部材の少なくとも1つにヒータを内蔵するか若しくは接合移動線の前方に予熱手段が内蔵されていることを特徴とする請求項1記載の摩擦攪拌接合装置。The friction stir welding apparatus according to claim 1, wherein a heater is built in at least one of the back surface pressing member and the front surface pressing member, or a preheating means is built in front of a welding movement line. 母材接合部を挟んでその表面側と裏面側より夫々摩擦入熱を加えてその接合部の塑性流動により接合を行う摩擦攪拌接合方法において、
前記表面側よりの接合部への摩擦入熱と前記裏面側よりのへの摩擦入熱とともに、該入熱された接合部位が母材攪拌軸の回転駆動軸線を中心とする公転運動により機械攪拌され、該公転軌跡の最も大きい直径部位を、母材の攪拌性向上部位と対応させて攪拌を行うことを特徴とする摩擦攪拌接合方法。
In the friction stir welding method of joining by the plastic flow of the joint by applying frictional heat input from the front side and the back side, respectively, across the base metal joint,
Along with the frictional heat input to the joint from the front side and the frictional heat input to the back side, the heat-joined portion is mechanically stirred by the revolving motion about the rotation drive axis of the base material stirring shaft. And a stirrer that stirs a portion having the largest diameter of the revolution trajectory with a portion of the base material having improved stirrability.
母材接合部を挟んでその表面側と裏面側より夫々摩擦入熱を加えてその接合部の塑性流動により接合を行う摩擦攪拌接合方法において、
前記摩擦攪拌部位が前もって予熱若しくは摩擦付与熱と別異の熱エネルギにより加熱されている状態で攪拌されていることを特徴とする請求項6記載の摩擦攪拌接合方法。
In the friction stir welding method of joining by the plastic flow of the joint by applying frictional heat input from the front side and the back side, respectively, across the base metal joint,
7. The friction stir welding method according to claim 6, wherein the friction stir section is stirred in a state where the friction stir section is previously heated by heat energy different from preheating or friction imparting heat.
請求項6若しくは7記載の摩擦攪拌接合方法において、
前記母材表裏両面を摺動する裏面押圧部材と表面押圧部材とにより母材表裏両面側を面規制させた状態で、母材攪拌軸の公転運動を行うことを特徴とする摩擦攪拌接合方法。
The friction stir welding method according to claim 6 or 7,
A friction stir welding method, wherein a revolving motion of a base material stirring shaft is performed in a state where the front and back surfaces of the base material are regulated by a back surface pressing member and a front surface pressing member that slide on the front and back surfaces of the base material.
請求項6、7、若しくは8記載の摩擦攪拌接合方法において、
前記裏面側若しくは表面側を塑性流動可能な温度域に達するまでの間に摩擦熱以外の熱付与手段で予熱して接合を行うことを特徴とする摩擦攪拌接合方法。
The friction stir welding method according to claim 6, 7, or 8,
A friction stir welding method characterized in that welding is performed by preheating the back side or the front side by a heat applying means other than frictional heat until the temperature reaches a temperature range in which plastic flow is possible.
JP2002374485A 2002-12-25 2002-12-25 Friction stir welding equipment using bobbin tool and its joining method Expired - Fee Related JP4326214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374485A JP4326214B2 (en) 2002-12-25 2002-12-25 Friction stir welding equipment using bobbin tool and its joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374485A JP4326214B2 (en) 2002-12-25 2002-12-25 Friction stir welding equipment using bobbin tool and its joining method

Publications (2)

Publication Number Publication Date
JP2004202536A true JP2004202536A (en) 2004-07-22
JP4326214B2 JP4326214B2 (en) 2009-09-02

Family

ID=32812495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374485A Expired - Fee Related JP4326214B2 (en) 2002-12-25 2002-12-25 Friction stir welding equipment using bobbin tool and its joining method

Country Status (1)

Country Link
JP (1) JP4326214B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061510A (en) * 2008-12-25 2009-03-26 Nippon Sharyo Seizo Kaisha Ltd Tool for friction stir joining
JP2011067835A (en) * 2009-09-25 2011-04-07 Fujitsu Ltd Method of working metal and tool for forming boss
US7931185B2 (en) * 2007-09-27 2011-04-26 European Aeronautic Defence And Space Company Eads France Double-shouldered welding device for the friction stir welding of parts, and welding method
CN102848072A (en) * 2012-09-17 2013-01-02 江苏科技大学 Double-shaft-shoulder stirring friction head comprising lower shaft shoulder at adjustable position
JP2013094790A (en) * 2011-10-28 2013-05-20 Reizu Eng:Kk Friction stir welding method, friction stir welded article, and friction star welding tool
WO2014132335A1 (en) * 2013-02-26 2014-09-04 株式会社 日立製作所 Friction stir welding device and welding method
CN114309917A (en) * 2022-01-11 2022-04-12 大连交通大学 Butt-joint friction stir welding method for same/different materials
CN114985898A (en) * 2022-07-06 2022-09-02 重庆理工大学 Friction stir welding method for dissimilar metal inclined plane butt joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196890B2 (en) 2009-10-05 2015-11-24 Samsung Sdi Co., Ltd. Battery module with welded portion between terminals

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7931185B2 (en) * 2007-09-27 2011-04-26 European Aeronautic Defence And Space Company Eads France Double-shouldered welding device for the friction stir welding of parts, and welding method
JP2009061510A (en) * 2008-12-25 2009-03-26 Nippon Sharyo Seizo Kaisha Ltd Tool for friction stir joining
JP2011067835A (en) * 2009-09-25 2011-04-07 Fujitsu Ltd Method of working metal and tool for forming boss
JP2013094790A (en) * 2011-10-28 2013-05-20 Reizu Eng:Kk Friction stir welding method, friction stir welded article, and friction star welding tool
CN102848072A (en) * 2012-09-17 2013-01-02 江苏科技大学 Double-shaft-shoulder stirring friction head comprising lower shaft shoulder at adjustable position
WO2014132335A1 (en) * 2013-02-26 2014-09-04 株式会社 日立製作所 Friction stir welding device and welding method
CN114309917A (en) * 2022-01-11 2022-04-12 大连交通大学 Butt-joint friction stir welding method for same/different materials
CN114985898A (en) * 2022-07-06 2022-09-02 重庆理工大学 Friction stir welding method for dissimilar metal inclined plane butt joint
CN114985898B (en) * 2022-07-06 2023-07-18 重庆理工大学 Friction stir welding method for butt joint of dissimilar metal inclined planes

Also Published As

Publication number Publication date
JP4326214B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4317685B2 (en) Friction stir welding apparatus and joining method thereof
US7568608B1 (en) Ultrasonic stir welding process and apparatus
JP2001314983A (en) Method of spot joining and spot jointing apparatus
CN104014926B (en) Aclinal is from upset agitating friction welding method and instrument
JP3740125B2 (en) Friction stir welding apparatus and joining method thereof
US20110132968A1 (en) Friction stir welding method
EP1844890B1 (en) Friction stirring welding method of joining a plated metal member to another metal member with preheating the plating before stir welding
JP2004202536A (en) Friction stir welding apparatus and method using bobbin tool
KR20010052329A (en) Friction stir welding tool
US6227432B1 (en) Friction agitation jointing method of metal workpieces
JPH1110366A (en) Method and device of friction stirring joining
JP5022502B2 (en) Friction stir welding equipment
JP2004141898A (en) Friction stirring and joining method and device
US20230158599A1 (en) Joining method
CN109926710A (en) A kind of back penetrates and the Friction Stir Welding device of Ultrasonic probe support auxiliary
JP2002120076A (en) Spot joining apparatus and method
CN108687439B (en) Friction stir welding device and method, and friction stir welding control device
US8220694B2 (en) Friction stir welding method and friction stir welded housing
JP2004174508A (en) Friction stir welding device, welding tool, and friction stir welding method
JP2003181654A (en) Friction stir welding device
JP3081817B2 (en) Friction stir welding between dissimilar metal workpieces
JP2004174507A (en) Friction stir welding device, and friction stir welding method
JP3911232B2 (en) Friction stir welding equipment
JP2006192452A (en) Metal treatment method, rotary tool, metal treatment device, and metal surface refining method
JP3463671B2 (en) Joining method and apparatus using friction stirring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A131 Notification of reasons for refusal

Effective date: 20081027

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081226

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees