JP2004124271A - Polyester conjugated multifilament fiber and method for producing the same and woven or knitted fabric thereof - Google Patents

Polyester conjugated multifilament fiber and method for producing the same and woven or knitted fabric thereof Download PDF

Info

Publication number
JP2004124271A
JP2004124271A JP2002285944A JP2002285944A JP2004124271A JP 2004124271 A JP2004124271 A JP 2004124271A JP 2002285944 A JP2002285944 A JP 2002285944A JP 2002285944 A JP2002285944 A JP 2002285944A JP 2004124271 A JP2004124271 A JP 2004124271A
Authority
JP
Japan
Prior art keywords
fiber
polyester
temperature
multifilament fiber
undrawn yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002285944A
Other languages
Japanese (ja)
Other versions
JP3802471B2 (en
JP2004124271A5 (en
Inventor
Hideyasu Terao
寺尾 秀康
Yoshinori Kawashima
川島 能則
Hideo Sakakura
坂倉 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Mitsubishi Rayon Textile Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Mitsubishi Rayon Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Mitsubishi Rayon Textile Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002285944A priority Critical patent/JP3802471B2/en
Publication of JP2004124271A publication Critical patent/JP2004124271A/en
Publication of JP2004124271A5 publication Critical patent/JP2004124271A5/ja
Application granted granted Critical
Publication of JP3802471B2 publication Critical patent/JP3802471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester conjugated multifilament fiber having a natural appearance without localizing a deep-colored part and a light-colored part when formed into a fabric and imparting a sufficient fullness feeling and stretchability and to provide a woven or a knitted fabric thereof. <P>SOLUTION: The conjugated multifilament fiber is obtained by joining two kinds of polyester polymers having different melt viscosities and comprises each single filament constituting the multifilament fiber having thick and thin unevenness in the fiber axis direction. The fiber is characterized as follows. The ratio of single fiber diameter of the thickest single fiber to the thinnest single fiber in an optional cross section in the multifilament fiber is 1.2-2.4. The coefficient of variation (CV) of the thickness unevenness as the multifilament fiber is 0.30-1.20 and the percentage crimp (CC) is 20-45%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、織編物にストレッチ性と良好な膨らみ感を与えるポリエステル複合マルチフィラメント繊維及びその製造方法並びにその織編物に関する。
【0002】
【従来の技術】
従来より、溶融粘度の異なる2種の熱可塑性ポリマーを同一吐出孔より吐出する複合紡糸により接合型複合繊維糸とし、熱処理によりスパイラル型クリンプを発現させ捲縮型ストレッチ糸とすることが知られており、該繊維による布帛はストレッチ性、深みのある色彩を得ることが知られている。
【0003】
また、特許文献1には、溶融粘度の異なる2種のポリエステルからなる接合型複合糸に太細斑を付与し、織編物にストレッチ性と太細スラブ調外観を与える複合繊維が記載されている。
【0004】
しかしこの方法では、マルチフィラメント繊維長手方向に単繊維の高配向の細部と低配向の太部が局在化して存在する構造となるため、染色により濃色部と淡色部が局在化し、スラブ調の外観を得るには良いが、ナチュラルな外観を得ることは困難であり、また、太部と細部が局在化して存在しているため、織編物全体としての膨らみ感も不十分である。
【0005】
【特許文献1】特開2000−160443号公報
【0006】
【発明が解決しようとする課題】
本発明は、かかる従来技術の欠点を解決するものであって、布帛としたときに濃色部と淡色部が局在化せずにナチュラルな外観を呈し、十分な膨らみ感とストレッチ性を付与するポリエステル複合マルチフィラメント繊維およびその織編物を提供する。
【0007】
【課題を解決するための手段】
本発明の第一の要旨は、溶融粘度の異なる2種のポリエステルポリマーを接合した複合マルチフィラメント繊維であって、マルチフィラメント繊維を構成する単繊維が繊維軸方向に太細斑を有し、マルチフィラメント繊維中の任意の断面における最も太い単繊維と最も細い単繊維の単繊維径の比が1.2〜2.4であり、マルチフィラメント繊維としての太さ斑の変動係数(CV)が0.30〜1.20、捲縮率(CC)が20〜45%であることを特徴とするポリエステル複合マルチフィラメント繊維にある。
【0008】
本発明の第2の要旨は、下記の式(1)を満足するポリエステル(A)とポリエステル(B)とを、2500m/分以下の引取速度で紡糸した接合型複合繊維の未延伸糸を、下記の式(2)〜(6)を満足する条件下で加熱ローラー延伸することを特徴とするポリエステル複合マルチフィラメント繊維の製造方法にある。
【0009】
[η]A−[η]B>0.145       (1)
MDR×0.45≦DR1≦MDR×0.65 (2)
1.000≦DR2≦1.300       (3)
DR1>DR2               (4)
Tg≦TDR1≦Tc            (5)
Tg+20℃≦TDR2≦Tc        (6)
(但し、式中、[η]A、[η]B、はそれぞれA、Bのポリマーの固有粘度、MDRは延伸温度85℃における未延伸糸の最大延伸倍率を表す。DR1は1段目延伸倍率、DR2は2段目延伸倍率、TDR1は1段目延伸におけるローラー温度、TDR2は2段目延伸における熱セット温度、Tgは未延伸糸のガラス転移温度(℃)、Tcは未延伸糸の結晶化温度(℃)を示す。なお、複合繊維の未延伸糸の結晶化温度、ガラス転移温度がそれぞれ2点測定される場合は、低い方の温度を結晶化温度、高い方の温度をガラス転移温度とする)
本発明の第3の要旨は、本発明のポリエステル複合マルチフィラメント繊維を含み、織物収縮率(LC)が20〜40%であることを特徴とする織編物にある。
【0010】
【発明の実施の形態】
以下、本発明の好適な実施の形態について具体的に説明する。
【0011】
本発明のポリエステル複合マルチフィラメント繊維は、布帛とした際にストレッチ性を発現させるために、溶融粘度の異なる2種のポリエステルポリマーを接合した複合マルチフィラメント繊維であることが必要である。
【0012】
該複合マルチフィラメント繊維を構成するポリエステルポリマーは、複合繊維としたときに良好なストレッチ性を得るため、溶融粘度の異なる組合せであればどのような組合せでも良く、同一ポリマーであっても低粘度品と高粘度品の組合せであれば良い。粘度の異なる一方の成分であるポリエステルは高粘度で高収縮成分として作用し、他方の成分であるポリエステルは低粘度で低収縮成分として作用する。
【0013】
また、溶融粘度の異なる2種のポリエステルポリマーのうち高粘度成分が、第三成分を5〜15モル%共重合させた共重合ポリエチレンテレフタレートが好ましい。
【0014】
第三成分が5モル%未満では捲縮発現力が十分得られにくく、15モル%を超えると融点低下が著しく複合紡糸自体が困難になるだけでなく、捲縮発現力も不十分となりやすい。
【0015】
第三成分としては、テレフタル酸成分以外の芳香族ジカルボン酸、脂肪族ジカルボン酸等の酸成分、エチレングリコール成分以外の脂肪族ジオール、脂環式ジオール、芳香族ジオール等のジオール成分が挙げられ、具体的には、イソフタル酸、アジピン酸、セバシン酸、1,4−ブタンジオール、シクロヘキサンジオール、ビスフェノールAエチレンオキシド付加物、スルホイソフタル酸金属塩、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン等が挙げられ、特にイソフタル酸、アジピン酸、スルホイソフタル酸金属塩、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパンが好ましいものして挙げられる。これらの第三成分は単独或いは2種以上の組み合わせであってもよい。
【0016】
さらに本発明の溶融粘度の異なる2種のポリエステルポリマーの接合は、複合繊維としたときに良好なストレッチ性が発現する接合であればいかなる接合形態でも良い。好ましくはサイドバイサイド型または偏芯芯鞘型などが用いられ、より好ましくはサイドバイサイド型が高度なストレッチ性を得るために用いられる。
【0017】
また本発明では、マルチフィラメント繊維を構成する単繊維が繊維軸方向に太細斑を有し、マルチフィラメント繊維中の任意の断面における最も太い単繊維と最も細い単繊維の単繊維径の比が1.2〜2.4であり、マルチフィラメント繊維としての太さ斑の変動係数(CV)が0.30〜1.20、捲縮率(CC)が20〜45%であることが必要である。
【0018】
単繊維の繊維軸方向に太部と細部が混在することにより、単繊維長手方向に配向度の差が生じ、仮撚、混繊、染色などの後加工において熱処理を施した際に単繊維内に収縮差を生じ、膨らみ感が得られる。
【0019】
マルチフィラメント繊維中の任意の断面における最も太い単繊維と最も細い単繊維の単繊維径の比は1.2〜2.4が必要である。太細比の下限は1.2以上、より好ましくは1.3以上が良い。上限は2.4以下、より好ましくは1.8以下が良い。
【0020】
太細比の下限が1.2未満であると単繊維の繊維軸長手方向に、太部と細部の単繊維繊度差が小さいため太部、細部の配向度差による構造斑に起因した捲縮形態差が得難く、布帛にした際のふくらみ感が不足する。また、上限が2.4を超えると単繊維の太部と細部の配向度差が大きいため、太部と細部の伸度差が大きくなり、製糸する際に糸切れなど工程安定性上の問題がある。
【0021】
糸全体としての太さ斑の変動係数(CV)は、下限が0.30以上、より好ましくは0.35以上、上限が1.20以下、より好ましくは1.0以下が良い。下限が0.3未満であると、マルチフィラメント内の単繊維径の太細差が小さくなるため、単繊維間での捲縮形態差が小さくなり本発明の目的とする膨らみ感を得ることができなくなる。
【0022】
上限が1.20を超えると仮撚、混繊、染色などの後加工において熱処理を施した際に、マルチフィラメント繊維として、糸条長手方向に太部と細部が局在化し、マルチフィラメント繊維の太部の収縮が著しく粗忽な繊維になり、太部と細部の伸度差が大きいため製糸する際に糸切れなど工程安定性上の問題が発生する。
【0023】
さらに染色した際に、スラブ調外観を呈した太細が発生し、太部と細部が局在化することで収縮部が集中するため本発明の目的とする自然な外観と膨らみを呈する繊維を得ることができない。
【0024】
また本発明では、捲縮率(CC)が20〜45%であることが必要である。CCが20%未満であると十分なストレッチ性を得ることができない。45%を超えると織編物とした際の形態が安定しない。
【0025】
さらに、本発明のポリエステル複合マルチフィラメント繊維は、好ましくは伸度(DE)の下限が30%以上、より好ましくは35%以上、上限は70%以下、より好ましくは60%以下が望ましい。伸度が70%を超えると、織編物としたときに十分な捲縮が発現しにくく、満足すべきストレッチ性能を得ることができにくい。また30%未満では、単繊維の繊維軸方向に太細斑の発現が不足しやすく、満足すべき目的とする膨らみ効果を得ることが困難となりやすい。
【0026】
次に本発明の、ポリエステル複合マルチフィラメント繊維の製造法について詳細に説明する。
【0027】
本発明では、下記の式(1)を満足するポリエステル(A)とポリエステル(B)とを、2500m/分以下の引取速度で紡糸した接合型複合繊維の未延伸糸を、下記の式(2)〜(6)を満足する条件下で加熱ローラー延伸することが必要である。
【0028】
[η]A−[η]B>0.145       (1)
MDR×0.45≦DR1≦MDR×0.65 (2)
1.000≦DR2≦1.300       (3)
DR1>DR2               (4)
Tg≦TDR1≦Tc            (5)
Tg+20℃≦TDR2≦Tc        (6)
(但し、式中、[η]A、[η]B、はそれぞれA、Bのポリマーの固有粘度、MDRは延伸温度85℃における未延伸糸の最大延伸倍率を表す。DR1は1段目延伸倍率、DR2は2段目延伸倍率、TDR1は1段目延伸におけるローラー温度、TDR2は2段目延伸における熱セット温度、Tgは未延伸糸のガラス転移温度(℃)、Tcは未延伸糸の結晶化温度(℃)を示す。なお、複合繊維の未延伸糸の結晶化温度、ガラス転移温度がそれぞれ2点測定される場合は、低い方の温度を結晶化温度、高い方の温度をガラス転移温度とする)
ポリエステル(A)とポリエステル(B)の固有粘度の差は0.145より大きいことが必要である。粘度の異なるの一方の成分であるポリエステル(A)は高粘度で高収縮成分として作用し、他方の成分であるポリエステル(B)は低粘度で低収縮成分として作用する。固有粘度の差が0.145以下の場合、ポリエステル(A)とポリエステル(B)の収縮差が小さく、捲縮の発現が不足しストレッチ性能が得られない。
【0029】
また、溶融粘度の異なる2種のポリエステルポリマーのうち高粘度成分が、第三成分を5〜15モル%共重合させた共重合ポリエチレンテレフタレートが好ましい。
【0030】
第三成分が5モル%未満では捲縮発現力が十分得られにくく、15モル%を超えると融点低下が著しく複合紡糸自体が困難になるだけでなく、捲縮発現力も不十分となりやすい。
【0031】
第三成分としては、テレフタル酸成分以外の芳香族ジカルボン酸、脂肪族ジカルボン酸等の酸成分、エチレングリコール成分以外の脂肪族ジオール、脂環式ジオール、芳香族ジオール等のジオール成分が挙げられ、具体的には、イソフタル酸、アジピン酸、セバシン酸、1,4−ブタンジオール、シクロヘキサンジオール、ビスフェノールAエチレンオキシド付加物、スルホイソフタル酸金属塩、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン等が挙げられ、特にイソフタル酸、アジピン酸、スルホイソフタル酸金属塩、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパンが好ましいものして挙げられる。これらの第三成分は単独或いは2種以上の組み合わせであってもよい。
【0032】
さらに本発明の溶融粘度の異なる2種のポリエステルポリマーの接合は、複合繊維としたときに良好なストレッチ性が発現する接合であればいかなる接合でも良い。好ましくはサイドバイサイド型または偏芯芯鞘型などが用いられ、より好ましくはサイドバイサイド型が高度なストレッチ性を得るために用いられる。
【0033】
複合紡糸に際してのポリエステル(A)/ポリエステル(B)の接合比(重量比)Wは、複合繊維の形態下で捲縮発現力を与えるうえで4/6<W<6/4が好ましい。接合比が上記範囲外では製糸性が低下しやすく、複合繊維の形態下での捲縮発現力も不足しやすい。
【0034】
また本発明では、ポリエステル(A)とポリエステル(B)を複合紡糸するときの紡糸時の引取速度は、未延伸糸の配向度を低く抑え、延伸工程で繊維軸方向の太細斑の形成を容易にするために2500m/分以下とすることが必要である。引取速度が2500m/分を超えると、未延伸糸の配向度が高くなり、太細斑の形成が困難となる。
【0035】
未延伸糸の延伸は、前記式(2)〜(6)を満足する条件で、加熱ローラーで2段延伸することが必要である。
【0036】
DR1がMDR×0.45未満では、十分な捲縮発現力が得られず、MDR×0.65を超えると、マルチフィラメント繊維の単繊維間に太細斑の形成が困難となり、本発明の目的とする膨らみ間を得ることが困難となる。
【0037】
DR2が1.000未満であると、DR1で形成された単繊維間の太細斑が局在化されスラブ調の外観になり、1.300を超えても同様に太細斑が局在化するため単繊維間に太細斑が分散せず、目的とする膨らみが得られない。
【0038】
さらに本発明ではDR1>DR2であることが必要である。DR2がDR1を超える場合DR1で形成された単繊維間の太細斑が延伸により局在化するため、スラブ調の外観となり、単繊維間に太細斑を分散させて膨らみを発現させることが困難となる。
【0039】
TDR1はTg≦TDR1≦Tcであり、かつ前述の式(2)の条件により未延伸糸の延伸のネック点発生が1段目延伸ローラー上に存在することでネック点が分散し単繊維間で太細のバラツキを発生させることができる。
【0040】
TDR1がTg未満、またはTcを超えると延伸のネック点発生の分散性不良となり、得られる太細糸はスラブ調の外観となるため本発明の目的とする糸が得られない。
【0041】
TDR2がTg+20℃未満では、得られる繊維の配向度が低く強度不十分となり、Tcを超えると単繊維の太部と細部が局在化し、マルチフィラメント繊維として太部と細部が局在化したスラブ調の繊維になる。
【0042】
また本発明では、加熱ローラーで延伸することが必要であり、熱ピンによる延伸では延伸点が熱ピン上に固定され、単繊維の太部と細部が局在化するため、マルチフィラメント繊維として太部と細部が局在化したスラブ調の繊維となる。
【0043】
また、本発明の織編物は、ポリエステル複合マルチフィラメント繊維を含み、織物収縮率(LC)が20〜40%であることが必要である。LCが20%未満であると十分なストレッチ性を得ることができない。40%を超えると織編物とした際の形態が安定しない。
【0044】
なお、本発明の織編物は、例えば、得られたポリエステル複合マルチフィラメント繊維を単独または混繊した後、公知の方法により織編物とし、染色処理することによって得ることができる。
【0045】
【実施例】
以下、本発明を実施例により具体的に説明する。なお、実施例における評価は次の方法によって行った。
【0046】
(単繊維径の比(太細比))
マルチフィラメント繊維の長手方向の任意の位置で、光学顕微鏡により断面を観察、単繊維径を測定し、単繊維径の最も太い部分と最も細い部分の単繊維径の比を求めた。
【0047】
(糸全体としての太さ斑の変動係数(CV))
計測器工業(株)製糸斑試験機KET80Cを用い、糸速15m/分、レンジ±12.5%、ノーマルモードの条件で糸の太さの変動係数CV(%)を測定した。
【0048】
(捲縮率CC)
サンプル原糸を枠周1mで巻き数10回の綛を作成し、綛が乱れないように2ヶ所を束ねてくくり、8の字状にして2つ折に重ねて輪にすることを2回繰り返し、ガーゼに包み水浴に浸したときに浮かないように金網箱に入れ、90℃に調整した恒温槽に20分間浸漬する。恒温槽から金網箱を取り出し、水を切り綛が乱れない様にろ紙の上に並べる。
【0049】
20時間以上放置し、自然乾燥した後に捲縮を引き伸ばさない様に注意しながら、余分な絡まりをほぐし、表示デシテックス(1.1dtex)当り49/25000cN×20の初荷重を掛け1分後の長さ(L0)を測る。
【0050】
初荷重を除重後に表示デシテックス当りの49/500cN×20の測定荷重を掛けて1分後の長さ(L1)を測り、除重後2分間放置して再び初荷重を掛けて1分後の長さ(L2)を測る。捲縮率CCは下記式により算出する。
【0051】
捲縮率CC(%)=(L1−L2)/L1 × 100
(伸度(DE))
島津製作所(株)製オートグラフシステムSD−100−Cを用い、サンプル長20cm、引張速度20m/分の条件で測定した。
【0052】
(織物収縮率(LC))
サンプル原糸を撚係数K=100(T=K×√D Tは1m当りの撚数、Dはサンプル原糸の繊度)の条件で撚糸を施し、温度70℃、湿度90%RHの条件下で40分間セットした糸を緯糸として、該サンプル糸の繊度(D)から打ち込み本数(本/cm)=311.1/√Dで算出される打ち込み本数で、縦糸密度39.6本/cmに設定された56dtex18フィラメントの原糸を経糸として製織した後、織物緯糸方向に長さ1mの間隔で印を付け(L0)緯糸に平行に10cm幅のサンプル布を切り出し、130度℃×30分間、熱水処理する。
【0053】
熱水処理したサンプル布を風乾後、片端を固定して垂直に垂らし、下方の他端に0.45g/dtexの荷重をかけ、先に付けた印の間隔(L1)を測定し、織物収縮率(LC)=(L0−L1)/L0×100で算出した。
【0054】
(固有粘度([η]))
ポリマーをフェノールとテトラクロロエタンの1:1の混合溶媒に溶解し、ウベローデ粘度計を用いて25℃で測定した。
【0055】
(織物風合)
織物収縮率の測定に用いた湿熱処理後のサンプル布の引っ張り弾性を触感による官能テストにより次の基準で評価した。
【0056】
○:伸長、反発弾性が共に非常に良好
△:伸長、反発弾性が共に良好
×:伸長、反発弾性が共に不十分
(織物外観)
織物収縮率の測定に用いた湿熱処理後のサンプル布を分散染料Color.Index Disperse Blue 200を1.0 o.w.f%、染色温度130℃にて染色し、織物の外観を目視で次の基準にて評価した。
【0057】
○:スラブ外観が無く、織物としてプレーンな外観。
【0058】
×:スラブ調の外観、太部、細部に起因した濃淡が発生。
【0059】
(実施例1)
イソフタル酸(IPA)8モル%をポリエチレンテレフタレートに共重合した固有粘度0.647の共重合ポリエチレンテレフタレートをポリマー(A)、固有粘度0.484のポリエチレンテレフタレートをポリマー(B)とし、紡糸温度を290℃とし、紡糸吐出孔の上流で2種のポリマー流を面対称に合流させ、接合比(重量比)5/5で、孔径0.6mm、長さ1.5mmの細孔の吐出孔を24個有する複合紡糸口金より紡出した。この紡出糸条を冷却、オイリング後、2100m/分の引取速度で巻き取り、206dtex/24フィラメントの複合繊維の未延伸糸を得た。
【0060】
得られた未延伸糸を表1に示す条件で延伸して109dtex/24フィラメントのポリエステル複合マルチフィラメント繊維の延伸糸を得た。表1に得られたポリエステル複合マルチフィラメント繊維の評価結果を示した。
【0061】
(実施例2)
実施例1と同様のポリマーを用い、同様の紡糸条件で、吐出孔を48個有する複合紡糸口金で、233dtex/48フィラメントの未延伸糸を得た。
【0062】
得られた未延伸糸を、表1に示す条件で延伸して135dtex/48フィラメントのポリエステル複合マルチフィラメント繊維を得た。表1に得られたポリエステル複合マルチフィラメント繊維延伸糸の評価結果を示した。
【0063】
(実施例3)
実施例1と同様のポリマーを用い、同様の紡糸条件で、吐出孔を24個有する複合紡糸口金で、98dtex/24フィラメントの未延伸糸を得た。
【0064】
得られた未延伸糸を、表1に示す条件で延伸して56dtex/24フィラメントのポリエステル複合マルチフィラメント繊維を得た。表1に得られたポリエステル複合マルチフィラメント繊維延伸糸の評価結果を示した。
【0065】
(実施例4)
表1に示した延伸条件に変えた以外は実施例3と同様に69dtex/24フィラメントのポリエステル複合マルチフィラメント繊維を得た。表1に得られたポリエステル複合マルチフィラメント繊維延伸糸の評価結果を示した。
【0066】
(比較例1)
実施例1において未延伸糸繊度を231dtex/24フィラメントと変更した以外は実施例1と同様の紡糸条件で未延伸糸を得た。
【0067】
得られた未延伸糸を、表1に示す条件で延伸して125dtex/24フィラメントのポリエステル複合マルチフィラメント繊維を得た。表1に得られたポリエステル複合マルチフィラメント繊維の評価結果を示した。得られたポリエステル複合マルチフィラメント繊維はCVが大きく、織物にスラブ外観があり、スラブの太部と細部で収縮差があり、膨らみ間に欠けるものとなった。
【0068】
(比較例2)
表1に示した延伸条件に変えた以外は実施例3と同様にして、ポリエステル複合マルチフィラメント繊維を得た。スラブ調の外観は無いが、最も太い単繊維と最も細い単繊維の単繊維径の比が小さく、膨らみ感に欠ける風合となった。
【0069】
(比較例3)
実施例1において、未延伸糸繊度を222dtex/24フィラメントとし、得られた未延伸糸を1対の熱ピンを介して、第1摩擦抵抗ピンを60℃、第2摩擦抵抗ピンを115℃で延伸倍率1.75倍(MDR×0.57)で延伸して126dtex/24フィラメントのポリエステル複合マルチフィラメント繊維の延伸糸を得た。得られたポリエステル複合マルチフィラメント繊維の評価結果を示した。CV値が大きく、太細斑が局在化されスラブ調の外観となった。
【0070】
(比較例4)
実施例1において、吐出孔を12個有する複合紡糸口金、未延伸糸繊度を62dtex/12フィラメントに変えた以外は、実施例1と同様にし、表1に示す条件で延伸して33dtex/12フィラメントのポリエステル複合マルチフィラメント繊維の延伸糸を得た。得られたポリエステル複合マルチフィラメント繊維の評価結果を示した。CV値が小さく、単繊維間での捲縮形態差が小さくなり本発明の目的とする膨らみ感が得られなかった。
【0071】
(比較例5)
実施例1において、吐出孔を12個有する複合紡糸口金、未延伸糸繊度を115dtex/12フィラメントに変えた以外は、実施例1と同様にし、表1に示す条件で延伸して61dtex/12フィラメントのポリエステル複合マルチフィラメント繊維を得た。表1に、得られたポリエステル複合マルチフィラメント繊維の評価結果を示した。CV値が大きく、太細斑が局在化されスラブ調の外観となった。
【0072】
【表1】

Figure 2004124271
【0073】
【発明の効果】
本発明は布帛としたときに濃色部と淡色部が局在化せずにナチュラルな外観を呈し、十分な膨らみ感とストレッチ性を付与するポリエステル複合マルチフィラメント繊維及びその織編物が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyester composite multifilament fiber which gives a stretchability and a good swelling feeling to a woven or knitted fabric, a method for producing the same, and a woven or knitted fabric thereof.
[0002]
[Prior art]
Conventionally, it has been known that two types of thermoplastic polymers having different melt viscosities are spun out from the same spouting hole to form a joint type composite fiber yarn by composite spinning, and a heat treatment to develop a spiral type crimp to form a crimped stretch yarn. It is known that a fabric made of the fibers can obtain stretchability and a deep color.
[0003]
Further, Patent Document 1 describes a conjugate fiber that gives thick and thin spots to a bonded type composite yarn made of two kinds of polyesters having different melt viscosities and gives a woven or knitted fabric a stretch property and a thick and thin slab-like appearance. .
[0004]
However, this method has a structure in which the high-oriented details and the low-oriented thick portions of the single fibers are localized and present in the longitudinal direction of the multifilament fiber. It is good for obtaining a toned appearance, but it is difficult to obtain a natural appearance, and since the thick part and details are localized, the swelling feeling of the whole woven or knitted fabric is also insufficient. .
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-160443
[Problems to be solved by the invention]
The present invention solves the drawbacks of the conventional technology, and when a fabric is used, the dark and light-colored portions have a natural appearance without being localized, and impart a sufficient swelling feeling and stretchability. And a woven or knitted fabric thereof.
[0007]
[Means for Solving the Problems]
A first gist of the present invention is a composite multifilament fiber in which two types of polyester polymers having different melt viscosities are joined, wherein a single fiber constituting the multifilament fiber has a thick and thin spot in a fiber axis direction, The ratio of the single fiber diameter of the thickest single fiber to the thinnest single fiber in an arbitrary cross section of the filament fiber is 1.2 to 2.4, and the coefficient of variation (CV) of the uneven thickness as a multifilament fiber is 0. .30 to 1.20 and a crimp ratio (CC) of 20 to 45%.
[0008]
A second gist of the present invention is to provide an unstretched bonded conjugate fiber obtained by spinning a polyester (A) and a polyester (B) satisfying the following formula (1) at a take-off speed of 2500 m / min or less: A method for producing a polyester composite multifilament fiber, characterized in that it is subjected to hot roller stretching under conditions satisfying the following formulas (2) to (6).
[0009]
[Η] A- [η] B> 0.145 (1)
MDR × 0.45 ≦ DR1 ≦ MDR × 0.65 (2)
1.000 ≦ DR2 ≦ 1.300 (3)
DR1> DR2 (4)
Tg ≦ TDR1 ≦ Tc (5)
Tg + 20 ° C ≦ TDR2 ≦ Tc (6)
(Where, [η] A and [η] B represent the intrinsic viscosities of the polymers of A and B, respectively, and MDR represents the maximum draw ratio of the undrawn yarn at a drawing temperature of 85 ° C. DR1 is the first-stage drawing. Magnification, DR2 is the second stage stretching ratio, TDR1 is the roller temperature in the first stage stretching, TDR2 is the heat setting temperature in the second stage stretching, Tg is the glass transition temperature (° C.) of the undrawn yarn, and Tc is the temperature of the undrawn yarn. When the crystallization temperature and the glass transition temperature of the undrawn yarn of the conjugate fiber are measured at two points, the lower temperature is the crystallization temperature and the higher temperature is the glass temperature. Transition temperature)
A third gist of the present invention resides in a woven or knitted fabric containing the polyester composite multifilament fiber of the present invention and having a fabric shrinkage (LC) of 20 to 40%.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described.
[0011]
The polyester composite multifilament fiber of the present invention needs to be a composite multifilament fiber in which two types of polyester polymers having different melt viscosities are joined in order to exhibit stretchability when made into a fabric.
[0012]
The polyester polymer constituting the conjugate multifilament fiber may be in any combination as long as it has a different melt viscosity in order to obtain good stretchability when formed into a conjugate fiber. And any combination of high viscosity products. Polyester, one of the components having different viscosities, has a high viscosity and acts as a high shrinkage component, while polyester, the other component, has a low viscosity and acts as a low shrinkage component.
[0013]
Further, among the two types of polyester polymers having different melt viscosities, a high viscosity component is preferably copolymerized polyethylene terephthalate obtained by copolymerizing a third component with 5 to 15 mol%.
[0014]
When the amount of the third component is less than 5 mol%, sufficient crimp developing power is hardly obtained. When the amount exceeds 15 mol%, the melting point is remarkably reduced, and not only the composite spinning itself becomes difficult, but also the crimp developing power tends to be insufficient.
[0015]
As the third component, aromatic dicarboxylic acid other than terephthalic acid component, acid component such as aliphatic dicarboxylic acid, aliphatic diol other than ethylene glycol component, alicyclic diol, diol component such as aromatic diol, and the like, Specifically, isophthalic acid, adipic acid, sebacic acid, 1,4-butanediol, cyclohexanediol, bisphenol A ethylene oxide adduct, metal sulfoisophthalate, 2,2-bis [4- (2-hydroxyethoxy) Phenyl] propane and the like, and particularly preferred are isophthalic acid, adipic acid, metal salts of sulfoisophthalic acid, and 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane. These third components may be used alone or in combination of two or more.
[0016]
Further, the joining of the two types of polyester polymers having different melt viscosities according to the present invention may be in any joining form as long as it exhibits good stretchability when formed into a conjugate fiber. Preferably, a side-by-side type or an eccentric core-sheath type is used, and more preferably, a side-by-side type is used to obtain high stretchability.
[0017]
Further, in the present invention, the monofilament constituting the multifilament fiber has large and thin spots in the fiber axis direction, and the ratio of the single fiber diameter of the thickest single fiber to the thinnest single fiber in an arbitrary cross section in the multifilament fiber is 1.2 to 2.4, the coefficient of variation (CV) of thickness unevenness as a multifilament fiber must be 0.30 to 1.20, and the crimp ratio (CC) needs to be 20 to 45%. is there.
[0018]
Due to the mixture of the thick part and the details in the fiber axis direction of the single fiber, a difference in the degree of orientation occurs in the single fiber longitudinal direction. Causes a difference in shrinkage, giving a swelling feeling.
[0019]
The ratio of the single fiber diameter of the thickest single fiber to the thinnest single fiber in an arbitrary cross section in the multifilament fiber needs to be 1.2 to 2.4. The lower limit of the thickness ratio is preferably 1.2 or more, more preferably 1.3 or more. The upper limit is preferably 2.4 or less, more preferably 1.8 or less.
[0020]
When the lower limit of the thickness ratio is less than 1.2, the difference in single fiber fineness between the thick portion and the small portion is small in the longitudinal direction of the fiber axis of the single fiber. It is difficult to obtain a morphological difference, and the feeling of swelling when made into a fabric is insufficient. On the other hand, if the upper limit exceeds 2.4, the difference in the degree of orientation between the thick portion and the details of the single fiber is large, so the difference in elongation between the thick portion and the details becomes large, and there is a problem in the process stability such as yarn breakage during yarn production. There is.
[0021]
The coefficient of variation (CV) of the thickness unevenness of the whole yarn has a lower limit of 0.30 or more, more preferably 0.35 or more, and an upper limit of 1.20 or less, more preferably 1.0 or less. When the lower limit is less than 0.3, the difference in the diameter of the single fiber in the multifilament becomes small, so that the difference in the crimping form between the single fibers becomes small, and the swelling feeling aimed at by the present invention can be obtained. become unable.
[0022]
When the upper limit exceeds 1.20, when heat treatment is performed in post-processing such as false twisting, blending, and dyeing, as a multifilament fiber, thick portions and details are localized in the yarn longitudinal direction, and the multifilament fiber The thick part is remarkably coarse and the fiber becomes coarse, and the difference in elongation between the thick part and the fine part is large.
[0023]
Furthermore, when dyed, thick and thin having a slab-like appearance is generated, and the thick part and the details are localized, so that the shrinking part is concentrated, so that the fiber having the natural appearance and swelling intended for the present invention is obtained. I can't get it.
[0024]
In the present invention, the crimp ratio (CC) needs to be 20 to 45%. If the CC is less than 20%, sufficient stretchability cannot be obtained. If it exceeds 45%, the form of the woven or knitted fabric will not be stable.
[0025]
Further, the polyester composite multifilament fiber of the present invention preferably has a lower limit of elongation (DE) of 30% or more, more preferably 35% or more, and an upper limit of 70% or less, more preferably 60% or less. If the elongation exceeds 70%, sufficient crimping is not easily exhibited when the woven or knitted fabric is used, and it is difficult to obtain satisfactory stretching performance. On the other hand, if it is less than 30%, the expression of large and thin spots tends to be insufficient in the fiber axis direction of the single fiber, and it becomes difficult to obtain a satisfactory target swelling effect.
[0026]
Next, the method for producing a polyester composite multifilament fiber of the present invention will be described in detail.
[0027]
In the present invention, an undrawn yarn of a joined conjugate fiber obtained by spinning a polyester (A) and a polyester (B) satisfying the following formula (1) at a take-off speed of 2500 m / min or less is obtained by the following formula (2) ) To (6), it is necessary to stretch by a heated roller.
[0028]
[Η] A- [η] B> 0.145 (1)
MDR × 0.45 ≦ DR1 ≦ MDR × 0.65 (2)
1.000 ≦ DR2 ≦ 1.300 (3)
DR1> DR2 (4)
Tg ≦ TDR1 ≦ Tc (5)
Tg + 20 ° C ≦ TDR2 ≦ Tc (6)
(Where, [η] A and [η] B represent the intrinsic viscosities of the polymers of A and B, respectively, and MDR represents the maximum draw ratio of the undrawn yarn at a drawing temperature of 85 ° C. DR1 is the first-stage drawing. Magnification, DR2 is the second stage stretching ratio, TDR1 is the roller temperature in the first stage stretching, TDR2 is the heat setting temperature in the second stage stretching, Tg is the glass transition temperature (° C.) of the undrawn yarn, and Tc is the temperature of the undrawn yarn. When the crystallization temperature and the glass transition temperature of the undrawn yarn of the conjugate fiber are measured at two points, the lower temperature is the crystallization temperature and the higher temperature is the glass temperature. Transition temperature)
The difference between the intrinsic viscosities of polyester (A) and polyester (B) must be greater than 0.145. Polyester (A), one of the components having different viscosities, has a high viscosity and acts as a high shrinkage component, and the other component, polyester (B), has a low viscosity and acts as a low shrinkage component. When the difference in the intrinsic viscosity is 0.145 or less, the difference in shrinkage between the polyester (A) and the polyester (B) is small, and the crimping is insufficient, and the stretch performance cannot be obtained.
[0029]
Further, among the two types of polyester polymers having different melt viscosities, a high viscosity component is preferably copolymerized polyethylene terephthalate obtained by copolymerizing a third component with 5 to 15 mol%.
[0030]
When the amount of the third component is less than 5 mol%, sufficient crimp developing power is hardly obtained. When the amount exceeds 15 mol%, the melting point is remarkably reduced, and not only the composite spinning itself becomes difficult, but also the crimp developing power tends to be insufficient.
[0031]
As the third component, aromatic dicarboxylic acid other than terephthalic acid component, acid component such as aliphatic dicarboxylic acid, aliphatic diol other than ethylene glycol component, alicyclic diol, diol component such as aromatic diol, and the like, Specifically, isophthalic acid, adipic acid, sebacic acid, 1,4-butanediol, cyclohexanediol, bisphenol A ethylene oxide adduct, metal sulfoisophthalate, 2,2-bis [4- (2-hydroxyethoxy) Phenyl] propane and the like, and particularly preferred are isophthalic acid, adipic acid, metal salts of sulfoisophthalic acid, and 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane. These third components may be used alone or in combination of two or more.
[0032]
Further, the joining of the two types of polyester polymers having different melt viscosities according to the present invention may be any joining as long as it exhibits good stretchability when formed into a conjugate fiber. Preferably, a side-by-side type or an eccentric core-sheath type is used, and more preferably, a side-by-side type is used to obtain high stretchability.
[0033]
The joining ratio (weight ratio) W of the polyester (A) / polyester (B) at the time of the conjugate spinning is preferably 4/6 <W <6/4 in order to give a crimp developing force in the form of the conjugate fiber. If the bonding ratio is outside the above range, the spinnability tends to decrease, and the crimping force in the form of the conjugate fiber tends to be insufficient.
[0034]
In the present invention, the take-up speed at the time of spinning when the polyester (A) and the polyester (B) are combined is controlled so that the degree of orientation of the undrawn yarn is kept low, and the formation of thick and thin spots in the fiber axis direction in the drawing step. It is necessary that the speed be 2500 m / min or less for facilitation. When the take-up speed exceeds 2500 m / min, the degree of orientation of the undrawn yarn becomes high, and it becomes difficult to form thick and thin spots.
[0035]
For the drawing of the undrawn yarn, it is necessary to perform two-stage drawing with a heating roller under the conditions satisfying the above formulas (2) to (6).
[0036]
When DR1 is less than MDR × 0.45, sufficient crimp expression strength cannot be obtained, and when it exceeds MDR × 0.65, formation of large and thin spots between single filaments of the multifilament fiber becomes difficult. It is difficult to obtain the desired bulge.
[0037]
When DR2 is less than 1.000, the thick and thin spots between the single fibers formed in DR1 are localized to give a slab-like appearance, and even when the thickness exceeds 1.300, the thick and thin spots are similarly localized. As a result, large and thin spots do not disperse between the single fibers, and a desired swelling cannot be obtained.
[0038]
Further, in the present invention, it is necessary that DR1> DR2. When DR2 exceeds DR1, the thick and thin spots between the single fibers formed in DR1 are localized by stretching, so that the appearance becomes slab-like, and the thick and thin spots are dispersed between the single fibers to cause swelling. It will be difficult.
[0039]
TDR1 satisfies Tg ≦ TDR1 ≦ Tc, and the neck point of the undrawn yarn is generated on the first-stage drawing roller under the condition of the above-described formula (2), so that the neck point is dispersed and the single fiber is separated. Thick and thin variations can be generated.
[0040]
When TDR1 is lower than Tg or higher than Tc, the dispersibility of the draw neck point is poor, and the obtained thick and thin yarn has a slab-like appearance, so that the yarn targeted by the present invention cannot be obtained.
[0041]
When TDR2 is lower than Tg + 20 ° C., the degree of orientation of the obtained fiber is low and the strength is insufficient. When Tc is higher than Tc, the thick portion and the detail of the single fiber are localized, and the thick portion and the detail are localized as the multifilament fiber. It becomes a tone fiber.
[0042]
In the present invention, it is necessary to draw with a heating roller. In drawing with a hot pin, the drawing point is fixed on the hot pin, and the thick portion and details of the single fiber are localized. A slab-like fiber with localized parts and details.
[0043]
Further, the woven or knitted fabric of the present invention needs to contain polyester composite multifilament fibers and have a fabric shrinkage (LC) of 20 to 40%. If the LC is less than 20%, sufficient stretchability cannot be obtained. If it exceeds 40%, the form of the woven or knitted fabric will not be stable.
[0044]
The woven or knitted fabric of the present invention can be obtained by, for example, singly or blending the obtained polyester composite multifilament fiber, forming a woven or knitted fabric by a known method, and performing a dyeing treatment.
[0045]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples. The evaluation in the examples was performed by the following method.
[0046]
(Ratio of single fiber diameter (thickness ratio))
At an arbitrary position in the longitudinal direction of the multifilament fiber, a cross section was observed with an optical microscope, the single fiber diameter was measured, and the ratio of the single fiber diameter of the thickest portion to the thinnest portion of the single fiber diameter was determined.
[0047]
(Coefficient of variation (CV) of thickness unevenness as a whole yarn)
Using a yarn spot tester KET80C manufactured by Keisoku Kogyo Co., Ltd., the coefficient of variation CV (%) of the yarn thickness was measured under the conditions of a yarn speed of 15 m / min, a range of ± 12.5%, and a normal mode.
[0048]
(Crimp ratio CC)
Create a skein of 10 windings around the frame 1m around the frame of the sample, wrap it in two places so that the skein is not disturbed, and make it into a figure eight shape, fold it into two, and repeat twice. Wrapped in gauze, placed in a wire mesh box so as not to float when immersed in a water bath, and immersed in a thermostat adjusted to 90 ° C. for 20 minutes. Take out the wire mesh box from the thermostat, drain the water and arrange it on filter paper so that the skein is not disturbed.
[0049]
After leaving to stand for 20 hours or more and air-drying, take care not to stretch the crimp, loosen excess entanglement, apply an initial load of 49/25000 cN × 20 per indicated dtex (1.1 dtex), and lengthen after 1 minute. Measure (L0).
[0050]
After removing the initial load, apply a measurement load of 49/500 cN × 20 per indicated decitex, measure the length (L1) after 1 minute, leave it for 2 minutes after removing the load, apply the initial load again, and after 1 minute Is measured (L2). The crimp ratio CC is calculated by the following equation.
[0051]
Crimp ratio CC (%) = (L1−L2) / L1 × 100
(Elongation (DE))
The measurement was performed using an autograph system SD-100-C manufactured by Shimadzu Corporation under the conditions of a sample length of 20 cm and a tensile speed of 20 m / min.
[0052]
(Textile shrinkage (LC))
The sample yarn is twisted under the conditions of a twist coefficient K = 100 (T = K × √DT, where T is the number of twists per meter, and D is the fineness of the sample yarn), at a temperature of 70 ° C. and a humidity of 90% RH. The yarns set for 40 minutes at, as weft yarns, the number of yarns calculated from the fineness (D) of the sample yarn by the number of yarns (line / cm) = 311.1 / √D, and the warp yarn density is 39.6 yarns / cm After weaving the original yarn of 56 dtex18 filament as a warp, a mark is made at intervals of 1 m in the woven weft direction (L0), a 10 cm wide sample cloth is cut out in parallel with the weft, and 130 ° C. × 30 minutes. Treat with hot water.
[0053]
After air-drying the hot-water treated sample cloth, one end is fixed and suspended vertically, a load of 0.45 g / dtex is applied to the other lower end, the interval (L1) between the marks previously applied is measured, and the fabric shrinks. Ratio (LC) = (L0−L1) / L0 × 100.
[0054]
(Intrinsic viscosity ([η]))
The polymer was dissolved in a 1: 1 mixed solvent of phenol and tetrachloroethane, and measured at 25 ° C. using an Ubbelohde viscometer.
[0055]
(Textile texture)
The tensile elasticity of the sample cloth after the wet heat treatment used for the measurement of the fabric shrinkage was evaluated according to the following criteria by a sensory test by touch.
[0056]
○: Both elongation and rebound resilience are very good △: Both elongation and rebound resilience are good ×: Both elongation and rebound resilience are insufficient (fabric appearance)
The sample cloth after the wet heat treatment used for the measurement of the fabric shrinkage was used as a disperse dye Color. Index Disperse Blue 200 at 1.0 o. w. The fabric was dyed at f% and a dyeing temperature of 130 ° C., and the appearance of the fabric was visually evaluated according to the following criteria.
[0057]
:: No slab appearance, plain appearance as woven fabric.
[0058]
×: Shading due to slab-like appearance, thick part, and details occurred.
[0059]
(Example 1)
Polyethylene terephthalate having an intrinsic viscosity of 0.647 obtained by copolymerizing 8 mol% of isophthalic acid (IPA) with polyethylene terephthalate was used as the polymer (A), and polyethylene terephthalate having an intrinsic viscosity of 0.484 was used as the polymer (B). ° C, the two types of polymer streams are merged symmetrically in a plane upstream of the spinning discharge hole, and a discharge ratio of 24 micropores having a hole diameter of 0.6 mm and a length of 1.5 mm at a joining ratio (weight ratio) of 5/5 is determined. It was spun from a composite spinneret having two pieces. After cooling and oiling, the spun yarn was taken up at a take-up speed of 2100 m / min to obtain an undrawn yarn of a composite fiber of 206 dtex / 24 filaments.
[0060]
The obtained undrawn yarn was drawn under the conditions shown in Table 1 to obtain a drawn yarn of a 109 dtex / 24 filament polyester composite multifilament fiber. Table 1 shows the evaluation results of the obtained polyester composite multifilament fiber.
[0061]
(Example 2)
Using the same polymer as in Example 1 and under the same spinning conditions, an undrawn yarn of 233 dtex / 48 filament was obtained with a composite spinneret having 48 ejection holes.
[0062]
The obtained undrawn yarn was drawn under the conditions shown in Table 1 to obtain a 135 dtex / 48 filament polyester composite multifilament fiber. Table 1 shows the evaluation results of the obtained drawn polyester composite multifilament fiber.
[0063]
(Example 3)
Using the same polymer as in Example 1, and under the same spinning conditions, a 98 dtex / 24 filament undrawn yarn was obtained with a composite spinneret having 24 discharge holes.
[0064]
The obtained undrawn yarn was drawn under the conditions shown in Table 1 to obtain a polyester composite multifilament fiber having 56 dtex / 24 filaments. Table 1 shows the evaluation results of the obtained drawn polyester composite multifilament fiber.
[0065]
(Example 4)
A polyester composite multifilament fiber of 69 dtex / 24 filaments was obtained in the same manner as in Example 3 except that the drawing conditions shown in Table 1 were changed. Table 1 shows the evaluation results of the obtained drawn polyester composite multifilament fiber.
[0066]
(Comparative Example 1)
An undrawn yarn was obtained under the same spinning conditions as in Example 1, except that the fineness of the undrawn yarn was changed to 231 dtex / 24 filaments in Example 1.
[0067]
The obtained undrawn yarn was drawn under the conditions shown in Table 1 to obtain a 125 dtex / 24 filament polyester composite multifilament fiber. Table 1 shows the evaluation results of the obtained polyester composite multifilament fiber. The obtained polyester composite multifilament fiber had a large CV, had a slab appearance in the woven fabric, had a difference in shrinkage between the thick part and the small part of the slab, and lacked between bulges.
[0068]
(Comparative Example 2)
A polyester composite multifilament fiber was obtained in the same manner as in Example 3 except that the drawing conditions shown in Table 1 were changed. Although there was no slab-like appearance, the ratio of the single fiber diameter of the thickest single fiber to the thinnest single fiber was small, and the texture lacked a swelling feeling.
[0069]
(Comparative Example 3)
In Example 1, the undrawn yarn fineness was 222 dtex / 24 filaments, and the obtained undrawn yarn was heated at 60 ° C. for the first friction resistance pin and 115 ° C. for the second friction resistance pin via a pair of heat pins. Drawing was performed at a draw ratio of 1.75 (MDR × 0.57) to obtain a drawn yarn of 126 dtex / 24 filament polyester composite multifilament fiber. The evaluation results of the obtained polyester composite multifilament fiber are shown. The CV value was large, and the thick and thin spots were localized, giving a slab-like appearance.
[0070]
(Comparative Example 4)
In the same manner as in Example 1 except that the composite spinneret having 12 discharge holes and the undrawn yarn fineness were changed to 62 dtex / 12 filaments, the film was drawn under the conditions shown in Table 1 to obtain 33 dtex / 12 filaments. The drawn yarn of the polyester composite multifilament fiber was obtained. The evaluation results of the obtained polyester composite multifilament fiber are shown. The CV value was small, the difference in the crimping form between the single fibers was small, and the swelling feeling intended by the present invention could not be obtained.
[0071]
(Comparative Example 5)
In the same manner as in Example 1 except that the composite spinneret having 12 discharge holes and the undrawn yarn fineness were changed to 115 dtex / 12 filaments, the film was drawn under the conditions shown in Table 1 and 61 dtex / 12 filaments were drawn. Was obtained. Table 1 shows the evaluation results of the obtained polyester composite multifilament fibers. The CV value was large, and the thick and thin spots were localized, giving a slab-like appearance.
[0072]
[Table 1]
Figure 2004124271
[0073]
【The invention's effect】
According to the present invention, a polyester composite multifilament fiber which gives a natural appearance without providing localized dark and light colored portions when formed into a fabric and imparts sufficient swelling and stretchability, and a woven or knitted fabric thereof can be obtained.

Claims (5)

溶融粘度の異なる2種のポリエステルポリマーを接合した複合マルチフィラメント繊維であって、マルチフィラメント繊維を構成する単繊維が繊維軸方向に太細斑を有し、マルチフィラメント繊維中の任意の断面における最も太い単繊維と最も細い単繊維の単繊維径の比が1.2〜2.4であり、マルチフィラメント繊維としての太さ斑の変動係数(CV)が0.30〜1.20、捲縮率(CC)が20〜45%であることを特徴とするポリエステル複合マルチフィラメント繊維。A composite multifilament fiber in which two types of polyester polymers having different melt viscosities are joined together, wherein the monofilament constituting the multifilament fiber has large and thin spots in the fiber axis direction, The ratio of the single fiber diameter of the thick single fiber to the thinnest single fiber is 1.2 to 2.4, the variation coefficient (CV) of thickness unevenness as a multifilament fiber is 0.30 to 1.20, and the crimp A polyester composite multifilament fiber having a percentage (CC) of 20 to 45%. 溶融粘度の異なる2種のポリエステルポリマーのうち高粘度成分が、第三成分を5〜15モル%共重合させた共重合ポリエチレンテレフタレートである請求項1記載のポリエステル複合マルチフィラメント繊維。The polyester composite multifilament fiber according to claim 1, wherein the high-viscosity component of the two types of polyester polymers having different melt viscosities is a copolymerized polyethylene terephthalate obtained by copolymerizing a third component with 5 to 15 mol%. 下記の式(1)を満足するポリエステル(A)とポリエステル(B)とを、2500m/分以下の引取速度で紡糸した接合型複合繊維の未延伸糸を、下記の式(2)〜(6)を満足する条件下で加熱ローラー延伸することを特徴とするポリエステル複合マルチフィラメント繊維の製造方法。
[η]A−[η]B>0.145       (1)
MDR×0.45≦DR1≦MDR×0.65 (2)
1.000≦DR2≦1.300       (3)
DR1>DR2               (4)
Tg≦TDR1≦Tc            (5)
Tg+20℃≦TDR2≦Tc        (6)
(但し、式中、[η]A、[η]B、はそれぞれA、Bのポリマーの固有粘度、MDRは延伸温度85℃における未延伸糸の最大延伸倍率を表す。DR1は1段目延伸倍率、DR2は2段目延伸倍率、TDR1は1段目延伸におけるローラー温度、TDR2は2段目延伸における熱セット温度、Tgは未延伸糸のガラス転移温度(℃)、Tcは未延伸糸の結晶化温度(℃)を示す。なお、複合繊維の未延伸糸の結晶化温度、ガラス転移温度がそれぞれ2点測定される場合は、低い方の温度を結晶化温度、高い方の温度をガラス転移温度とする)
An undrawn yarn of a bonded conjugate fiber obtained by spinning a polyester (A) and a polyester (B) satisfying the following formula (1) at a take-up speed of 2500 m / min or less is obtained by the following formulas (2) to (6) A method for producing a polyester composite multifilament fiber, characterized in that the film is drawn with a heated roller under the condition satisfying the condition (1).
[Η] A- [η] B> 0.145 (1)
MDR × 0.45 ≦ DR1 ≦ MDR × 0.65 (2)
1.000 ≦ DR2 ≦ 1.300 (3)
DR1> DR2 (4)
Tg ≦ TDR1 ≦ Tc (5)
Tg + 20 ° C ≦ TDR2 ≦ Tc (6)
(Where, [η] A and [η] B represent the intrinsic viscosities of the polymers of A and B, respectively, and MDR represents the maximum draw ratio of the undrawn yarn at a drawing temperature of 85 ° C. DR1 is the first-stage drawing. Magnification, DR2 is the second stage stretching ratio, TDR1 is the roller temperature in the first stage stretching, TDR2 is the heat setting temperature in the second stage stretching, Tg is the glass transition temperature (° C.) of the undrawn yarn, and Tc is the temperature of the undrawn yarn. When the crystallization temperature and the glass transition temperature of the undrawn yarn of the conjugate fiber are measured at two points, the lower temperature is the crystallization temperature and the higher temperature is the glass temperature. Transition temperature)
ポリエステル(A)が、第三成分を5〜15モル%共重合させた共重合ポリエチレンテレフタレートである請求項3記載のポリエステル複合マルチフィラメント繊維の製造方法。The method for producing a polyester composite multifilament fiber according to claim 3, wherein the polyester (A) is a copolymerized polyethylene terephthalate obtained by copolymerizing a third component with 5 to 15 mol%. 請求項1「または2」記載のポリエステル複合マルチフィラメント繊維を含み、織物収縮率(LC)が20〜40%であることを特徴とする織編物。A woven or knitted fabric comprising the polyester composite multifilament fiber according to claim 1 or 2 and having a fabric shrinkage (LC) of 20 to 40%.
JP2002285944A 2002-09-30 2002-09-30 Polyester composite multifilament fiber, production method thereof, and woven / knitted fabric thereof Expired - Lifetime JP3802471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285944A JP3802471B2 (en) 2002-09-30 2002-09-30 Polyester composite multifilament fiber, production method thereof, and woven / knitted fabric thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285944A JP3802471B2 (en) 2002-09-30 2002-09-30 Polyester composite multifilament fiber, production method thereof, and woven / knitted fabric thereof

Publications (3)

Publication Number Publication Date
JP2004124271A true JP2004124271A (en) 2004-04-22
JP2004124271A5 JP2004124271A5 (en) 2005-04-28
JP3802471B2 JP3802471B2 (en) 2006-07-26

Family

ID=32279118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285944A Expired - Lifetime JP3802471B2 (en) 2002-09-30 2002-09-30 Polyester composite multifilament fiber, production method thereof, and woven / knitted fabric thereof

Country Status (1)

Country Link
JP (1) JP3802471B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299458A (en) * 2005-04-20 2006-11-02 Kb Seiren Ltd Woven fabric for lining material
WO2024018814A1 (en) * 2022-07-22 2024-01-25 東レ株式会社 False-twist textured yarn, and clothes, woven knitted product, twist yarn, and composite false-twist textured yarn including same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299458A (en) * 2005-04-20 2006-11-02 Kb Seiren Ltd Woven fabric for lining material
JP4584762B2 (en) * 2005-04-20 2010-11-24 Kbセーレン株式会社 Lining fabric
WO2024018814A1 (en) * 2022-07-22 2024-01-25 東レ株式会社 False-twist textured yarn, and clothes, woven knitted product, twist yarn, and composite false-twist textured yarn including same

Also Published As

Publication number Publication date
JP3802471B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
WO2009088008A1 (en) Normal pressure cation dyeable polyester and fiber
JP3545749B2 (en) Worsted-like fabric and method for producing the same
JP3269874B2 (en) Method for producing modified cross-section composite fiber and spinneret
JP3736298B2 (en) Blended yarn
JP4602856B2 (en) Latent crimped polyester composite fiber
JP3802471B2 (en) Polyester composite multifilament fiber, production method thereof, and woven / knitted fabric thereof
JP3892799B2 (en) Manufacturing method of woven and knitted fabric
JP2006169649A (en) Cationic dye-dyeable polyester yarn and method for producing the same
JP3061271B2 (en) Polyester thick composite fiber yarn and method for producing the same
JP3140728B2 (en) Cationic dyeable latent crimpable polyester composite fiber and method for producing the same
JP4357198B2 (en) Polyester multifilament fiber and method for producing the same
JP3621293B2 (en) Multicolor partially fused false twisted yarn and method for producing the same
JP2005113309A (en) Modified cross-section polytrimethylene terephthalate fiber
JP2006274473A (en) Combined filament conjugated fiber and woven or knitted fabric using the same fiber
JP3668430B2 (en) Cationic dyeable polyester thick multifilament yarn, method for producing the same and woven / knitted fabric
JP6752757B2 (en) Side-by-side split type composite fiber and method of manufacturing fabric using it
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
JP3668429B2 (en) Cationic dyeable polyester thick multifilament yarn, method for producing the same and woven / knitted fabric
JP2007046212A (en) Conjugate yarn and fabric product containing the same
JP3515508B2 (en) Dark-woven knitted fabric containing polyester twist yarn
JP3437945B2 (en) Polyester composite fiber and method for producing the same
WO2001081662A1 (en) Polyester fiber having deformed cross section and yarn and fabric comprising the same
JP4236344B2 (en) Polyester thick multifilament yarn and method for producing the same
JP3863286B2 (en) Polyester special crimped yarn and method for producing the same
JP2652877B2 (en) Method for producing spun-like fabric

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R151 Written notification of patent or utility model registration

Ref document number: 3802471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term