JP2003104776A - Production method for ceramic sintered compact - Google Patents

Production method for ceramic sintered compact

Info

Publication number
JP2003104776A
JP2003104776A JP2001298674A JP2001298674A JP2003104776A JP 2003104776 A JP2003104776 A JP 2003104776A JP 2001298674 A JP2001298674 A JP 2001298674A JP 2001298674 A JP2001298674 A JP 2001298674A JP 2003104776 A JP2003104776 A JP 2003104776A
Authority
JP
Japan
Prior art keywords
molding
sintered body
ceramic
raw material
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001298674A
Other languages
Japanese (ja)
Inventor
Yojiro Kon
洋次郎 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001298674A priority Critical patent/JP2003104776A/en
Publication of JP2003104776A publication Critical patent/JP2003104776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for a ceramic sintered compact in which the size of its specific place is within a desired dimensional tolerance range in a micron unit or less. SOLUTION: This production method comprises extrusion molding a part of a raw material before molding, drying and burning, measuring the size of the specific place in the above each stage, performing a preliminary test for calculating a shrinkage rate, selecting a metal mold based on the calculated shrinkage rate so as to obtain a desired size in the specific place of a ceramic sintered compact, further adjusting the pressure of the tip of an extrusion molding machine, and then performing full-scale molding and sintering. Alternatively, the method comprises drying or burning a part of a ceramic molded body during the full-scale molding of the raw material before molding prepared by adding a binder, a sintering aid or the like to a starting material, measuring the size of the specific place of a ceramic dried body or sintered compact, adjusting the pressure of the tip of the extrusion molding machine so as to obtain the desired size in the specific place of the sintered compact, and then performing the full-scale molding and sintering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、精密な寸法精度を
要求されるセラミックス焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic sintered body which requires precise dimensional accuracy.

【0002】[0002]

【従来の技術】近年、セラミックス焼結体は、高強度、
耐磨耗性、高剛性、低熱膨張性、耐熱性、高硬度などの
特性を利用して、機械材料として工作機械部品、測定装
置、エンジン、送風機、軸受け、工具、潤滑剤、もしく
は光通信用部品等に用いられてきている。また化学的な
安定性を利用して化学装置や断熱性あるいは伝熱性を利
用した機器への応用も図られてきている。
2. Description of the Related Art In recent years, ceramics sintered bodies have high strength,
Utilizing properties such as wear resistance, high rigidity, low thermal expansion, heat resistance, and high hardness, it is used as a machine material for machine tool parts, measuring devices, engines, blowers, bearings, tools, lubricants, or optical communication. It has been used for parts and the like. In addition, it has been attempted to be applied to a chemical device utilizing chemical stability and a device utilizing heat insulating property or heat transfer property.

【0003】この中で、精密機械や精密測定器のよう
に、常温環境下で使用される精密機器の重要要素部品に
セラミックス焼結体が採用されるようになってきた。そ
の背景には、半導体に代表される電子部品の超精密化、
微細化が急速に進み、それらを製造する加工機や測定器
にサブミクロンもしくはそれ以下の精度が要求されるよ
うになってきたからである。これら精密機器の構造用部
材として従来は、ステンレス、アルミ系合金、防錆処理
した鉄系材料及び石材が使われてきた。
Among these, ceramics sintered bodies have come to be used for important element parts of precision instruments such as precision instruments and precision measuring instruments used in a normal temperature environment. In the background, ultra-precision electronic parts represented by semiconductors,
This is because miniaturization has progressed rapidly, and processing machines and measuring instruments for manufacturing them are required to have accuracy of submicron or less. Conventionally, stainless steel, aluminum-based alloys, rust-prevented iron-based materials and stone materials have been used as structural members for these precision instruments.

【0004】しかし、加工精度がミクロン以下を要求す
る超精密や超微細加工分野においては、構造体の自重に
よる変形や温度、湿度変化による微小な変形も問題にな
るほど要求仕様が厳しく、しかも能率化のために機械の
高速化、軽量化の要求も強い。このような、高性能の品
質要求にたいし、従来の材料では様々な問題点が指摘さ
れ、セラミックス焼結体が使われ始めている。
However, in the field of ultra-precision and ultra-fine processing, where the processing accuracy is required to be less than micron, the required specifications are so strict that the deformation due to the self-weight of the structure and the minute deformation due to temperature and humidity changes are strict and more efficient. Therefore, there is a strong demand for faster and lighter machines. In order to meet such high performance quality requirements, various problems have been pointed out in conventional materials, and ceramics sintered bodies have begun to be used.

【0005】また、近年通信における情報量の増大に伴
い、光ファイバを用いた光通信が使用されている。この
光通信において、光ファイバ同士の接続、あるいは光フ
ァイバと各種光素子との接続には光コネクタが用いられ
ている。
Further, in recent years, with the increase in the amount of information in communication, optical communication using an optical fiber is used. In this optical communication, an optical connector is used for connecting optical fibers to each other or connecting optical fibers to various optical elements.

【0006】例えば、光ファイバ同士を接続するコネク
タの場合、図3及び図4に示すフェルール1に形成され
た貫通孔1aに光ファイバ3の端部を保持し、一対のフ
ェルール1をスリーブ4の両端から挿入して、内部で凸
球面状に加工した先端面1d同士を当接させるようにし
た構造となっている。
For example, in the case of a connector for connecting optical fibers to each other, the end portion of the optical fiber 3 is held in a through hole 1a formed in the ferrule 1 shown in FIGS. The structure is such that the tip surfaces 1d, which are inserted from both ends and processed into a convex spherical shape inside, are brought into contact with each other.

【0007】上記フェルール1の材質としてはセラミッ
クス焼結体、金属、プラスチック、ガラス等、さまざま
なものが試作されてきたが、現在は大半がセラミックス
製となっている。その理由は、セラミックスは加工精度
を高く加工することが出来るため、内径、外径の公差を
1μm以下と高精度にすることができ、またセラミック
ス焼結体は摩擦係数が低いため光ファイバの挿入性に優
れ、剛性が高く熱膨張係数が低いことから外部応力や温
度変化に対して安定であり、耐食性にも優れているため
である。
Various materials such as ceramics sintered bodies, metals, plastics, and glasses have been experimentally produced as materials for the ferrule 1, but most of them are currently made of ceramics. The reason for this is that ceramics can be processed with high accuracy, so the tolerance of the inner and outer diameters can be as high as 1 μm or less, and because ceramics sintered bodies have a low coefficient of friction, they can be inserted into optical fibers. This is because it has excellent properties, has high rigidity, and has a low coefficient of thermal expansion, so that it is stable against external stress and temperature changes, and has excellent corrosion resistance.

【0008】さらに、上記フェルール1のセラミックス
焼結体としては、近年、アルミナからジルコニアに大半
が置き代わりつつある。このジルコニア焼結体は、ヤン
グ率がアルミナの約半分と低いため、2個のフェルール
の先端面同士を当接する際に、小さな応力で密着性を高
めることができ、また強度、靱性が高いことから信頼性
を向上できる(特公平8−30775号公報参照)。
Further, in recent years, as the ceramic sintered body of the ferrule 1, most of alumina has been replaced by zirconia. Since this zirconia sintered body has a Young's modulus as low as about half that of alumina, it is possible to enhance the adhesion with a small stress when the tip faces of two ferrules are brought into contact with each other, and have high strength and toughness. Therefore, the reliability can be improved (see Japanese Patent Publication No. 8-30775).

【0009】上記セラミックス焼結体の製造方法は、図
5に示すように、出発原料の不純物を除去して安定化剤
や焼結助剤等を混合して、バインダーを添加した成形前
原料を、セラミックス焼結体の特定個所が所望の寸法に
なるように平均的な収縮率に基づき成形金型を選定し
て、成形、焼成をおこない、必要ある部分を研削や研磨
等の機械仕上げ加工を行って製品化していた。
As shown in FIG. 5, the above-mentioned method for producing a ceramics sintered body is performed by removing impurities from a starting material, mixing a stabilizer, a sintering aid, etc., and adding a binder to the raw material before molding. , Select a molding die based on the average shrinkage ratio so that a specific part of the ceramic sintered body has the desired dimension, perform molding and firing, and perform mechanical finishing such as grinding and polishing on the necessary parts. I went and commercialized it.

【0010】[0010]

【発明が解決しようとする課題】ところが、上記の従来
の製造方法においては、平均的な収縮率を用いていたた
めに、成形前原料の製造ロット毎に収縮率が異なり、成
形、焼成されたセラミックス焼結体の特定個所がミクロ
ン以下の所望の寸法公差の範囲内に入らないという問題
を生じていた。
However, in the above-mentioned conventional manufacturing method, since the average shrinkage ratio is used, the shrinkage ratio is different for each production lot of the raw material before molding, and the ceramics that have been molded and fired. There has been a problem that a specific portion of the sintered body does not fall within a desired dimensional tolerance of submicron.

【0011】そのセラミックス焼結体が所望の寸法にた
いして、削り代があれば、研磨等で所望の寸法に仕上げ
なければならず、そのために多大な作業時間を要し、製
造コストを増大させる要因となっていた。
If the ceramic sintered body has a desired size and has a cutting allowance, it must be finished to a desired size by polishing or the like, which requires a great amount of working time and increases the manufacturing cost. Was becoming.

【0012】また、そのセラミックス焼結体が所望寸法
にたいして、削り代のない場合は使用できなくなるので
廃棄処分をしなければならず、廃棄処分をしたくないた
めに大半の製造ロットで削り代が残るように上記平均的
な収縮率を削り代の多い側へシフトして製造していた。
In addition, since the ceramic sintered body cannot be used unless it has a cutting allowance for a desired size, it must be discarded. In order to remain, the above average shrinkage ratio was shifted to the side having a large cutting allowance to manufacture.

【0013】そのために、更に削り代が多くなり、研削
や研磨等で所望の寸法に仕上げなければならず、更に多
大な作業時間を要し、製造コストを増大させる要因とな
っていた。
For this reason, the machining allowance is further increased, and it is necessary to finish the product to a desired size by grinding or polishing, which requires a much longer working time and is a factor of increasing the manufacturing cost.

【0014】[0014]

【課題を解決するための手段】そこで本発明は、上記問
題点に鑑みてなされたものであり、出発原料に焼結助剤
等を混合しバインダーを添加した成形前原料を押出成形
し、焼結するセラミックス焼結体の製造方法において、
上記成形前原料の一部分を押出成形し、得られたセラミ
ックス成形体の特定個所の寸法もしくは成形金型の特定
個所の寸法を測定したあと、乾燥もしくは焼成して、再
びセラミックス乾燥体もしくはセラミックス焼結体の上
記特定個所の寸法を測定し、その収縮率を算出する予備
試験を行った後、上記セラミックス焼結体の特定個所が
所望の寸法になるように、上記算定した収縮率に基づき
成形金型を選定し、かつ押出成形機本体先端部の押出成
形圧力を調整した後、本成形をおこなうことを特徴とす
るセラミックス焼結体の製造方法である。
Therefore, the present invention has been made in view of the above-mentioned problems, in which a starting raw material in which a sintering aid or the like is mixed and a binder is added is extruded and fired. In the method for producing a sintered ceramics body,
After extruding a part of the above-mentioned raw material before molding, measuring the size of a specific portion of the obtained ceramic molded body or the size of a specific portion of the molding die, and then drying or firing, and again a dried ceramic body or ceramic sintered body. After measuring the dimensions of the specific part of the body and performing a preliminary test to calculate the shrinkage rate, the molding die based on the calculated shrinkage rate so that the specific part of the ceramic sintered body has the desired dimension. A method for producing a ceramics sintered body is characterized in that main molding is performed after selecting a mold and adjusting an extrusion molding pressure at a tip portion of an extruder body.

【0015】また、出発原料に焼結助剤等を混合しバイ
ンダーを添加した成形前原料を押出成形し、焼結するセ
ラミックス焼結体の製造方法において、本成形中に得ら
れたセラミックス成形体の一部を乾燥もしくは焼成し
て、セラミックス乾燥体もしくはセラミックス焼結体の
特定個所の寸法を測定し、上記セラミックス焼結体の上
記特定個所が所望の寸法になるように、本成形時に押出
成形機本体先端部の押出成形圧力を調整することを特徴
とするセラミックス焼結体の製造方法である。
Further, in a method for producing a ceramics sintered body in which a starting raw material is mixed with a sintering aid and the like and a binder is added, and the raw material before molding is extruded and sintered, the ceramics molded body obtained during the main molding. Is dried or fired to measure the dimensions of a specific location of the ceramic dried body or the ceramic sintered body, and extrusion molding is performed during the main molding so that the above-mentioned specific location of the ceramic sintered body has the desired dimension. A method for manufacturing a ceramics sintered body is characterized in that the extrusion molding pressure at the tip of the machine body is adjusted.

【0016】また、上記押出成形圧力の調整は、押出成
形機本体先端部の温度制御により行うことを特徴とする
セラミックス焼結体の製造方法である。
Further, in the method for producing a ceramics sintered body, the extrusion molding pressure is adjusted by controlling the temperature of the tip of the extruder body.

【0017】更には、上記セラミックス焼結体がジルコ
ニアセラミックスからなることを特徴とする。
Further, the ceramics sintered body is characterized by being made of zirconia ceramics.

【0018】そして、上記セラミックス焼結体が光通信
用コネクタ部材に使用されることを特徴とする。
The ceramic sintered body is used as a connector member for optical communication.

【0019】[0019]

【発明の実施の形態】以下本発明の実施形態を説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0020】図1は本発明のセラミックス焼結体の製造
方法を示す流れ図である。
FIG. 1 is a flow chart showing a method for manufacturing a ceramics sintered body of the present invention.

【0021】出発原料に焼結助剤等を混合しバインダー
を添加した成形前原料の一部分を押出成形し、該セラミ
ックス成形体の特定個所の寸法もしくは成形金型の特定
個所の寸法を測定したあと、乾燥もしくは焼成して、再
びセラミックス乾燥体もしくはセラミックス焼結体の上
記特定個所の寸法を測定し、その収縮率を算出する予備
試験を行った後、上記セラミックス焼結体の特定個所が
所望の寸法になるように、上記算定した収縮率に基づき
成形金型を選定し、更に本成形時に押出成形機本体先端
部の押出成形圧力の調整を行い本成形、本焼成をおこな
ったあと、必要部分を研削もしくは研磨等の機械仕上げ
加工を行い製品化する。または、出発原料に焼結助剤等
を混合しバインダーを添加した成形前原料を本成形し、
本成形中に該セラミックス成形体の一部を乾燥もしくは
焼成して、セラミックス乾燥体もしくはセラミックス焼
結体の特定個所の寸法を測定し、上記セラミックス焼結
体の上記特定個所が所望の寸法になるように、本成形時
に押出成形機本体先端部の押出成形圧力の調整を行い本
成形、本焼成を継続したあと、必要部分を研削もしくは
研磨等の機械仕上げ加工を行い製品化する。
After extruding a part of the pre-molding raw material obtained by mixing the starting raw material with a sintering aid or the like and adding a binder, and measuring the dimensions of the specific location of the ceramic compact or the specific location of the molding die. After drying or firing, measuring again the dimensions of the above-mentioned specific part of the ceramic dried body or the ceramic sintered body, and performing a preliminary test to calculate the shrinkage ratio, the specified location of the above-mentioned ceramic sintered body is desired. Select the molding die based on the calculated shrinkage ratio so that it will be the dimension, and further adjust the extrusion molding pressure at the tip of the extrusion molding machine body during main molding to perform main molding and main firing, and then Is finished by mechanical finishing such as grinding or polishing. Alternatively, the starting raw material is mixed with a sintering aid, etc., and a binder is added to form the raw material before molding,
During the main molding, a part of the ceramic molded body is dried or fired to measure the dimension of a specific portion of the ceramic dried body or the ceramic sintered body, and the specific location of the ceramic sintered body becomes a desired dimension. As described above, during the main forming, the extrusion forming pressure at the tip of the extruder body is adjusted to continue the main forming and the main firing, and then a necessary portion is subjected to mechanical finishing such as grinding or polishing to obtain a product.

【0022】図2に、本発明に用いられる成形機の一例
を示すが、一般的に金型11は、ホルダー10、ダイス
キャップ9及びオーガバレル8を介して押出成形機本体
先端部5に取り付けられる。押出成形機本体先端部5の
押出成形圧力の調整は、成形時の押出成形機本体先端部
5の温度制御によりおこなう。ここで言う成形機本体先
端部5の温度とは、成形機本体先端部5に取り付けられ
た温度計7で測定される原料温度であり、これ以降成形
温度と呼ぶ。また、成形機本体先端部5の押出成形圧力
とは上記温度測定個所と同じ位置にかかる圧力を圧力計
6で測定した値であり、これ以降成形圧力と呼ぶ。
FIG. 2 shows an example of the molding machine used in the present invention. Generally, the mold 11 is attached to the tip end portion 5 of the extrusion molding machine main body through the holder 10, the die cap 9 and the auger barrel 8. . The extrusion molding pressure of the extrusion molding machine main body front end portion 5 is adjusted by controlling the temperature of the extrusion molding machine main body front end portion 5 during molding. The temperature of the tip portion 5 of the molding machine body referred to here is a raw material temperature measured by a thermometer 7 attached to the tip portion 5 of the molding machine body, and is hereinafter referred to as molding temperature. The extrusion molding pressure of the molding machine body front end portion 5 is a value measured by the pressure gauge 6 at the same position as the temperature measurement point, and is hereinafter referred to as molding pressure.

【0023】成形温度の調整方法は、成形機の構造、冷
却方法等により異なるが、一般的には、成形機内部及び
オーガバレル8内部等に冷却水を通し、その冷却水の温
度を上下させることにより行う。成形機内部への通水は
例えば、成形機本体のジャケット部5aに、ジャケット
部用冷却水注入口14から冷却水を供給し、ジャケット
部5a内に設けられた空間を通した後ジャケット部用冷
却水排出口15から排出する。また、スクリュー部5b
に、スクリュー部用冷却水注入口16から冷却水を供給
し、スクリュー部5b内に設けられた空間を通した後ス
クリュー部用冷却水排出口17から排出する。また、オ
ーガバレル8内に、オーガバレル用冷却水注入口18か
ら冷却水を供給し、オーガバレル8内に設けられた空間
を通した後オーガバレル用冷却水排出口19から排出す
る。この時、最初の排出口から出た冷却水を次の注入口
へと順番に通し、同じ冷却水を用いてもかまわないし、
各々別の冷却水であってもかまわない。また、冷却水を
順番に通す場合、通す順序は特に限定されない。
The method of adjusting the molding temperature varies depending on the structure of the molding machine, the cooling method, etc., but generally, cooling water is passed through the inside of the molding machine and the auger barrel 8 to raise or lower the temperature of the cooling water. By. Water is supplied to the inside of the molding machine by, for example, supplying cooling water to the jacket portion 5a of the molding machine body from the cooling water inlet 14 for the jacket portion and passing through the space provided in the jacket portion 5a for the rear jacket portion. It is discharged from the cooling water discharge port 15. Also, the screw part 5b
Then, the cooling water is supplied from the cooling water inlet 16 for the screw portion, passes through the space provided in the screw portion 5b, and is then discharged from the cooling water outlet 17 for the screw portion. Further, cooling water is supplied into the auger barrel 8 from the cooling water inlet 18 for the auger barrel, passes through the space provided in the auger barrel 8, and is then discharged from the cooling water discharge port 19 for the auger barrel. At this time, the cooling water from the first outlet may be sequentially passed to the next inlet, and the same cooling water may be used.
Different cooling water may be used. Moreover, when passing the cooling water in order, the order of passing the cooling water is not particularly limited.

【0024】成形温度を下げると成形前原料12は硬く
なり成形圧力が上がり、成形温度を上げると成形前原料
12は柔らかくなり成形圧力が下がる。成形圧力を上げ
るとセラミックス成形体13の密度が増加し、乾燥、焼
成時の収縮率が小さくなりセラミックス焼結体の寸法が
大きくなるので、予備試験における特定個所の寸法が所
望の寸法に比べ小さい時に、より所望の寸法に近づける
のに有効である。これとは逆に、成形圧力を下げるとセ
ラミックス成形体13の密度が減少し、乾燥、焼成時の
収縮率が大きくなりセラミックス焼結体の寸法が小さく
なるので、予備試験における特定個所の寸法が所望の寸
法に比べ大きい時に、より所望の寸法に近づけるのに有
効である。この場合、成形機毎に成形温度の変動量と成
形圧力の変動量との関係を求めておくことが望ましい。
また、成形圧力が収縮率に与える関係式、例えば、 焼結体特定個所寸法=収縮要因係数×金型特定個所寸法
+成形圧力要因係数×成形圧力+定数 を予め求めておくことが望ましい。
When the molding temperature is lowered, the pre-molding raw material 12 becomes hard and the molding pressure rises, and when the molding temperature is raised, the pre-molding raw material 12 becomes soft and the molding pressure falls. When the molding pressure is increased, the density of the ceramic molded body 13 increases, the shrinkage rate during drying and firing decreases, and the size of the ceramic sintered body increases, so that the size of a specific portion in the preliminary test is smaller than the desired size. At times, it is effective to bring it closer to the desired size. On the contrary, when the molding pressure is lowered, the density of the ceramic molded body 13 is decreased, the shrinkage rate at the time of drying and firing is increased, and the dimension of the ceramic sintered body is reduced. When the size is larger than the desired size, it is effective to bring the size closer to the desired size. In this case, it is desirable to obtain the relationship between the variation of the molding temperature and the variation of the molding pressure for each molding machine.
Further, it is desirable to previously obtain a relational expression that the molding pressure gives to the shrinkage ratio, for example, the dimension of the sintered body specific portion = the shrinkage factor coefficient × the die specific portion dimension + the molding pressure factor coefficient × the molding pressure + the constant.

【0025】また、本成形中にセラミックス成形体の一
部を取り出して焼成し、セラミックス焼結体の上記特定
個所の寸法を測定し、本成形において所望の寸法と多少
のずれが生じてきた時には、上記と同様の方法で再度成
形圧力を調整して特定個所の寸法をより所望の寸法に近
づける。また、この場合、より早い段階で本成形結果を
フィードバックする為に、通常の乾燥、焼成よりも時間
を短縮して急速に行っても差し支えない。
Further, during the main forming, a part of the ceramic formed body is taken out and fired to measure the dimension of the above-mentioned specific portion of the ceramic sintered body, and when a slight deviation from the desired dimension occurs in the main forming. Then, the molding pressure is adjusted again in the same manner as described above to bring the size of the specific portion closer to the desired size. Further, in this case, since the main molding result is fed back at an earlier stage, the time may be shortened as compared with normal drying and firing, and the drying may be performed rapidly.

【0026】上記の成形圧力の調整法に基づき、本成
形、本焼成することにより収縮率の安定したセラミック
ス焼結体を得ることが出来る。
A ceramic sintered body having a stable shrinkage ratio can be obtained by performing main forming and main firing based on the above-mentioned method of adjusting the forming pressure.

【0027】ここで、成形温度の調整範囲は、セラミッ
クスの押出成形では一般的な5〜50℃の範囲で充分で
ある。成形温度が5℃以下では成形圧力が上がりすぎ実
質的に成形が不可能になる。また50℃以上では、成形
前原料からの水分の蒸発が激しくなる等、かえって硬く
なる為成形圧力の調整が困難となる。
Here, the range of 5 to 50 ° C., which is generally used for extrusion molding of ceramics, is sufficient as the adjusting range of the forming temperature. If the molding temperature is 5 ° C. or less, the molding pressure will be too high and molding will be substantially impossible. On the other hand, at 50 ° C or higher, the evaporation of water from the raw material before molding becomes severe, and the material becomes rather hard, which makes it difficult to adjust the molding pressure.

【0028】この中で、好ましくは10〜35℃の範囲
であることが実作業上望ましい。10℃以下では成形圧
力の上昇により成形速度が極端に遅くなるので、生産効
率の面で好ましくない。また、35℃以上ではセラミッ
クス成形体中でのボイドの発生や、成形直後のセラミッ
クス成形体が軟らかくハンドリングに細心の注意を払う
必要がでてくる。
Among these, the range of 10 to 35 ° C. is preferable in practical work. If the temperature is lower than 10 ° C, the molding speed becomes extremely slow due to an increase in molding pressure, which is not preferable in terms of production efficiency. Further, at 35 ° C. or higher, voids are generated in the ceramic molded body and the ceramic molded body immediately after molding is soft, and it is necessary to pay close attention to handling.

【0029】成形圧力は、9〜35MPaの範囲が好ま
しい。成形圧力が9MPa以下では、成形後にセラミッ
クス成形体の変形が生じ寸法精度上問題となる。成形圧
力が35MPa以上では、実質的に成形が不可能であり
金型の損傷を引き起こす場合もある。また、更に好まし
くは、11〜30MPaの範囲である。11MPa以下
では、成形直後のセラミックス成形体が軟らかくハンド
リングに細心の注意を払う必要があり、30MPa以上
では、押出量が極端に落ちるので生産効率の面で好まし
くない。
The molding pressure is preferably in the range of 9 to 35 MPa. When the molding pressure is 9 MPa or less, the ceramic molded body is deformed after molding, which causes a problem in dimensional accuracy. When the molding pressure is 35 MPa or more, molding is substantially impossible and the mold may be damaged in some cases. Further, the range of 11 to 30 MPa is more preferable. If it is 11 MPa or less, the ceramic molded body immediately after molding is soft and it is necessary to pay close attention to handling. If it is 30 MPa or more, the extrusion amount is extremely reduced, which is not preferable in terms of production efficiency.

【0030】本発明のセラミックス焼結体の具体例とし
て、光コネクタ用のフェルールを用いて説明する。
A ferrule for an optical connector will be described as a specific example of the ceramics sintered body of the present invention.

【0031】図3に示すように、光コネクタ用のフェル
ール1は、中央に光ファイバを挿入する貫通孔1aを有
し、該貫通孔1aの後端側には光ファイバの挿入を容易
にするために円錐部1bを備え、先端外周にはスリーブ
挿入時にガイド面となるC面部1cを備えている。
As shown in FIG. 3, the ferrule 1 for an optical connector has a through hole 1a for inserting an optical fiber in the center, and facilitates the insertion of the optical fiber at the rear end side of the through hole 1a. Therefore, a conical portion 1b is provided, and a C surface portion 1c which serves as a guide surface when the sleeve is inserted is provided on the outer circumference of the tip.

【0032】上記フェルール1は、詳細を後述するジル
コニア焼結体で形成され、図4に示すように、その後方
を金属製の支持体2に接合し、上記貫通孔1aに光ファ
イバ3を挿入して接合した後、先端面1dを曲率半径1
0〜25mm程度の凸球面状に研摩する。このような一
対のフェルール1をスリーブ4の両端から挿入し、バネ
等で押圧して先端面1d同士を当接させることによっ
て、光ファイバ3同士の接続を行うことができる。
The ferrule 1 is formed of a zirconia sintered body, the details of which will be described later. As shown in FIG. 4, the rear side of the ferrule 1 is joined to a metal support 2 and the optical fiber 3 is inserted into the through hole 1a. Then, the tip surface 1d is bent to a radius of curvature of 1
Polish to a convex spherical shape of about 0 to 25 mm. The optical fibers 3 can be connected to each other by inserting the pair of ferrules 1 from both ends of the sleeve 4 and pressing them with a spring or the like to bring the tip surfaces 1d into contact with each other.

【0033】上記フェルール1を成すジルコニア焼結体
は、ZrO2 を主成分とし、安定化剤としてY23
含有し、正方晶の結晶相を主体とし、平均結晶粒径を
0.3〜0.5μm、ビッカース硬度を1240〜13
00としており、このようにすることによって、フェル
ール1の先端面1dの研磨性を良好にしている。
The zirconia sintered body forming the ferrule 1 contains ZrO 2 as a main component, Y 2 O 3 as a stabilizer, a tetragonal crystal phase as a main component, and an average crystal grain size of 0.3. ~ 0.5 μm, Vickers hardness 1240-13
00, and by doing so, the polishability of the tip surface 1d of the ferrule 1 is improved.

【0034】本発明のジルコニア焼結体は、正方晶相を
主体とすることによって、応力を受けた際に、この正方
晶結晶が単斜晶結晶に変態して体積膨張し、クラックの
進展を防止するという応力誘起変態のメカニズムによっ
て、焼結体の強度、靱性を向上でき、部分安定化ジルコ
ニアと呼ばれている。
In the zirconia sintered body of the present invention, the tetragonal phase is the main component, so that when the stress is applied, the tetragonal crystal transforms into a monoclinic crystal and expands in volume, and cracks develop. The strength and toughness of the sintered body can be improved by the mechanism of stress-induced transformation to prevent it, and it is called partially stabilized zirconia.

【0035】また、本発明のジルコニア焼結体は、単斜
晶相を含まず、主体をなす正方晶相の他に相変態に対し
て安定な立方晶を含むことで、前記応力誘起変態のメカ
ニズムをほとんど損なわずに高温水中での相変態特性を
大きく向上させることができる。
Further, the zirconia sintered body of the present invention does not contain a monoclinic phase, but contains a cubic crystal stable to a phase transformation in addition to a tetragonal crystal phase as a main component, so that the stress-induced transformation The phase transformation characteristics in high temperature water can be greatly improved without impairing the mechanism.

【0036】次に、上記フェルール1の製造方法につい
て説明する。
Next, a method for manufacturing the ferrule 1 will be described.

【0037】まず、出発原料のZrO2 には不純物とし
てAl23 やSiO2 、TiO2、あるいはCaO、
Na2 O、Fe23 等が含まれているが、この原料を
酸やアルカリ等の薬品で処理したり、あるいは比重差を
利用した重力選鉱等の手法にて精製し純度を高める。そ
して、ZrO2 にY23 を3〜5モル%添加混合し、
中和共沈または加水分解等の方法により反応・固溶させ
る。
First, ZrO 2 as a starting material contains Al 2 O 3 , SiO 2 , TiO 2 or CaO as impurities.
Although Na 2 O, Fe 2 O 3 and the like are contained, the raw material is treated with a chemical such as acid or alkali, or purified by a method such as gravity separation utilizing the difference in specific gravity to increase the purity. Then, 3 to 5 mol% of Y 2 O 3 is added to ZrO 2 and mixed,
Reaction and solid solution are carried out by a method such as neutralization coprecipitation or hydrolysis.

【0038】次に、得られた原料に、成形しやすくする
ために水系、樹脂系、もしくはエマルジョン系等のバイ
ンダーを混合し、成形前原料を作成する。
Next, the obtained raw material is mixed with a binder such as an aqueous type, a resin type, or an emulsion type in order to facilitate molding, to prepare a raw material before molding.

【0039】次に、該成形前原料の一部分を取り出して
成形し、フェルール1のセラミックス成形体の外径など
の特定個所の寸法もしくは成形金型の特定個所の寸法を
測定したあと、焼成して、再びフェルール1のセラミッ
クス焼結体の上記特定個所の寸法を測定し、その収縮率
を算出する予備試験を行う。
Next, a part of the raw material before molding is taken out and molded, and after measuring the dimensions of a specific portion such as the outer diameter of the ceramic molded body of the ferrule 1 or the dimensions of a specific portion of the molding die, it is fired. Again, a preliminary test is performed to measure the dimensions of the above-mentioned specific portion of the ceramics sintered body of the ferrule 1 and calculate the shrinkage ratio thereof.

【0040】次に、フェルール1のセラミックス焼結体
の特定個所が所望の寸法になるように、上記算定した収
縮率に基づき成形金型を選定し、更に本成形時の成形機
本体先端部の押出成形圧力を調整して、本成形、本焼成
をおこない、セラミックス焼結体を得たあと、外周面、
先端面、C面部等の必要部分を研削もしくは研磨等の機
械仕上げ加工を行い完成品のフェルール1を得る。
Next, a molding die is selected on the basis of the calculated shrinkage so that a specific portion of the ceramics sintered body of the ferrule 1 has a desired size, and the tip of the molding machine main body at the time of main molding is selected. After adjusting the extrusion molding pressure to perform main forming and main firing to obtain a ceramics sintered body, the outer peripheral surface,
Mechanical finishing processing such as grinding or polishing is performed on necessary parts such as the tip surface and the C surface portion to obtain a ferrule 1 as a finished product.

【0041】以上、予備試験として焼成を行って収縮率
を算出する方法で説明してきたが、焼成まで行うと収縮
率の算出までに時間が掛かることから、成形後に乾燥の
み行い、バインダーの流体分を除去しその収縮率をもと
に上記製造方法を行うことでも、本発明の同等の効果を
得ることが出来る。
As described above, the method of calculating shrinkage by performing firing as a preliminary test has been described. However, if firing is performed, it takes time to calculate shrinkage. Therefore, only drying is performed after molding and the fluid content of the binder is reduced. It is also possible to obtain the same effect of the present invention by removing the above and performing the above manufacturing method based on the shrinkage ratio.

【0042】本発明の製造方法によれば、焼成方法とし
てはバッチ炉、連続炉等様々な焼成方法を用いても、同
一の効果を得ることが出来る。
According to the manufacturing method of the present invention, the same effect can be obtained even if various firing methods such as a batch furnace and a continuous furnace are used as the firing method.

【0043】なお、図4では光ファイバ4同士を接続す
るための光コネクタを示したが、上記フェルール1は、
レーザダイオードやフォトダイオード等の光素子と光フ
ァイバを接続する光モジュールに用いることもできる。
Although FIG. 4 shows an optical connector for connecting the optical fibers 4 to each other, the ferrule 1 has
It can also be used in an optical module for connecting an optical fiber to an optical element such as a laser diode or a photodiode.

【0044】また、本発明におけるジルコニア焼結体
は、上述した光ファイバ同士、又は光ファイバと各種光
素子との接続に用いるさまざまな部材に適用することが
でき、上述したフェルール1に限らない。例えば、光フ
ァイバ同士を完全に接続するために用いるスプライサ
や、光モジュールに用いるダミーフェルール等にも適用
することができる。
The zirconia sintered body according to the present invention can be applied to various members used for connecting the above-mentioned optical fibers or connecting the optical fibers to various optical elements, and is not limited to the above-mentioned ferrule 1. For example, it can be applied to a splicer used for completely connecting optical fibers, a dummy ferrule used for an optical module, and the like.

【0045】[0045]

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0046】原料はZrO2 へY23 を添加した部分
安定化ジルコニアを用い、それぞれ、焼結後の外径の寸
法がφ2.500mmのフェルールとなるようにし、本
発明の図1及び比較例として図5に示す製造方法にてサ
ンプルを作製した。
A partially stabilized zirconia prepared by adding Y 2 O 3 to ZrO 2 was used as a raw material, and the ferrules each had an outer diameter of φ2.500 mm after sintering. As an example, a sample was manufactured by the manufacturing method shown in FIG.

【0047】本発明の図1に示す製造方法にて、平均的
な収縮率77.8%をもとに外径φ3.2134mmの
成形金型を用いて、製造ロット毎に成形前原料の一部を
取り出し、成形した後の成形体の外径を測定し、その
後、焼成を行い再び焼結体の外形を測定し、サンプルN
o毎の収縮率を計算した。
In the manufacturing method shown in FIG. 1 of the present invention, a molding die having an outer diameter of φ3.2134 mm was used based on an average shrinkage rate of 77.8%, and one raw material before molding was manufactured for each manufacturing lot. After taking out the part, the outer diameter of the molded body after molding is measured, and thereafter, the outer diameter of the sintered body is measured again by firing, and the sample N
The shrinkage rate for each o was calculated.

【0048】次に、本実施例で使用した成形機において
予め求めていた関係式、 焼結体の外径=2.50×金型寸法+0.000215
×成形圧力−5.5691 および上記成形機においては成形温度1℃上昇毎に成形
圧力が11.5kgf/cm2下降する関係から、各サ
ンプルの焼結体の外径が2.500mmになるように、
成形圧力を算出し、成形温度を各サンプルNo毎に調整
し、10種類のサンプルを本成形、本焼成をおこない、
サンプルNo毎にそれぞれ20個の外形寸法を測定し
た。
Next, the relational expression obtained in advance by the molding machine used in this example, the outer diameter of the sintered body = 2.50 × die size + 0.000215
× Molding pressure −5.5691 and in the above molding machine, since the molding pressure decreases 11.5 kgf / cm 2 for each 1 ° C. increase in molding temperature, the outer diameter of the sintered body of each sample should be 2.500 mm. To
The molding pressure is calculated, the molding temperature is adjusted for each sample No, and 10 types of samples are subjected to main molding and main firing,
Twenty external dimensions were measured for each sample No.

【0049】ここで、サンプルNo1の成形圧力、成形
温度としては、予備試験時の成形温度が24℃、成形圧
力が190kgf/cm2で、焼結体の外径が2.50
53mmだったので、本成形においては、同一金型で焼
結体の外径を2.500mmになるように、成形温度を
21.9℃に設定し、成形圧力を166kgf/cm 2
に調整した。
Here, the molding pressure and molding of sample No. 1
As the temperature, the molding temperature during the preliminary test is 24 ° C, the molding pressure is
The force is 190 kgf / cm2And the outer diameter of the sintered body is 2.50
Since it was 53 mm, it was baked in the same mold in this forming.
Adjust the molding temperature so that the outer diameter of the united body is 2.500 mm.
Set to 21.9 ° C, molding pressure 166kgf / cm 2
Adjusted to.

【0050】次に順次各製造ロットの違う原料の本成
形、本焼成をおこない10種類のサンプルとした。
Next, main forming and main firing of raw materials of different production lots were sequentially performed to obtain 10 kinds of samples.

【0051】また、図1に示す製造方法のもう一つの形
態として、各原料ロットの半分の量を本成形した段階
で、本成形での焼結体の外径を基に再度成形圧力を算出
し成形温度を調整し所望の外径2.500mmに近づけ
たものについても、10種類のサンプルの本成形、本焼
成を行い、サンプルNo毎にそれぞれ20個の外形寸法
を測定した。
As another form of the manufacturing method shown in FIG. 1, when the half amount of each raw material lot is subjected to the main forming, the forming pressure is calculated again based on the outer diameter of the sintered body in the main forming. Then, the molding temperature was adjusted so that the outer diameter was brought close to the desired outer diameter of 2.500 mm, 10 types of samples were subjected to main forming and main firing, and 20 external dimensions were measured for each sample No.

【0052】比較例として、従来の図5に示す製造方法
にて平均的な収縮率77.8%に基づいて外径φ3.2
134mmの成形金型を用いて本成形、本焼成したサン
プルをそれぞれ10種類作製し、サンプルNo毎に20
個の外径寸法を測定した。
As a comparative example, an outer diameter φ3.2 based on an average shrinkage rate of 77.8% in the conventional manufacturing method shown in FIG.
Using a 134 mm forming die, 10 types of samples that were subjected to main forming and main firing were prepared, and 20 samples were prepared for each sample number.
The outer diameter of each piece was measured.

【0053】各サンプルの平均値を表1に示す。Table 1 shows the average value of each sample.

【0054】[0054]

【表1】 [Table 1]

【0055】以上より、図5に示す従来の製造方法で作
製したサンプルでは、外径の平均値がφ2.4971m
m、ばらつきが0.01989mと大きくばらついてい
たのにたいし、本発明の図1に示す製造方法では、予備
試験後本成形前にのみ成形圧力を調整した場合で、外径
の平均値がφ2.5018mm、ばらつきが0.008
36mmと大幅に安定した外径寸法を得ることが出来、
更には予備試験後本成形前及び本成形中に成形圧力を調
整した場合では、平均値がφ2.4998mm、ばらつ
きが0.00382mmとほとんどばらつきがない状態
まで安定した外径寸法をえることが出来た。
As described above, in the sample manufactured by the conventional manufacturing method shown in FIG. 5, the average outer diameter is φ2.4971 m.
m, the variation was as large as 0.01989 m, but in the production method shown in FIG. 1 of the present invention, when the molding pressure was adjusted only after the preliminary test and before the main molding, the average outer diameter was φ2.5018 mm, variation 0.008
It is possible to obtain a significantly stable outer diameter of 36 mm,
Further, when the molding pressure is adjusted after the preliminary test and before and during the main molding, the outer diameter can be stably obtained until the average value is φ2.4998 mm and the variation is 0.00382 mm. It was

【0056】[0056]

【発明の効果】以上のように本発明によれば、出発原料
に焼結助剤等を混合しバインダーを添加した成形前原料
を成形、焼結したセラミックス焼結体において、上記成
形前原料の一部分を押出成形し、該セラミックス成形体
の特定個所の寸法もしくは成形金型の特定個所の寸法を
測定したあと、乾燥もしくは焼成して、再びセラミック
ス乾燥体もしくはセラミックス焼結体の上記特定個所の
寸法を測定し、その収縮率を算出する予備試験を行った
後、上記セラミックス焼結体の特定個所が所望の寸法に
なるように、上記算定した収縮率に基づき成形金型を選
定し、更に押出成形機本体先端部の押出成形圧力を調整
した後本成形をおこなうことにより、また、出発原料に
焼結助剤等を混合しバインダーを添加した成形前原料を
成形、焼結したセラミックス焼結体において、本成形中
に該セラミックス成形体の一部を乾燥もしくは焼成し
て、セラミックス乾燥体もしくはセラミックス焼結体の
特定個所の寸法を測定し、上記セラミックス焼結体の上
記特定個所が所望の寸法になるように、本成形時に押出
成形機本体先端部の押出成形圧力を調整することによ
り、セラミックス焼結体の特定個所がミクロン以下の所
望の寸法公差の範囲内に入るようになった。
As described above, according to the present invention, in a ceramic sintered body obtained by molding and sintering a pre-molding raw material obtained by mixing a starting material with a sintering aid or the like and adding a binder, A part is extruded, and the dimension of the specific portion of the ceramic molded body or the dimension of the specific portion of the molding die is measured, and then dried or fired, and the dimension of the specific portion of the ceramic dried body or the ceramic sintered body is again measured. After conducting a preliminary test to calculate the shrinkage rate, a molding die is selected based on the calculated shrinkage rate so that the specific portion of the ceramic sintered body has a desired dimension, and the extrusion is further performed. By adjusting the extrusion molding pressure at the tip of the molding machine body and then performing main molding, the pre-molding raw material obtained by mixing the starting raw material with the sintering aid and the like and adding the binder was molded and sintered. In the mixed sintered body, a part of the ceramic molded body is dried or fired during the main molding to measure the dimension of the specific location of the ceramic dried body or the ceramic sintered body, and the specified location of the ceramic sintered body. Is adjusted to the desired dimension, the extrusion molding pressure at the tip of the extruder body is adjusted during main molding so that the specific part of the ceramic sintered body falls within the desired dimensional tolerance range of micron or less. became.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセラミックス焼結体の製造方法を示す
流れ図である。
FIG. 1 is a flow chart showing a method for producing a ceramics sintered body of the present invention.

【図2】本発明のセラミックス焼結体の製造方法で用い
る押出成形機の構造を示す図である。
FIG. 2 is a diagram showing the structure of an extruder used in the method for producing a ceramics sintered body of the present invention.

【図3】本発明の製造方法により得られる光コネクタ用
部材を示す図である。
FIG. 3 is a diagram showing an optical connector member obtained by the manufacturing method of the present invention.

【図4】本発明の製造方法により得られる光コネクタ用
部材を用いた光コネクタを示す断面図である。
FIG. 4 is a cross-sectional view showing an optical connector using an optical connector member obtained by the manufacturing method of the present invention.

【図5】従来のセラミックス焼結体の製造方法を示す流
れ図である。
FIG. 5 is a flow chart showing a conventional method for producing a ceramics sintered body.

【符号の説明】[Explanation of symbols]

1:フェルール 1a:貫通孔 1b:円錐部 1c:C面部 1d:先端面 2:支持体 3:光ファイバ 4:スリーブ 5:押出成形機本体先端部 5a:ジャケット部 5b: スクリュー 6:圧力計 7:温度計 8:オーガバレル 9:ダイスキャップ 10:ホルダー 11:金型 12:成形前原料 13:セラミックス成形体 14:ジャケット部用冷却水注入口 15:ジャケット部用冷却水排出口 16:スクリュー部用冷却水注入口 17:スクリュー部用冷却水排出口 18:オーガバレル用冷却水注入口 19:オーガバレル用冷却水排出口 1: Ferrule 1a: Through hole 1b: conical part 1c: C surface part 1d: Tip surface 2: Support 3: Optical fiber 4: Sleeve 5: Extruder body tip 5a: jacket 5b: screw 6: Pressure gauge 7: Thermometer 8: Auger barrel 9: Dice cap 10: Holder 11: Mold 12: Raw material before molding 13: Ceramic molded body 14: Cooling water inlet for jacket 15: Cooling water outlet for jacket 16: Cooling water inlet for screw part 17: Cooling water discharge port for screw part 18: Cooling water inlet for auger barrel 19: Cooling water outlet for auger barrel

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】出発原料に焼結助剤等を混合しバインダー
を添加した成形前原料を押出成形し、焼結するセラミッ
クス焼結体の製造方法において、上記成形前原料の一部
分を押出成形し、得られたセラミックス成形体の特定個
所の寸法もしくは成形金型の特定個所の寸法を測定した
あと、乾燥もしくは焼成して、再びセラミックス乾燥体
もしくはセラミックス焼結体の上記特定個所の寸法を測
定し、その収縮率を算出する予備試験を行った後、上記
セラミックス焼結体の特定個所が所望の寸法になるよう
に、上記算定した収縮率に基づき成形金型を選定し、か
つ押出成形機本体先端部の押出成形圧力を調整した後、
本成形をおこなうことを特徴とするセラミックス焼結体
の製造方法。
1. A method for producing a ceramics sintered body, wherein a starting raw material is mixed with a sintering aid and the like and a binder is added to the raw material, and the raw material is extruded. After measuring the size of the specific part of the obtained ceramic molded body or the size of the specific part of the molding die, it is dried or fired and the size of the above specific part of the ceramic dried body or the ceramic sintered body is measured again. After performing a preliminary test to calculate the shrinkage rate, a molding die is selected based on the calculated shrinkage rate so that the specific portion of the ceramic sintered body has a desired dimension, and the extrusion molding machine main body is selected. After adjusting the extrusion molding pressure of the tip,
A method for producing a ceramics sintered body, which comprises performing main forming.
【請求項2】出発原料に焼結助剤等を混合しバインダー
を添加した成形前原料を押出成形し、焼結するセラミッ
クス焼結体の製造方法において、本成形中に得られたセ
ラミックス成形体の一部を乾燥もしくは焼成して、セラ
ミックス乾燥体もしくはセラミックス焼結体の特定個所
の寸法を測定し、上記セラミックス焼結体の上記特定個
所が所望の寸法になるように、本成形時に押出成形機本
体先端部の押出成形圧力を調整することを特徴とするセ
ラミックス焼結体の製造方法。
2. A ceramic molded body obtained during main molding in a method for producing a ceramic sintered body, wherein a starting raw material is mixed with a sintering aid and the like and a binder is added, and the raw material before molding is extruded and sintered. Is dried or fired to measure the dimensions of a specific location of the ceramic dried body or the ceramic sintered body, and extrusion molding is performed during the main molding so that the above-mentioned specific location of the ceramic sintered body has the desired dimension. A method for producing a ceramics sintered body, which comprises adjusting an extrusion molding pressure at a tip portion of a machine body.
【請求項3】上記押出成形圧力の調整は、押出成形機本
体先端部の温度制御により行うことを特徴とする請求項
1〜2のいずれかに記載のセラミックス焼結体の製造方
法。
3. The method for producing a ceramic sintered body according to claim 1, wherein the extrusion molding pressure is adjusted by controlling the temperature of the tip of the extrusion molding machine body.
【請求項4】上記セラミックス焼結体がジルコニアセラ
ミックスからなることを特徴とする請求項1〜3のいず
れかに記載のセラミックス焼結体の製造方法。
4. The method for producing a ceramic sintered body according to claim 1, wherein the ceramic sintered body is made of zirconia ceramics.
【請求項5】上記セラミックス焼結体が光通信用コネク
タ部材に使用されることを特徴とする請求項1〜4のい
ずれかに記載のセラミックス焼結体の製造方法。
5. The method for producing a ceramics sintered body according to claim 1, wherein the ceramics sintered body is used for an optical communication connector member.
JP2001298674A 2001-09-27 2001-09-27 Production method for ceramic sintered compact Pending JP2003104776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298674A JP2003104776A (en) 2001-09-27 2001-09-27 Production method for ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298674A JP2003104776A (en) 2001-09-27 2001-09-27 Production method for ceramic sintered compact

Publications (1)

Publication Number Publication Date
JP2003104776A true JP2003104776A (en) 2003-04-09

Family

ID=19119538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298674A Pending JP2003104776A (en) 2001-09-27 2001-09-27 Production method for ceramic sintered compact

Country Status (1)

Country Link
JP (1) JP2003104776A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254648A (en) * 2004-03-12 2005-09-22 Sumitomo Chemical Co Ltd Method for manufacturing extrusion-molding
JP2005280086A (en) * 2004-03-29 2005-10-13 Kyocera Corp Extrusion molding machine for ceramic molded body and method for extrusion molding
KR101068745B1 (en) 2011-05-11 2011-09-28 이계안 Method of manufacturing mold and method of manufacturing ceramics
JP2017121758A (en) * 2016-01-08 2017-07-13 日本碍子株式会社 Method for adjusting extrusion speed
JP2017170869A (en) * 2016-03-25 2017-09-28 日本碍子株式会社 Method fo producing ceramic structure
JP6790313B1 (en) * 2020-03-23 2020-11-25 日本碍子株式会社 Manufacturing method of ceramic molded body and ceramic structure
JP2021107300A (en) * 2019-12-27 2021-07-29 京セラ株式会社 Production device, production system, method of controlling production device, system of producing ceramic product, and method of producing ceramic product

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254648A (en) * 2004-03-12 2005-09-22 Sumitomo Chemical Co Ltd Method for manufacturing extrusion-molding
JP4547947B2 (en) * 2004-03-12 2010-09-22 住友化学株式会社 Method for producing extrusion molded body
JP2005280086A (en) * 2004-03-29 2005-10-13 Kyocera Corp Extrusion molding machine for ceramic molded body and method for extrusion molding
JP4726427B2 (en) * 2004-03-29 2011-07-20 京セラ株式会社 Ceramic molded body extrusion molding machine and extrusion molding method
KR101068745B1 (en) 2011-05-11 2011-09-28 이계안 Method of manufacturing mold and method of manufacturing ceramics
JP2017121758A (en) * 2016-01-08 2017-07-13 日本碍子株式会社 Method for adjusting extrusion speed
CN106956348A (en) * 2016-01-08 2017-07-18 日本碍子株式会社 The method of adjustment of extrusion speed
US10828819B2 (en) 2016-01-08 2020-11-10 Ngk Insulators, Ltd. Adjusting method of extrusion rate
CN107225668A (en) * 2016-03-25 2017-10-03 日本碍子株式会社 The manufacture method of ceramic structure
US10556365B2 (en) 2016-03-25 2020-02-11 Ngk Insulators, Ltd. Method of manufacturing ceramic structure
JP2017170869A (en) * 2016-03-25 2017-09-28 日本碍子株式会社 Method fo producing ceramic structure
JP2021107300A (en) * 2019-12-27 2021-07-29 京セラ株式会社 Production device, production system, method of controlling production device, system of producing ceramic product, and method of producing ceramic product
JP7438753B2 (en) 2019-12-27 2024-02-27 京セラ株式会社 Generation device, generation system, control method for generation device, ceramic product manufacturing system, and ceramic product manufacturing method
JP6790313B1 (en) * 2020-03-23 2020-11-25 日本碍子株式会社 Manufacturing method of ceramic molded body and ceramic structure
WO2021191978A1 (en) * 2020-03-23 2021-09-30 日本碍子株式会社 Methods for manufacturing ceramic molding and ceramic structure
US11383405B2 (en) 2020-03-23 2022-07-12 Ngk Insulators, Ltd. Methods for producing ceramic molded body and ceramic structure

Similar Documents

Publication Publication Date Title
JP2003104776A (en) Production method for ceramic sintered compact
JP2008033243A (en) Split sleeve and optical receptacle using the same
JP2003221275A (en) Method for manufacturing sintered body of ceramics
JP2003073164A (en) Method of manufacturing ceramic sintered compact
JP2005179156A (en) Method for manufacturing sintered ceramic compact and connector for optical communication
JP2003137651A (en) Method of producing ceramic sintered compact
JP2003238253A (en) Method of producing ceramic sintered compact
JP2005281014A (en) Method for producing sintered ceramic compact and optical communication connector using sintered ceramic compact produced thereby
JP5240722B2 (en) Ceramic ferrule and its manufacturing method
JP2004115307A (en) Method for manufacturing ceramic sintered compact
JP2005131833A (en) Manufacturing method of ceramic sintered body and optical communication connector
JP4618992B2 (en) Molding method of ceramic powder
JP2003137662A (en) Method of manufacturing sintered ceramic compact
JP2003252683A (en) Method for producing ceramic sintered compact
JP2004292229A (en) Method of manufacturing ceramic sintered compact
JPH0688803B2 (en) Mold for optical glass element
JP4535539B2 (en) Zirconia sintered body for optical connector and manufacturing method thereof
JP2006116933A (en) Extrusion molding machine, extrusion molding method using the same and ferrule for optical communication obtained by the same
JP2001240468A (en) Sintered body of zirconia for light connector and process for producing the same
JP2004256312A (en) Method for manufacturing zirconia sintered body
JP4726427B2 (en) Ceramic molded body extrusion molding machine and extrusion molding method
JP2006062944A (en) Method for producing ceramic sintered compact and ferrule for optical communication using it
WO2002069009A1 (en) Ferrule for optical-fiber connector and process for producing the same
JP2004175625A (en) Member for optical connector, and its manufacturing method
JPH07248432A (en) Capillary for optical connector