JP2002301700A - Manufacturing method for nanotube probe - Google Patents

Manufacturing method for nanotube probe

Info

Publication number
JP2002301700A
JP2002301700A JP2001106641A JP2001106641A JP2002301700A JP 2002301700 A JP2002301700 A JP 2002301700A JP 2001106641 A JP2001106641 A JP 2001106641A JP 2001106641 A JP2001106641 A JP 2001106641A JP 2002301700 A JP2002301700 A JP 2002301700A
Authority
JP
Japan
Prior art keywords
holder
nanotube
nanotubes
probe
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001106641A
Other languages
Japanese (ja)
Other versions
JP3536288B2 (en
Inventor
Shinki Chin
新奇 陳
Takeshi Saito
毅 齋藤
Takafumi Yamada
啓文 山田
Kazumi Matsushige
和美 松重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2001106641A priority Critical patent/JP3536288B2/en
Publication of JP2002301700A publication Critical patent/JP2002301700A/en
Application granted granted Critical
Publication of JP3536288B2 publication Critical patent/JP3536288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of easily manufacturing a nanotube probe in a short time. SOLUTION: When the alternating current voltage is applied between a holder 10 having a sharp end 11 and an opposed electrode 12, electric lines of force connecting both the electrodes 10 and 12 is concentrated to the sharp end 11. In this condition, the liquid (migration liquid) 13 including nanotubes is interposed between the sharp end 11 of the holder 10 and the opposite electrode 12 so that the nanotubes are orientated along the electric lines of force in the longitudinal direction thereof. Multiple nanotubes are concentrated to the sharp end 11 of the holder 10, to which the electric power line is concentrated, and a part thereof is adhered to the sharp end 11 of the holder 10. The adhered nanotube 14 is fixed to the sharp end 11 of the holder 10 by the Van der Vaals force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走査トンネル顕微
鏡(Scanning Tunneling Microscope;STM)、原子間
力顕微鏡(Atomic Force Microscope;AFM)等の走査
プローブ型顕微鏡、或いは、物質の表面を原子単位で操
作するナノ操作装置(Atomic/Molecular Manipulator)
等に用いられる探針(プローブ)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope such as a scanning tunneling microscope (STM) and an atomic force microscope (AFM), or a method of operating the surface of a substance in atomic units. Nano operation device (Atomic / Molecular Manipulator)
The present invention relates to a probe used for the like.

【0002】[0002]

【従来の技術】高分解能の実空間像を得る装置としてS
TMやAFMが広く用いられるようになってきたが、そ
れらの最も重要な部品の一つが探針(プローブ)であ
る。これらの顕微鏡は、探針の先端と対象物の表面との
トンネル電流や原子間力により表面の性状を検出するも
のであるため、その先端の品質が像の分解能を左右す
る。
2. Description of the Related Art As a device for obtaining a high-resolution real space image, S
Although TM and AFM have been widely used, one of the most important parts thereof is a probe. Since these microscopes detect surface properties by a tunnel current or an atomic force between the tip of the probe and the surface of the object, the quality of the tip determines the image resolution.

【0003】この探針として、導電性が要求されるST
Mでは先端を鋭く化学エッチした金属線、或いは単には
さみで切り落としただけの金属線が使われている。ま
た、導電性が要求されないAFMでは、微細加工により
作製されたシリコン又は窒化シリコンのピラミッドがよ
く用いられている。どちらの場合も探針の先端は数十nm
程度の広がりを持っているが、このような鈍な先端でも
サブナノメートルオーダーの分解能が得られるのは、広
がりを持った先端の中に原子スケールの突起がたまたま
都合の良い場所にできていて、それが試料表面との主要
な接触点となるからである。しかし、そのような突起が
存在する場合でも、そのサイズ、形、組成は全くわから
ないし、走査中もよく変化するといわれている。
[0003] For this probe, ST is required to have conductivity.
In M, a metal wire whose tip is sharply chemically etched or a metal wire simply cut off with scissors is used. In an AFM that does not require conductivity, a pyramid of silicon or silicon nitride manufactured by fine processing is often used. In both cases, the tip of the probe is tens of nm
Although it has a degree of spread, sub-nanometer order resolution can be obtained even with such a blunt tip because atomic scale protrusions happen to be formed in convenient places in the spread tip, This is because it becomes the main point of contact with the sample surface. However, even when such protrusions are present, their size, shape, and composition are not known at all, and are said to change frequently during scanning.

【0004】そこで、カーボンナノチューブを探針とし
て使用するという提案がなされた(Nature, 384(1996),
p.147)。カーボンナノチューブはネットワーク状のグ
ラファイト型炭素により形成されるチューブであり、単
層壁であるシングルウォールタイプと多層壁を持つマル
チプルウォールタイプがある。長さはいずれも数十nmか
ら数μm程度であるが、直径はシングルウォールタイプ
のものが0.4〜5nmであるのに対し、マルチプルウォール
タイプのものは2〜50nmと大きく異なる。しかし、いず
れにせよこのように高いアスペクト比を有するナノチュ
ーブを探針として用いれば、上記従来の探針よりも遙か
に鋭い先端を得ることができる。その結果、例えば図5
(a)のように従来のピラミッド型の探針では十分トレー
スすることができないような急峻な表面凹凸も、同図
(b)に示すように精度良く検出することができるように
なる。また、マルチプルウォールタイプのような導電性
のカーボンナノチューブを用いた場合には、STMとA
FMの双方に探針として使用することができる。
Therefore, a proposal has been made to use a carbon nanotube as a probe (Nature, 384 (1996),
p.147). The carbon nanotube is a tube formed of network-like graphite-type carbon, and includes a single-wall type having a single-layer wall and a multiple-wall type having a multi-layer wall. Although the length is about several tens nm to several μm, the diameter of the single wall type is 0.4 to 5 nm, whereas that of the multiple wall type is 2 to 50 nm, which is significantly different. However, in any case, if a nanotube having such a high aspect ratio is used as a probe, a much sharper tip can be obtained than the conventional probe. As a result, for example, FIG.
As shown in (a), steep surface irregularities that cannot be traced sufficiently with a conventional pyramid-shaped probe
As shown in (b), detection can be performed with high accuracy. When a conductive carbon nanotube such as a multiple wall type is used, STM and A
It can be used as a probe for both FM.

【0005】カーボンナノチューブはこのように小さな
ものであるため、これを実際に探針の先端に固定するに
は困難が伴う。特開2000-227435及び特開2000-249712に
はカーボンナノチューブをホルダに固定するための方法
が開示されているが、いずれも、複数本のナノチューブ
を束ね、その中の1本のナノチューブを突出させたもの
(NT束)をコーティング膜でホルダーに固定するとい
うものである。コーティング膜としては、浮遊炭素物質
を電子ビームで堆積させるカーボン膜やCVD(化学気
相析出法)・PVD(物理蒸着法)等により形成するこ
とが考えられている。
[0005] Since the carbon nanotube is so small, it is difficult to actually fix it to the tip of the probe. JP-A-2000-227435 and JP-A-2000-249712 disclose methods for fixing carbon nanotubes to a holder, but in each case, a plurality of nanotubes are bundled and one of them is projected. (NT bundle) is fixed to a holder with a coating film. As the coating film, it has been considered to form a carbon film by depositing a floating carbon substance by an electron beam, or by CVD (chemical vapor deposition) or PVD (physical vapor deposition).

【0006】[0006]

【発明が解決しようとする課題】上記特開2000-227435
には、ナノチューブをホルダーに固定する具体的方法が
次のように記載されている(同公報の請求項10)。カ
ーボンナノチューブを分散させた電気泳動液41内の電
極42、43間に電圧を印加して(図4(a))、電極4
2にナノチューブ44を突出状に付着させる(第1工
程。同図(b))。このようにしてナノチューブ44を突
出状に付着させた電極42とホルダー45とを極微接近
させ(同図(c))、ナノチューブ44の先端部が突出し
た状態で、その基端部がホルダー面に付着するようにナ
ノチューブ44をホルダー45に転移させる(第2工
程)。ホルダー面に付着したナノチューブ44の基端部
を少なくとも含む所要領域をコーティング処理する。こ
のコーティング膜により、ナノチューブがホルダーに固
着される(第3工程)。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 2000-227435
Discloses a specific method for fixing a nanotube to a holder as follows (claim 10 of the publication). By applying a voltage between the electrodes 42 and 43 in the electrophoresis liquid 41 in which the carbon nanotubes are dispersed (FIG. 4A),
The nanotubes 44 are attached to 2 in a protruding manner (first step, FIG. 4B). In this manner, the electrode 42 on which the nanotubes 44 are attached in a protruding manner and the holder 45 are brought extremely close to each other ((c) in the same figure). The nanotube 44 is transferred to the holder 45 so as to be attached (second step). A required region including at least the base end of the nanotube 44 attached to the holder surface is subjected to a coating process. The nanotubes are fixed to the holder by this coating film (third step).

【0007】なお、特開2000-249712では上記第3工程
が「ナノチューブとホルダーの間に電流を流して基端部
をホルダーに融着させる」(請求項9)又は「電子ビー
ム照射によりナノチューブの基端部をホルダーに融着さ
せる」(請求項10)とされている。
[0007] In Japanese Patent Application Laid-Open No. 2000-249712, the third step is that "current flows between the nanotube and the holder to fuse the base end to the holder" (claim 9) or " The base end is fused to the holder "(claim 10).

【0008】しかし、いずれにおいても、ナノチューブ
44をホルダー45に移転させる第2工程では、「電子
顕微鏡内で実観察しながら操作する」こととされている
(両公報とも請求項11及び[0042]〜[004
4])。前記の通り、ナノチューブは太さが1nm以下から
数十nmという極微のものであるため、このように電子顕
微鏡内で実際にナノチューブの先端とホルダーの先端と
を3次元的に突き合わせる(図4(c))ことは非常に困
難であり、職人的な技術が必要とされる。すなわち、従
来の方法では誰でもが容易に探針を製造するということ
ができず、また、1本の探針を作製するために非常に長
い時間がかかるという欠点があった。
However, in any case, in the second step of transferring the nanotubes 44 to the holder 45, "the operation is performed while actually observing the inside of the electron microscope" (both claims 11 and [0042]). ~ [004
4]). As described above, since the nanotubes are extremely small with a thickness of 1 nm or less to several tens of nm, the tip of the nanotube and the tip of the holder are actually three-dimensionally abutted in the electron microscope as shown in FIG. (c)) is very difficult and requires artisan skills. That is, the conventional method has a disadvantage that not everyone can easily manufacture a probe, and that it takes a very long time to produce one probe.

【0009】本発明はこのような課題を解決するために
成されたものであり、その目的とするところは、容易に
且つ短時間で、ナノチューブを尖端に有する探針を製造
することのできる方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for easily and quickly manufacturing a probe having a nanotube at a tip. Is to provide.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係るナノチューブ探針の製造方法
は、尖端を有するホルダーと対向電極との間にナノチュ
ーブを含む泳動液を介在させ、所定の交流電圧を印加す
ることによりホルダーの該尖端にナノチューブを固定す
るというものである。
According to a method of manufacturing a nanotube probe according to the present invention, which has been made to solve the above-mentioned problems, an electrophoresis liquid containing nanotubes is interposed between a holder having a pointed tip and a counter electrode. The nanotube is fixed to the tip of the holder by applying a predetermined AC voltage.

【0011】[0011]

【発明の実施の形態】ホルダーと対向電極との間に電圧
を印加すると、両電極を結ぶ電気力線がホルダーの尖端
に集中する。この状態で図1に示すようにホルダー10
の尖端11と対向電極12との間にナノチューブを含む
液(泳動液)13を介在させることにより、ナノチュー
ブはその長手方向が電気力線に沿うように配向する。そ
して、電気力線が集中するホルダー10の尖端11には
多くのナノチューブが集中する。これらのナノチューブ
14の一部は、図2(a)に示すようにホルダー10の尖
端11に付着する。同図(b)に示すように複数のナノチ
ューブ14が付着する場合もあるが、多くの場合、いず
れか1本のナノチューブが最も突出して付着するので、
それを探針の尖端として使用することができる。仮に、
複数のナノチューブがほぼ同一の長さに突出するように
付着したものがあれば、それは検査により排除するよう
にすればよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When a voltage is applied between a holder and a counter electrode, lines of electric force connecting both electrodes are concentrated at the tip of the holder. In this state, as shown in FIG.
By interposing a liquid (electrophoresis liquid) 13 containing nanotubes between the tip 11 of the substrate and the counter electrode 12, the nanotubes are oriented so that the longitudinal direction is along the lines of electric force. Many nanotubes are concentrated on the tip 11 of the holder 10 where the lines of electric force are concentrated. Some of these nanotubes 14 adhere to the tips 11 of the holder 10 as shown in FIG. As shown in FIG. 2B, a plurality of nanotubes 14 may be attached, but in most cases, any one of the nanotubes is most protruded and attached.
It can be used as the tip of a probe. what if,
If a plurality of nanotubes are attached so as to protrude to the same length, they may be removed by inspection.

【0012】付着したナノチューブ14は、ファン・デ
ル・ワールス(Van der Vaals)力によりホルダー10の
尖端11に固定される。ナノチューブ14は上記のよう
に径が小さいものであるため、この固定力は非常に強
く、何らの接着手段を必要としない。このナノチューブ
14の固定は、泳動液13を介在させた後数分程度で行
われる。従って、両電極間10、12に泳動液13を介
在させてから数分後にホルダー10を泳動液13から引
き揚げることにより、ホルダー10の尖端11にナノチ
ューブ14が固定された探針が得られる。
The attached nanotubes 14 are fixed to the tip 11 of the holder 10 by Van der Vaals force. Since the nanotube 14 has a small diameter as described above, the fixing force is very strong and does not require any bonding means. The immobilization of the nanotubes 14 is performed within a few minutes after the electrophoresis liquid 13 is interposed. Therefore, a few minutes after the electrophoresis liquid 13 is interposed between the electrodes 10 and 12, the holder 10 is pulled out of the electrophoresis liquid 13, thereby obtaining a probe in which the nanotubes 14 are fixed to the tips 11 of the holder 10.

【0013】ホルダー10としては、従来よりSTMや
AFM等の探針として用いられていた金属線やシリコン
又は窒化シリコンのピラミッドを使用することができ
る。金属線の場合はそのまま使用することができるが、
シリコンや窒化シリコンのように非導電体又は半導体の
場合は、予めCVD、PVD等により表面を導体膜(金
属膜、炭素膜等)で覆っておく。なお、従来のSTMや
AFM等で用いられているカンチレバーそのものをホル
ダーとしてもよい。
As the holder 10, a metal wire or a pyramid of silicon or silicon nitride which has been conventionally used as a probe for STM, AFM or the like can be used. In the case of metal wire, it can be used as it is,
In the case of a non-conductor or semiconductor such as silicon or silicon nitride, the surface is previously covered with a conductive film (metal film, carbon film, or the like) by CVD, PVD, or the like. Note that the cantilever itself used in the conventional STM, AFM, or the like may be used as the holder.

【0014】本発明者の実験によると、ホルダー10の
尖端11と対向電極12との間に印加する電圧は、交流
とする必要がある。また、その周波数は1〜20MHzである
ことが望ましい。電圧の大きさはホルダー10の尖端1
1と対向電極12との間の距離に応じて適宜設定する必
要があるが、例えば、通常それ自身で探針として使用さ
れているシリコンピラミッド(に金属膜を被覆したも
の)をホルダー10として使用した場合、その尖端11
と対向電極12との間の距離を30μmとしたときに電圧
は1V程度としておく。
According to the experiment of the present inventor, the voltage applied between the tip 11 of the holder 10 and the counter electrode 12 needs to be an alternating current. Further, the frequency is desirably 1 to 20 MHz. The magnitude of the voltage is the tip 1 of the holder 10.
It is necessary to appropriately set the distance according to the distance between the electrode 1 and the counter electrode 12. For example, a silicon pyramid (a metal film coated on the silicon pyramid) which is usually used as a probe itself is used as the holder 10. If you do, the point 11
The voltage is set to about 1 V when the distance between and the counter electrode 12 is 30 μm.

【0015】ナノチューブを含む液(泳動液)13につ
いては特に限定されることはなく、メタノール、エタノ
ール等の一般に用いられている液を用いることができ
る。
The liquid (electrophoresis liquid) 13 containing nanotubes is not particularly limited, and a generally used liquid such as methanol or ethanol can be used.

【0016】ホルダー10と対向電極12との間の距離
を定めるには種々の方法をとることができるが、一例と
してはAFM装置を用いることができる。すなわち、一
旦ホルダー10の尖端11と対向電極12とを原子間力
が働く距離まで近づけた後、所定の距離だけ離すという
方法で、両者間の正確な距離を定めることができる。
Although various methods can be used to determine the distance between the holder 10 and the counter electrode 12, an AFM device can be used as an example. That is, an accurate distance between the tip 11 of the holder 10 and the counter electrode 12 can be determined by a method in which the distance between the tip 11 and the counter electrode 12 is once approached by a predetermined distance.

【0017】泳動液は、ホルダー10の尖端11と対向
電極12の間の距離を定める前に導入しておいても構わ
ないし、距離を定めた後、電圧を印加する前でもよい。
更には、泳動液の液のみの導入と、その液へのナノチュ
ーブの投入とを時間的に分離してもよい。
The electrophoretic liquid may be introduced before the distance between the tip 11 of the holder 10 and the counter electrode 12 is determined, or after the distance is determined and before the voltage is applied.
Further, the introduction of only the electrophoresis running solution and the introduction of the nanotubes into the running solution may be temporally separated.

【0018】具体的には、例えば、まずホルダー10の
尖端11と対向電極12との間の距離を定めて両者を配
置し、電圧を印加した後にナノチューブが入った泳動液
を流し込む。或いは、距離を定めた後、液のみを流し込
み、電圧を印加した後に液にナノチューブを投入する。
更には、液の中にホルダー10の尖端と対向電極12と
を漬けた状態で両者間の距離を定め、電圧を印加した後
にナノチューブを投入してもよい。
Specifically, for example, first, a distance between the tip 11 of the holder 10 and the counter electrode 12 is determined and both are arranged, and after applying a voltage, the electrophoresis running solution containing the nanotubes is poured. Alternatively, after determining the distance, only the liquid is poured, and after applying the voltage, the nanotubes are put into the liquid.
Further, the distance between the tip of the holder 10 and the counter electrode 12 may be determined in a state where the tip of the holder 10 and the counter electrode 12 are immersed in the liquid, and the nanotube may be charged after the voltage is applied.

【0019】[0019]

【発明の効果】本発明に係る方法では、ホルダーともう
一方の電極とを対向させ、印加電圧に応じた距離だけ離
しておけばよいため、何らの熟練や時間を要することな
く、非常に容易且つ短時間に必要な設定を行うことがで
きる。
In the method according to the present invention, the holder and the other electrode only have to be opposed to each other and separated by a distance corresponding to the applied voltage, so that it is very easy without any skill or time. In addition, necessary settings can be made in a short time.

【0020】本発明が優れている点は、上記のような方
法であるため、多数のホルダーに対して上記操作を一挙
に行うことができるということである。すなわち図3に
示すように、対向電極を平板電極22とし、複数のホル
ダー20の尖端21を平板電極22に対して略同一距離
に対向して配置した状態で両者間にナノチューブを分散
させた泳動液を介在させることにより(或いは、泳動液
を介在させた状態で電圧を印加することにより)、複数
のホルダー20に対して一度に、それらの尖端21にナ
ノチューブを固定することができる。これにより、探針
の大量生産が可能となる。
An advantage of the present invention is that the above-described method allows the above operations to be performed on a large number of holders at once. That is, as shown in FIG. 3, the counter electrode is a flat plate electrode 22 and the tips 21 of the plurality of holders 20 are arranged to face the flat plate electrode 22 at substantially the same distance, and the nanotubes are dispersed therebetween. By interposing a liquid (or by applying a voltage with an electrophoretic liquid interposed), the nanotubes can be fixed to the tips 21 of the plurality of holders 20 at once at the same time. This enables mass production of the probe.

【0021】なお、本発明に係る方法は、現時点で最も
一般的に用いられているカーボンナノチューブの他、そ
の炭素原子の一部又は全部がホウ素(B)やチッ素
(N)に置き換わったBCNナノチューブやBNナノチ
ューブ等に対しても適用することが可能である。
It should be noted that the method according to the present invention is not limited to the most commonly used carbon nanotubes at present, and the BCN in which some or all of the carbon atoms are replaced by boron (B) or nitrogen (N). It can be applied to nanotubes, BN nanotubes, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施態様の一例を示す側面図。FIG. 1 is a side view showing an example of an embodiment of the present invention.

【図2】 本発明に係る方法により製造された探針の先
端の状態を示す側面図。
FIG. 2 is a side view showing the state of the tip of a probe manufactured by the method according to the present invention.

【図3】 本発明に係る方法を用いて行われるナノチュ
ーブ探針の大量生産方法の概念を示す斜視図。
FIG. 3 is a perspective view showing the concept of a method for mass-producing a nanotube probe performed using the method according to the present invention.

【図4】 従来のナノチューブ探針の製造方法を示す工
程図。
FIG. 4 is a process chart showing a conventional method for producing a nanotube probe.

【図5】 ピラミッド型探針とナノチューブ探針との検
出動作における差異を示す説明図。
FIG. 5 is an explanatory diagram showing a difference in detection operation between a pyramid type probe and a nanotube probe.

【符号の説明】[Explanation of symbols]

10、20…ホルダー 11、21…ホルダーの尖端 12…対向電極 22…平板対向電極 13…ナノチューブ泳動液 14…ナノチューブ 10, 20: Holder 11, 21: Tip of holder 12: Counter electrode 22: Flat plate counter electrode 13: Nanotube electrophoresis liquid 14: Nanotube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 啓文 京都市左京区吉田本町 京都大学ベンチャ ービジネスラボラトリー内 (72)発明者 松重 和美 京都市左京区吉田本町 京都大学ベンチャ ービジネスラボラトリー内 Fターム(参考) 4G046 CA00 CB01 CB08  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hirofumi Yamada Kyoto University Venture Business Laboratory in Yoshida Honmachi, Sakyo-ku, Kyoto (72) Inventor Kazumi Matsushige F-term in Kyoto University Venture Business Laboratory in Sakyo-ku, Kyoto-shi Reference) 4G046 CA00 CB01 CB08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 尖端を有するホルダーと対向電極との間
にナノチューブを含む液を介在させ、所定の交流電圧を
印加することによりホルダーの該尖端にナノチューブを
固定することを特徴とするナノチューブ探針の製造方
法。
1. A nanotube probe wherein a liquid containing nanotubes is interposed between a holder having a sharp tip and a counter electrode, and a nanotube is fixed to the sharp tip of the holder by applying a predetermined AC voltage. Manufacturing method.
【請求項2】 対向電極を平板電極とし、複数のホルダ
ーの尖端を平板電極に対して略同一距離に対向して配置
することを特徴とする請求項1記載のナノチューブ探針
の製造方法。
2. The method for producing a nanotube probe according to claim 1, wherein the opposing electrode is a flat plate electrode, and the tips of the plurality of holders are arranged so as to face the flat electrode at substantially the same distance.
【請求項3】 ナノチューブがカーボンナノチューブで
あることを特徴とする請求項1又は2に記載のナノチュ
ーブ探針の製造方法。
3. The method for producing a nanotube probe according to claim 1, wherein the nanotube is a carbon nanotube.
【請求項4】 尖端を有するホルダーが、表面を導体膜
で覆った非導体又は半導体から成ることを特徴とする請
求項1〜3のいずれかに記載のナノチューブ探針の製造
方法。
4. The method for producing a nanotube probe according to claim 1, wherein the holder having a pointed end is made of a non-conductor or a semiconductor whose surface is covered with a conductive film.
【請求項5】 上記ホルダーとして導電性カンチレバー
を利用する請求項1〜3のいずれかに記載のナノチュー
ブ探針の製造方法。
5. The method for producing a nanotube probe according to claim 1, wherein a conductive cantilever is used as the holder.
JP2001106641A 2001-04-05 2001-04-05 Method of manufacturing nanotube probe Expired - Fee Related JP3536288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106641A JP3536288B2 (en) 2001-04-05 2001-04-05 Method of manufacturing nanotube probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001106641A JP3536288B2 (en) 2001-04-05 2001-04-05 Method of manufacturing nanotube probe

Publications (2)

Publication Number Publication Date
JP2002301700A true JP2002301700A (en) 2002-10-15
JP3536288B2 JP3536288B2 (en) 2004-06-07

Family

ID=18959105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106641A Expired - Fee Related JP3536288B2 (en) 2001-04-05 2001-04-05 Method of manufacturing nanotube probe

Country Status (1)

Country Link
JP (1) JP3536288B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052489A2 (en) * 2002-12-09 2004-06-24 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
JP2005111583A (en) * 2003-10-03 2005-04-28 Sii Nanotechnology Inc Method of manufacturing structure of nanometer scale
WO2005069337A1 (en) * 2004-01-19 2005-07-28 M2N Inc. Method for massive assembling of carbon nanotubes
US7252749B2 (en) 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US7455757B2 (en) 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP2010047889A (en) * 2008-08-20 2010-03-04 Seoul National Univ Industry Foundation Reinforced carbon nanotube wire
KR101097217B1 (en) 2008-09-17 2011-12-22 한국기계연구원 Micro contact probe for probe card coated with carbon nano tube and febrication method thereof
CN101612612B (en) * 2002-12-09 2012-05-16 北卡罗来纳-查佩尔山大学 Methods for assembly and sorting of nanostructure-containing materials and related articles
US8287695B2 (en) 2008-08-26 2012-10-16 Snu R&Db Foundation Manufacturing carbon nanotube paper
US8308930B2 (en) 2008-03-04 2012-11-13 Snu R&Db Foundation Manufacturing carbon nanotube ropes
JP2013019779A (en) * 2011-07-12 2013-01-31 Seiko Instruments Inc Probe and manufacturing method therefor
KR101343012B1 (en) * 2011-08-12 2013-12-18 포항공과대학교 산학협력단 Nano electrode and method for manutacturing of the same
US8673258B2 (en) 2008-08-14 2014-03-18 Snu R&Db Foundation Enhanced carbon nanotube

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887689B2 (en) 2001-11-30 2011-02-15 The University Of North Carolina At Chapel Hill Method and apparatus for attaching nanostructure-containing material onto a sharp tip of an object and related articles
US8002958B2 (en) 2001-11-30 2011-08-23 University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US7252749B2 (en) 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US7455757B2 (en) 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
WO2004052489A3 (en) * 2002-12-09 2004-10-07 Univ North Carolina Methods for assembly and sorting of nanostructure-containing materials and related articles
CN101612612B (en) * 2002-12-09 2012-05-16 北卡罗来纳-查佩尔山大学 Methods for assembly and sorting of nanostructure-containing materials and related articles
WO2004052489A2 (en) * 2002-12-09 2004-06-24 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
JP4652679B2 (en) * 2003-10-03 2011-03-16 エスアイアイ・ナノテクノロジー株式会社 Fabrication method of nanometer scale structure
JP2005111583A (en) * 2003-10-03 2005-04-28 Sii Nanotechnology Inc Method of manufacturing structure of nanometer scale
WO2005069337A1 (en) * 2004-01-19 2005-07-28 M2N Inc. Method for massive assembling of carbon nanotubes
US8308930B2 (en) 2008-03-04 2012-11-13 Snu R&Db Foundation Manufacturing carbon nanotube ropes
US8673258B2 (en) 2008-08-14 2014-03-18 Snu R&Db Foundation Enhanced carbon nanotube
JP2010047889A (en) * 2008-08-20 2010-03-04 Seoul National Univ Industry Foundation Reinforced carbon nanotube wire
US8357346B2 (en) 2008-08-20 2013-01-22 Snu R&Db Foundation Enhanced carbon nanotube wire
US8287695B2 (en) 2008-08-26 2012-10-16 Snu R&Db Foundation Manufacturing carbon nanotube paper
KR101097217B1 (en) 2008-09-17 2011-12-22 한국기계연구원 Micro contact probe for probe card coated with carbon nano tube and febrication method thereof
JP2013019779A (en) * 2011-07-12 2013-01-31 Seiko Instruments Inc Probe and manufacturing method therefor
KR101343012B1 (en) * 2011-08-12 2013-12-18 포항공과대학교 산학협력단 Nano electrode and method for manutacturing of the same

Also Published As

Publication number Publication date
JP3536288B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
KR101159074B1 (en) Conductive carbon nanotube tip, probe of scanning probe microscope comprising the same and manufacturing method of the conductive carbon nanotube tip
EP1054249B1 (en) Electronic device surface signal control probe and method of manufacturing the probe
Li et al. Carbon nanotubes as AFM tips: measuring DNA molecules at the liquid/solid interface
KR100697323B1 (en) Nano tip and fabrication method of the same
JP2002301700A (en) Manufacturing method for nanotube probe
JP2004325428A (en) Signal detecting probe having rod-shaped nanostructure adhering thereto, and manufacturing method thereof
US20020021139A1 (en) Molecular probe station
CN1599939B (en) Microstructures
JP3441397B2 (en) Fusion probe for surface signal operation of electronic device and method of manufacturing the same
US6892432B2 (en) Nanotube cartridge and a method for manufacturing the same
Tuyakova et al. Single-crystal diamond pyramids: synthesis and application for atomic force microscopy
JP3441396B2 (en) Probe for surface signal operation of electronic device and method of manufacturing the same
JP2009109411A (en) Probe, its manufacturing method, and probe microscope of scanning type
Bykov Langmuir-Blodgett films and nanotechnology
Lu et al. In situ mechanical testing of templated carbon nanotubes
JP3557589B2 (en) Method of manufacturing probe for scanning probe microscope, probe manufactured by the method, and manufacturing apparatus
JP2002214112A (en) Scanning probe microscope
KR100597280B1 (en) The attaching method of nano materials using Langmuir-Blodgett
JP3756470B2 (en) Cantilever having a plurality of electrodes and manufacturing method thereof
Niedermann et al. Mounting of micromachined diamond tips and cantilevers
KR100553028B1 (en) Probe for signal with rod-shaped nano structure attached to its end and production method thereof
JP2009281754A (en) Nanotube probe for scanning probe microscope, its manufacturing method and scanning probe microscope
Xu et al. Application of calibrated and reusable probes on a home-made scanning probe microscope platform
Myhra Tip-induced local anodic oxidation: Nanolithography and nanobiotechnology
JP2000155085A (en) Interatomic force microscope prober and interatomic force microscope

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20031217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040305

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100326

LAPS Cancellation because of no payment of annual fees