JP2002120091A - Manufacturing method of solder alloy superfine particle and manufacturing method of solder paste - Google Patents

Manufacturing method of solder alloy superfine particle and manufacturing method of solder paste

Info

Publication number
JP2002120091A
JP2002120091A JP2000313634A JP2000313634A JP2002120091A JP 2002120091 A JP2002120091 A JP 2002120091A JP 2000313634 A JP2000313634 A JP 2000313634A JP 2000313634 A JP2000313634 A JP 2000313634A JP 2002120091 A JP2002120091 A JP 2002120091A
Authority
JP
Japan
Prior art keywords
solder alloy
ultrafine
resistant belt
transport position
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000313634A
Other languages
Japanese (ja)
Other versions
JP4509347B2 (en
Inventor
Chikao Kimura
親夫 木村
Takashi Nagate
隆 長手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2000313634A priority Critical patent/JP4509347B2/en
Publication of JP2002120091A publication Critical patent/JP2002120091A/en
Application granted granted Critical
Publication of JP4509347B2 publication Critical patent/JP4509347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and continuously manufacture a solder alloy superfine particle and to increase its productivity. SOLUTION: A vapor deposition thin film of specified kind of a metal constituting solder alloy components in an island shape is laminated on an endless insulation heat resistant belt, the laminate is electrified, heated and melted, successively, by removing the electrification, the laminate is peeled from the insulation heat resistant belt, the solder alloy superfine particle is recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、融点を下げることが可
能な鉛フリー(無鉛)のハンダ合金超微粒子の製造方法
及びハンダペーストの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing lead-free (lead-free) ultrafine solder alloy particles capable of lowering the melting point and a method for producing a solder paste.

【0002】[0002]

【従来の技術】ハンダ付けにはいわゆるリフロー方式と
フロー式がある。リフロー方式は、一般にハンダ合金粒
子とフラックスを混合したペースト状のものを塗布加熱
してハンダ接合するものである。フロー方式は、ハンダ
溶融槽で溶解したハンダを噴流させるなどして利用する
ものである。これらのハンダ付け方式に応じて、またハ
ンダ付けを行う電子部品の種類や要求される製品の信頼
性等に応じて、使用されるハンダ合金は種々異なってい
る。
2. Description of the Related Art Soldering includes a so-called reflow method and a flow method. In the reflow method, generally, a paste in which solder alloy particles and flux are mixed is applied and heated to perform solder joining. In the flow method, the solder melted in a solder melting tank is jetted and used. Various solder alloys are used depending on the soldering method, the type of electronic component to be soldered, the required product reliability, and the like.

【0003】一般的に用いられているハンダ合金は、融
点が低く、ハンダ付け時の加熱温度が低く、実装基板や
電子部品等に熱的悪影響を与えないものが主流である。
その金属成分は例えばSn60/Pb40やSn70/
Pb30などで、融点は183℃〜193℃前後であ
り、比較的低い温度でのハンダ付けが可能である。
[0003] In general, solder alloys generally used have a low melting point, a low heating temperature at the time of soldering, and do not adversely affect the mounting board, electronic components and the like.
The metal component is, for example, Sn60 / Pb40 or Sn70 /
Pb30 or the like has a melting point of about 183 ° C. to 193 ° C., and can be soldered at a relatively low temperature.

【0004】ところで、最近では、環境対策の観点か
ら、産業界に対し鉛を用いない鉛フリーのハンダ合金が
要求され、実用化が図られている。例えば、Sn96.
5/Ag3.5などのように融点が221℃前後のS
n、Agなどを主成分とした合金がある。
[0004] Recently, from the viewpoint of environmental measures, a lead-free solder alloy that does not use lead has been demanded from the industry, and its practical use has been attempted. For example, Sn96.
5 / Sg with melting point of about 221 ° C such as Ag3.5
There is an alloy mainly containing n, Ag, or the like.

【0005】ところが、この鉛フリーのハンダ合金は、
上記したSn/Pb系ハンダ合金と比較して融点が40
℃前後も高く、その分ハンダ付け温度を高くする必要が
あり、実装基板や電子部品に与える熱的悪影響が懸念さ
れる場合があった。また、ハンダ付け温度が高くなる
と、ハンダ付け時の電子部品や実装基板配線の酸化防止
の観点から、雰囲気ガスの制御がより厳格になる。
However, this lead-free solder alloy is
The melting point is 40 compared with the above-mentioned Sn / Pb-based solder alloy.
° C, the soldering temperature needs to be increased accordingly, and there is a case where there is a concern about adverse thermal effects on the mounting board and electronic components. In addition, when the soldering temperature increases, the control of the atmosphere gas becomes stricter from the viewpoint of preventing oxidation of the electronic components and the wiring of the mounting board at the time of soldering.

【0006】そこで、ハンダ合金の融点を下げる一手法
として、ハンダ合金の成分は変えないで、ハンダ合金を
超微粒子化して融点を下げるという工夫が考えられた。
一般的にハンダペースト中に混合されペースト状で実装
基板の接合部に塗布されるタイプのハンダ合金の粒子径
は数μm〜数10μm程度であるが、超微粒子化して融
点を下げる場合にはこれより更に微細化される。
Therefore, as one method of lowering the melting point of the solder alloy, a method of reducing the melting point by making the solder alloy into ultrafine particles without changing the components of the solder alloy has been considered.
Generally, the particle size of a solder alloy mixed in a solder paste and applied to a joint of a mounting board in the form of a paste is about several μm to several tens μm. It is further miniaturized.

【0007】固体を分割して小さくしていくと、原子、
分子にいたる前にもとの固体とは異なる性質を示すこと
が判明しており、粒径が2nm〜800nm程度の超微
粒子になると、固体としての性質と異なる性質になるこ
とが判明している。すなわち、表面積が体積に比べて大
きくなり、材料の表面状態がその性質に大きな影響を与
えることとなって、その性質は表面積の小さな従来の粒
径の大きな材料と著しく異なってくる(表面効果)。ま
た、小さな材料内にある電子は、そこから出られなくな
るため3次元方向の空間を自由に動き回れなくなり、電
子のエネルギーが連続ではなくなって、そのエネルギー
が領域のサイズとともに変化することが知られている
(量子サイズ効果)。
When a solid is divided into smaller pieces, atoms,
Before reaching the molecule, it has been found that it exhibits properties different from those of the original solid, and it has been found that ultrafine particles having a particle size of about 2 nm to 800 nm have properties different from those of the solid. . That is, the surface area becomes larger than the volume, and the surface condition of the material greatly affects its properties, and the properties are significantly different from those of conventional materials having a small surface area and a large particle size (surface effect). . Also, it is known that electrons in a small material cannot escape from there, and cannot move freely in a three-dimensional space, so that the energy of electrons is not continuous and the energy changes with the size of the region. (Quantum size effect).

【0008】このように固体が超微粒子化すると、より
充填密度が高くよりコンパクトになるように原子の配列
が変化して結晶構造に変化が生じ、材料の性質も固体と
は異なることになる。そして、金属の超微粒子では、バ
ルクな物質よりもその融点が低下し、しかもその融点は
サイズが小さくなるほど低下することが多くの金属で確
認されている。
When the solid is converted into ultrafine particles, the arrangement of atoms is changed so that the packing density is higher and the size is more compact, and the crystal structure is changed, and the properties of the material are different from those of the solid. It has been confirmed for many metals that the melting point of ultrafine metal particles is lower than that of a bulk substance, and that the melting point decreases as the size decreases.

【0009】この金属の超微粒子を生成する方法として
は、従来では、金属塩溶液の加水分解による方法、金属
アルコキシドをアルコール中で加水分解する方法、金属
塩溶液の酸化還元による方法、金属化合物の分解反応を
利用する方法などのように反応相を液相として合成する
方法や、エアロゾル法などのように反応相を気相として
合成する方法が知られている。
Conventionally, methods for producing ultrafine metal particles include a method of hydrolyzing a metal salt solution, a method of hydrolyzing a metal alkoxide in alcohol, a method of redoxing a metal salt solution, and a method of forming a metal compound. A method of synthesizing a reaction phase as a liquid phase such as a method utilizing a decomposition reaction and a method of synthesizing a reaction phase as a gas phase such as an aerosol method are known.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、このよ
うな相反応を液相として合成したり、気相として合成す
る手法はその処理が複雑であるばかりか、連続的な製造
方法とすることができず、量産性に欠けていた。
However, the method of synthesizing such a phase reaction as a liquid phase or as a gas phase is not only complicated in processing but also can be a continuous production method. And lacked mass productivity.

【0011】本発明は、上記の問題を解決するためにな
されたもので、その目的は、容易かつ連続的に所望の組
成の超微粒子を製造することができ、量産性を実現でき
るようにした鉛フリーのハンダ合金超微粒子の製造方法
及びこれを利用したハンダペーストの製造方法を提供す
ることである。
The present invention has been made to solve the above problems, and an object of the present invention is to make it possible to easily and continuously produce ultrafine particles having a desired composition, thereby realizing mass productivity. An object of the present invention is to provide a method for producing ultrafine lead-free solder alloy particles and a method for producing a solder paste using the same.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明のハンダ合金超微粒子の製造方法は、間欠的
に一定方向に搬送される絶縁耐熱性ベルト上に第1搬送
位置でハンダ合金成分を構成する所定種類の金属の薄層
を1つの島状に積層する第1工程と、上記絶縁耐熱性ベ
ルトの第2搬送位置で上記積層及び上記絶縁耐熱性ベル
トの上記積層部分を帯電させる第2工程と、上記絶縁耐
熱性ベルトの第3搬送位置で上記積層を加熱溶融して溶
融ハンダ合金超微粒子を生成する第3工程と、上記絶縁
耐熱性ベルトの第4搬送位置で上記溶融ハンダ合金超微
粒子の静電気を除去し上記絶縁耐熱性ベルトから剥離し
てハンダ合金超微粒子を形成する第4工程と、上記絶縁
耐熱性ベルトの第5搬送位置で上記ハンダ合金超微粒子
を回収する第5工程と、を有するよう構成した。
In order to solve the above-mentioned problems, a method for producing ultrafine solder alloy particles according to the present invention comprises the steps of: providing a solder at a first transport position on an insulating heat-resistant belt which is transported intermittently in a fixed direction; A first step of laminating a thin layer of a predetermined type of metal constituting an alloy component into one island, and charging the lamination and the lamination portion of the insulating and heat resistant belt at a second transport position of the insulating and heat resistant belt A second step of causing the laminate to be heated and melted at a third transfer position of the insulating heat-resistant belt to generate molten solder alloy ultrafine particles; and a second step of forming the molten heat-resistant belt at the fourth transfer position. A fourth step of removing the static electricity of the solder alloy ultrafine particles and peeling the solder alloy ultrafine particles from the insulating heat resistant belt to form solder alloy ultrafine particles; and a fourth step of collecting the solder alloy ultrafine particles at a fifth transport position of the insulating heat resistant belt. 5 workers If, and configured to have a.

【0013】第2の発明は、第1の発明において、上記
ハンダ合金超微粒子を構成する所定種類の金属が、A
g、Sn、Cu、Bi、In、Sbの内から選択した2
以上の組み合わせから成るよう構成した。
According to a second aspect, in the first aspect, the predetermined type of metal constituting the ultrafine solder alloy particles is A
2 selected from g, Sn, Cu, Bi, In, and Sb
It comprised so that it might consist of the above combinations.

【0014】第3の発明は、第1又は第2の発明におい
て、上記絶縁耐熱性ベルトに代えて絶縁耐熱性平板を使
用し、該絶縁耐熱性平板を前記第1搬送位置に搬送して
前記第1工程を、前記第2搬送位置に搬送して前記第2
工程を、前記第3搬送位置に搬送して前記第3工程を、
前記第4搬送位置に搬送して前記第4工程を、前記第5
搬送位置に搬送して前記第5工程を順次処理するよう構
成した。
According to a third aspect of the present invention, in the first or second aspect, an insulating heat-resistant flat plate is used in place of the insulating heat-resistant belt, and the insulating heat-resistant flat plate is transported to the first transport position, and Transporting the first step to the second transport position and
Transporting the process to the third transport position and performing the third process,
Transporting to the fourth transport position and performing the fourth step in the fifth
The fifth step is sequentially processed by being transported to the transport position.

【0015】第4の発明のハンダペーストの製造方法
は、第1乃至第3の発明のいずれか1つの発明におい
て、請求項1乃至3のいずれかに記載の上記第5工程で
回収したハンダ合金超微粒子をハンダフラックス中に混
合させる第6工程を有するよう構成した。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a solder paste according to any one of the first to third aspects, wherein the solder alloy recovered in the fifth step according to any one of the first to third aspects. A sixth step of mixing the ultrafine particles into the solder flux was provided.

【0016】[0016]

【発明の実施の形態】鉛フリーのハンダ合金としては、
Sn−Ag−Cu系、Sn−Ag−Bi−Cu系、Sn
−Ag系、Sn−Cu系、Sn−Bi系、Sn−In
系、Sn−Sb系、Bi−In系、Cu−Bi系などが
使用されているが、そのハンダ合金粒子径は、通常10
μm前後以上の50μmや80μmの大きさであり、前
記したように融点が高かった。本発明では、リフロー方
式のハンダ用として、粒径が0.5μm以下のハンダ合
金超微粒子を製造する。本発明の製造方法によれば、容
易にかつ連続的にハンダ合金超微粒子を生成できるの
で、量産性に向く。また、このような粒径のハンダ合金
超微粒子は従来の鉛フリーのハンダ合金の融点の1/3
程度と低融点の性質を呈するので、ハンダ付け時の加熱
温度を低下させ、基板や電子部品等の被加熱物に対する
熱的悪影響が排除できる。以下、詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a lead-free solder alloy,
Sn-Ag-Cu system, Sn-Ag-Bi-Cu system, Sn
-Ag system, Sn-Cu system, Sn-Bi system, Sn-In
System, Sn-Sb system, Bi-In system, Cu-Bi system, etc. are used.
The size was 50 μm or 80 μm, which was about μm or more, and the melting point was high as described above. In the present invention, ultrafine solder alloy particles having a particle size of 0.5 μm or less are manufactured for reflow soldering. According to the production method of the present invention, ultrafine solder alloy particles can be easily and continuously generated, which is suitable for mass production. Further, the ultrafine particles of the solder alloy having such a particle size are 1 / of the melting point of the conventional lead-free solder alloy.
Since the material has a degree and low melting point, the heating temperature at the time of soldering can be lowered, and a bad thermal effect on a heated object such as a substrate or an electronic component can be eliminated. The details will be described below.

【0017】図1は本発明のハンダ合金超微粒子の製造
方法の説明図である。図1において、1はポリイミド樹
脂等より形成されたエンドレスの絶縁耐熱性ベルト、2
は図示しない真空チャンバー部を有する金属蒸着機構
部、3はコロナ放電機構部、4は加熱プレート部、5は
静電気除去機構を備えた超音波振動機構部、6はベルト
送り機構部、7は生成したハンダ合金超微粒子を回収す
る回収部である。
FIG. 1 is an explanatory view of a method for producing ultrafine solder alloy particles of the present invention. In FIG. 1, reference numeral 1 denotes an endless insulating heat-resistant belt formed of a polyimide resin or the like;
Is a metal deposition mechanism having a vacuum chamber (not shown), 3 is a corona discharge mechanism, 4 is a heating plate, 5 is an ultrasonic vibration mechanism with a static electricity removing mechanism, 6 is a belt feed mechanism, and 7 is a generator. This is a recovery unit for recovering the solder alloy ultrafine particles.

【0018】これらの金属蒸着機構部2、コロナ放電機
構部3、加熱プレート部4、超音波振動機構部5は、絶
縁性耐熱ベルト1の矢印Aで示す移動方向の上流から下
流にかけて所定の間隔Dで順次配置され、その絶縁性耐
熱ベルト1はその間隔Dだけ移動して一旦停止するよう
間欠的に駆動制御される。
The metal vapor deposition mechanism 2, corona discharge mechanism 3, heating plate 4, and ultrasonic vibration mechanism 5 are arranged at predetermined intervals from upstream to downstream in the direction of movement of the insulating heat-resistant belt 1 as indicated by arrow A. D, the insulating heat-resistant belt 1 is intermittently driven and controlled to move by the interval D and temporarily stop.

【0019】さて、その絶縁耐熱性ベルト1が停止して
いるとき(第1搬送位置)に、まず、金属蒸着機構部2
において、絶縁耐熱性ベルト1上にハンダ合金成分を構
成する数種類の金属薄層からなる独立した島状の積層を
蒸着により形成する(第1工程)。このときの積層は、
共晶合金となる所定の割合に設定して行う。例えばSn
を500オングストローム、Agを10オングストロー
ムを各々積層する。
When the insulating heat-resistant belt 1 is stopped (first transport position), first, the metal vapor deposition mechanism 2
In step (1), independent island-shaped laminations composed of several types of thin metal layers constituting a solder alloy component are formed on the insulating heat-resistant belt 1 by vapor deposition (first step). The lamination at this time is
The eutectic alloy is set at a predetermined ratio. For example, Sn
500 Å and Ag 10 Å.

【0020】次に、絶縁耐熱性ベルト1を距離DだけA
方向に移動させる(第2搬送位置)と、金属蒸着機構部
2で形成した島状の積層がコロナ放電機構部3に送り込
まれるので、そこで絶縁耐熱性ベルト1を一旦停止させ
て、その絶縁耐熱製ベルト1及び積層の部分にコロナ放
電により静電気を帯電させる(第2工程)。コロナ帯電
の方法は、帯電させるべき表面(積層の表面と絶縁耐熱
性ベルト1の裏面)に対して所定の間隙をおいてステン
レス細線やタングステン細線などを対置し、その細線に
所要の極性で4〜8kVの直流高電庄を加えてコロナ放
電を行い、表面に電荷密度10-4〜10-3C/m2程度
の電荷を帯電させる。
Next, the insulating heat-resistant belt 1 is moved by a distance D to A.
(The second transport position), the island-shaped laminate formed by the metal vapor deposition mechanism 2 is fed into the corona discharge mechanism 3, whereupon the insulation heat-resistant belt 1 is temporarily stopped and the insulation heat resistance belt 1 is stopped. Static electricity is charged by corona discharge to the belt 1 and the layered portion (second step). In the corona charging method, a stainless fine wire or a tungsten fine wire is placed at a predetermined gap from the surface to be charged (the surface of the laminate and the back surface of the insulating heat-resistant belt 1), and the fine wire has a required polarity. Corona discharge is performed by applying a DC high voltage of 88 kV to charge the surface with a charge having a charge density of about 10 −4 to 10 −3 C / m 2 .

【0021】次に、同様に絶縁耐熱性ベルト1を距離D
だけA方向に移動させる(第3搬送位置)と、静電気を
帯電した積層が加熱プレート部4に送り込まれるので、
そこで絶縁耐熱性ベルト1を一旦停止させて、当該帯電
した積層をバルクでの共晶溶融温度よりやや高い230
℃程度の温度で加熱溶融させる。このとき、積層は共晶
合金となる所定の割合に設定して形成されているので、
容易に溶融し、かつ、帯電した静電気の作用で相互に反
発し合い、溶融状態のハンダ合金の超微粒子となる(第
3工程)。このようにハンダ合金超微粒子8が溶融状態
で互いに反発している状態を図2に示した。
Next, the insulating heat-resistant belt 1 is similarly moved to the distance D
Only in the direction A (third transport position), the layer charged with static electricity is sent to the heating plate unit 4.
Therefore, the insulation heat-resistant belt 1 is temporarily stopped, and the charged laminate is heated to a temperature slightly higher than the eutectic melting temperature 230 in the bulk.
Heat and melt at a temperature of about ° C. At this time, since the lamination is set at a predetermined ratio to be a eutectic alloy,
They are easily melted and repel each other by the action of the charged static electricity, and become ultrafine particles of a molten solder alloy (third step). FIG. 2 shows a state in which the solder alloy ultrafine particles 8 repel each other in a molten state.

【0022】更に、同様に絶縁耐熱性ベルト1を距離D
だけA方向に移動させる(第4搬送位置)と、溶融状態
態になったハンダ合金超微粒子が次の超音波振動機構部
5に送り込まれるので、そこで絶縁耐熱性ベルト1を一
旦停止させ、自然又は強制冷却により固体状化させると
ともに、静電気除去機構を作動させて各超微粒子及び絶
縁耐熱性ベルト1に帯電した静電気を除去する。静電気
を除去されたハンダ合金超微粒子は、超音波振動が印加
されることにより絶縁耐熱性ベルト1より容易に剥離す
る(第4工程)。
Further, the insulating heat-resistant belt 1 is similarly moved to the distance D
Is moved in the direction A (fourth transport position), the ultrafine solder alloy particles in the molten state are sent to the next ultrasonic vibration mechanism 5, where the insulating heat-resistant belt 1 is temporarily stopped, and Alternatively, it is solidified by forced cooling, and the static electricity removing mechanism is operated to remove static electricity charged on each ultrafine particle and the insulating heat-resistant belt 1. The ultrafine solder alloy particles from which the static electricity has been removed are easily separated from the insulating heat-resistant belt 1 by applying ultrasonic vibration (fourth step).

【0023】更に、同様に絶縁耐熱性ベルト1を距離D
だけA方向に移動させる(第5搬送位置)と、そのハン
ダ合金超微粒子は、回収部7に設けたブラシ(図示せ
ず)により剥離されて落下し、そこに回収される(第5
工程)。
Further, similarly, the insulating heat-resistant belt 1 is moved to the distance D.
Is moved in the direction A (fifth transport position), the solder alloy ultrafine particles are peeled off by a brush (not shown) provided in the recovery unit 7, fall, and are recovered there (fifth position).
Process).

【0024】以上のように、エンドレスの絶縁耐熱性ベ
ルト1を間欠駆動し、距離Dだけ移動して一旦停止させ
る毎に、金属蒸着機構部2、コロナ放電機構部3、加熱
プレート部4、超音波振動機構部5の各処理部分での同
時処理を繰り返すことによって、ハンダ合金超微粒子が
連続的に形成されて回収されることになる。
As described above, every time the endless insulated heat-resistant belt 1 is intermittently driven, moved by the distance D and once stopped, the metal vapor deposition mechanism 2, the corona discharge mechanism 3, the heating plate 4, By repeating the simultaneous processing in each processing part of the sonic vibration mechanism 5, the solder alloy ultrafine particles are continuously formed and collected.

【0025】回収部7に回収されたハンダ合金超微粒子
は、そのままでは互いにくっつき合うが、液体中に懸濁
させて遠心分離器(図示せず)に投入することにより、
非常に小さい超微粒子と比較的粒径の大きい微粒子とに
分離することができ、超微粒子を選別できる。また、そ
のハンダ合金超微粒子はそのままでは酸化しやすいが、
液状フラックス中に混合懸濁して遠心分離することによ
り、超微粒子がフラックスで表面をコーティングされた
ハンダペーストを作ることができる(第6工程)。
Although the solder alloy ultrafine particles collected in the collecting section 7 stick to each other as they are, they are suspended in a liquid and put into a centrifuge (not shown).
Ultrafine particles can be separated into very small ultrafine particles and relatively large fine particles, and ultrafine particles can be sorted out. Also, the ultrafine solder alloy particles are easily oxidized as they are,
By mixing and suspending in a liquid flux and centrifuging, a solder paste in which the ultrafine particles are coated on the surface with the flux can be produced (sixth step).

【0026】以上において、金属蒸着薄層の積層厚さと
コロナ放電による静電気帯電量とを制御することによ
り、ハンダ合金超微粒子のサイズを制御することが可能
である。上述のハンダ合金の蒸着薄層では、0.5μm
以下程度の超微粒子の生成が可能である。
In the above, it is possible to control the size of the ultrafine solder alloy particles by controlling the thickness of the metal-deposited thin layer and the amount of electrostatic charge by corona discharge. 0.5μm
The generation of the following ultrafine particles is possible.

【0027】なお、上記の説明では、金属薄層の積層を
形成する基体としてエンドレスの絶縁耐熱性ベルト1を
使用したが、例えばポリイミド樹脂等より形成された所
定サイズの絶縁耐熱性平板を間欠送りできる搬送装置に
組み込み、上記の絶縁耐熱性ベルト1と同様に、絶縁耐
熱性平板上にて金属蒸着、コロナ放電による帯電、加熱
溶融、静電気除去/超音波振動を順次行ってハンダ合金
超微粒子を生成/剥離/回収することでも可能であるこ
とはいうまでもない。また、Ag、Sn、Cu、Bi、
In、Sbの内から選択した2以上の蒸着する金属の組
成、蒸着層の厚さ、加熱温度などを変更することで、所
望の組成のハンダ合金超微粒子を得ることができる。
In the above description, the endless insulative heat-resistant belt 1 is used as a base for forming a laminate of thin metal layers. However, an insulative heat-resistant flat plate of a predetermined size made of, for example, polyimide resin is intermittently fed. In the same manner as the above-mentioned insulating heat-resistant belt 1, metal vapor deposition, charging by corona discharge, heating and melting, static electricity removal / ultrasonic vibration are sequentially performed on the insulating heat-resistant flat plate to remove solder alloy ultrafine particles. It goes without saying that it is also possible to generate / peel / collect. Ag, Sn, Cu, Bi,
By changing the composition of two or more metals to be deposited selected from In and Sb, the thickness of the deposited layer, the heating temperature, and the like, it is possible to obtain ultrafine solder alloy particles having a desired composition.

【0028】[0028]

【発明の効果】以上から本発明によれば、容易に連続的
に所望の組成のハンダ合金超微粒子を生成することがで
き、融点の低い超微粒子ハンダ合金を量産することが可
能となる。これにより、いわゆる鉛フリーハンダにおい
ても容易に低融点のものを得ることができ、ハンダ付け
温度の上昇が不要になり、被加熱物への熱的悪影響を低
減することが可能となる。更に、信頼性を要求される装
置に適用が要求される鉛フリーハンダの実用化が容易に
なるという利点もある。
As described above, according to the present invention, it is possible to easily and continuously produce ultrafine solder alloy particles having a desired composition and mass-produce ultrafine solder alloys having a low melting point. As a result, a so-called lead-free solder having a low melting point can be easily obtained, and it is not necessary to raise the soldering temperature, and it is possible to reduce the adverse thermal effect on the object to be heated. Further, there is an advantage that the practical use of lead-free solder which is required to be applied to a device requiring reliability is facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のハンダ合金超微粒子の製造方法の説明
図である。
FIG. 1 is an explanatory view of a method for producing ultrafine solder alloy particles of the present invention.

【図2】本発明のハンダ合金超微粒子の反発状態の説明
図である。
FIG. 2 is an explanatory view of a repulsive state of the solder alloy ultrafine particles of the present invention.

【符号の説明】[Explanation of symbols]

1:絶縁耐熱性ベルト、2:金属蒸着機構部、3:コロ
ナ放電機構部、4:加熱プレート部、5:超音波振動機
構部、6:ベルト送り機構部、7:超微粒子回収部、
8:ハンダ合金超微粒子。
1: Insulating heat-resistant belt, 2: Metal deposition mechanism, 3: Corona discharge mechanism, 4: Heating plate, 5: Ultrasonic vibration mechanism, 6: Belt feed mechanism, 7: Ultrafine particle collection section,
8: Ultrafine solder alloy particles.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/34 512 H05K 3/34 512C Fターム(参考) 4K017 AA04 BA01 BA02 BA05 BA10 CA01 DA09 EA13 EF10 EK08 FA04 FA29 5E319 BB01 BB08 BB10 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H05K 3/34 512 H05K 3/34 512C F term (reference) 4K017 AA04 BA01 BA02 BA05 BA10 CA01 DA09 EA13 EF10 EK08 FA04 FA29 5E319 BB01 BB08 BB10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】間欠的に一定方向に搬送される絶縁耐熱性
ベルト上に第1搬送位置でハンダ合金成分を構成する所
定種類の金属の薄層を1つの島状に積層する第1工程
と、上記絶縁耐熱性ベルトの第2搬送位置で上記積層及
び上記絶縁耐熱性ベルトの上記積層部分を帯電させる第
2工程と、 上記絶縁耐熱性ベルトの第3搬送位置で上記積層を加熱
溶融して溶融ハンダ合金超微粒子を生成する第3工程
と、 上記絶縁耐熱性ベルトの第4搬送位置で上記溶融ハンダ
合金超微粒子の静電気を除去し上記絶縁耐熱性ベルトか
ら剥離してハンダ合金超微粒子を形成する第4工程と、 上記絶縁耐熱性ベルトの第5搬送位置で上記ハンダ合金
超微粒子を回収する第5工程と、を有することを特徴と
するハンダ合金超微粒子の製造方法。
A first step of laminating a thin layer of a predetermined type of metal constituting a solder alloy component in an island shape on an insulating heat-resistant belt conveyed intermittently in a certain direction; A second step of charging the laminated portion and the laminated portion of the insulating and heat resistant belt at a second transport position of the insulating and heat resistant belt; and heating and melting the laminated portion at a third transport position of the insulating and heat resistant belt. A third step of generating molten solder alloy ultrafine particles; and removing the static electricity of the molten solder alloy ultrafine particles at the fourth transport position of the insulating heat resistant belt and peeling off the insulating heat resistant belt to form solder alloy ultrafine particles. And a fifth step of collecting the ultrafine solder alloy particles at a fifth transport position of the insulating heat-resistant belt.
【請求項2】上記ハンダ合金超微粒子を構成する所定種
類の金属が、Ag、Sn、Cu、Bi、In、Sbの内
から選択した2以上の組み合わせから成ることを特徴と
する請求項1記載のハンダ合金超微粒子の製造方法。
2. The method according to claim 1, wherein the predetermined type of metal constituting the ultrafine solder alloy particles is a combination of two or more selected from Ag, Sn, Cu, Bi, In, and Sb. For producing ultrafine solder alloy particles.
【請求項3】上記絶縁耐熱性ベルトに代えて絶縁耐熱性
平板を使用し、該絶縁耐熱性平板を前記第1搬送位置に
搬送して前記第1工程を、前記第2搬送位置に搬送して
前記第2工程を、前記第3搬送位置に搬送して前記第3
工程を、前記第4搬送位置に搬送して前記第4工程を、
前記第5搬送位置に搬送して前記第5工程を順次処理す
ることを特徴とする請求項1又は2記載のハンダ合金超
微粒子の製造方法。
3. An insulated heat-resistant flat plate is used in place of the insulated heat-resistant belt, and the insulated heat-resistant flat plate is transported to the first transport position, and the first step is transported to the second transport position. Transporting the second step to the third transport position,
Transporting the process to the fourth transport position and performing the fourth process,
The method for producing ultrafine solder alloy particles according to claim 1 or 2, wherein the method is carried to the fifth carrying position to sequentially process the fifth step.
【請求項4】請求項1乃至3のいずれか1つに記載の上
記第5工程で回収したハンダ合金超微粒子をハンダフラ
ックス中に混合させる第6工程を有することを特徴とす
るハンダペーストの製造方法。
4. A method for producing a solder paste, comprising: a sixth step of mixing the ultrafine solder alloy particles recovered in the fifth step according to any one of claims 1 to 3 into a solder flux. Method.
JP2000313634A 2000-10-13 2000-10-13 Method for producing solder alloy ultrafine particles and method for producing solder paste Expired - Fee Related JP4509347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313634A JP4509347B2 (en) 2000-10-13 2000-10-13 Method for producing solder alloy ultrafine particles and method for producing solder paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313634A JP4509347B2 (en) 2000-10-13 2000-10-13 Method for producing solder alloy ultrafine particles and method for producing solder paste

Publications (2)

Publication Number Publication Date
JP2002120091A true JP2002120091A (en) 2002-04-23
JP4509347B2 JP4509347B2 (en) 2010-07-21

Family

ID=18793024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313634A Expired - Fee Related JP4509347B2 (en) 2000-10-13 2000-10-13 Method for producing solder alloy ultrafine particles and method for producing solder paste

Country Status (1)

Country Link
JP (1) JP4509347B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149365A (en) * 2006-12-20 2008-07-03 Mitsubishi Materials Corp Solder powder, and soldering paste using the same
JP2015096627A (en) * 2013-11-15 2015-05-21 尾池工業株式会社 Method and apparatus for production of flaky fine powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466603A (en) * 1990-07-06 1992-03-03 Nippon Steel Corp Production of fine metal ball
JPH0754007A (en) * 1993-08-12 1995-02-28 Agency Of Ind Science & Technol Coated metal particle, metal-based sintered compact and production thereof
JPH07268409A (en) * 1994-03-30 1995-10-17 Ibiden Co Ltd Production of solder ball
JPH09150296A (en) * 1995-11-27 1997-06-10 Nec Corp Formation of metallic ball
JPH11246901A (en) * 1998-03-02 1999-09-14 Hitachi Zosen Corp Production of metallic particulate and method for depositing the particular on porous carrier
JP2000094184A (en) * 1998-09-17 2000-04-04 Senju Metal Ind Co Ltd Flux for soldering

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466603A (en) * 1990-07-06 1992-03-03 Nippon Steel Corp Production of fine metal ball
JPH0754007A (en) * 1993-08-12 1995-02-28 Agency Of Ind Science & Technol Coated metal particle, metal-based sintered compact and production thereof
JPH07268409A (en) * 1994-03-30 1995-10-17 Ibiden Co Ltd Production of solder ball
JPH09150296A (en) * 1995-11-27 1997-06-10 Nec Corp Formation of metallic ball
JPH11246901A (en) * 1998-03-02 1999-09-14 Hitachi Zosen Corp Production of metallic particulate and method for depositing the particular on porous carrier
JP2000094184A (en) * 1998-09-17 2000-04-04 Senju Metal Ind Co Ltd Flux for soldering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149365A (en) * 2006-12-20 2008-07-03 Mitsubishi Materials Corp Solder powder, and soldering paste using the same
JP2015096627A (en) * 2013-11-15 2015-05-21 尾池工業株式会社 Method and apparatus for production of flaky fine powder

Also Published As

Publication number Publication date
JP4509347B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
TWI292355B (en)
US3208835A (en) Thermoelectric members
US5837119A (en) Methods of fabricating dendritic powder materials for high conductivity paste applications
JP3764349B2 (en) Method of forming an alternative conductive metal film for plating using metal fine particle dispersion
EP2484795A2 (en) Material and method of manufacture of a solder joint with high thermal conductivity and high electrical conductivity
US10563292B2 (en) Metal material for 3-dimensional printing, method for manufacturing the same, and method for 3-dimensional printing using the same
JPH036867A (en) Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
WO2015149580A1 (en) Method for manufacturing flexible copper clad laminate with metalized through-hole
WO2000069235A1 (en) Manufacturing electronic components in a direct-write process using precision spraying and laser irradiation
JPH10303518A (en) Board for mounting electronic component, electronic component mounting board and method of bonding tin/zinc alloy
US20150174686A1 (en) Method and device for joining conductors to substrates
TWI663289B (en) Film formation method
KR101873491B1 (en) Metal material for 3-dimension printing, method for fabricating the same, and 3-dimension printer using the same
JP2006518806A (en) Method and apparatus for manufacturing a sputtering target
WO2022213911A1 (en) Soldering material, and preparation method therefor and use thereof
CN107835724A (en) The manufacture method of joining member and joining member
JP2002120091A (en) Manufacturing method of solder alloy superfine particle and manufacturing method of solder paste
JP2006281292A (en) Conductive filler and low-temperature solder material
RU2716176C2 (en) Soldering connection structure and film forming method
CN103187519A (en) Thermoelectricity module and manufacturing method thereof
US3172385A (en) Flux-coated soldering body and method of making the same
Liu et al. Effects of Ag shell on electrical, thermal and mechanical properties of Cu@ Ag composite solder preforms by electromagnetic compaction for power electronics
JP2015172159A (en) Self-propagating heat-generating grain and method of producing the same, and solder joint method and solder paste
WO2017022991A1 (en) Method for joining superhard materials using metal plating film having amorphous and heating characteristics
JP4733392B2 (en) Method for forming a good contact surface on an aluminum support bar and support bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4509347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160514

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees