JP2001041614A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JP2001041614A
JP2001041614A JP11211016A JP21101699A JP2001041614A JP 2001041614 A JP2001041614 A JP 2001041614A JP 11211016 A JP11211016 A JP 11211016A JP 21101699 A JP21101699 A JP 21101699A JP 2001041614 A JP2001041614 A JP 2001041614A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
storage chamber
insoluble
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11211016A
Other languages
Japanese (ja)
Inventor
Masahiro Furukawa
雅裕 古川
Taiji Kamata
泰司 鎌田
Masaya Izu
正弥 伊豆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11211016A priority Critical patent/JP2001041614A/en
Publication of JP2001041614A publication Critical patent/JP2001041614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit the discrimination of non-soluble and non-condensable gas, increased in a machine, simply whether the gas is hydrogen gas generated in the machine or atmosphere constituent intruded from outside. SOLUTION: An opening and closing valve 39 is provided in a non-soluble gas pipe 31 for guiding non-soluble and non-condensable gas separated from absorbing liquid by a gas/liquid separator 8 into a non-soluble gas reserving chamber 9 and a hydrogen reserving chamber 10 is provided in parallel to the non-soluble gas pipe 31 through a thin film 10A capable of transmitting hydrogen. A hydrogen gas discharging pipe 32 equipped with another opening and closing valve 40 and a non-soluble gas discharging pipe 33 equipped with a vacuum pump, 34 are connected to the hydrogen reserving chamber 10 while the non-soluble gas reserving chamber 9, and the hydrogen reserving chamber 10 are provided respectively with pressure sensors 42, 43.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷凍機(吸収
冷温水機、吸収ヒートポンプを含む)に関する。
The present invention relates to an absorption refrigerator (including an absorption chiller / heater and an absorption heat pump).

【0002】[0002]

【従来の技術】吸収冷凍機は周知のように再生器、凝縮
器、蒸発器、吸収器などを順次配管接続し、臭化リチウ
ム水溶液などの吸収液により水などの冷媒を吸収させた
り、放出させたりしながら循環させる際に、熱の授受を
行って冷房などの冷却作用に供したり、暖房などの加熱
作用に供したりする装置である。
2. Description of the Related Art As is well known, an absorption refrigerator has a regenerator, a condenser, an evaporator, an absorber, and the like connected in series with a pipe to absorb or discharge a refrigerant such as water with an absorbing liquid such as an aqueous solution of lithium bromide. This is a device that transfers heat to provide a cooling function such as cooling, or a heating function such as heating when circulating while making it circulate.

【0003】上記構成の吸収冷凍機においては、再生
器、凝縮器、蒸発器、吸収器、およびそれらを連結する
配管部などが鉄あるいはステンレス鋼によって形成さ
れ、冷媒に水、吸収液に臭化リチウム水溶液などが用い
られていると、吸収液が機器素材の金属と反応し、防食
皮膜を形成する際に水素ガスを発生する。
In the absorption refrigerator having the above structure, a regenerator, a condenser, an evaporator, an absorber, and a pipe connecting them are formed of iron or stainless steel, and water is used as a refrigerant and bromide is used as an absorption liquid. If a lithium aqueous solution or the like is used, the absorbing solution reacts with the metal of the device material, and generates hydrogen gas when forming an anticorrosion film.

【0004】また、吸収冷凍機は冷媒の速やかな蒸発を
図るために全体が高真空となっているが、溶接構造物で
あるためピンホール・亀裂などからの大気成分の侵入は
不可避であり、時間の経過と共に窒素や酸素などの大気
成分が増加する。
The absorption refrigerator has a high vacuum as a whole in order to quickly evaporate the refrigerant, but since it is a welded structure, intrusion of atmospheric components from pinholes and cracks is inevitable. Over time, atmospheric components such as nitrogen and oxygen increase.

【0005】前記メカニズムで発生した水素ガスや、外
部から侵入した大気成分である窒素ガスや酸素ガスなど
は冷凍機における冷却程度では凝縮することがないし、
吸収液への溶解度も極めて小さいために蒸発器や吸収器
の非溶液部に滞留し、次第にその濃度が高まる。このよ
うにして機内における水素、窒素、酸素などの不溶・不
凝縮性の気体の濃度が高まると、冷媒の蒸発が抑制され
て冷凍能力が低下する。
[0005] Hydrogen gas generated by the above mechanism, and nitrogen gas and oxygen gas, which are atmospheric components that have entered from the outside, are not condensed by cooling in a refrigerator.
Since the solubility in the absorbing solution is extremely low, the solution stays in the non-solution portion of the evaporator or the absorber, and its concentration gradually increases. When the concentration of insoluble / non-condensable gas such as hydrogen, nitrogen, oxygen and the like in the machine increases in this way, evaporation of the refrigerant is suppressed, and the refrigerating capacity decreases.

【0006】このため、水素透過性を有するパラジウム
管を備えた抽気装置を組み込み、前記メカニズムで機内
に発生した水素ガスを排出したり、真空ポンプを接続し
て外部から機内に侵入した大気成分の窒素ガスや酸素ガ
スなどを排出している。
For this reason, a bleeding device equipped with a hydrogen-permeable palladium tube is incorporated to discharge hydrogen gas generated inside the device by the above mechanism, or to connect a vacuum pump to remove atmospheric components that have entered the device from the outside. It emits nitrogen gas and oxygen gas.

【0007】しかし、従来は機内圧力が上昇しても、そ
れが前記メカニズムで発生した水素ガスであるのか、外
部から侵入した大気成分である窒素ガスや酸素ガスなど
であるのかが、ガス分析をして見なければ分からず、最
適な処置が速やかに行えないと云った問題点があった。
However, conventionally, even if the internal pressure of the apparatus increases, whether the hydrogen gas is generated by the above-described mechanism or is nitrogen gas or oxygen gas, which is an atmospheric component invading from the outside, is analyzed by gas analysis. However, there is a problem that the optimum treatment cannot be performed promptly without knowing it.

【0008】[0008]

【発明が解決しようとする課題】したがって、機内で増
加している不溶・不凝縮性の気体が、前記メカニズムで
発生した水素ガスであるのか、外部から侵入した大気成
分である窒素ガスや酸素ガスなどであるのかの判定が簡
単にできるようにして、最適な処置が速やかに採れるよ
うにする必要があり、これが解決すべき課題となってい
た。
Therefore, whether the insoluble / non-condensable gas increasing in the machine is hydrogen gas generated by the above mechanism or nitrogen gas or oxygen gas which is an atmospheric component invading from the outside. It is necessary to make it possible to easily determine whether or not the above is the case, so that an optimal treatment can be promptly taken, and this has been a problem to be solved.

【0009】[0009]

【課題を解決するための手段】上記課題を解決すべく本
発明は、機内の気相部と連結され、機内気相部の気体を
吸収液の中に導き入れて吸収液に可溶な気体を吸収液に
溶かし込み、吸収液と、吸収液に不溶な気体とを分離す
る気液分離器と、開閉弁を介して気液分離器の不溶気体
貯留部に遮断可能に連結設置された不溶気体貯留室と、
水素透過性隔壁を介して不溶気体貯留室に併設されると
共に、外部と連通可能に形成された水素貯留室と、水素
貯留室および不溶気体貯留室それぞれに設置された圧力
検出手段と、を備えるようにした吸収冷凍機を提供する
ものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a gas which is connected to a gas phase in an apparatus and which introduces a gas in the gas phase in the apparatus into an absorbing liquid to dissolve the gas in the absorbing liquid. And a gas-liquid separator that separates the absorption liquid from the gas that is insoluble in the absorption liquid, and an insoluble gas that is shut off and connected to the insoluble gas reservoir of the gas-liquid separator via an on-off valve. A gas storage chamber,
A hydrogen storage chamber is provided alongside the insoluble gas storage chamber via the hydrogen-permeable partition, and is formed so as to be able to communicate with the outside, and a pressure detection unit is provided in each of the hydrogen storage chamber and the insoluble gas storage chamber. It is intended to provide an absorption refrigerator as described above.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。図1に例示したものは、冷水
または温水を負荷に循環供給することができるようにし
た二重効用吸収冷凍機であり、冷媒に水を、吸収液に臭
化リチウム(LiBr)水溶液を使用したものである。
Embodiments of the present invention will be described below in detail with reference to the drawings. The example illustrated in FIG. 1 is a double-effect absorption refrigerator capable of circulating and supplying cold water or hot water to a load, using water as a refrigerant and an aqueous solution of lithium bromide (LiBr) as an absorption liquid. Things.

【0011】図において、1はガスバーナ1Bを備えた
高温再生器、2は低温再生器、3は凝縮器、4は蒸発
器、5は吸収器、6は低温熱交換器、7は高温熱交換
器、8は気液分離器、9は不溶気体貯留室、10は水素
透過性を有する部材、例えばパラジウムあるいはパラジ
ウム合金(23%の銀を含む)製の薄膜10Aを介して
不溶気体貯留室9に併設された水素貯留室、11〜16
は吸収液管、17は吸収液ポンプ、18〜24は冷媒
管、25は冷媒ポンプ、26は図示しない冷/暖房負荷
に循環供給する冷水または温水が流れる冷温水管、27
は冷温水ポンプ、28は冷却水管、29と30は均圧
管、31は不溶気体管、32は水素ガス排出管、33は
不溶気体排出管、50は水素貯留室10の真空引用管、
34は真空ポンプ、35〜41は開閉弁であり、これら
の機器はそれぞれ図1に示したように配管接続されてい
る。
In the figure, 1 is a high-temperature regenerator equipped with a gas burner 1B, 2 is a low-temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low-temperature heat exchanger, 7 is a high-temperature heat exchanger. 8 is a gas-liquid separator, 9 is an insoluble gas storage chamber, 10 is a hydrogen permeable member, for example, an insoluble gas storage chamber 9 via a thin film 10A made of palladium or a palladium alloy (containing 23% silver). Hydrogen storage room attached to
Is an absorption liquid pipe, 17 is an absorption liquid pump, 18 to 24 are refrigerant pipes, 25 is a refrigerant pump, 26 is a cold / hot water pipe through which cold or hot water circulates to a cooling / heating load (not shown), 27
Is a cold / hot water pump, 28 is a cooling water pipe, 29 and 30 are pressure equalizing pipes, 31 is an insoluble gas pipe, 32 is a hydrogen gas discharge pipe, 33 is an insoluble gas discharge pipe, 50 is a vacuum reference pipe of the hydrogen storage chamber 10,
Reference numeral 34 denotes a vacuum pump, and reference numerals 35 to 41 denote on-off valves. These devices are connected by piping as shown in FIG.

【0012】上記構成の二重効用吸収冷凍機において
は、開閉弁39・40を開き、開閉弁35〜38、41
を閉じ、冷却水管28に冷却水を流し、ガスバーナ1B
に点火して高温再生器1で稀吸収液を加熱すると、稀吸
収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して
吸収液の濃度が高くなった中間吸収液とが得られる。
In the double effect absorption refrigerator having the above structure, the on-off valves 39 and 40 are opened and the on-off valves 35 to 38 and 41 are opened.
Is closed, cooling water is supplied to the cooling water pipe 28, and the gas burner 1B
When the rare absorbing liquid is heated by the high-temperature regenerator 1 and the refrigerant vapor is evaporated and separated from the rare absorbing liquid, an intermediate absorbing liquid in which the refrigerant vapor is separated and the concentration of the absorbing liquid is increased is obtained.

【0013】高温再生器1で生成された高温の冷媒蒸気
は、冷媒管18を通って低温再生器2に入り、高温再生
器1で生成され吸収液管12により高温熱交換器7を経
由して低温再生器2に入った中間吸収液を加熱して放熱
凝縮し、凝縮器3に入る。
The high-temperature refrigerant vapor generated by the high-temperature regenerator 1 enters the low-temperature regenerator 2 through the refrigerant pipe 18, and is generated by the high-temperature regenerator 1 and passes through the high-temperature heat exchanger 7 by the absorbing liquid pipe 12. Then, the intermediate absorbing liquid that has entered the low-temperature regenerator 2 is radiated and condensed by heating and enters the condenser 3.

【0014】また、低温再生器2で加熱されて中間吸収
液から蒸発分離した冷媒は凝縮器3へ入り、冷却水管2
8内を流れる水と熱交換して凝縮液化し、冷媒管18か
ら凝縮して供給される冷媒と一緒になって冷媒管20を
通って蒸発器4に入る。
The refrigerant heated by the low-temperature regenerator 2 and evaporated and separated from the intermediate absorption liquid enters the condenser 3 and enters the cooling water pipe 2.
The refrigerant exchanges heat with water flowing in the pipe 8 to condense and liquefy. The refrigerant enters the evaporator 4 through the refrigerant pipe 20 together with the refrigerant condensed and supplied from the refrigerant pipe 18.

【0015】蒸発器4に入って冷媒液溜りに溜まった冷
媒液は、冷温水管26に接続された伝熱管26Aの上に
冷媒ポンプ25によって散布され、冷温水管26を介し
て供給される水と熱交換して蒸発し、伝熱管26Aの内
部を流れる水を冷却する。
The refrigerant liquid that has entered the evaporator 4 and accumulated in the refrigerant liquid reservoir is sprayed by a refrigerant pump 25 onto a heat transfer tube 26 A connected to the cold / hot water pipe 26, and is supplied with water supplied through the cold / hot water pipe 26. The heat exchange evaporates and cools the water flowing inside the heat transfer tube 26A.

【0016】そして、蒸発器4で蒸発した冷媒は吸収器
5に入り、低温再生器2で加熱されて冷媒を蒸発分離
し、吸収液の濃度が一層高まった吸収液、すなわち吸収
液管13により低温熱交換器6を経由して供給され、上
方から散布される濃吸収液に吸収される。
The refrigerant evaporated by the evaporator 4 enters the absorber 5 and is heated by the low-temperature regenerator 2 to evaporate and separate the refrigerant. It is supplied through the low-temperature heat exchanger 6 and is absorbed by the concentrated absorbent sprayed from above.

【0017】吸収器5で冷媒を吸収して濃度の薄くなっ
た吸収液、すなわち稀吸収液は吸収液ポンプ17の運転
により、低温熱交換器6・高温熱交換器7を経由して高
温再生器1へ吸収液管11から送られる。
The absorption liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 5, that is, the diluted absorption liquid, is regenerated at a high temperature via the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7 by the operation of the absorption liquid pump 17. It is sent from the absorbing liquid pipe 11 to the vessel 1.

【0018】上記のように吸収冷凍機の運転が行われる
と、蒸発器4の内部に配管された伝熱管26Aにおいて
冷媒の気化熱によって冷却された冷水が、冷温水ポンプ
27の運転により冷温水管26を介して図示しない冷/
暖房負荷に循環供給できるので、冷房運転などが行え
る。
When the operation of the absorption refrigerator is performed as described above, the cold water cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 26A provided inside the evaporator 4 is cooled by the operation of the cold / hot water pump 27. Not shown through 26
Since it can be circulated and supplied to the heating load, cooling operation and the like can be performed.

【0019】また、吸収液ポンプ17の駆動力により送
り出された吸収液の一部は、吸収液管15を通って気液
分離器8のエジェクター8Aに導かれ、勢い良く噴き出
す。吸収液の噴出によって生じる負圧によって、凝縮器
3および吸収器5の気相部に滞留している気体が冷媒管
23、24を介してエジェクター8Aに引かれ、吸収液
管15から入ってくる吸収液と共に気液分離器8の内側
にある分離槽8Bに引き込まれ、冷媒蒸気は吸収液に吸
収され、吸収液に溶解せず、且つ、この装置の冷凍サイ
クルでは凝縮することのない水素、窒素、酸素などの不
溶・不凝縮性の気体(以下、不溶気体と云う)が浮上し
て吸収液から分離し、上部の不溶気体貯留部8Cに溜ま
る。気液分離器8の底に溜まった吸収液は、吸収液管1
6を経て吸収器5へ戻される。
Further, a part of the absorbing liquid sent out by the driving force of the absorbing liquid pump 17 is guided to the ejector 8A of the gas-liquid separator 8 through the absorbing liquid pipe 15, and is spouted vigorously. The gas remaining in the gas phase of the condenser 3 and the absorber 5 is drawn by the ejector 8A via the refrigerant pipes 23 and 24 by the negative pressure generated by the ejection of the absorption liquid, and enters from the absorption liquid pipe 15. Hydrogen is drawn into the separation tank 8B inside the gas-liquid separator 8 together with the absorbing liquid, and the refrigerant vapor is absorbed by the absorbing liquid, does not dissolve in the absorbing liquid, and does not condense in the refrigeration cycle of this device. An insoluble / non-condensable gas such as nitrogen or oxygen (hereinafter, referred to as an insoluble gas) floats and separates from the absorbing liquid, and accumulates in the upper insoluble gas reservoir 8C. The absorbent collected at the bottom of the gas-liquid separator 8 is supplied to the absorbent tube 1
It is returned to the absorber 5 via 6.

【0020】一方、上部の不溶気体貯留部8Cに溜まっ
た不溶気体は、不溶気体管31を通って不溶気体貯留室
9に入る。そして、この不溶気体貯留室9に入った気体
の内、水素ガスだけがパラジウム製の薄膜10Aを通っ
て水素貯留室10に入り、水素ガス排出管32を通って
外部に排出される。なお、薄膜10Aは従来周知の加熱
手段によって適宜加熱され、水素ガス透過性が高められ
る。
On the other hand, the insoluble gas stored in the upper insoluble gas storage section 8C enters the insoluble gas storage chamber 9 through the insoluble gas pipe 31. Then, of the gas that has entered the insoluble gas storage chamber 9, only hydrogen gas enters the hydrogen storage chamber 10 through the thin film 10A made of palladium, and is discharged to the outside through the hydrogen gas discharge pipe 32. In addition, the thin film 10A is appropriately heated by a conventionally known heating means to increase the hydrogen gas permeability.

【0021】気液分離器8で分離されて不溶気体貯留室
9に入る不溶気体の量は、金属部材が冷媒や吸収液によ
って腐食される際に生じる水素ガスの量と、溶接欠陥な
どを通って外部から機内に洩れ込む空気の量に依存す
る。そして、薄膜10Aの面積は、吸収冷凍機が正常に
機能しているときに、前記メカニズムによって機内で生
じる水素ガスが容易に透過して水素貯留室10に移り、
不溶気体貯留室9の内部圧力P1が上昇し過ぎないない
ように設計される。
The amount of the insoluble gas separated by the gas-liquid separator 8 and entering the insoluble gas storage chamber 9 depends on the amount of hydrogen gas generated when the metal member is corroded by the refrigerant or the absorbing liquid and the amount of hydrogen gas passing through welding defects. Depending on the amount of air leaking into the cabin from the outside. The area of the thin film 10A is such that when the absorption refrigerator is functioning normally, the hydrogen gas generated inside the absorption refrigerator easily permeates and moves to the hydrogen storage chamber 10,
It is designed so that the internal pressure P1 of the insoluble gas storage chamber 9 does not rise too much.

【0022】また、前記メカニズムで機内に発生する水
素ガスは、高温再生器1の吸収液の温度が高いほど多く
発生する傾向にあり、その発生量は概ね運転負荷に比例
するので、冷媒のガス分析などを行って外部から機内へ
の空気の急激な洩れ込みがないことを確認した正常な吸
収冷凍機の累積負荷Wと、開閉弁39、40を開き、開
閉弁41を閉じて水素ガス排出管32から水素ガスの排
出を図っている不溶気体貯留室9の内部圧力P1との関
係を、例えば図2のなどのように標準データとして求
めておき、この関係を図示しない制御器のマイコンなど
に記憶しておく。
The higher the temperature of the absorbing liquid in the high-temperature regenerator 1 is, the more the hydrogen gas generated in the apparatus by the above mechanism tends to be generated. The amount of the generated hydrogen gas is generally proportional to the operating load. The cumulative load W of the normal absorption chiller, which has been analyzed and confirmed that there is no sudden leakage of air from the outside into the machine, the open / close valves 39 and 40 are opened, and the open / close valve 41 is closed to release hydrogen gas. The relationship between the internal pressure P1 of the insoluble gas storage chamber 9 for discharging hydrogen gas from the pipe 32 and the internal pressure P1 is obtained as standard data as shown in FIG. 2, for example. To memorize it.

【0023】なお、ここで云う吸収冷凍機の累積負荷W
とは、吸収冷凍機の運転時間と負荷率(燃焼量または冷
水負荷率)との積などで表されるものであり、例えば1
00%負荷運転×2時間=1×2hr=2hr、50%
負荷運転×2時間=0.5×2hr=1hr、などと云
うように計算して求める。
The cumulative load W of the absorption refrigerator described herein
Is represented by the product of the operation time of the absorption refrigerator and the load factor (the amount of combustion or chilled water load factor), for example, 1
00% load operation x 2 hours = 1 x 2 hr = 2 hr, 50%
Load operation × 2 hours = 0.5 × 2 hr = 1 hr, etc.

【0024】また、上記正常な吸収冷凍機の累積負荷W
と、開閉弁39を開き、開閉弁40、41を閉じて水素
ガスを水素貯留室10に貯留しているときの水素貯留室
10の内部圧力P2との関係も、例えば図2のなどの
ように標準データとして求めておき、この関係も図示し
ない制御器のマイコンなどに記憶しておく。
Further, the cumulative load W of the normal absorption refrigerator is described above.
And the internal pressure P2 of the hydrogen storage chamber 10 when the on-off valve 39 is opened and the on-off valves 40 and 41 are closed to store hydrogen gas in the hydrogen storage chamber 10, as shown in FIG. Is stored as standard data, and this relationship is also stored in a microcomputer of a controller (not shown).

【0025】そして、上記構成の吸収冷凍機において
は、先ず水素貯留室10を真空引きする。すなわち、開
閉弁39、41を閉じ、開閉弁40を開放すると共に、
真空ポンプ34を所定時間運転する。これによって、水
素貯留室10の気体は真空引用管50を介して排除さ
れ、真空状態になる。
In the absorption refrigerator having the above structure, first, the hydrogen storage chamber 10 is evacuated. That is, while closing the on-off valves 39 and 41 and opening the on-off valve 40,
The vacuum pump 34 is operated for a predetermined time. As a result, the gas in the hydrogen storage chamber 10 is removed via the vacuum pipe 50, and a vacuum state is established.

【0026】その後開閉弁39を開き、開閉弁40、4
1を閉じ、前記メカニズムによって機内で発生した水素
ガスを空気成分である酸素や窒素などの不溶気体と共に
気液分離器8で分離して不溶気体貯留室9に集め、さら
に薄膜10Aを透過し得る水素ガスだけを水素貯留室1
0に貯留し、この水素貯留室10の内部圧力P2を圧力
センサ43により監視し、薄膜10Aの水素透過性能を
把握する。
Thereafter, the on-off valve 39 is opened, and the on-off valves 40, 4
1 is closed, the hydrogen gas generated inside the apparatus by the above mechanism is separated by the gas-liquid separator 8 together with the insoluble gas such as oxygen or nitrogen which is an air component, collected in the insoluble gas storage chamber 9, and can further pass through the thin film 10A. Hydrogen storage chamber 1 with only hydrogen gas
0, and the internal pressure P2 of the hydrogen storage chamber 10 is monitored by the pressure sensor 43 to grasp the hydrogen permeation performance of the thin film 10A.

【0027】すなわち、薄膜10Aの水素透過性が正常
なときには、水素貯留室10の内部圧力P2は、例えば
図3の標準データのように累積負荷Wの増大に伴って
順調に増加するが、薄膜10Aの水素透過性が劣化する
と、水素貯留室10の内部圧力P2は、例えば図3の
に示すように、の標準データよりも遥かに低い圧力を
示すので、圧力センサ43が計測する水素貯留室10の
内部圧力P2を、制御器のマイコンなどに記憶している
図3の標準データと比較することで、薄膜10Aの性
能劣化の有無を判定する。
That is, when the hydrogen permeability of the thin film 10A is normal, the internal pressure P2 of the hydrogen storage chamber 10 increases steadily with the increase of the cumulative load W as shown in the standard data of FIG. When the hydrogen permeability of 10A deteriorates, the internal pressure P2 of the hydrogen storage chamber 10 indicates a pressure much lower than the standard data of, for example, as shown in FIG. The internal pressure P2 of the thin film 10A is compared with the standard data of FIG. 3 stored in the microcomputer of the controller to determine whether or not the performance of the thin film 10A has deteriorated.

【0028】そして、圧力センサ43が計測する水素貯
留室10の内部圧力P2が、例えば図3ののように、
の正常時よりも遥かに低い圧力を示したときには、内
部圧力P2の推移をしばらく観察し、その後ものよう
に順調に増加することがないことを確認して、薄膜10
Aの性能が劣化していること警告する信号を出力する。
The internal pressure P2 of the hydrogen storage chamber 10 measured by the pressure sensor 43 is, for example, as shown in FIG.
When the pressure of the thin film 10 is much lower than that in the normal state, the change in the internal pressure P2 is observed for a while, and it is confirmed that the internal pressure P2 does not increase steadily as in the case thereafter.
A signal that warns that the performance of A is degraded is output.

【0029】一方、圧力センサ43が計測する水素貯留
室10の内部圧力P2が、例えば図3の標準データの
ように順調に増加したときには、薄膜10Aの水素透過
性に劣化はないので、開閉弁40も開き、水素貯留室1
0に貯留されている水素ガスを水素ガス排出管32から
排出させる。
On the other hand, when the internal pressure P2 of the hydrogen storage chamber 10 measured by the pressure sensor 43 increases steadily as shown in the standard data of FIG. 3, for example, there is no deterioration in the hydrogen permeability of the thin film 10A. 40 also opened, hydrogen storage room 1
The hydrogen gas stored at 0 is discharged from the hydrogen gas discharge pipe 32.

【0030】そして、不溶気体貯留室9の内部圧力P1
を圧力センサ42によって計測し、内部圧力P1が所定
圧、例えば制御器のマイコンなどに記憶している図2
の標準データの、例えば3倍の圧力に達したときには、
装置に何らかの異常が生じているので、例えば開閉弁3
9を閉じて不溶気体貯留室9の内部圧力P1の推移を圧
力センサ42により引き続き計測する。
The internal pressure P1 of the insoluble gas storage chamber 9
Is measured by the pressure sensor 42, and the internal pressure P1 is stored at a predetermined pressure, for example, a microcomputer of the controller shown in FIG.
When the pressure reaches, for example, three times the standard data of
Since some abnormality has occurred in the device, for example, the on-off valve 3
9 is closed and the transition of the internal pressure P1 of the insoluble gas storage chamber 9 is continuously measured by the pressure sensor 42.

【0031】開閉弁39を閉じて不溶気体貯留室9への
不溶気体の流入を止めても、内部圧力P1が例えば図4
におけるのように時間が経過しても殆ど低下しないと
きには、薄膜10Aの水素ガス透過性の劣化がないこと
は既に確認してあるので、不溶気体貯留室9に貯留され
ている不溶気体の殆ど全てが、薄膜10Aを透過するこ
とができない酸素や窒素などの大気成分であり、外部か
ら機内への空気の洩れ込みがあると判断し、開閉弁41
を開いて真空ポンプ34を起動し、不溶気体貯留室9に
貯留されている不溶気体を排出すると共に、機内への空
気の急激な洩れ込みがあることを警告出力する。
Even if the inflow of the insoluble gas into the insoluble gas storage chamber 9 is stopped by closing the on-off valve 39, the internal pressure P1 is maintained, for example, as shown in FIG.
When almost no decrease occurs as time passes, it is already confirmed that there is no deterioration in the hydrogen gas permeability of the thin film 10A. Therefore, almost all of the insoluble gas stored in the insoluble gas storage chamber 9 is removed. Are air components such as oxygen and nitrogen that cannot pass through the thin film 10A, and it is determined that there is leakage of air from outside into the machine.
Is opened to start the vacuum pump 34, to discharge the insoluble gas stored in the insoluble gas storage chamber 9, and to output a warning that there is a sudden leak of air into the machine.

【0032】なお、この警告出力は、薄膜10Aの水素
透過性を再度確認したのち、出力するようにしても良
い。すなわち、不溶気体貯留室9の不溶気体を真空ポン
プ34で排出したのち、開閉弁40、41を閉じて機内
で発生する水素ガスを水素貯留室10に貯留し、このと
きに圧力センサ43が計測する水素貯留室10の内部圧
力P2を、制御器のマイコンなどに記憶している標準デ
ータと比較して、薄膜10Aの性能劣化がないことを再
確認し、その後に警告するようにしても良い。
The warning output may be output after reconfirming the hydrogen permeability of the thin film 10A. That is, after the insoluble gas in the insoluble gas storage chamber 9 is exhausted by the vacuum pump 34, the on-off valves 40 and 41 are closed to store the hydrogen gas generated inside the apparatus in the hydrogen storage chamber 10. The internal pressure P2 of the hydrogen storage chamber 10 may be compared with standard data stored in a microcomputer or the like of the controller to reconfirm that the performance of the thin film 10A is not degraded, and thereafter, a warning may be issued. .

【0033】また、不溶気体貯留室9の内部圧力P1
が、例えば図4ののように時間の経過と共に低下はす
るが、時間が経過しても圧力が制御器のマイコンなどに
記憶している図2の標準データの圧力までは到底低下
する気配がないときには、不溶気体貯留室9には水素ガ
スだけでなく、薄膜10Aを透過することができない酸
素や窒素などの大気成分も相当溜まっているので、外部
から機内への空気の洩れ込みが多少あると判断して、こ
の場合も開閉弁41を開いて真空ポンプ34を起動し、
不溶気体貯留室9に貯留されている不溶気体を排出する
と共に、機内への空気の洩れ込みがあることを警告出力
する。この場合も、薄膜10Aの性能を再確認したの
ち、警告するようにしても良い。
The internal pressure P1 of the insoluble gas storage chamber 9
However, for example, as shown in FIG. 4, the pressure decreases with the passage of time, but even after the passage of time, there is a sign that the pressure will drop to the pressure of the standard data of FIG. 2 stored in the microcomputer of the controller. When there is no such gas, not only hydrogen gas but also atmospheric components such as oxygen and nitrogen which cannot permeate the thin film 10A are considerably stored in the insoluble gas storage chamber 9, so that there is some leakage of air from the outside into the machine. In this case, too, the on-off valve 41 is opened to start the vacuum pump 34,
The insoluble gas stored in the insoluble gas storage chamber 9 is discharged, and a warning is output that air has leaked into the machine. In this case, a warning may be issued after reconfirming the performance of the thin film 10A.

【0034】一方、不溶気体貯留室9の内部圧力P1
が、例えば図4ののように時間の経過と共に低下し、
制御器のマイコンなどに記憶している図2の標準デー
タの圧力近くまで低下したときには、不溶気体貯留室9
にある不溶気体が薄膜10Aを介して水素貯留室10に
順調に排出され、減少しているので、不溶気体貯留室9
に貯留されていた不溶気体が薄膜10Aを透過すること
のできる水素ガスであったことと、薄膜10Aの水素ガ
ス透過機能が正常に機能していることが確認できたこと
になる。しかし、機内では薄膜10Aを透過しきれない
ほど多くの水素ガスが発生している可能性がある。
On the other hand, the internal pressure P1 of the insoluble gas storage chamber 9
Decreases over time as shown in FIG. 4, for example.
When the pressure drops to near the pressure of the standard data of FIG. 2 stored in the microcomputer of the controller or the like, the insoluble gas storage chamber 9
Is discharged smoothly to the hydrogen storage chamber 10 via the thin film 10A and is reduced, so that the insoluble gas storage chamber 9
It was confirmed that the insoluble gas stored in the thin film 10A was a hydrogen gas that could pass through the thin film 10A, and that the hydrogen gas transmission function of the thin film 10A was functioning normally. However, there is a possibility that a large amount of hydrogen gas is generated inside the apparatus so as not to pass through the thin film 10A.

【0035】したがって、圧力センサ42が計測する不
溶気体貯留室9の内部圧力P1が図4ののように推移
して、水素ガスの発生が異常に多くなっている可能性が
あるときには、例えば開閉弁39を開き、開閉弁40を
閉じて水素貯留室10の内部圧力P2の推移を圧力セン
サ43により観察する。
Therefore, when the internal pressure P1 of the insoluble gas storage chamber 9 measured by the pressure sensor 42 changes as shown in FIG. The valve 39 is opened, the on-off valve 40 is closed, and the transition of the internal pressure P2 of the hydrogen storage chamber 10 is observed by the pressure sensor 43.

【0036】そして、圧力センサ43が計測する水素貯
留室10の内部圧力P2が、例えば図3ののように正
常運転時のよりも急激に上昇するときには、吸収液に
添加している腐食抑制剤であるインヒビターが消耗して
不足しているので、例えば吸収液へのインヒビターの添
加を促す警告を出力するように構成する。
When the internal pressure P2 of the hydrogen storage chamber 10 measured by the pressure sensor 43 rises more rapidly than in the normal operation as shown in FIG. 3, for example, the corrosion inhibitor added to the absorbing solution is used. Since the inhibitor is exhausted and insufficient, for example, a warning is issued to prompt the addition of the inhibitor to the absorbing solution.

【0037】また、本発明の吸収冷凍機においては、不
溶気体貯留室9の内部圧力P1が前記所定圧に達するな
どして、装置に何らかの異常が生じている可能性がある
ときに、開閉弁39、40を閉じ、圧力センサ42が計
測する不溶気体貯留室9の内部圧力P1と、圧力センサ
43が計測する水素貯留室10の内部圧力P2との圧力
差の推移を求め、これにより薄膜10Aの性能、水素ガ
スの発生状況、外部から機内への空気の洩れ込み状況を
監視することもできる。
Further, in the absorption refrigerator of the present invention, when there is a possibility that some abnormality has occurred in the apparatus, for example, when the internal pressure P1 of the insoluble gas storage chamber 9 reaches the predetermined pressure, the on-off valve is opened. 39 and 40 are closed, and the transition of the pressure difference between the internal pressure P1 of the insoluble gas storage chamber 9 measured by the pressure sensor 42 and the internal pressure P2 of the hydrogen storage chamber 10 measured by the pressure sensor 43 is determined, thereby obtaining the thin film 10A. Performance, generation of hydrogen gas, and air leakage from the outside to the inside of the machine can also be monitored.

【0038】すなわち、不溶気体貯留室9にある気体の
殆どが、正常に機能している薄膜10Aを透過すること
ができない酸素や窒素などの空気成分であるときには、
圧力差P1−P2は時間が経過しても殆ど低下しないの
で、圧力差P1−P2が例えば図5ののように時間が
経過しても殆ど低下しないときには、不溶気体貯留室9
にある気体の殆どは大気成分である窒素や酸素などであ
るので、開閉弁41を開いて真空ポンプ34を起動し、
不溶気体貯留室9に貯留されている不溶気体を排出する
と共に、機内への空気の急激な洩れ込みがあることを警
告出力する。この場合も、薄膜10Aの性能を再確認し
たのち、警告するようにしても良い。
That is, when most of the gas in the insoluble gas storage chamber 9 is an air component such as oxygen or nitrogen that cannot pass through the normally functioning thin film 10A,
Since the pressure difference P1-P2 hardly decreases over time, if the pressure difference P1-P2 hardly decreases over time as shown in FIG.
Most of the gases in the above are nitrogen or oxygen as atmospheric components, so the on-off valve 41 is opened and the vacuum pump 34 is started,
The insoluble gas stored in the insoluble gas storage chamber 9 is discharged, and a warning is output that there is a sudden leak of air into the machine. In this case, a warning may be issued after reconfirming the performance of the thin film 10A.

【0039】一方、不溶気体貯留室9に溜まった気体の
殆どが、薄膜10Aを透過することができる水素ガスで
あるときには、圧力差P1−P2は図5ののように時
間の経過と共に縮小し、最初にあった圧力差に見合った
時間で圧力差は解消される。
On the other hand, when most of the gas stored in the insoluble gas storage chamber 9 is hydrogen gas that can permeate the thin film 10A, the pressure difference P1-P2 decreases with time as shown in FIG. The pressure difference is eliminated in a time corresponding to the pressure difference that was initially present.

【0040】したがって、圧力差P1−P2が、図5の
のように時間の経過と共に縮小し、解消されたときに
は、不溶気体貯留室9にある不溶気体が水素ガスであっ
たことと、薄膜10Aの水素ガス透過機能が正常に機能
していることが確認できたことになる。
Therefore, when the pressure difference P1-P2 is reduced with the passage of time as shown in FIG. 5 and eliminated, the fact that the insoluble gas in the insoluble gas storage chamber 9 is hydrogen gas and the thin film 10A That is, it was confirmed that the hydrogen gas permeation function was normally functioning.

【0041】しかし、機内では薄膜10Aを透過しきれ
ないほど多くの水素ガスが発生している可能性があるの
で、この場合も前記したよう開閉弁39を開き、開閉弁
40を閉じて水素貯留室10の内部圧力P2の推移を圧
力センサ43により観察する。
However, there is a possibility that a large amount of hydrogen gas is generated inside the machine so as not to be able to permeate the thin film 10A. Therefore, in this case as well, the on-off valve 39 is opened and the on-off valve 40 is closed to store hydrogen as described above. The transition of the internal pressure P2 of the chamber 10 is observed by the pressure sensor 43.

【0042】そして、圧力センサ43が計測する水素貯
留室10の内部圧力P2が、例えば図3ののように正
常運転時のよりも急激に上昇するときには、この場合
も吸収液に添加している腐食抑制剤であるインヒビター
が消耗して不足しているので、例えば吸収液へのインヒ
ビターの添加を促す警告を出力するように構成する。
When the internal pressure P2 of the hydrogen storage chamber 10 measured by the pressure sensor 43 rises more rapidly than in the normal operation as shown in FIG. 3, for example, it is also added to the absorbing liquid. Since the inhibitor serving as the corrosion inhibitor is exhausted and insufficient, for example, a warning is issued to prompt the addition of the inhibitor to the absorbing solution.

【0043】そして、外部から機内に空気成分が多少洩
れ込んでいるときには、時間の経過と共に圧力差P1−
P2は縮小するが、その圧力差が完全に解消されること
はない。しかも、不溶気体貯留室9には薄膜10Aを透
過することができない酸素や窒素ガスも貯留されている
ので、最初にあった圧力差に見合った時間より短い時間
で、圧力差の変化率は小さくなる。
When some air component leaks into the machine from the outside, the pressure difference P1-
Although P2 is reduced, the pressure difference is not completely eliminated. In addition, since the insoluble gas storage chamber 9 also stores oxygen and nitrogen gas that cannot permeate the thin film 10A, the rate of change of the pressure difference is small in a time shorter than the time corresponding to the pressure difference which was initially present. Become.

【0044】したがって、圧力差P1−P2が例えば5
ののように推移するときには、不溶気体貯留室9には
水素ガスだけでなく、薄膜10Aを透過することができ
ない酸素や窒素などの大気成分も相当溜まっているの
で、外部から機内への空気の洩れ込みが多少あると判断
して、この場合も開閉弁41を開いて真空ポンプ34を
起動し、不溶気体貯留室9に貯留されている不溶気体を
排出すると共に、機内への空気の洩れ込みがあることを
警告出力する。この場合も、薄膜10Aの性能を前記の
ようにして再確認したのち、警告するようにしても良
い。
Therefore, the pressure difference P1-P2 is, for example, 5
In this case, not only hydrogen gas but also atmospheric components such as oxygen and nitrogen that cannot permeate the thin film 10A are considerably stored in the insoluble gas storage chamber 9, so that air from the outside to the inside of the machine is stored. It is determined that there is some leakage, and in this case as well, the on-off valve 41 is opened to start the vacuum pump 34 to discharge the insoluble gas stored in the insoluble gas storage chamber 9 and to leak air into the machine. Outputs a warning that there is. In this case, a warning may be given after the performance of the thin film 10A is reconfirmed as described above.

【0045】なお、上記構成の吸収冷凍機においては、
開閉弁35〜38も開き、冷却水管28に冷却水を流さ
ないでガスバーナ1Bに点火して高温再生器1で稀吸収
液を加熱すると、高温再生器1で稀吸収液から蒸発した
冷媒は主に流路抵抗の小さい冷媒管18・19を通って
吸収器5・蒸発器4に入り、冷温水管26から供給され
る水と伝熱管26Aを介して熱交換して凝縮し、主にこ
のときの凝縮熱によって伝熱管26Aの内部を流れる水
が加熱される。
Incidentally, in the absorption refrigerator having the above configuration,
When the on-off valves 35 to 38 are also opened and the gas burner 1B is ignited without cooling water flowing through the cooling water pipe 28 to heat the rare absorbing liquid in the high temperature regenerator 1, the refrigerant evaporated from the rare absorbing liquid in the high temperature regenerator 1 The refrigerant flows into the absorber 5 and the evaporator 4 through the refrigerant pipes 18 and 19 having a small flow path resistance, and exchanges heat with water supplied from the cold / hot water pipe 26 through the heat transfer pipe 26A to condense. The water flowing inside the heat transfer tube 26 </ b> A is heated by the condensation heat.

【0046】そして、蒸発器4で加熱作用を行って凝縮
した冷媒は、冷媒管21・22を通って吸収器5に入
り、高温再生器1で冷媒を蒸発分離して吸収液管14か
ら流入する吸収液と混合され、吸収液ポンプ17の運転
によって低温熱交換器6・高温熱交換器7を経て高温再
生器1へ送られる。
The refrigerant condensed by performing the heating action in the evaporator 4 enters the absorber 5 through the refrigerant pipes 21 and 22, evaporates and separates the refrigerant in the high temperature regenerator 1, and flows in from the absorption liquid pipe 14. The liquid is mixed with the absorbing liquid and is sent to the high-temperature regenerator 1 through the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7 by the operation of the absorbing liquid pump 17.

【0047】したがって、蒸発器4内部の伝熱管26A
で加熱された温水を、冷温水ポンプ27の運転により冷
温水管26を介して図示しない冷/暖房負荷に循環供給
するようにすれば、暖房運転などにも供することができ
る。
Therefore, the heat transfer tube 26A inside the evaporator 4
If the hot water heated in step (1) is circulated and supplied to a cooling / heating load (not shown) through the cold / hot water pipe 26 by operating the cold / hot water pump 27, it can be used for a heating operation or the like.

【0048】なお、冷却水管28内で停滞している冷却
水が吸収器5で加熱されても、均圧管30の開閉弁38
が開弁して圧力の逃げが可能であるので、冷却水管28
の圧力が異常に高くなることはない。
It should be noted that even if the cooling water stagnating in the cooling water pipe 28 is heated by the absorber 5, the on-off valve 38
Can be opened to release the pressure, so that the cooling water pipe 28
Pressure does not rise abnormally.

【0049】ところで、本発明は上記実施形態に限定さ
れるものではないので、特許請求の範囲に記載の趣旨か
ら逸脱しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the spirit of the appended claims.

【0050】例えば、前記メカニズムによって機内に発
生する水素ガスの量は、バーナー1Bで消費する燃料の
量にも依存するし、運転時間にも依存するので、燃料の
消費量、運転時間などをパラメーターとして管理するこ
ともできる。
For example, the amount of hydrogen gas generated inside the machine by the above mechanism depends on the amount of fuel consumed by the burner 1B and also on the operation time. It can also be managed as

【0051】[0051]

【発明の効果】本発明によれば、水素ガスを排出する部
分の劣化を自己診断することができると共に、機内で増
加している不溶気体が機器の腐食で生じた水素ガスであ
るのか、外部から機内に洩れ込んだ空気であるのかが、
面倒なガス分析しなくても簡単に分かるので、発生して
いる異常に応じた対策を速やかに採ることができる。
According to the present invention, it is possible to make a self-diagnosis of the deterioration of the portion for discharging hydrogen gas, and to determine whether the insoluble gas increasing in the machine is hydrogen gas generated by corrosion of the machine or not. Whether the air leaked into the cabin from
Since it is easy to understand without troublesome gas analysis, it is possible to quickly take a measure according to the abnormality that has occurred.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる吸収冷凍機の構成を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a configuration of an absorption refrigerator according to the present invention.

【図2】累積負荷と内部圧力との関係を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a relationship between an accumulated load and an internal pressure.

【図3】水素貯留室の内圧変化を示す説明図である。FIG. 3 is an explanatory diagram showing a change in internal pressure of a hydrogen storage chamber.

【図4】不溶気体貯留室の内圧変化を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a change in internal pressure of an insoluble gas storage chamber.

【図5】水素貯留室の内圧と不溶気体貯留室の内圧との
差圧変化を示す説明図である。
FIG. 5 is an explanatory diagram showing a change in a differential pressure between an internal pressure of a hydrogen storage chamber and an internal pressure of an insoluble gas storage chamber.

【符号の説明】[Explanation of symbols]

1 高温再生器 1B ガスバーナ 2 低温再生器 3 凝縮器 4 蒸発器 5 吸収器 6 低温熱交換器 7 高温熱交換器 8 気液分離器 8A エジェクター 8B 分離槽 8C 不溶気体貯留部 9 不溶気体貯留室 10 水素貯留室 10A 薄膜 11〜16 吸収液管 17 吸収液ポンプ 18〜24 冷媒管 25 冷媒ポンプ 26 冷温水管 27 冷温水ポンプ 28 冷却水管 29・30 均圧管 31 不溶気体管 32 水素ガス排出管 33 不溶気体排出管 34 真空ポンプ 35〜40 開閉弁 42、43 圧力センサ DESCRIPTION OF SYMBOLS 1 High temperature regenerator 1B Gas burner 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Low temperature heat exchanger 7 High temperature heat exchanger 8 Gas-liquid separator 8A Ejector 8B Separation tank 8C Insoluble gas storage part 9 Insoluble gas storage room 10 Hydrogen storage chamber 10A Thin film 11-16 Absorbing liquid pipe 17 Absorbing liquid pump 18-24 Refrigerant pipe 25 Refrigerant pump 26 Cold / hot water pipe 27 Cold / hot water pump 28 Cooling water pipe 29/30 Equalizing pipe 31 Insoluble gas pipe 32 Hydrogen gas discharge pipe 33 Insoluble gas Discharge pipe 34 Vacuum pump 35-40 Open / close valve 42, 43 Pressure sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 機内の気相部と連結され、機内気相部の
気体を吸収液の中に導き入れて吸収液に可溶な気体を吸
収液に溶かし込み、吸収液と、吸収液に不溶な気体とを
分離する気液分離器と、開閉弁を介して気液分離器の不
溶気体貯留部に遮断可能に連結設置された不溶気体貯留
室と、水素透過性隔壁を介して不溶気体貯留室に併設さ
れると共に、外部と連通可能に形成された水素貯留室
と、不溶気体貯留室および水素貯留室それぞれに設置さ
れた圧力検出手段と、を備えたことを特徴とする吸収冷
凍機。
A gas connected to a gas phase in the machine, a gas in the gas phase in the machine is introduced into the absorbing solution, and a gas soluble in the absorbing solution is dissolved in the absorbing solution. A gas-liquid separator that separates the insoluble gas, an insoluble gas storage chamber that is connected to the insoluble gas storage section of the gas-liquid separator via an on-off valve so as to be shut off, and an insoluble gas through a hydrogen-permeable partition An absorption refrigerator provided with a hydrogen storage chamber that is provided adjacent to the storage chamber and is formed to be able to communicate with the outside, and pressure detection means installed in each of the insoluble gas storage chamber and the hydrogen storage chamber. .
JP11211016A 1999-07-26 1999-07-26 Absorption refrigerating machine Pending JP2001041614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11211016A JP2001041614A (en) 1999-07-26 1999-07-26 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11211016A JP2001041614A (en) 1999-07-26 1999-07-26 Absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JP2001041614A true JP2001041614A (en) 2001-02-16

Family

ID=16598959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11211016A Pending JP2001041614A (en) 1999-07-26 1999-07-26 Absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JP2001041614A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214698A (en) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd Extraction device
JP2007147148A (en) * 2005-11-25 2007-06-14 Ebara Corp Absorption heat pump
JP2009264698A (en) * 2008-04-28 2009-11-12 Ebara Refrigeration Equipment & Systems Co Ltd Method and device for determining gas component
CN102706051A (en) * 2012-06-29 2012-10-03 太仓奥科机械设备有限公司 Air extractor
CN114076659A (en) * 2020-08-17 2022-02-22 矢崎能源***公司 Determination device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214698A (en) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd Extraction device
JP2007147148A (en) * 2005-11-25 2007-06-14 Ebara Corp Absorption heat pump
JP4542985B2 (en) * 2005-11-25 2010-09-15 株式会社荏原製作所 Absorption heat pump
JP2009264698A (en) * 2008-04-28 2009-11-12 Ebara Refrigeration Equipment & Systems Co Ltd Method and device for determining gas component
CN102706051A (en) * 2012-06-29 2012-10-03 太仓奥科机械设备有限公司 Air extractor
CN114076659A (en) * 2020-08-17 2022-02-22 矢崎能源***公司 Determination device
CN114076659B (en) * 2020-08-17 2024-03-01 矢崎能源***公司 Determination device

Similar Documents

Publication Publication Date Title
JP2001041614A (en) Absorption refrigerating machine
JP3318222B2 (en) Absorption refrigerator
JP6614873B2 (en) Absorption refrigerator
JP4390681B2 (en) Absorption refrigerator
JP2003194427A (en) Cooling device
JPH06159851A (en) Absorption type freezer
JPH028669A (en) Gas leakage sensing structure in freezing cycle
JPH09303907A (en) Absorption refrigerator
JP4922872B2 (en) Absorption type water heater
JP3021474B2 (en) Non-condensable gas discharge device of absorption refrigerator
JP2000130893A (en) Operating method for absorption hot and chilled water generator
JP3086552B2 (en) Automatic non-condensable gas discharge device for absorption refrigerator
JP2006214698A (en) Extraction device
JP2771597B2 (en) Automatic bleeding device for absorption refrigerator
JP3195085B2 (en) Absorption refrigerator
JP3048817B2 (en) Non-condensable gas discharge device
JP2771598B2 (en) Absorption refrigerator
JP3208463B2 (en) Absorption refrigerator
JP2002372348A (en) Absorption refrigerating unit
JP2000220906A (en) Control of absorption refrigerating machine
JPH02275263A (en) Absorptive type freezer
JPS6321459A (en) Automatic discharger for noncondensable gas
JPH07332813A (en) Absorption refrigerator corrosion suppression device
JP3036755B2 (en) Absorption refrigerator
JP3331678B2 (en) Absorption refrigerator