JP2000345981A - Multistage root's type vacuum pump suction device - Google Patents
Multistage root's type vacuum pump suction deviceInfo
- Publication number
- JP2000345981A JP2000345981A JP11156795A JP15679599A JP2000345981A JP 2000345981 A JP2000345981 A JP 2000345981A JP 11156795 A JP11156795 A JP 11156795A JP 15679599 A JP15679599 A JP 15679599A JP 2000345981 A JP2000345981 A JP 2000345981A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- check valve
- pump
- vacuum pump
- casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/126—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2220/00—Application
- F04C2220/10—Vacuum
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、互いに反対方向に
回転する一対のロータをケーシング内に収容し、ケーシ
ングの片側の吸入口から反対側の吐出口へと減圧空間を
発生させる複数のルーツ型ポンプ部を多段に連通連結し
た多段ルーツ型真空ポンプ式吸引装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of roots-type rotors in which a pair of rotors rotating in opposite directions are accommodated in a casing, and a reduced pressure space is generated from a suction port on one side of the casing to a discharge port on the opposite side. The present invention relates to a multi-stage roots-type vacuum pump type suction device in which pump sections are connected in multiple stages.
【0002】[0002]
【従来の技術】土砂や汚水等を真空吸引するための真空
発生源として使用されるルーツ型真空ポンプ式吸引装置
は、ケーシング内で複数葉(2葉〜4葉など)の一対の
ロータを互いに反対方向に回転させて減圧空間を発生さ
せる。この真空ポンプの場合、1つのケーシングと一対
のロータで構成されるポンプ部が1段だけの単基構造で
あると、発生できる真空度の上限が−500mmHg程
度と小さいことから、ポンプ部を2段、3段と多段に連
通連結して最終的に発生できる真空度を上げるようにし
た多段ルーツ型真空ポンプが普及している。2. Description of the Related Art A roots type vacuum pump type suction device used as a vacuum source for vacuum suction of earth and sand, sewage and the like is configured such that a pair of rotors (2 to 4 leaves, etc.) are connected to each other in a casing. Rotate in the opposite direction to create a reduced pressure space. In the case of this vacuum pump, if the pump unit composed of one casing and a pair of rotors has a single-stage structure with only one stage, the upper limit of the degree of vacuum that can be generated is as small as about -500 mmHg. 2. Description of the Related Art A multi-stage roots-type vacuum pump has been widely used in which a plurality of stages and three stages are connected and connected to increase a degree of vacuum that can be finally generated.
【0003】従来の例えば2段ルーツ型真空ポンプは、
図3の概略図によって説明すると、前段ポンプ部1aと
後段ポンプ部1bを直列2段に連通連結して構成され
る。前段ポンプ部1aは前段ケーシング2aの中に一対
の3葉ロータ3,4を収納し、後段ポンプ部1bは後段
ケーシング2bの中に一対の3葉ロータ5,6を収納す
る。前段ケーシング2aの両側に空気の吸入口7と吐出
口8が形成され、後段ケーシング2bの両側にも空気の
吸入口9と吐出口10が形成される。前段ケーシング2
aと後段ケーシング2bは一体化され、前段ケーシング
2aの吐出口8と後段ケーシング2bの吸入口9は接近
して連結管13で連通する。前段ケーシング2aの吸入
口7に連通する吸気管11に冷却水の注水口12が形成
される。後段ケーシング2bの吐出口10が連通する排
気管14と連結管13がバイパス管15で連結され、バ
イパス管15にチェック弁16が設置される。チェック
弁16は各ケーシング2a、2bのいずれか一部に組み
付けられて、チェック弁16を含むケーシング全体で真
空ポンプAが構成される。A conventional two-stage roots vacuum pump, for example,
Referring to the schematic diagram of FIG. 3, the front-stage pump unit 1a and the rear-stage pump unit 1b are connected and connected in two stages in series. The front-stage pump unit 1a houses a pair of three-leaf rotors 3 and 4 in a front-stage casing 2a, and the rear-stage pump unit 1b houses a pair of three-leaf rotors 5 and 6 in a rear-stage casing 2b. An air inlet 7 and an outlet 8 are formed on both sides of the front casing 2a, and an air inlet 9 and an outlet 10 are formed on both sides of the rear casing 2b. Front casing 2
a and the rear casing 2b are integrated, and the discharge port 8 of the front casing 2a and the suction port 9 of the rear casing 2b approach each other and communicate with each other through the connecting pipe 13. A cooling water injection port 12 is formed in an intake pipe 11 communicating with the suction port 7 of the front casing 2a. An exhaust pipe 14 to which the discharge port 10 of the rear casing 2b communicates and a connecting pipe 13 are connected by a bypass pipe 15, and a check valve 16 is installed in the bypass pipe 15. The check valve 16 is assembled to any one of the casings 2a and 2b, and the entire casing including the check valve 16 constitutes the vacuum pump A.
【0004】図3の2段ルーツ型真空ポンプAを使用し
た吸引車ないし定置型真空吸引処理設備の要部を図4に
示し、また真空ポンプAの具体的構造を図5乃至図8に
示す。まず図5及び図6に基づき真空ポンプAの細部を
説明する。真空ポンプAの前段ケーシング2aと後段ケ
ーシング2bは、1つのケーシングの前部と後部で構成
される。このケーシングを2本の平行な駆動シャフト2
1と従動シャフト22が左右に貫通して、ケーシングに
軸封部23で回転可能に支持される。軸封部23は軸受
24とオイルシール25を備える。駆動シャフト21に
各ポンプ部1a、1bの一方のロータ3、5が固定さ
れ、従動シャフト22に他方のロータ4,6が固定され
る。一対の各シャフト21,22の一端部同士がタイミ
ングギヤセット26で連結されて、駆動シャフト21を
外部からの動力(モータ動力、車両のPTO軸動力な
ど)で回転させると各シャフト21,22が互いに反対
方向に回転し、各ポンプ部1a、1bの一対のロータ
3,4とロータ5,6が互いに反対方向に回転する。FIG. 4 shows a main part of a suction wheel or stationary vacuum suction processing equipment using the two-stage roots type vacuum pump A of FIG. 3, and FIGS. 5 to 8 show the specific structure of the vacuum pump A. . First, details of the vacuum pump A will be described with reference to FIGS. The front-stage casing 2a and the rear-stage casing 2b of the vacuum pump A are composed of a front portion and a rear portion of one casing. This casing is connected to two parallel drive shafts 2
The shaft 1 and the driven shaft 22 penetrate left and right, and are rotatably supported by the shaft sealing portion 23 on the casing. The shaft seal 23 includes a bearing 24 and an oil seal 25. One rotor 3, 5 of each pump section 1a, 1b is fixed to the drive shaft 21, and the other rotor 4, 6 is fixed to the driven shaft 22. When one end of each of the pair of shafts 21 and 22 is connected to each other by a timing gear set 26 and the drive shaft 21 is rotated by external power (motor power, PTO shaft power of a vehicle, or the like), the shafts 21 and 22 are mutually connected. The pumps 1a and 1b rotate in opposite directions, and the pair of rotors 3 and 4 and the rotors 5 and 6 rotate in opposite directions.
【0005】前段ポンプ部1aの一対のロータ3,4が
互いに反対方向に回転すると、吸入口7から空気を吸引
し吐出口8に吐出する真空ポンプ動作が繰り返し行われ
る。同時に後段ポンプ部1bも一対のロータ5,6が互
いに反対方向に回転することで、前段ポンプ部1aの吐
出口8から吐出された空気を吸引し吐出口10に吐出す
る真空ポンプ動作をする。前段ポンプ部1aの真空ポン
プ動作で減圧空間の真空度が上げられ、更に後段ポンプ
部1bの真空ポンプ動作で真空度が段階的に上げられ
る。When the pair of rotors 3 and 4 of the pre-stage pump section 1a rotate in opposite directions, the vacuum pump operation of sucking air from the suction port 7 and discharging it to the discharge port 8 is repeated. At the same time, the rear-stage pump section 1b also performs a vacuum pump operation in which the pair of rotors 5 and 6 rotate in directions opposite to each other, thereby sucking air discharged from the discharge port 8 of the front-stage pump section 1a and discharging the air to the discharge port 10. The degree of vacuum in the decompression space is increased by the vacuum pump operation of the first-stage pump unit 1a, and the degree of vacuum is increased stepwise by the vacuum pump operation of the second-stage pump unit 1b.
【0006】上記真空ポンプAにおいては、後段ポンプ
部1bのケーシング容積を前段ポンプ部1aのケーシン
グ容積より小さく設定して、高い真空度が迅速に得られ
るように構成されている。また、両ポンプ部1a、1b
を真空ポンプ動作させると、前段ケーシング2aの吸気
管11に設けた注水口12から冷却水がベンチュリー効
果で吸気管11に冷却水ミストとなって吸引され、この
吸引された冷却水ミストが前段ケーシング2a内と後段
ケーシング2b内を順に空気流に乗って流れて各ケーシ
ング2a、2bを冷却すると共に、ロータ4,6とケー
シング2a,2b間隙間や軸封部23隙間をシールす
る。In the vacuum pump A, the casing volume of the rear-stage pump section 1b is set smaller than the casing volume of the front-stage pump section 1a, so that a high degree of vacuum can be quickly obtained. In addition, both pump parts 1a, 1b
When a vacuum pump is operated, cooling water is drawn into the suction pipe 11 as a cooling water mist by a Venturi effect from a water inlet 12 provided in the suction pipe 11 of the front casing 2a. The casings 2a, 2b are cooled by flowing along the air flow in order in the inside of the casing 2a and the inside of the rear casing 2b, and the gap between the rotors 4, 6 and the casings 2a, 2b and the gap between the shaft sealing portions 23 are sealed.
【0007】真空ポンプAの前段ポンプ部1aの吸入口
7は、例えば図4に示すような湿式集塵器Eに接続され
る。この湿式集塵器Eには、サイクロン式集塵器D、集
塵タンクC及び土砂等の流動物体を吸引する吸引管Bが
順番に連結される。吸引管Bで吸引された流動物体の内
の比較的比重の大きな固形物等が集塵タンクCに溜めら
れ、塵芥類や水等の比重の小さなものが必要に応じて設
置されるサイクロン式集塵器Dに捕捉され、湿式集塵器
Eで沈殿して、湿式集塵器Eから除塵された清浄な空気
が真空ポンプAの吸入口7に吸入される。真空ポンプA
の後段ポンプ部1bの吐出口10から吐出された冷却水
ミストを含む空気は気液分離器Fに送られ、ここで水分
が分離されてサイレンサGから大気に放出される。湿式
集塵気Eと気液分離器Fは補給水タンクH上に隣接させ
て設置される。The suction port 7 of the pre-stage pump section 1a of the vacuum pump A is connected to, for example, a wet dust collector E as shown in FIG. To the wet dust collector E, a cyclone dust collector D, a dust collecting tank C, and a suction pipe B for sucking a flowing object such as earth and sand are sequentially connected. A solid matter having a relatively large specific gravity among the fluid objects sucked by the suction pipe B is stored in the dust collection tank C, and a small specific gravity object such as dust or water is installed as necessary. The clean air captured by the dust collector D, precipitated in the wet dust collector E, and removed from the wet dust collector E is sucked into the suction port 7 of the vacuum pump A. Vacuum pump A
The air containing the cooling water mist discharged from the discharge port 10 of the post-stage pump section 1b is sent to the gas-liquid separator F, where the water is separated and released from the silencer G to the atmosphere. The wet dust collection gas E and the gas-liquid separator F are installed on the makeup water tank H adjacent to each other.
【0008】[0008]
【発明が解決しようとする課題】上記真空ポンプAの図
3のチェック弁16は、真空ポンプ動作の初期段階にお
いて連結管13部分で一時的に生じる高圧空気を逃がす
逆止弁である。即ち、前段ポンプ部1aと後段ポンプ部
1bが同時に真空ポンプ動作をする運転初期段階におい
ては、大容積の前段ケーシング2aから小容積の後段ケ
ーシング2bに吐出される空気量が、後段ケーシング2
bの吸引空気流より一時的に多くなって、連結管13部
分で一時的に高圧空気が発生するのである。この高圧状
態を放置すると、ポンプ効率が低下すると共に、図5及
び図6に示す軸封部23のオイルシール25が内圧で変
形してケーシング2内の冷却水が変形オイルシール25
を通過してケーシング外に漏水することがある。そこ
で、真空ポンプ動作の初期段階で後段ケーシング2b内
に高圧空気が一時的に発生すると、この高圧空気の圧力
でチェック弁16を開かせて高圧空気を後段ケーシング
2bのバイパス管15から吐出口10側へと逃がすよう
にして、後段ケーシング2b内の圧力上昇を抑制し、オ
イルシール25の変形を抑制するようにしている。The check valve 16 shown in FIG. 3 of the vacuum pump A is a check valve for releasing high-pressure air temporarily generated in the connecting pipe 13 in the initial stage of the operation of the vacuum pump. That is, in the initial stage of the operation in which the first-stage pump unit 1a and the second-stage pump unit 1b simultaneously perform the vacuum pump operation, the amount of air discharged from the large-volume front-stage casing 2a to the small-volume rear-stage casing 2b is reduced.
The high pressure air is temporarily generated in the connection pipe 13 portion by temporarily increasing the suction air flow of b. If this high pressure state is left, the pump efficiency is reduced, and the oil seal 25 of the shaft sealing portion 23 shown in FIGS.
And water may leak out of the casing. Therefore, when high-pressure air is temporarily generated in the rear casing 2b at the initial stage of the vacuum pump operation, the check valve 16 is opened by the pressure of the high-pressure air, and the high-pressure air is discharged from the bypass pipe 15 of the rear casing 2b to the discharge port 10. In order to allow the oil seal 25 to escape to the side, the pressure rise in the rear casing 2b is suppressed, and the deformation of the oil seal 25 is suppressed.
【0009】チェック弁16は瞬間的に逃がす高圧空気
の量が多くなると、チェック弁16の開口部を流出する
高圧空気の排気抵抗が大きくなり、チェック弁16から
高圧空気が瞬間的に逃げずに後段ケーシング2b内に残
り、この残留高圧空気が真空ポンプ動作の効率を低下さ
せると共に、残留高圧空気でオイルシール25が変形し
て漏水が発生することがある。この効率低下と漏水発生
は、チェック弁16が開いたときの開口面積を大きく設
定すれば防止することができるのであるが、チェック弁
16のケーシング2への取付スペースの制限からチェッ
ク弁16の大きさに制限があって、その開口面積を増大
させることが困難であり、上記効率低下と漏水発生の防
止が課題となっていた。When the amount of the high-pressure air which escapes from the check valve 16 instantaneously increases, the exhaust resistance of the high-pressure air flowing out of the opening of the check valve 16 increases, so that the high-pressure air does not escape from the check valve 16 instantaneously. The residual high-pressure air remains in the rear casing 2b and reduces the efficiency of the vacuum pump operation, and the residual high-pressure air may deform the oil seal 25 to cause water leakage. This reduction in efficiency and the occurrence of water leakage can be prevented by setting a large opening area when the check valve 16 is opened. However, the size of the check valve 16 is reduced due to the limitation of the space for attaching the check valve 16 to the casing 2. However, it is difficult to increase the opening area, and there has been a problem in that the efficiency is reduced and the occurrence of water leakage is prevented.
【0010】尚、上記漏水の発生は真空ポンプ自体の機
能にとってはあまり問題とならないが、真空ポンプ周辺
が漏水で濡れたり、車両搭載型真空ポンプのように搭載
水量に制約がある場合は水不足を起こすなどの問題があ
った。[0010] The occurrence of the above-mentioned water leakage does not cause a serious problem for the function of the vacuum pump itself. However, when the area around the vacuum pump is wet due to water leakage or when the amount of mounted water is limited as in a vehicle-mounted vacuum pump, the water shortage occurs. There were problems such as getting up.
【0011】また、冷却水量は真空能力との関係で前段
ポンプ部1aよりも後段ポンプ部1bの方が多量に必要
であるが、前後段で適量分配供給するために図3の真空
ポンプAで後段ポンプ部1bにも冷却水の注水口を設置
するようにすれば、後段ポンプ部1bの冷却シール性能
が上がって真空ポンプ動作の効率が良くなるが、上記真
空ポンプ動作の初期段階における後段ケーシング2b内
の高圧空気による漏水量も倍増する可能性が高くなる。
そのため、後段ポンプ部1bに冷却水の注水口を設置す
ることが事実上で不可能であった。Further, the amount of cooling water is required to be larger in the latter stage pump unit 1b than in the former stage pump unit 1a in relation to the vacuum capacity. If a cooling water injection port is also provided in the second pump section 1b, the cooling sealing performance of the second pump section 1b is improved and the efficiency of the vacuum pump operation is improved. However, the second casing in the initial stage of the vacuum pump operation is used. There is a high possibility that the amount of water leakage due to the high-pressure air in 2b will also double.
For this reason, it was practically impossible to install a cooling water inlet in the downstream pump section 1b.
【0012】本発明の目的は、運転初期段階における漏
水防止と効率改善を可能にした多段ルーツ型真空ポンプ
式吸引装置を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-stage roots type vacuum pump type suction device capable of preventing water leakage and improving efficiency in an early stage of operation.
【0013】[0013]
【課題を解決するための手段】本発明は上記目的を達成
するため、一対のロータをケーシング内に収納した複数
のポンプ部が直列多段に連通連結され、前段ポンプ部の
吐出口が隣接する後段ポンプ部の吸入口と連通し、各ポ
ンプ部の一対のロータの一方が共通の駆動シャフトに連
結され、他方のロータが共通の従動シャフトに連結され
て、駆動シャフトの回転で各ポンプ部の一対のロータを
互いに反対方向に回転させて各ポンプ部で真空ポンプ動
作をさせるようにした多段ルーツ型真空ポンプ式吸引装
置において、隣接する前段ポンプ部と後段ポンプ部のケ
ーシングに真空ポンプ動作の初期段階で前段ポンプ部か
ら後段ポンプ部に吐出されて一時的に加圧状態となる加
圧空気の一部を後段ポンプの吐出口側に逃がす内部チェ
ック弁を設置すると共に、前記加圧空気を別経路でケー
シング外に逃がす外部チェック弁をケーシングに外付け
設置したことを特徴とする。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention has a plurality of pump sections each having a pair of rotors housed in a casing, which are connected in series and in multiple stages, and a discharge port of a preceding stage pump section is adjacent to a latter stage. One of a pair of rotors of each pump unit is connected to a common drive shaft, the other rotor is connected to a common driven shaft, and the pair of pump units is connected to each other by rotation of the drive shaft. In the multi-stage roots type vacuum pump type suction device in which the rotors are rotated in directions opposite to each other to perform the vacuum pump operation in each pump unit, the initial stage of the vacuum pump operation is provided in the casings of the adjacent front-stage pump unit and rear-stage pump unit. An internal check valve is installed to release part of the pressurized air that is discharged from the first-stage pump section to the second-stage pump section and temporarily pressurized to the discharge port side of the second-stage pump. Together, characterized in that the external check valve to release the casing outside the pressurized air in separate paths installed external to the casing.
【0014】ここで、内部チェック弁は既存のケーシン
グに設置されている既存のチェック弁を適用すればよ
く、この内部チェック弁が開いたときの開口面積の不足
分を補うような開口面積を持つ外部チェック弁を追加し
てケーシングに外付けする。内部チェック弁と外部チェ
ック弁は並列に連結されて、後段ポンプ部内で一時的に
発生する高圧空気を同時に逃がす。Here, an existing check valve installed in an existing casing may be used as the internal check valve, and the internal check valve has an opening area that compensates for the shortage of the opening area when the internal check valve is opened. Add an external check valve and attach it externally to the casing. The internal check valve and the external check valve are connected in parallel to simultaneously release high-pressure air temporarily generated in the downstream pump section.
【0015】また、本発明の請求項2の発明は、上記後
段ポンプ部の内部チェック弁と外部チェック弁より下流
で後段ポンプ部の吸入口より上流の空気通路に冷却水の
注水口を形成したことを特徴とする。According to a second aspect of the present invention, a cooling water injection port is formed in an air passage downstream of the internal check valve and the external check valve of the second pump section and upstream of the suction port of the second pump section. It is characterized by the following.
【0016】ここでの注水口は、内部チェック弁と外部
チェック弁の協働による漏水防止効果を期待して設置さ
れるもので、隣接する前段ポンプ部と後段ポンプ部の各
ケーシングを連結する連結管の一部に形成されて、連結
管を流れる空気流に注水口から冷却水ミストが吸引され
て後段ポンプ部を冷却する。The water inlet is provided with an expectation of an effect of preventing water leakage by the cooperation of the internal check valve and the external check valve, and is a connection for connecting the adjacent casings of the upstream pump section and the downstream pump section. A cooling water mist is formed in a part of the pipe and is sucked from a water inlet into an airflow flowing through the connecting pipe to cool the subsequent pump section.
【0017】[0017]
【発明の実施の形態】以下、本発明を図3の2段ルーツ
型真空ポンプ式吸引装置に適用した一実施形態を図1の
概略図に基づき説明する。図1の真空ポンプAが図3と
相違する点は、既存のチェック弁16(以下、内部チェ
ック弁16と称する)に並列に、チェック弁17(以
下、外部チェック弁17と称する)を接続したことと、
前段ケーシング2aと後段ケーシング2bとを連結する
連結管13の一部に冷却水の注水口18を形成したこと
である。外部チェック弁17と注水口18を除く他の部
分は図3と同様であるため同一符号を付している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a two-stage roots vacuum pump type suction device shown in FIG. 3 will be described below with reference to the schematic diagram of FIG. 1 differs from FIG. 3 in that a check valve 17 (hereinafter referred to as an external check valve 17) is connected in parallel with an existing check valve 16 (hereinafter referred to as an internal check valve 16). That
That is, a cooling water injection port 18 is formed in a part of the connection pipe 13 that connects the front casing 2a and the rear casing 2b. The other parts except the external check valve 17 and the water inlet 18 are the same as those in FIG.
【0018】外部チェック弁17は、真空ポンプAの運
転初期段階において連結管13部分で一時的に発生する
高圧空気を内部チェック弁16と協働して逃がす逆止弁
である。内部チェック弁16はケーシング2a、2bの
一部に組み付けられた既存品であり、外部チェック弁1
7は内部チェック弁17と方向性を同じにして内部チェ
ック弁17と同じ連結管13に連通させてある。また、
外部チェック弁17の高圧空気排出側は大気開放、或い
は、図2に示すように気液分離器Fの内部空間に開放さ
せてある。外部チェック弁17が開いて高圧空気を逃が
すときの開口面積は、外部チェック弁17が無くて内部
チェック弁16だけが開いて高圧空気を逃がすときの開
口面積の不足分を十分に補う面積にしてある。このよう
な外部チェック弁17は内部チェック弁16と同一機種
のものが適切であるが、上記開口面積の条件を満たすも
のであれば内部チェック弁16よりも小型で安価な別機
種を適用してもよい。更には、外部チェック弁17を追
加することで、内部チェック弁16をより小型で安価な
別機種に代えることも可能である。The external check valve 17 is a check valve for releasing high-pressure air temporarily generated in the connecting pipe 13 at the initial stage of the operation of the vacuum pump A in cooperation with the internal check valve 16. The internal check valve 16 is an existing product assembled to a part of the casings 2a and 2b,
Reference numeral 7 has the same direction as the internal check valve 17 and communicates with the same connection pipe 13 as the internal check valve 17. Also,
The high-pressure air discharge side of the external check valve 17 is open to the atmosphere, or is opened to the internal space of the gas-liquid separator F as shown in FIG. The opening area when the external check valve 17 is opened and the high-pressure air is released is set to an area that sufficiently compensates for the shortage of the opening area when the internal check valve 16 is opened and the high-pressure air is released without the external check valve 17. is there. Such an external check valve 17 is suitably of the same type as the internal check valve 16, but if it satisfies the above opening area conditions, it is possible to apply another model that is smaller and cheaper than the internal check valve 16. Is also good. Further, by adding the external check valve 17, it is possible to replace the internal check valve 16 with another smaller and less expensive model.
【0019】外部チェック弁17はケーシング2a、2
bの外面に取付けられ、連結管13の内部チェック弁1
6よりも上流側に配管接続される。また、外部チェック
弁17をケーシング2a、2bから離れた場所に設置し
て、連結管13の内部チェック弁16よりも上流側に配
管接続してもよい。The external check valve 17 includes casings 2a, 2
b, the inner check valve 1 of the connecting pipe 13
It is connected to the pipe upstream of 6. Alternatively, the external check valve 17 may be installed at a location distant from the casings 2a and 2b, and connected to the connection pipe 13 with a pipe upstream of the internal check valve 16.
【0020】図1の真空ポンプAの運転初期段階で後段
ケーシング2a内に一時的に高圧空気が発生すると、こ
の高圧空気で内部チェック弁16と外部チェック弁17
が開いて高圧空気が両チェック弁16,17に分流して
瞬間的に流れる。このときの内部チェック弁16に流れ
る空気量が従来よりも少なくなり、両チェック弁16,
17での排気抵抗の合計値が微小となる。したがって、
従来後段ケーシング2aで一時的に発生していた高圧空
気は両チェック弁16,17から瞬時に逃げて後段ケー
シング2b内に残らない。その結果、真空ポンプ動作の
初期段階での効率が改善されると共に、真空ポンプ軸封
部のオイルシールが変形して漏水が発生することも無く
なる。When high-pressure air is temporarily generated in the rear casing 2a at the initial stage of operation of the vacuum pump A in FIG. 1, the internal check valve 16 and the external check valve 17 are generated by the high-pressure air.
Is opened, and high-pressure air is diverted to both check valves 16 and 17 and flows instantaneously. At this time, the amount of air flowing through the internal check valve 16 becomes smaller than before, and
The total value of the exhaust resistance at 17 becomes very small. Therefore,
The high-pressure air temporarily generated in the conventional rear casing 2a escapes from the check valves 16 and 17 instantaneously and does not remain in the rear casing 2b. As a result, the efficiency in the initial stage of the operation of the vacuum pump is improved, and the oil seal of the shaft sealing portion of the vacuum pump is not deformed, thereby preventing water leakage.
【0021】図1の真空ポンプAに追加された注水口1
8は、後段ポンプ部1bの内部チェック弁16と外部チ
ェック弁17より下流であって、後段ポンプ部1bの吸
入口9よりは上流の空気通路に設けられる。真空ポンプ
Aが動作を開始すると前段ポンプ部1aから後段ポンプ
部1bへと空気が流れ、この空気流で吸気管11に対し
て注水口12から冷却水ミストが流入し、この冷却水ミ
ストが前段ポンプ部1aから後段ポンプ部1bへと流
れ、同時に連結管13を流れる空気流で注水口18から
冷却水ミストが連結管13に流入して後段ポンプ部1b
へと流れる。したがって、後段ポンプ部1bは2つの注
水口12,18からの冷却水ミストで冷却されることに
なって、後段ポンプ部1bの冷却シール性が改善され、
真空ポンプ動作の効率が良くなる。Water inlet 1 added to vacuum pump A in FIG.
Numeral 8 is provided in an air passage downstream of the internal check valve 16 and the external check valve 17 of the downstream pump section 1b and upstream of the suction port 9 of the downstream pump section 1b. When the vacuum pump A starts to operate, air flows from the upstream pump section 1a to the downstream pump section 1b, and the cooling water mist flows into the intake pipe 11 from the water inlet 12 by this air flow. The cooling water mist flows from the pump section 1a to the downstream pump section 1b, and at the same time, the cooling water mist flows from the water inlet 18 into the connection pipe 13 by the airflow flowing through the connection pipe 13, and the downstream pump section 1b
Flows to Therefore, the latter-stage pump unit 1b is cooled by the cooling water mist from the two water inlets 12 and 18, and the cooling sealing property of the latter-stage pump unit 1b is improved.
The efficiency of the vacuum pump operation is improved.
【0022】図1の真空ポンプAを使用した真空吸引処
理設備例を図2に示すと、これは図4の設備と同様で、
吸引管Bで吸引された流動物体が集塵タンクC、サイク
ロン式集塵器D、湿式集塵器Eを通って除塵等されて清
浄な空気となり、この空気が真空ポンプAの吸入口7に
吸入される。真空ポンプAの後段ポンプ部1bの吐出口
10から吐出された冷却水ミストを含む空気と、外部チ
ェック弁17を通過した高圧空気が気液分離器Fに送ら
れ、ここで水分が分離されてサイレンサGから大気中に
放出される。FIG. 2 shows an example of vacuum suction processing equipment using the vacuum pump A of FIG. 1, which is similar to the equipment of FIG.
The flowing object sucked by the suction pipe B passes through the dust collecting tank C, the cyclone type dust collector D, and the wet type dust collector E to be cleaned and the like, and becomes clean air. This air is supplied to the suction port 7 of the vacuum pump A. Inhaled. The air containing the cooling water mist discharged from the discharge port 10 of the downstream pump unit 1b of the vacuum pump A and the high-pressure air passing through the external check valve 17 are sent to the gas-liquid separator F, where the water is separated. Released from the silencer G into the atmosphere.
【0023】尚、以上の実施形態は2段ルーツ型真空ポ
ンプであるが、本発明は2段以上の多段のルーツ型真空
ポンプにも適用できることは勿論である。Although the above embodiment is a two-stage roots vacuum pump, the present invention can of course be applied to a multi-stage roots vacuum pump having two or more stages.
【0024】[0024]
【発明の効果】請求項1の発明によれば、真空ポンプ動
作の初期段階で前後段のポンプ部間に発生する高圧空気
が内部チェック弁と外部チェック弁に分流してケーシン
グ外に逃がされるので、高圧空気発生による真空ポンプ
動作の効率低下が防止されると共に、軸封部での冷却水
漏れが防止される。また、既存の多段ルーツ型真空ポン
プでも内部チェック弁をそのままにして外部チェック弁
を外付けするだけの簡単な改良で本発明を適用可能であ
る。According to the first aspect of the present invention, the high-pressure air generated between the upstream and downstream pump portions in the initial stage of the operation of the vacuum pump is diverted to the internal check valve and the external check valve, and is released to the outside of the casing. In addition, a reduction in the efficiency of the vacuum pump operation due to the generation of high-pressure air is prevented, and leakage of cooling water at the shaft sealing portion is prevented. Also, the present invention can be applied to a conventional multi-stage roots-type vacuum pump by a simple improvement in which the internal check valve is kept as it is and the external check valve is externally attached.
【0025】請求項2の発明によれば、隣接するポンプ
部の後段ポンプ側にも冷却水の注水口を設置したので、
前段に比べてより多くの冷却水を必要とする後段ポンプ
への冷却水の効率的供給により冷却水使用量の低減を図
ることができる。According to the second aspect of the present invention, the cooling water inlet is also provided on the downstream side of the adjacent pump section.
The amount of cooling water used can be reduced by efficiently supplying the cooling water to the subsequent pump, which requires more cooling water than the former.
【図1】本発明に係る真空ポンプ式吸引装置の一実施形
態を示す概略図。FIG. 1 is a schematic view showing one embodiment of a vacuum pump type suction device according to the present invention.
【図2】図1の吸引装置を使用した真空吸引処理設備の
概要を示す図。FIG. 2 is a diagram showing an outline of a vacuum suction processing facility using the suction device of FIG.
【図3】従来の多段ルーツ型真空ポンプ式吸引装置の概
略図。FIG. 3 is a schematic view of a conventional multi-stage roots vacuum pump type suction device.
【図4】図3の真空ポンプを使用した真空吸引処理設備
の概要を示す図。FIG. 4 is a diagram showing an outline of vacuum suction processing equipment using the vacuum pump of FIG. 3;
【図5】図4の真空ポンプの具体的構造を示す部分断面
を含む側面図。FIG. 5 is a side view including a partial cross section showing a specific structure of the vacuum pump of FIG. 4;
【図6】図4の真空ポンプの具体的構造を示す部分断面
を含む平面図。FIG. 6 is a plan view including a partial cross section showing a specific structure of the vacuum pump in FIG. 4;
【図7】図6のTa−Ta線断面図。FIG. 7 is a sectional view taken along line Ta-Ta of FIG. 6;
【図8】図6のTb−Tb線断面図。FIG. 8 is a sectional view taken along line Tb-Tb in FIG. 6;
A 真空ポンプ(2段ルーツ型真空ポンプ) 1a 前段ポンプ部 1b 後段ポンプ部 2a 前段ケーシング 2b 後段ケーシング 3,4 ロータ 5,6 ロータ 7 吸入口 8 吐出口 9 吸入口 10 吐出口 16 内部チェック弁 17 外部チェック弁 18 注水口 A Vacuum pump (two-stage roots vacuum pump) 1a Front-stage pump unit 1b Rear-stage pump unit 2a Front-stage casing 2b Rear-stage casing 3,4 Rotor 5,6 Rotor 7 Inlet 8 Outlet 9 Inlet 10 Outlet 16 Internal check valve 17 External check valve 18 Water inlet
【手続補正書】[Procedure amendment]
【提出日】平成12年4月24日(2000.4.2
4)[Submission date] April 24, 2000 (200.4.2
4)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Correction target item name] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【特許請求の範囲】[Claims]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0015[Correction target item name] 0015
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0015】また、本発明の請求項2の発明は、前記前
段ポンプ部の吐出口と後段ポンプ部の吸入口とを連結す
る連結管に対する内部チェック弁と外部チェック弁の連
通個所よりも下流側の前記連結管に、冷却水の注水口を
形成したことを特徴とする。 ─────────────────────────────────────────────────────
[0015] The invention of claim 2 of the present invention, the front
Connect the discharge port of the downstream pump section to the suction port of the downstream pump section.
Connection between the internal check valve and the external check valve
A cooling water injection port is formed in the connection pipe downstream of the passage point . ────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成12年7月28日(2000.7.2
8)[Submission date] July 28, 2000 (2007.2
8)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【書類名】 明細書[Document Name] Statement
【発明の名称】 多段ルーツ型真空ポンプ式吸引装置[Title of the Invention] Multi-stage roots type vacuum pump type suction device
【特許請求の範囲】[Claims]
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、互いに反対方向に
回転する一対のロータをケーシング内に収容し、ケーシ
ングの片側の吸入口から反対側の吐出口へと減圧空間を
発生させる複数のルーツ型ポンプ部を多段に連通連結し
た多段ルーツ型真空ポンプ式吸引装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of roots-type rotors in which a pair of rotors rotating in opposite directions are accommodated in a casing, and a reduced pressure space is generated from a suction port on one side of the casing to a discharge port on the opposite side. The present invention relates to a multi-stage roots-type vacuum pump type suction device in which pump sections are connected in multiple stages.
【0002】[0002]
【従来の技術】土砂や汚水等を真空吸引するための真空
発生源として使用されるルーツ型真空ポンプ式吸引装置
は、ケーシング内で複数葉(2葉〜4葉など)の一対の
ロータを互いに反対方向に回転させて減圧空間を発生さ
せる。この真空ポンプの場合、1つのケーシングと一対
のロータで構成されるポンプ部が1段だけの単基構造で
あると、発生できる真空度の上限が−500mmHg程
度と小さいことから、ポンプ部を2段、3段と多段に連
通連結して最終的に発生できる真空度を上げるようにし
た多段ルーツ型真空ポンプが普及している。2. Description of the Related Art A roots type vacuum pump type suction device used as a vacuum source for vacuum suction of earth and sand, sewage and the like is configured such that a pair of rotors (2 to 4 leaves, etc.) are connected to each other in a casing. Rotate in the opposite direction to create a reduced pressure space. In the case of this vacuum pump, if the pump unit composed of one casing and a pair of rotors has a single-stage structure with only one stage, the upper limit of the degree of vacuum that can be generated is as small as about -500 mmHg. 2. Description of the Related Art A multi-stage roots-type vacuum pump has been widely used in which a plurality of stages and three stages are connected and connected to increase a degree of vacuum that can be finally generated.
【0003】従来の例えば2段ルーツ型真空ポンプは、
図3の概略図によって説明すると、前段ポンプ部1aと
後段ポンプ部1bを直列2段に連通連結して構成され
る。前段ポンプ部1aは前段ケーシング2aの中に一対
の3葉ロータ3,4を収納し、後段ポンプ部1bは後段
ケーシング2bの中に一対の3葉ロータ5,6を収納す
る。前段ケーシング2aの両側に空気の吸入口7と吐出
口8が形成され、後段ケーシング2bの両側にも空気の
吸入口9と吐出口10が形成される。前段ケーシング2
aと後段ケーシング2bは一体化され、前段ケーシング
2aの吐出口8と後段ケーシング2bの吸入口9は接近
して連結管13で連通する。前段ケーシング2aの吸入
口7に連通する吸気管11に冷却水の注水口12が形成
される。後段ケーシング2bの吐出口10が連通する排
気管14と連結管13がバイパス管15で連結され、バ
イパス管15にチェック弁16が設置される。チェック
弁16は各ケーシング2a、2bのいずれか一部に組み
付けられて、チェック弁16を含むケーシング全体で真
空ポンプAが構成される。A conventional two-stage roots vacuum pump, for example,
Referring to the schematic diagram of FIG. 3, the front-stage pump unit 1a and the rear-stage pump unit 1b are connected and connected in two stages in series. The front-stage pump unit 1a houses a pair of three-leaf rotors 3 and 4 in a front-stage casing 2a, and the rear-stage pump unit 1b houses a pair of three-leaf rotors 5 and 6 in a rear-stage casing 2b. An air inlet 7 and an outlet 8 are formed on both sides of the front casing 2a, and an air inlet 9 and an outlet 10 are formed on both sides of the rear casing 2b. Front casing 2
a and the rear casing 2b are integrated, and the discharge port 8 of the front casing 2a and the suction port 9 of the rear casing 2b approach each other and communicate with each other through the connecting pipe 13. A cooling water injection port 12 is formed in an intake pipe 11 communicating with the suction port 7 of the front casing 2a. An exhaust pipe 14 to which the discharge port 10 of the rear casing 2b communicates and a connecting pipe 13 are connected by a bypass pipe 15, and a check valve 16 is installed in the bypass pipe 15. The check valve 16 is assembled to any one of the casings 2a and 2b, and the entire casing including the check valve 16 constitutes the vacuum pump A.
【0004】図3の2段ルーツ型真空ポンプAを使用し
た吸引車ないし定置型真空吸引処理設備の要部を図4に
示し、また真空ポンプAの具体的構造を図5乃至図8に
示す。まず図5及び図6に基づき真空ポンプAの細部を
説明する。真空ポンプAの前段ケーシング2aと後段ケ
ーシング2bは、1つのケーシングの前部と後部で構成
される。このケーシングを2本の平行な駆動シャフト2
1と従動シャフト22が左右に貫通して、ケーシングに
軸封部23で回転可能に支持される。軸封部23は軸受
24とオイルシール25を備える。駆動シャフト21に
各ポンプ部1a、1bの一方のロータ3、5が固定さ
れ、従動シャフト22に他方のロータ4,6が固定され
る。一対の各シャフト21,22の一端部同士がタイミ
ングギヤセット26で連結されて、駆動シャフト21を
外部からの動力(モータ動力、車両のPTO軸動力な
ど)で回転させると各シャフト21,22が互いに反対
方向に回転し、各ポンプ部1a、1bの一対のロータ
3,4とロータ5,6が互いに反対方向に回転する。FIG. 4 shows a main part of a suction wheel or stationary vacuum suction processing equipment using the two-stage roots type vacuum pump A of FIG. 3, and FIGS. 5 to 8 show the specific structure of the vacuum pump A. . First, details of the vacuum pump A will be described with reference to FIGS. The front-stage casing 2a and the rear-stage casing 2b of the vacuum pump A are composed of a front portion and a rear portion of one casing. This casing is connected to two parallel drive shafts 2
The shaft 1 and the driven shaft 22 penetrate left and right, and are rotatably supported by the shaft sealing portion 23 on the casing. The shaft seal 23 includes a bearing 24 and an oil seal 25. One rotor 3, 5 of each pump section 1a, 1b is fixed to the drive shaft 21, and the other rotor 4, 6 is fixed to the driven shaft 22. When one end of each of the pair of shafts 21 and 22 is connected to each other by a timing gear set 26 and the drive shaft 21 is rotated by external power (motor power, PTO shaft power of a vehicle, or the like), the shafts 21 and 22 are mutually connected. The pumps 1a and 1b rotate in opposite directions, and the pair of rotors 3 and 4 and the rotors 5 and 6 rotate in opposite directions.
【0005】前段ポンプ部1aの一対のロータ3,4が
互いに反対方向に回転すると、吸入口7から空気を吸引
し吐出口8に吐出する真空ポンプ動作が繰り返し行われ
る。同時に後段ポンプ部1bも一対のロータ5,6が互
いに反対方向に回転することで、前段ポンプ部1aの吐
出口8から吐出された空気を吸引し吐出口10に吐出す
る真空ポンプ動作をする。前段ポンプ部1aの真空ポン
プ動作で減圧空間の真空度が上げられ、更に後段ポンプ
部1bの真空ポンプ動作で真空度が段階的に上げられ
る。When the pair of rotors 3 and 4 of the pre-stage pump section 1a rotate in opposite directions, the vacuum pump operation of sucking air from the suction port 7 and discharging it to the discharge port 8 is repeated. At the same time, the rear-stage pump section 1b also performs a vacuum pump operation in which the pair of rotors 5 and 6 rotate in directions opposite to each other, thereby sucking air discharged from the discharge port 8 of the front-stage pump section 1a and discharging the air to the discharge port 10. The degree of vacuum in the decompression space is increased by the vacuum pump operation of the first-stage pump unit 1a, and the degree of vacuum is increased stepwise by the vacuum pump operation of the second-stage pump unit 1b.
【0006】上記真空ポンプAにおいては、後段ポンプ
部1bのケーシング容積を前段ポンプ部1aのケーシン
グ容積より小さく設定して、高い真空度が迅速に得られ
るように構成されている。また、両ポンプ部1a、1b
を真空ポンプ動作させると、前段ケーシング2aの吸気
管11に設けた注水口12から冷却水がベンチュリー効
果で吸気管11に冷却水ミストとなって吸引され、この
吸引された冷却水ミストが前段ケーシング2a内と後段
ケーシング2b内を順に空気流に乗って流れて各ケーシ
ング2a、2bを冷却すると共に、ロータ4,6とケー
シング2a,2b間隙間や軸封部23隙間をシールす
る。In the vacuum pump A, the casing volume of the rear-stage pump section 1b is set smaller than the casing volume of the front-stage pump section 1a, so that a high degree of vacuum can be quickly obtained. In addition, both pump parts 1a, 1b
When a vacuum pump is operated, cooling water is drawn into the suction pipe 11 as a cooling water mist by a Venturi effect from a water inlet 12 provided in the suction pipe 11 of the front casing 2a. The casings 2a, 2b are cooled by flowing along the air flow in order in the inside of the casing 2a and the inside of the rear casing 2b, and the gap between the rotors 4, 6 and the casings 2a, 2b and the gap between the shaft sealing portions 23 are sealed.
【0007】真空ポンプAの前段ポンプ部1aの吸入口
7は、例えば図4に示すような湿式集塵器Eに接続され
る。この湿式集塵器Eには、サイクロン式集塵器D、集
塵タンクC及び土砂等の流動物体を吸引する吸引管Bが
順番に連結される。吸引管Bで吸引された流動物体の内
の比較的比重の大きな固形物等が集塵タンクCに溜めら
れ、塵芥類や水等の比重の小さなものが必要に応じて設
置されるサイクロン式集塵器Dに捕捉され、湿式集塵器
Eで沈殿して、湿式集塵器Eから除塵された清浄な空気
が真空ポンプAの吸入口7に吸入される。真空ポンプA
の後段ポンプ部1bの吐出口10から吐出された冷却水
ミストを含む空気は気液分離器Fに送られ、ここで水分
が分離されてサイレンサGから大気に放出される。湿式
集塵気Eと気液分離器Fは補給水タンクH上に隣接させ
て設置される。The suction port 7 of the pre-stage pump section 1a of the vacuum pump A is connected to, for example, a wet dust collector E as shown in FIG. To the wet dust collector E, a cyclone dust collector D, a dust collecting tank C, and a suction pipe B for sucking a flowing object such as earth and sand are sequentially connected. A solid matter having a relatively large specific gravity among the fluid objects sucked by the suction pipe B is stored in the dust collection tank C, and a small specific gravity object such as dust or water is installed as necessary. The clean air captured by the dust collector D, precipitated in the wet dust collector E, and removed from the wet dust collector E is sucked into the suction port 7 of the vacuum pump A. Vacuum pump A
The air containing the cooling water mist discharged from the discharge port 10 of the post-stage pump section 1b is sent to the gas-liquid separator F, where the water is separated and released from the silencer G to the atmosphere. The wet dust collection gas E and the gas-liquid separator F are installed on the makeup water tank H adjacent to each other.
【0008】[0008]
【発明が解決しようとする課題】上記真空ポンプAの図
3のチェック弁16は、真空ポンプ動作の初期段階にお
いて連結管13部分で一時的に生じる高圧空気を逃がす
逆止弁である。即ち、前段ポンプ部1aと後段ポンプ部
1bが同時に真空ポンプ動作をする運転初期段階におい
ては、大容積の前段ケーシング2aから小容積の後段ケ
ーシング2bに吐出される空気量が、後段ケーシング2
bの吸引空気流より一時的に多くなって、連結管13部
分で一時的に高圧空気が発生するのである。この高圧状
態を放置すると、ポンプ効率が低下すると共に、図5及
び図6に示す軸封部23のオイルシール25が内圧で変
形してケーシング2内の冷却水が変形オイルシール25
を通過してケーシング外に漏水することがある。そこ
で、真空ポンプ動作の初期段階で後段ケーシング2b内
に高圧空気が一時的に発生すると、この高圧空気の圧力
でチェック弁16を開かせて高圧空気を後段ケーシング
2bのバイパス管15から吐出口10側へと逃がすよう
にして、後段ケーシング2b内の圧力上昇を抑制し、オ
イルシール25の変形を抑制するようにしている。The check valve 16 shown in FIG. 3 of the vacuum pump A is a check valve for releasing high-pressure air temporarily generated in the connecting pipe 13 in the initial stage of the operation of the vacuum pump. That is, in the initial stage of the operation in which the first-stage pump unit 1a and the second-stage pump unit 1b simultaneously perform the vacuum pump operation, the amount of air discharged from the large-volume front-stage casing 2a to the small-volume rear-stage casing 2b is reduced.
The high pressure air is temporarily generated in the connection pipe 13 portion by temporarily increasing the suction air flow of b. If this high pressure state is left, the pump efficiency is reduced, and the oil seal 25 of the shaft sealing portion 23 shown in FIGS.
And water may leak out of the casing. Therefore, when high-pressure air is temporarily generated in the rear casing 2b at the initial stage of the vacuum pump operation, the check valve 16 is opened by the pressure of the high-pressure air, and the high-pressure air is discharged from the bypass pipe 15 of the rear casing 2b to the discharge port 10. In order to allow the oil seal 25 to escape to the side, the pressure rise in the rear casing 2b is suppressed, and the deformation of the oil seal 25 is suppressed.
【0009】チェック弁16は瞬間的に逃がす高圧空気
の量が多くなると、チェック弁16の開口部を流出する
高圧空気の排気抵抗が大きくなり、チェック弁16から
高圧空気が瞬間的に逃げずに後段ケーシング2b内に残
り、この残留高圧空気が真空ポンプ動作の効率を低下さ
せると共に、残留高圧空気でオイルシール25が変形し
て漏水が発生することがある。この効率低下と漏水発生
は、チェック弁16が開いたときの開口面積を大きく設
定すれば防止することができるのであるが、チェック弁
16のケーシング2への取付スペースの制限からチェッ
ク弁16の大きさに制限があって、その開口面積を増大
させることが困難であり、上記効率低下と漏水発生の防
止が課題となっていた。When the amount of the high-pressure air which escapes from the check valve 16 instantaneously increases, the exhaust resistance of the high-pressure air flowing out of the opening of the check valve 16 increases, so that the high-pressure air does not escape from the check valve 16 instantaneously. The residual high-pressure air remains in the rear casing 2b and reduces the efficiency of the vacuum pump operation, and the residual high-pressure air may deform the oil seal 25 to cause water leakage. This reduction in efficiency and the occurrence of water leakage can be prevented by setting a large opening area when the check valve 16 is opened. However, the size of the check valve 16 is reduced due to the limitation of the space for attaching the check valve 16 to the casing 2. However, it is difficult to increase the opening area, and there has been a problem in that the efficiency is reduced and the occurrence of water leakage is prevented.
【0010】尚、上記漏水の発生は真空ポンプ自体の機
能にとってはあまり問題とならないが、真空ポンプ周辺
が漏水で濡れたり、車両搭載型真空ポンプのように搭載
水量に制約がある場合は水不足を起こすなどの問題があ
った。[0010] The occurrence of the above-mentioned water leakage does not cause a serious problem for the function of the vacuum pump itself. However, when the area around the vacuum pump is wet due to water leakage or when the amount of mounted water is limited as in a vehicle-mounted vacuum pump, the water shortage occurs. There were problems such as getting up.
【0011】また、冷却水量は真空能力との関係で前段
ポンプ部1aよりも後段ポンプ部1bの方が多量に必要
であるが、前後段で適量分配供給するために図3の真空
ポンプAで後段ポンプ部1bにも冷却水の注水口を設置
するようにすれば、後段ポンプ部1bの冷却シール性能
が上がって真空ポンプ動作の効率が良くなるが、上記真
空ポンプ動作の初期段階における後段ケーシング2b内
の高圧空気による漏水量も倍増する可能性が高くなる。
そのため、後段ポンプ部1bに冷却水の注水口を設置す
ることが事実上で不可能であった。Further, the amount of cooling water is required to be larger in the latter stage pump unit 1b than in the former stage pump unit 1a in relation to the vacuum capacity. If a cooling water injection port is also provided in the second pump section 1b, the cooling sealing performance of the second pump section 1b is improved and the efficiency of the vacuum pump operation is improved. However, the second casing in the initial stage of the vacuum pump operation is used. There is a high possibility that the amount of water leakage due to the high-pressure air in 2b will also double.
For this reason, it was practically impossible to install a cooling water inlet in the downstream pump section 1b.
【0012】本発明の目的は、運転初期段階における漏
水防止と効率改善を可能にした多段ルーツ型真空ポンプ
式吸引装置を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-stage roots type vacuum pump type suction device capable of preventing water leakage and improving efficiency in an early stage of operation.
【0013】[0013]
【課題を解決するための手段】本発明は上記目的を達成
するため、一対のロータをケーシング内に収納した複数
のポンプ部が直列多段に連通連結され、前段ポンプ部の
吐出口が隣接する後段ポンプ部の吸入口と連通し、各ポ
ンプ部の一対のロータの一方が共通の駆動シャフトに連
結され、他方のロータが共通の従動シャフトに連結され
て、駆動シャフトの回転で各ポンプ部の一対のロータを
互いに反対方向に回転させて各ポンプ部で真空ポンプ動
作をさせるようにした多段ルーツ型真空ポンプ式吸引装
置において、隣接する前段ポンプ部の吐出口と後段ポン
プ部の吸入口を連結する連結管に、真空ポンプ動作の初
期段階で前段ポンプ部から後段ポンプ部に吐出されて一
時的に加圧状態となる加圧空気の一部を後段ポンプ部の
吐出口側に逃がす内部チェック弁と、この内部チェック
弁と協働して前記加圧空気の内部チェック弁から逃げず
に残留した加圧空気を内部チェック弁と別経路でケーシ
ング外に逃がす外部チェック弁を連結し、かつ、前記連
結管の前記内部チェック弁と外部チェック弁の連通箇所
よりも下流側で後段ポンプ部の吸入口より上流側の一部
に冷却水の注水口を形成したことを特徴とする。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention has a plurality of pump sections each having a pair of rotors housed in a casing, which are connected in series and in multiple stages, and a discharge port of a preceding stage pump section is adjacent to a latter stage. One of a pair of rotors of each pump unit is connected to a common drive shaft, the other rotor is connected to a common driven shaft, and the pair of pump units is connected to each other by rotation of the drive shaft. In the multi-stage roots type vacuum pump type suction device in which the rotors are rotated in directions opposite to each other to perform a vacuum pump operation in each pump unit, the discharge port of the adjacent former stage pump unit and the rear stage pump are
The connection pipe that connects the suction port of the pump
Is discharged from the upstream pump section to the downstream pump section during
Part of the pressurized air, which is sometimes pressurized, is
Internal check valve to release to the discharge port side and this internal check
In cooperation with the valve, the pressurized air does not escape from the internal check valve.
The pressurized air remaining in the
Connect an external check valve that escapes outside the ring, and
Communication point between the internal check valve and the external check valve of the tube
Part of the downstream side and upstream of the suction port of the downstream pump section
A cooling water injection port is formed in the cooling device.
【0014】ここで、内部チェック弁は既存のケーシン
グに設置されている既存のチェック弁を適用すればよ
く、この内部チェック弁が開いたときの開口面積の不足
分を補うような開口面積を持つ外部チェック弁を追加し
てケーシングに外付けする。内部チェック弁と外部チェ
ック弁は並列に連結されて、後段ポンプ部内で一時的に
発生する高圧空気を同時に逃がす。Here, an existing check valve installed in an existing casing may be used as the internal check valve, and the internal check valve has an opening area that compensates for the shortage of the opening area when the internal check valve is opened. Add an external check valve and attach it externally to the casing. The internal check valve and the external check valve are connected in parallel to simultaneously release high-pressure air temporarily generated in the downstream pump section.
【0015】ここでの注水口は、内部チェック弁と外部
チェック弁の協働による漏水防止効果を期待して設置さ
れるもので、隣接する前段ポンプ部と後段ポンプ部の各
ケーシングを連結する連結管の一部に形成されて、連結
管を流れる空気流に注水口から冷却水ミストが吸引され
て後段ポンプ部を冷却する。The water inlet is provided with an expectation of a water leakage preventing effect by the cooperation of the internal check valve and the external check valve, and is a connection for connecting the adjacent casings of the upstream pump section and the downstream pump section. A cooling water mist is formed in a part of the pipe and is sucked from a water inlet into an airflow flowing through the connecting pipe to cool the subsequent pump section.
【0016】[0016]
【発明の実施の形態】以下、本発明を図3の2段ルーツ
型真空ポンプ式吸引装置に適用した一実施形態を図1の
概略図に基づき説明する。図1の真空ポンプAが図3と
相違する点は、既存のチェック弁16(以下、内部チェ
ック弁16と称する)に並列に、チェック弁17(以
下、外部チェック弁17と称する)を接続したことと、
前段ケーシング2aと後段ケーシング2bとを連結する
連結管13の一部に冷却水の注水口18を形成したこと
である。外部チェック弁17と注水口18を除く他の部
分は図3と同様であるため同一符号を付している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a two-stage roots vacuum pump type suction device shown in FIG. 3 will be described below with reference to the schematic diagram of FIG. 1 differs from FIG. 3 in that a check valve 17 (hereinafter referred to as an external check valve 17) is connected in parallel with an existing check valve 16 (hereinafter referred to as an internal check valve 16). That
That is, a cooling water injection port 18 is formed in a part of the connection pipe 13 that connects the front casing 2a and the rear casing 2b. The other parts except the external check valve 17 and the water inlet 18 are the same as those in FIG.
【0017】外部チェック弁17は、真空ポンプAの運
転初期段階において連結管13部分で一時的に発生する
高圧空気を内部チェック弁16と協働して逃がす逆止弁
である。内部チェック弁16はケーシング2a、2bの
一部に組み付けられた既存品であり、外部チェック弁1
7は内部チェック弁17と方向性を同じにして内部チェ
ック弁17と同じ連結管13に連通させてある。また、
外部チェック弁17の高圧空気排出側は大気開放、或い
は、図2に示すように気液分離器Fの内部空間に開放さ
せてある。外部チェック弁17が開いて高圧空気を逃が
すときの開口面積は、外部チェック弁17が無くて内部
チェック弁16だけが開いて高圧空気を逃がすときの開
口面積の不足分を十分に補う面積にしてある。このよう
な外部チェック弁17は内部チェック弁16と同一機種
のものが適切であるが、上記開口面積の条件を満たすも
のであれば内部チェック弁16よりも小型で安価な別機
種を適用してもよい。更には、外部チェック弁17を追
加することで、内部チェック弁16をより小型で安価な
別機種に代えることも可能である。The external check valve 17 is a check valve that releases high-pressure air temporarily generated in the connecting pipe 13 at the initial stage of the operation of the vacuum pump A in cooperation with the internal check valve 16. The internal check valve 16 is an existing product assembled to a part of the casings 2a and 2b,
Reference numeral 7 has the same direction as the internal check valve 17 and communicates with the same connection pipe 13 as the internal check valve 17. Also,
The high-pressure air discharge side of the external check valve 17 is open to the atmosphere, or is opened to the internal space of the gas-liquid separator F as shown in FIG. The opening area when the external check valve 17 is opened and the high-pressure air is released is set to an area that sufficiently compensates for the shortage of the opening area when the internal check valve 16 is opened and the high-pressure air is released without the external check valve 17. is there. Such an external check valve 17 is suitably of the same type as the internal check valve 16, but if it satisfies the above opening area conditions, it is possible to apply another model that is smaller and cheaper than the internal check valve 16. Is also good. Further, by adding the external check valve 17, it is possible to replace the internal check valve 16 with another smaller and less expensive model.
【0018】外部チェック弁17はケーシング2a、2
bの外面に取付けられ、連結管13の内部チェック弁1
6よりも上流側に配管接続される。また、外部チェック
弁17をケーシング2a、2bから離れた場所に設置し
て、連結管13の内部チェック弁16よりも上流側に配
管接続してもよい。The external check valve 17 is connected to the casing 2a, 2
b, the inner check valve 1 of the connecting pipe 13
It is connected to the pipe upstream of 6. Alternatively, the external check valve 17 may be installed at a location distant from the casings 2a and 2b, and connected to the connection pipe 13 with a pipe upstream of the internal check valve 16.
【0019】図1の真空ポンプAの運転初期段階で後段
ケーシング2a内に一時的に高圧空気が発生すると、こ
の高圧空気で内部チェック弁16と外部チェック弁17
が開いて高圧空気が両チェック弁16,17に分流して
瞬間的に流れる。このときの内部チェック弁16に流れ
る空気量が従来よりも少なくなり、両チェック弁16,
17での排気抵抗の合計値が微小となる。したがって、
従来後段ケーシング2aで一時的に発生していた高圧空
気は両チェック弁16,17から瞬時に逃げて後段ケー
シング2b内に残らない。その結果、真空ポンプ動作の
初期段階での効率が改善されると共に、真空ポンプ軸封
部のオイルシールが変形して漏水が発生することも無く
なる。When high-pressure air is temporarily generated in the rear casing 2a at the initial stage of the operation of the vacuum pump A of FIG. 1, the internal check valve 16 and the external check valve 17 are generated by the high-pressure air.
Is opened, and high-pressure air is diverted to both check valves 16 and 17 and flows instantaneously. At this time, the amount of air flowing through the internal check valve 16 becomes smaller than before, and
The total value of the exhaust resistance at 17 becomes very small. Therefore,
The high-pressure air temporarily generated in the conventional rear casing 2a escapes from the check valves 16 and 17 instantaneously and does not remain in the rear casing 2b. As a result, the efficiency in the initial stage of the operation of the vacuum pump is improved, and the oil seal of the shaft sealing portion of the vacuum pump is not deformed, thereby preventing water leakage.
【0020】図1の真空ポンプAに追加された注水口1
8は、後段ポンプ部1bの内部チェック弁16と外部チ
ェック弁17より下流であって、後段ポンプ部1bの吸
入口9よりは上流の空気通路に設けられる。真空ポンプ
Aが動作を開始すると前段ポンプ部1aから後段ポンプ
部1bへと空気が流れ、この空気流で吸気管11に対し
て注水口12から冷却水ミストが流入し、この冷却水ミ
ストが前段ポンプ部1aから後段ポンプ部1bへと流
れ、同時に連結管13を流れる空気流で注水口18から
冷却水ミストが連結管13に流入して後段ポンプ部1b
へと流れる。したがって、後段ポンプ部1bは2つの注
水口12,18からの冷却水ミストで冷却されることに
なって、後段ポンプ部1bの冷却シール性が改善され、
真空ポンプ動作の効率が良くなる。Water inlet 1 added to vacuum pump A in FIG.
Numeral 8 is provided in an air passage downstream of the internal check valve 16 and the external check valve 17 of the downstream pump section 1b and upstream of the suction port 9 of the downstream pump section 1b. When the vacuum pump A starts to operate, air flows from the upstream pump section 1a to the downstream pump section 1b, and the cooling water mist flows into the intake pipe 11 from the water inlet 12 by this air flow. The cooling water mist flows from the pump section 1a to the downstream pump section 1b, and at the same time, the cooling water mist flows from the water inlet 18 into the connection pipe 13 by the airflow flowing through the connection pipe 13, and the downstream pump section 1b
Flows to Therefore, the latter-stage pump unit 1b is cooled by the cooling water mist from the two water inlets 12 and 18, and the cooling sealing property of the latter-stage pump unit 1b is improved.
The efficiency of the vacuum pump operation is improved.
【0021】図1の真空ポンプAを使用した真空吸引処
理設備例を図2に示すと、これは図4の設備と同様で、
吸引管Bで吸引された流動物体が集塵タンクC、サイク
ロン式集塵器D、湿式集塵器Eを通って除塵等されて清
浄な空気となり、この空気が真空ポンプAの吸入口7に
吸入される。真空ポンプAの後段ポンプ部1bの吐出口
10から吐出された冷却水ミストを含む空気と、外部チ
ェック弁17を通過した高圧空気が気液分離器Fに送ら
れ、ここで水分が分離されてサイレンサGから大気中に
放出される。FIG. 2 shows an example of a vacuum suction processing equipment using the vacuum pump A of FIG. 1. This is the same as the equipment of FIG.
The flowing object sucked by the suction pipe B passes through the dust collecting tank C, the cyclone type dust collector D, and the wet type dust collector E to be cleaned and the like, and becomes clean air. This air is supplied to the suction port 7 of the vacuum pump A. Inhaled. The air containing the cooling water mist discharged from the discharge port 10 of the downstream pump unit 1b of the vacuum pump A and the high-pressure air passing through the external check valve 17 are sent to the gas-liquid separator F, where the water is separated. Released from the silencer G into the atmosphere.
【0022】尚、以上の実施形態は2段ルーツ型真空ポ
ンプであるが、本発明は2段以上の多段のルーツ型真空
ポンプにも適用できることは勿論である。Although the above-described embodiment is a two-stage roots vacuum pump, the present invention can of course be applied to a multi-stage roots vacuum pump having two or more stages.
【0023】本発明によれば、真空ポンプ動作の初期段
階で前後段のポンプ部間に発生する高圧空気をケーシン
グ外に逃がす内部チェック弁が機能不足で十分に高圧空
気を逃がさなくても、内部チェック弁と協働する外部チ
ェック弁が内部チェック弁で逃がせなかった高圧空気を
ケーシング外に確実に逃がすので、高圧空気発生による
真空ポンプ動作の初期段階での効率低下が防止されると
共に、真空ポンプ軸封部での冷却水漏れが抑制される。
また、この真空ポンプ軸封部での冷却水漏れの抑制効果
により、隣接する前後のポンプ部の連結管に注水口を形
成して、後段のポンプ部側に前段のポンプ部側に比べて
より多くの冷却水を供給するようにしても、後段のポン
プ部における冷却水漏れが抑制されて、後段のポンプ部
の効率改善が図れる。 According to the present invention, the high-pressure air generated between the upstream and downstream pump sections at the initial stage of the vacuum pump operation is removed by the casing.
Insufficiently high pressure air due to insufficient function of internal check valve
External channels that cooperate with internal check valves
Check valve removes high-pressure air that could not be escaped by the internal check valve.
Since the gas is reliably discharged to the outside of the casing , a reduction in efficiency at the initial stage of the vacuum pump operation due to the generation of high-pressure air is prevented, and the leakage of cooling water at the vacuum pump shaft sealing portion is suppressed .
In addition, the effect of suppressing cooling water leakage at the vacuum pump shaft seal
To form water inlets in the connecting pipes of the adjacent front and rear pump sections.
And the latter pump section side is compared with the previous pump section side.
Even if you supply more cooling water,
The cooling water leak in the pump section is suppressed, and the pump section
Efficiency can be improved.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明に係る真空ポンプ式吸引装置の一実施形
態を示す概略図。FIG. 1 is a schematic view showing one embodiment of a vacuum pump type suction device according to the present invention.
【図2】図1の吸引装置を使用した真空吸引処理設備の
概要を示す図。FIG. 2 is a diagram showing an outline of a vacuum suction processing facility using the suction device of FIG.
【図3】従来の多段ルーツ型真空ポンプ式吸引装置の概
略図。FIG. 3 is a schematic view of a conventional multi-stage roots vacuum pump type suction device.
【図4】図3の真空ポンプを使用した真空吸引処理設備
の概要を示す図。FIG. 4 is a diagram showing an outline of vacuum suction processing equipment using the vacuum pump of FIG. 3;
【図5】図4の真空ポンプの具体的構造を示す部分断面
を含む側面図。FIG. 5 is a side view including a partial cross section showing a specific structure of the vacuum pump of FIG. 4;
【図6】図4の真空ポンプの具体的構造を示す部分断面
を含む平面図。FIG. 6 is a plan view including a partial cross section showing a specific structure of the vacuum pump in FIG. 4;
【図7】図6のTa−Ta線断面図。FIG. 7 is a sectional view taken along line Ta-Ta of FIG. 6;
【図8】図6のTb−Tb線断面図。FIG. 8 is a sectional view taken along line Tb-Tb in FIG. 6;
【符号の説明】 A 真空ポンプ(2段ルーツ型真空ポンプ) 1a 前段ポンプ部 1b 後段ポンプ部 2a 前段ケーシング 2b 後段ケーシング 3,4 ロータ 5,6 ロータ 7 吸入口 8 吐出口 9 吸入口 10 吐出口 16 内部チェック弁 17 外部チェック弁 18 注水口 ─────────────────────────────────────────────────────
[Description of Signs] A vacuum pump (two-stage roots vacuum pump) 1a front-stage pump unit 1b rear-stage pump unit 2a front-stage casing 2b rear-stage casing 3,4 rotor 5,6 rotor 7 suction port 8 discharge port 9 suction port 10 discharge port 16 Internal check valve 17 External check valve 18 Water inlet ─────────────────────────────────────── ──────────────
【手続補正書】[Procedure amendment]
【提出日】平成12年9月18日(2000.9.1
8)[Submission Date] September 18, 2000 (2009.1)
8)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0023[Correction target item name] 0023
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0023】[0023]
【発明の効果】本発明によれば、真空ポンプ動作の初期
段階で前後段のポンプ部間に発生する高圧空気をケーシ
ング外に逃がす内部チェック弁が開口面積の不足分で十
分に高圧空気を逃がさなくても、内部チェック弁と協働
する外部チェック弁が内部チェック弁で逃がせなかった
高圧空気をケーシング外に確実に逃がすので、高圧空気
発生による真空ポンプ動作の初期段階での効率低下が防
止されると共に、真空ポンプ軸封部での冷却水漏れが抑
制される。また、この真空ポンプ軸封部での冷却水漏れ
の抑制効果により、隣接する前後のポンプ部の連結管に
注水口を形成して、後段のポンプ部側に前段のポンプ部
側に比べてより多くの冷却水を供給するようにしても、
後段のポンプ部における冷却水漏れが抑制されて、後段
のポンプ部の効率改善が図れる。According to the present invention, sufficient escape of high pressure air inside the check valve to release the high pressure air generated between front and rear stages of the pump portion in the initial stage of the vacuum pump operation outside casing in shortage of open area Even if there is no external check valve, the external check valve cooperating with the internal check valve ensures that high-pressure air that could not be escaped by the internal check valve escapes to the outside of the casing, preventing the efficiency drop at the initial stage of vacuum pump operation due to high-pressure air generation. In addition, leakage of cooling water at the vacuum pump shaft sealing portion is suppressed. In addition, due to the effect of suppressing cooling water leakage at the vacuum pump shaft sealing part, a water inlet is formed in the connecting pipe of the adjacent front and rear pump parts, so that the latter pump part side is more than the former pump part side. Even if you supply a lot of cooling water,
Cooling water leakage in the downstream pump section is suppressed, and the efficiency of the downstream pump section can be improved.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤田 靖彦 大阪府八尾市神武町1番48号 株式会社モ リタエコノス内 Fターム(参考) 3H029 AA06 AA09 AA17 AB06 AB08 BB16 BB18 BB41 BB42 BB47 BB51 BB54 CC13 CC15 CC23 CC25 CC52 CC54 CC82 CC85 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhiko Sawada 1-48 Jinmucho, Yao-shi, Osaka F-term in Morita Econos Co., Ltd. (Reference) 3H029 AA06 AA09 AA17 AB06 AB08 BB16 BB18 BB41 BB42 BB47 BB51 BB54 CC13 CC15 CC23 CC25 CC52 CC54 CC82 CC85
Claims (2)
複数のポンプ部が直列多段に連通連結され、前段ポンプ
部の吐出口が隣接する後段ポンプ部の吸入口と連通し、
各ポンプ部の一対のロータの一方が共通の駆動シャフト
に連結され、他方のロータが共通の従動シャフトに連結
されて、駆動シャフトの回転で各ポンプ部の一対のロー
タを互いに反対方向に回転させて各ポンプ部で真空ポン
プ動作をさせるようにした多段ルーツ型真空ポンプ式吸
引装置において、 隣接する前段ポンプ部と後段ポンプ部のケーシングに真
空ポンプ動作の初期段階で前段ポンプ部から後段ポンプ
部に吐出されて一時的に加圧状態となる加圧空気の一部
を後段ポンプの吐出口側に逃がす内部チェック弁を設置
すると共に、前記加圧空気を別経路でケーシング外に逃
がす外部チェック弁をケーシングに外付け設置したこと
を特徴とする多段ルーツ型真空ポンプ式吸引装置。A plurality of pump units each having a pair of rotors housed in a casing are connected in series and in multiple stages, and a discharge port of a front-stage pump unit communicates with a suction port of an adjacent rear-stage pump unit;
One of a pair of rotors of each pump section is connected to a common drive shaft, and the other rotor is connected to a common driven shaft, and the rotation of the drive shaft causes the pair of rotors of each pump section to rotate in opposite directions. In a multi-stage roots-type vacuum pump type suction device in which each pump section performs a vacuum pump operation, the casings of the adjacent front-stage pump section and the rear-stage pump section are connected to the casing from the first-stage pump section to the second-stage pump section at the initial stage of the vacuum pump operation. An internal check valve for releasing part of the pressurized air that is discharged and temporarily pressurized to the discharge port side of the subsequent pump is installed, and an external check valve for releasing the pressurized air to the outside of the casing through another path is provided. A multi-stage roots-type vacuum pump-type suction device, which is externally mounted on a casing.
部チェック弁より下流で後段ポンプ部の吸入口より上流
の空気通路に冷却水の注水口を形成したことを特徴とす
る請求項1記載の多段ルーツ型真空ポンプ式吸引装置。2. A cooling water injection port is formed in an air passage downstream of an internal check valve and an external check valve of the post-stage pump unit and upstream of a suction port of the post-stage pump unit. Multi-stage roots type vacuum pump type suction device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11156795A JP3134929B2 (en) | 1999-06-03 | 1999-06-03 | Multi-stage roots type vacuum pump type suction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11156795A JP3134929B2 (en) | 1999-06-03 | 1999-06-03 | Multi-stage roots type vacuum pump type suction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000345981A true JP2000345981A (en) | 2000-12-12 |
JP3134929B2 JP3134929B2 (en) | 2001-02-13 |
Family
ID=15635487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11156795A Expired - Lifetime JP3134929B2 (en) | 1999-06-03 | 1999-06-03 | Multi-stage roots type vacuum pump type suction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3134929B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100408154B1 (en) * | 2001-08-14 | 2003-12-01 | 주식회사 우성진공 | Roots vacuum pump |
JP2009228596A (en) * | 2008-03-24 | 2009-10-08 | Anest Iwata Corp | Multi-stage vacuum pump and method for operating the same |
JP2011132942A (en) * | 2009-11-30 | 2011-07-07 | Kanematsu Engineering Kk | Cooling method of suction processing device and suction processing device |
CN109654018A (en) * | 2019-01-04 | 2019-04-19 | 上海伊莱茨真空技术有限公司 | A kind of ultra-large type Roots vaccum pump end cap water spacer |
KR20190105595A (en) * | 2017-01-20 | 2019-09-17 | 에드워즈 리미티드 | Multistage vacuum booster pump coupling |
CN114658635A (en) * | 2022-04-01 | 2022-06-24 | 三门拓展真空设备有限公司 | High-efficiency vacuum pump unit |
-
1999
- 1999-06-03 JP JP11156795A patent/JP3134929B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100408154B1 (en) * | 2001-08-14 | 2003-12-01 | 주식회사 우성진공 | Roots vacuum pump |
JP2009228596A (en) * | 2008-03-24 | 2009-10-08 | Anest Iwata Corp | Multi-stage vacuum pump and method for operating the same |
JP2011132942A (en) * | 2009-11-30 | 2011-07-07 | Kanematsu Engineering Kk | Cooling method of suction processing device and suction processing device |
KR20190105595A (en) * | 2017-01-20 | 2019-09-17 | 에드워즈 리미티드 | Multistage vacuum booster pump coupling |
US11578722B2 (en) | 2017-01-20 | 2023-02-14 | Edwards Limited | Multi-stage vacuum booster pump coupling |
KR102528897B1 (en) * | 2017-01-20 | 2023-05-03 | 에드워즈 리미티드 | Multi-stage vacuum booster pump coupling part |
CN109654018A (en) * | 2019-01-04 | 2019-04-19 | 上海伊莱茨真空技术有限公司 | A kind of ultra-large type Roots vaccum pump end cap water spacer |
CN114658635A (en) * | 2022-04-01 | 2022-06-24 | 三门拓展真空设备有限公司 | High-efficiency vacuum pump unit |
CN114658635B (en) * | 2022-04-01 | 2024-07-09 | 三门拓展真空设备有限公司 | High-efficient vacuum pump unit |
Also Published As
Publication number | Publication date |
---|---|
JP3134929B2 (en) | 2001-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101237972B1 (en) | Compressor | |
AU2857999A (en) | Small turbo compressor | |
CN103842657B (en) | Claw pumps | |
EP1960674A1 (en) | Ported shroud with filtered external ventilation | |
CN114320917B (en) | In-line Roots pump | |
JP3134929B2 (en) | Multi-stage roots type vacuum pump type suction device | |
JP3470410B2 (en) | Turbo compressor | |
CN111828355B (en) | Energy-saving air blower | |
JP3176595B2 (en) | Multi-stage roots type vacuum pump type suction device | |
CN213953896U (en) | Screw compressor | |
CN114412788B (en) | An energy-saving roots-screw integrated oil-free vacuum pump | |
JP2000104698A (en) | Compressor | |
JPH0587076A (en) | Screw type vacuum pump | |
CN112539177B (en) | Screw compressor | |
CN106894997B (en) | A kind of compression of ring gear formation gases or expansion device | |
JPS61182486A (en) | Root's blower for high compression | |
JP3438356B2 (en) | Multi-stage centrifugal compressor | |
CN112253492B (en) | Multistage low-temperature centrifugal pump with built-in motor | |
CN105134620B (en) | Turbofan dry vacuum pump | |
CN220850024U (en) | CCUS compressor capable of efficiently utilizing CO2 | |
CN214007509U (en) | Permanent magnet horizontal two-stage compression high-efficiency mute screw air compressor | |
CN222376707U (en) | A Roots blower with energy recovery device | |
US6672828B2 (en) | Vacuum pump | |
CN217421522U (en) | Dry screw vacuum pump | |
CN217354636U (en) | Gas multi-stage compression device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3134929 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081201 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |