JP2000340240A - High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same - Google Patents
High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the sameInfo
- Publication number
- JP2000340240A JP2000340240A JP11151747A JP15174799A JP2000340240A JP 2000340240 A JP2000340240 A JP 2000340240A JP 11151747 A JP11151747 A JP 11151747A JP 15174799 A JP15174799 A JP 15174799A JP 2000340240 A JP2000340240 A JP 2000340240A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- mol
- rare earth
- conductivity
- scsz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 90
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 47
- 239000000446 fuel Substances 0.000 title claims description 18
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 24
- 241000968352 Scandia <hydrozoan> Species 0.000 claims abstract description 20
- HJGMWXTVGKLUAQ-UHFFFAOYSA-N oxygen(2-);scandium(3+) Chemical compound [O-2].[O-2].[O-2].[Sc+3].[Sc+3] HJGMWXTVGKLUAQ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000001301 oxygen Substances 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 17
- 238000002156 mixing Methods 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 claims description 5
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract description 28
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract description 25
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 abstract description 14
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 abstract description 14
- 239000013078 crystal Substances 0.000 abstract description 13
- -1 oxygen ion Chemical class 0.000 abstract description 6
- 229910002076 stabilized zirconia Inorganic materials 0.000 abstract description 4
- 239000003085 diluting agent Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000012071 phase Substances 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 238000010248 power generation Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 229910052706 scandium Inorganic materials 0.000 description 6
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 6
- 229910002080 8 mol% Y2O3 fully stabilized ZrO2 Inorganic materials 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- FIXNOXLJNSSSLJ-UHFFFAOYSA-N ytterbium(III) oxide Inorganic materials O=[Yb]O[Yb]=O FIXNOXLJNSSSLJ-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000002001 electrolyte material Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910008253 Zr2O3 Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical group [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- FGHSTPNOXKDLKU-UHFFFAOYSA-N nitric acid;hydrate Chemical compound O.O[N+]([O-])=O FGHSTPNOXKDLKU-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- IGPAMRAHTMKVDN-UHFFFAOYSA-N strontium dioxido(dioxo)manganese lanthanum(3+) Chemical compound [Sr+2].[La+3].[O-][Mn]([O-])(=O)=O IGPAMRAHTMKVDN-UHFFFAOYSA-N 0.000 description 1
- 238000002910 structure generation Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Abstract
(57)【要約】
【課題】 スカンジア安定化ジルコニアに希土類酸化物
を添加して結晶相を安定化させ、高い酸素イオン導電性
と高強度とを備えた高イオン導電性固体電解質材料を提
供すること。
【解決手段】 ジルコニアを主成分とし、これにスカン
ジア5〜15モル%と、その他の1種又は2種以上の希
土類酸化物0.5〜5モル%とが配合固溶されると共
に、スカンジアと希土類酸化物との合計配合料が9〜1
5モル%の範囲に調製されている。希土類酸化物として
は、 セリア(CeO2 )、イットリア(Y 2O3)、
ガドリニア(Gd2O3)、イッテルビア(Yb
2O3)などが挙げられる。
(57) [Summary]
PROBLEM TO BE SOLVED: To provide rare earth oxide to scandia stabilized zirconia
To stabilize the crystal phase and provide high oxygen ion conductivity
To provide high ionic conductive solid electrolyte material with high strength
To offer.
SOLUTION: Zirconia is a main component, and scan
5 to 15 mol% of dia and one or more other diluents
0.5 to 5 mol% of earth oxide
In addition, the total blending amount of scandia and rare earth oxide is 9-1.
It is prepared in the range of 5 mol%. As a rare earth oxide
Is ceria (CeO2 ), Yttria (Y 2O3),
Gadolinia (Gd2O3), Ytterbia (Yb
2O3).
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高イオン導電性固
体電解質材料に関し、さらに詳しくは、固体電解質型燃
料電池などに好適に用いられる高イオン導電性固体電解
質材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high ionic conductive solid electrolyte material, and more particularly to a high ionic conductive solid electrolyte material suitably used for a solid oxide fuel cell or the like.
【0002】[0002]
【従来の技術】従来、この種の固体電解質材料は、固体
電解質型燃料電池(以下、「SOFC」と略称する。)
などの用途に適用されており、またSOFCは、他の燃
料電池、リン酸型、溶融炭酸塩型などと較べて発電効率
が良く、排熱温度も高いため、効率的エネルギー利用の
発電システムを構築できる点で注目されている。2. Description of the Related Art Conventionally, this kind of solid electrolyte material is a solid oxide fuel cell (hereinafter abbreviated as "SOFC").
SOFCs have higher power generation efficiency and higher exhaust heat temperature than other fuel cells, phosphoric acid type, molten carbonate type, etc. It is noted that it can be built.
【0003】ところでこのSOFCは、固体電解質の一
方の面に燃料極を有し、固体電解質の反対側の面に酸素
極を有した単電池セル構造を備える。そしてその発電メ
カニズムとしては、燃料極面に水素(H2)などの燃料
ガスが貫流接触し、酸素極面に空気もしくは酸素
(O2)などの酸化剤ガスが貫流接触すると、酸素極で
発生した酸素イオン(O2−)が固体電解質を移動して
燃料極に達し、燃料極ではその移動してきたO2−がH
2と反応してその電気化学反応により電気出力が得られ
るものである。The SOFC has a unit cell structure having a fuel electrode on one surface of a solid electrolyte and an oxygen electrode on the opposite surface of the solid electrolyte. As a power generation mechanism, when a fuel gas such as hydrogen (H 2 ) comes into contact with the fuel electrode surface and an oxidizing gas such as air or oxygen (O 2 ) comes into contact with the oxygen electrode surface, it is generated at the oxygen electrode. The oxygen ions (O 2− ) move through the solid electrolyte to reach the fuel electrode, where the O 2− that has moved becomes H 2
2 and an electrical output is obtained by the electrochemical reaction.
【0004】このような構造及び発電メカニズムにおい
て、SOFCの固体電解質材料に要求される特性として
は、(1)高い酸素イオン導電性を有すること(2)長
期安定して電気化学反応に寄与するものであること
(3)高い材料強度を有することなどが挙げられる。そ
してこれらの要求特性に応えるものとして、従来一般的
には、イットリア(Y2O3)を添加したジルコニア
(ZrO2)、すなわちイットリア安定化ジルコニア材
料(以下、「YSZ」と略称する。)が用いられてきて
いる。[0004] In such a structure and power generation mechanism, the characteristics required for the solid electrolyte material of the SOFC include (1) high oxygen ion conductivity and (2) long-term stable contribution to the electrochemical reaction. (3) having a high material strength. Conventionally, zirconia (ZrO 2 ) to which yttria (Y 2 O 3 ) is added, that is, a yttria-stabilized zirconia material (hereinafter, abbreviated as “YSZ”) is used to meet these required characteristics. It has been used.
【0005】しかしこのYSZ材料は、材料抵抗が高く
て導電率が低いために、高い電力密度が得られないとい
う問題を抱えている。そこでこれに代替できる材料とし
て本発明者らは、スカンジア(Sc2O3)を添加した
ジルコニア、すなわちスカンジア安定化ジルコニア材料
(以下「ScSZ」と略称する。)について研究を進め
てきた。However, this YSZ material has a problem that a high power density cannot be obtained because of its high material resistance and low conductivity. Therefore, the present inventors have been researching zirconia to which scandia (Sc 2 O 3 ) is added, that is, a scandia-stabilized zirconia material (hereinafter, abbreviated as “ScSZ”) as a material that can be substituted for this.
【0006】そして実際、ScSZ系材料は、YSZ材
料に較べて導電率が高く、材料強度も高いということで
すでに何件か特許出願も行なっている。ただ当初、この
ScSZ材料は 結晶構造が安定しないという問題があ
って、種々実験を重ねてきた結果、このScSZ系材料
の中でも、特にアルミナ(Al2O3)を1重量%添加
した11mol%Sc2O3−89mol%ZrO
2(以下、「11ScSZ」と略称する。)を標準組成
としたものが、アルミナ(Al2O3)の添加によって
結晶相が安定することがわかった。すでに特許出願も行
なっている(特開平7−6622号公報、特開平7−6
9720号公報等参照)。In fact, several patent applications have already been filed for ScSZ-based materials because they have higher conductivity and higher material strength than YSZ materials. However, initially, this ScSZ material had a problem that the crystal structure was not stable, and as a result of repeated experiments, among the ScSZ-based materials, particularly, 11 mol% Sc containing alumina (Al 2 O 3 ) added at 1 wt% was used. 2 O 3 -89 mol% ZrO
2 (hereinafter abbreviated as “11ScSZ”) as a standard composition, it was found that the crystal phase was stabilized by the addition of alumina (Al 2 O 3 ). Patent applications have already been filed (JP-A-7-6622, JP-A-7-6)
9720).
【0007】[0007]
【発明が解決しようとする課題】しかしながら、アルミ
ナ(Al2O3)添加のScSZ材料は、機械的強度
が向上するために固体電解質板の肉厚を薄くすることが
できてそれだけ材料抵抗を抑制でき、導電率の向上に寄
与できる粉体の焼結性が向上し、低い温度でも焼結す
るために製造コストの低廉化が図れるという長所を有す
る反面、次のような短所もある。However, the ScSZ material to which alumina (Al 2 O 3 ) is added can reduce the thickness of the solid electrolyte plate to improve the mechanical strength and suppress the material resistance accordingly. Although it has the advantage that the sinterability of the powder which can contribute to the improvement of the conductivity and the sintering at a low temperature can be reduced and the production cost can be reduced, there are also the following disadvantages.
【0008】すなわち、(a)電気絶縁抵抗の増大によ
りアルミナを添加しないScSZ材料よりも酸素イオン
導電性が10%程度低下する(b)粉末原料製造時に例
えば、液相製造プロセスである共沈法やゾルゲル法によ
り粉末粒径の細かいスカンジア(Sc2O3)とジルコ
ニア(ZrO2)との混合粉末を得ようとすると、最初
にそのSc2O3とZrO2との混合粉末を生成し、次
いでこの混合粉末にアルミナ(Al2O3)粉末を混合
するという工程を取るため、アルミナを添加(混合)す
るためのプロセスが余分に必要になるという短所も有す
る。That is, (a) the oxygen ion conductivity is reduced by about 10% as compared with ScSZ material to which alumina is not added due to an increase in electric insulation resistance. When obtaining a mixed powder of scandia (Sc 2 O 3 ) and zirconia (ZrO 2 ) having a fine powder particle diameter by a sol-gel method, first, a mixed powder of Sc 2 O 3 and ZrO 2 is generated, Next, since a step of mixing alumina (Al 2 O 3 ) powder with the mixed powder is taken, there is a disadvantage that an additional process for adding (mixing) alumina is required.
【0009】またこの種の固体電解質材料をSOFCの
電解質に用いた場合、高い導電率を得ようとすると、電
池の作動温度を高くせざるを得ず、そのために周辺機材
は耐熱高強度を有する特殊鋼材を用いなければならない
など、設備が大掛かり化し、製造コストも高くなる等の
問題もあった。When this kind of solid electrolyte material is used for an electrolyte of an SOFC, in order to obtain a high conductivity, the operating temperature of the battery must be increased, and accordingly, peripheral equipment has heat resistance and high strength. There were also problems such as the necessity of using special steel materials, the increase in equipment size, and the increase in manufacturing costs.
【0010】そこで本発明者らは、種々実験研究を重ね
た結果、アルミナに代替される材料として、セリア(C
eO2)、イットリア(Y2O3)、ガドリニア(Gd
2O 3)、イッテルビア(Yb2O3)などスカンジア
(Sc2O3)以外の希土類酸化物をこのScSZ材料
に添加することにより、結晶相が安定化することを見い
出した。またこれらの材料は導電率が向上することによ
り、電池に用いた場合にその作動温度を下げることがで
きることもわかった。Therefore, the present inventors have repeated various experimental studies.
As a result, ceria (C
eO2), Yttria (Y2O3), Gadolinia (Gd
2O 3), Ytterbia (Yb2O3) Scandia
(Sc2O3The rare earth oxides other than the ScSZ material
Was found to stabilize the crystalline phase
Issued. In addition, these materials have improved electrical conductivity.
The operating temperature when used in batteries.
I knew it would work.
【0011】本発明の解決しようとする課題は、ScS
Z材料にスカンジア以外の希土類酸化物を添加すること
により結晶相を安定化させ、高いイオン導電性と高い材
料強度を備えた高イオン導電性固体電解質材料を提供す
ることにある。The problem to be solved by the present invention is ScS
An object of the present invention is to provide a highly ionic conductive solid electrolyte material having high ionic conductivity and high material strength by stabilizing the crystal phase by adding a rare earth oxide other than scandia to the Z material.
【0012】また本発明は、この高イオン導電性固体電
解質材料を電解質として用いることにより高い発電性能
を備えたSOFCを提供し、さらにはそのSOFCの作
動温度の低減により安価な周辺材料の使用を可能ならし
め、製作コストの低廉化をも図らんとするものである。Further, the present invention provides an SOFC having high power generation performance by using the high ionic conductive solid electrolyte material as an electrolyte, and further uses an inexpensive peripheral material by reducing the operating temperature of the SOFC. The aim is to reduce the production cost as much as possible.
【0013】[0013]
【課題を解決するための手段】この課題を解決するため
に本発明の高イオン導電性固体電解質材料は、ジルコニ
アを主成分とし、これにスカンジア5〜15モル%と、
その他の1種又は2種以上の希土類酸化物0.5〜5モ
ル%とが配合固溶されると共に、スカンジアとその他の
希土類酸化物との合計配合量が9〜15モル%の範囲に
調製されていることを要旨とするものである。In order to solve this problem, the high ionic conductive solid electrolyte material of the present invention comprises zirconia as a main component, and 5 to 15 mol% of scandia,
One or more rare earth oxides of 0.5 to 5 mol% are mixed and dissolved, and the total amount of scandia and the other rare earth oxides is adjusted to 9 to 15 mol%. It is the gist of what has been done.
【0014】上記組成のScSZ固体電解質材料は、高
い導電率特性を有し、SOFCの固体電解質として優れ
た発電性能を発揮するものであるが、このScSZ固体
電解質材料中のスカンジア(Sc2O3)の固溶量は5
〜15モル%の範囲とするのが望ましい。スカンジア
(Sc2O3)の固溶量が8モル%程度ではジルコニア
(ZrO2)が高温度(SOFCの作動温度:およそ1
000℃レベル)で長時間(1000〜2000時間)
後に立方晶から正方晶に変化して、導電率の低下を招
く。The ScSZ solid electrolyte material having the above composition has high conductivity characteristics and exhibits excellent power generation performance as a solid electrolyte of an SOFC. Scandia (Sc 2 O 3) in the ScSZ solid electrolyte material is used. ) Is 5
It is desirable that the content be in the range of 1515 mol%. When scandia (Sc 2 O 3 ) has a solid solution amount of about 8 mol%, zirconia (ZrO 2 ) has a high temperature (SOFC operating temperature: about 1).
000 ° C) for a long time (1000-2000 hours)
Later, it changes from cubic to tetragonal, causing a decrease in conductivity.
【0015】そのためSc2O3の固溶量を8モル%よ
り若干多目とし、10〜15モル%とすることが有効で
ある。ただ、このScSZ固体電解質材料にイットリア
(Y 2O3)が含まれる場合には、スカンジア(Sc2
O3)の固溶量の下限値を5モル%程度まで下げること
は可能である。イットリア(Y2O3)が含まれない場
合、Sc2O3の固溶量が8モル%を越えると、Zr2
O3のC相(立方晶相)のほかに、Zr2O3とSc2
O3の化合物であるR相(菱面体晶相)が析出し、低温
(600℃以下)では導電率の低下によって発電性能が
悪くなったり、結晶構造の熱的変化に伴なう体積膨張な
どによって固体電解質の歪破壊や電極剥離などの問題が
生じるおそれがある。Therefore, Sc2O38 mol%
It is effective to make it slightly larger and 10 to 15 mol%.
is there. However, this ScSZ solid electrolyte material
(Y 2O3) Is included, scandia (Sc2
O3)) To lower the lower limit of solid solution to about 5 mol%
Is possible. Yttria (Y2O3) Is not included
Sc2O3When the amount of solid solution exceeds 8 mol%, Zr2
O3In addition to the C phase (cubic phase), Zr2O3And Sc2
O3Phase (rhombohedral phase), which is a compound of
(600 ° C or lower), the power generation performance is reduced due to the decrease in conductivity.
Volume expansion due to deterioration or thermal change of crystal structure
Problems such as strain destruction of solid electrolyte and electrode peeling
May occur.
【0016】そこで本発明では、スカンジア(Sc2O
3)以外のセリア(CeO2)、イットリア(Y
2O3)、ガドリニア(Gd2O3)、イッテルビア
(Yb2O3)などの希土類酸化物を配合することによ
り結晶相を安定させるものであり、その配合量は、0.
5〜5モル%の範囲であることが望ましい。セリア(C
eO2)等の酸化物の配合量が 0.5モル%以下で
は、R相の析出を抑制する効果に乏しく、また5モル%
以上配合しても既に結晶相は十分に安定化し、逆に導電
率が低下するおそれがある。Therefore, in the present invention, scandia (Sc 2 O)
3 ) Other than ceria (CeO 2 ) and yttria (Y
The compound stabilizes the crystal phase by compounding a rare earth oxide such as 2 O 3 ), gadolinia (Gd 2 O 3 ), and ytterbia (Yb 2 O 3 ).
It is desirable to be in the range of 5 to 5 mol%. Ceria (C
When the compounding amount of the oxide such as eO 2 ) is 0.5 mol% or less, the effect of suppressing the precipitation of the R phase is poor, and 5 mol%
Even with the above mixing, the crystal phase is already sufficiently stabilized, and conversely, the electrical conductivity may be reduced.
【0017】尚、スカンジア(Sc2O3)の固溶量が
15%を越えると導電率が低下し、セリア(CeO2)
等の希土類酸化物も同じ傾向があるため、スカンジア
(Sc 2O3)とセリア(CeO2)等の結晶相安定化
のための希土類酸化物の配合量の合計が、15モル%以
下に抑えられていることが要求される。しかし、結晶相
の安定化のみならず、高い導電率特性の確保等も考慮す
れば、希土類酸化物の配合量の合計は9〜15モル%の
範囲に調整されていることが望ましい。The scandia (Sc)2O3)
If it exceeds 15%, the conductivity decreases and ceria (CeO)2)
And other rare earth oxides have the same tendency.
(Sc 2O3) And ceria (CeO)2) Etc.
The total amount of rare earth oxides for
It is required to be kept below. But the crystal phase
Not only stabilization but also ensuring high conductivity
If the total amount of the rare earth oxide is 9 to 15 mol%,
It is desirable to adjust to the range.
【0018】また本発明の固体電解質型燃料電池(SO
FC)は、固体電解質の片面に燃料極を有し、反対側面
に酸素極を有する単電池セル構造を備えたものであっ
て、その固体電解質が、ジルコニアを主成分とし、これ
にスカンジア5〜15モル%と、その他の1種又は2種
以上の希土類酸化物0.5〜5モル%とが配合固溶され
ると共に、スカンジアとその他の希土類酸化物との合計
配合量が9〜15モル%の範囲に調製された材料により
構成されていることを要旨とするものである。The solid oxide fuel cell of the present invention (SO
FC) has a unit cell structure having a fuel electrode on one side of a solid electrolyte and an oxygen electrode on the other side, and the solid electrolyte is mainly composed of zirconia, and has a 15 mol% and 0.5 to 5 mol% of one or more rare earth oxides are mixed and dissolved, and the total amount of scandia and other rare earth oxides is 9 to 15 mol. The gist of the invention is that it is composed of a material prepared in the range of%.
【0019】本発明のSOFCによれば、上記固体電解
質材料を用いることにより電解質の導電率が向上し、電
池の内部抵抗が減少するため、電池としての出力密度も
しくは発電効率が良くなり、電池性能が向上する。また
材料強度が高いためその分固体電解質の板厚を薄くすれ
ば電池の内部抵抗が抑えられ、やはり電池性能が向上す
る。さらに低い作動温度での運転も可能となる。According to the SOFC of the present invention, the use of the solid electrolyte material improves the conductivity of the electrolyte and reduces the internal resistance of the battery, so that the output density or power generation efficiency of the battery is improved and the battery performance is improved. Is improved. Further, since the material strength is high, the internal resistance of the battery is suppressed by reducing the plate thickness of the solid electrolyte accordingly, and the battery performance is also improved. Operation at lower operating temperatures is also possible.
【0020】[0020]
【発明の実施の形態】以下、本発明の好適な一実施の形
態を図面を参照して詳細に説明する。初めに図1は、本
実施例に係る高イオン導電性固体電解質材料の製造プロ
セスを示したフローチャートである。この製造プロセス
はいわゆる液相製造プロセスである共沈法に依るもの
で、Sc2O3の硝酸塩溶液にセリア(CeO2)、イ
ットリア(Y2O3)、ガドリニア(Gd2O3)など
の希土類酸化物を適量添加して溶解させ、この硝酸塩溶
液にZrOCl2水溶液を混ぜて混合水溶液とする。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. First, FIG. 1 is a flowchart illustrating a manufacturing process of the high ionic conductive solid electrolyte material according to the present embodiment. This manufacturing process is based on a coprecipitation method, which is a so-called liquid phase manufacturing process. In a nitrate solution of Sc 2 O 3 , ceria (CeO 2 ), yttria (Y 2 O 3 ), gadolinia (Gd 2 O 3 ), or the like is used. An appropriate amount of rare earth oxide is added and dissolved, and this nitrate solution is mixed with a ZrOCl 2 aqueous solution to form a mixed aqueous solution.
【0021】そしてこの混合水溶液に共沈剤としてアン
モニア水を加えることにより、Zrの水和物とScの水
和物との混合水和物が沈殿物として得られる。この沈殿
物には、前述のCeO2、Y2O3、Gd2O3などの
希土類酸化物による水和物も含まれる。そしてこの混合
沈殿物を洗浄濾過し、600〜1000℃の温度で約1
2時間仮焼した後粉砕することによりセリア(Ce
O2)などが配合されたScSZ混合粉末が生成され
る。Then, by adding aqueous ammonia as a coprecipitant to the mixed aqueous solution, a mixed hydrate of a hydrate of Zr and a hydrate of Sc is obtained as a precipitate. The precipitate includes hydrates of rare earth oxides such as CeO 2 , Y 2 O 3 , and Gd 2 O 3 described above. Then, the mixed precipitate is washed and filtered, and at a temperature of 600 to 1000 ° C. for about 1 hour.
After calcination for 2 hours, pulverization is carried out to obtain ceria (Ce).
ScSZ mixed powder containing O 2 ) is produced.
【0022】尚、この実施例では、本実施例に係る高イ
オン導電性固体電解質材料の製造プロセスとして液相製
造プロセスの1つである共沈法の例を説明したが、この
製法に限定されるものでも勿論ない。これ以外に従来か
ら一般に行なわれているように、ジルコニア(Zr
O2)の粉末粒子とスカンジア(Sc2O3)の粉末粒
子、及び結晶相安定化のための他の希土類酸化物(Ce
O2、Y2O3、Gd2O 3など)の粉末粒子を所定の
配合比率で混ぜ合わせ、ボールミル等により機械的に混
合したものを用いてもよい。It should be noted that, in the present embodiment, the high
Liquid phase production process for on-conductive solid electrolyte material
An example of the co-precipitation method, one of the
Of course, it is not limited to the manufacturing method. Other than this
As is commonly practiced, zirconia (Zr
O2) And scandia (Sc)2O3) Powder granules
And other rare earth oxides (Ce
O2, Y2O3, Gd2O 3Prescribed powder particles)
Mix by mixing ratio and mechanically mix with a ball mill etc.
A combination may be used.
【0023】あるいは、液相製造プロセスの他の例であ
るゾルゲル法に依るものも適用できる。ゾルゲル法に依
る場合は、ジルコニウム粉末粒子とスカンジウム粉末粒
子、及び他の希土類元素の粉末粒子を所定の配合比率で
混ぜ合わせ、硝酸水に加熱溶解し、これにギ酸とポリエ
チレングリコールを所用量添加してゾル化物とする。そ
してこのゾル化物を加熱乾燥し、700〜800℃の温
度でおよそ12時間仮焼することによりセリア(CeO
2)などが配合されたScSZ粉末を得ることもでき
る。Alternatively, a method based on a sol-gel method, which is another example of the liquid phase production process, can be applied. In the case of using the sol-gel method, zirconium powder particles, scandium powder particles, and other rare earth element powder particles are mixed at a predetermined mixing ratio, heated and dissolved in nitric acid water, and formic acid and polyethylene glycol are added in desired amounts. Into a sol. The sol is dried by heating and calcined at a temperature of 700 to 800 ° C. for about 12 hours to obtain ceria (CeO).
2 ) It is also possible to obtain ScSZ powder in which, for example, is blended.
【0024】これらの場合に生成されたScSZ混合粉
末中のZrO2の配合量は85〜90モル%、Sc2O
3は、5〜15モル%、その他の希土類酸化物(CeO
2、Y2O3、Gd2O3)が0.5〜5モル%、Sc
2O3とその他の希土類酸化物(CeO2など)とのト
ータルの配合量が9〜15モル%に調製されている。The amount of ZrO 2 in ScSZ mixed powder produced in these cases 85-90 mol%, Sc 2 O
3 is 5 to 15 mol%, and other rare earth oxides (CeO
2, Y 2 O 3, Gd 2 O 3) is 0.5 to 5 mol%, Sc
The total amount of 2 O 3 and other rare earth oxides (such as CeO 2 ) is adjusted to 9 to 15 mol%.
【0025】次にこのようにして生成されたScSZ粉
末をSOFCの固体電解質板に成形するに際しては、図
2にその製造フローチャートを示したが、静水圧プレス
機(CIP)により加圧成形するか、あるいは、ドクタ
ープレード法やカレンダーロール法を用いることができ
る。静水圧プレスによる場合、この粉末材料を板厚10
0〜300μm×およそ20cm角の固体電解質板に成
形するのに、1ton/cm2の押圧力を加えるのがよ
い。そして次に、この成形板を1400〜1700℃の
温度で焼成する。Next, when the ScSZ powder thus produced is formed into a solid electrolyte plate of an SOFC, a production flow chart is shown in FIG. 2, but it is necessary to press-mold with a hydrostatic press (CIP). Alternatively, a doctor blade method or a calendar roll method can be used. In the case of using an isostatic press, this powdered material is
In order to form a solid electrolyte plate of 0 to 300 μm × about 20 cm square, it is preferable to apply a pressing force of 1 ton / cm 2 . Then, the formed plate is fired at a temperature of 1400 to 1700 ° C.
【0026】これによりスカンジア(Sc2O3)をジ
ルコニア(ZrO2)中に固溶させたスカンジア安定化
ジルコニア(Sc2O3 Stabilized Zr
O2)材料を主成分とし、これに結晶相安定化材料とし
てセリア(CeO2)、イットリア(Y2O3)、ガド
リニア(Gd2O3)等がやはり固溶状態にある固体電
解質板が得られる。[0026] Thus scandia (Sc 2 O 3) and zirconia scandia-stabilized zirconia is dissolved in (ZrO 2) in (Sc 2 O 3 Stabilized Zr
O 2 ) material as a main component, and a solid electrolyte plate in which ceria (CeO 2 ), yttria (Y 2 O 3 ), gadolinia (Gd 2 O 3 ), etc. are also in a solid solution as a crystal phase stabilizing material. can get.
【0027】そしてこのScSZ系固体電解質板の片面
に燃料極を形成し、反対側の面に酸素極を形成するに当
たっては、これらの電極材料のセラミックス粉末を泥状
にして、いわゆるスラリーコーティング法によりこのS
cSZ系固体電解質板のそれぞれの面に塗布し、所定温
度で焼成する。この場合燃料極については、例えばニッ
ケル(Ni)40重量%−ジルコニア(ZrO2 )6
0重量%のNi−ジルコニアサーメット材料を50μm
程度の厚さでこのScSZ系固体電解質板の片面にコー
ティングし、1400〜1500℃の温度で焼成する。
これによりScSZ系固体電解質板に薄膜状の燃料極が
形成されることとなる。In order to form a fuel electrode on one surface of the ScSZ-based solid electrolyte plate and to form an oxygen electrode on the opposite surface, the ceramic powder of these electrode materials is made into a mud-like form by a so-called slurry coating method. This S
It is applied to each surface of the cSZ-based solid electrolyte plate and fired at a predetermined temperature. This case fuel electrode, for example, nickel (Ni) 40 wt% - zirconia (ZrO 2) 6
0% by weight of Ni-zirconia cermet material
One side of the ScSZ-based solid electrolyte plate is coated with a thickness of about 1 mm and fired at a temperature of 1400 to 1500 ° C.
As a result, a thin-film fuel electrode is formed on the ScSZ-based solid electrolyte plate.
【0028】また酸素極については、例えばランタンス
トロンチウムマンガネイト(La(Sr)MnO3)材
料を50μm程度の厚さで固体電解質板の反対側の面に
コーティングし、1150℃前後の温度で焼成する。こ
れによりScSZ系固体電解質板に、同じく薄膜状の酸
素極が形成されることとなる。尚、酸素極の材料の配合
比率としては、ランタン90〜80モル%に対し、スト
ロンチウム10〜20モル%程度とするのが適当であ
る。As for the oxygen electrode, for example, a lanthanum strontium manganate (La (Sr) MnO 3 ) material is coated on the opposite surface of the solid electrolyte plate at a thickness of about 50 μm, and fired at a temperature of about 1150 ° C. . As a result, a thin-film oxygen electrode is similarly formed on the ScSZ-based solid electrolyte plate. The mixing ratio of the material of the oxygen electrode is preferably about 10 to 20 mol% of strontium with respect to 90 to 80 mol% of lanthanum.
【0029】次にこのようにして製作された固体電解質
型燃料電池(SOFC)の固体電解質板について種々の
実験を行なったのでこれらについて説明する。供試材料
はいずれも共沈法により作成している。Next, various experiments were conducted on the solid electrolyte plate of the solid oxide fuel cell (SOFC) manufactured as described above, and these will be described. All test materials are prepared by the coprecipitation method.
【0030】初めに次の表1は、YSZ固体電解質材料
と、ScSZ系固体電解質材料の(アルミナ添加なし、
アルミナ添加品、セリア添加品)の各種材料について、
導電率特性と曲げ強度のデータを比較して示したもので
ある。表中、「8YSZ」材料は、8mol%Y2O3
−92mol%ZrO2配合のものであり、「アルミナ
添加なしScSZ」材料は、11mol%Sc2O3−
89mol%ZrO2配合のもの、「アルミナ添加Sc
SZ」材料は、(11mol%Sc2O3−89mol
%ZrO2)0.99(Al2O3)0.01配合のも
の、「セリア添加品ScSZ」材料は、10mol%S
c2O3−1mol%CeO2−89mol%ZrO2
配合のものをそれぞれ供試材料として用いた。First, the following Table 1 shows that YSZ solid electrolyte materials and ScSZ-based solid electrolyte materials (without alumina addition,
Various materials such as alumina-added products and ceria-added products)
This is a comparison between data of conductivity characteristics and data of bending strength. In the table, “8YSZ” material is 8 mol% Y 2 O 3
−92 mol% ZrO 2 blended, “ScSZ without alumina addition” material is 11 mol% Sc 2 O 3 −
89 mol% ZrO 2 blend, “Alumina-added Sc
The “SZ” material is (11 mol% Sc 2 O 3 -89 mol
% ZrO 2 ) 0.99 (Al 2 O 3 ) 0.01 , “Ceria-added ScSZ” material is 10 mol% S
c 2 O 3 -1 mol% CeO 2 -89 mol% ZrO 2
Each compound was used as a test material.
【0031】この場合に供試材料はいずれも、板厚20
0μm×20cm角板のもので、静水圧プレス(CI
P)により1ton/cm2の加圧力を加えて成形した
ものを用いた。また導電率特性は、1000℃と800
℃の2つの条件のものを示している。In this case, all the test materials have a thickness of 20
0μm × 20cm square plate, isostatic press (CI
What was formed by applying a pressing force of 1 ton / cm 2 by P) was used. The conductivity characteristics are 1000 ° C and 800 ° C.
2 shows two conditions of ° C.
【0032】[0032]
【表1】 [Table 1]
【0033】この表1からわかるように、従来の「8Y
SZ」材料に較べてScSZ系材料は、いずれも導電率
および曲げ強度とともに優れた結果となっているが、S
cSZ系材料どうしを比べた場合に、「アルミナ添加な
しScSZ(11ScSZ)」材料に較べて「アルミナ
添加ScSZ(11ScSZ1A)」材料は曲げ強度特
性が向上するも導電率特性が低下している。As can be seen from Table 1, the conventional "8Y
All ScSZ-based materials have excellent results in electrical conductivity and bending strength as compared with the “SZ” material.
When the cSZ-based materials are compared with each other, the “Alumina-added ScSZ (11ScSZ1A)” material has improved bending strength characteristics but lower conductivity characteristics than the “Alumina-added ScSZ (11ScSZ)” material.
【0034】これに対して「セリア添加品ScSZ(1
0Sc1CeSZ)」材料は、導電率特性が1000℃
と800℃のいずれにおいても「アルミナ添加ScSZ
(11ScSZ1A)」材料よりも優れ、「アルミナ添
加なしScSZ(11ScSZ1A)」材料と同等レベ
ルの値が得られた。また曲げ強度も、「アルミナ添加S
cSZ(11ScSZ1A)」材料よりは若干劣るもの
の、「アルミナ添加なしScSZ(11ScSZ)」材
料よりは高い値を示している。On the other hand, “Seria-added product ScSZ (1
0Sc1CeSZ) ”material has a conductivity characteristic of 1000 ° C.
At 800 ° C. and “Alumina-added ScSZ”
(11ScSZ1A) ", and a value equivalent to that of the" ScSZ without added alumina (11ScSZ1A) "material was obtained. In addition, the bending strength was determined as follows:
The value is slightly inferior to the “cSZ (11ScSZ1A)” material, but higher than the “ScSZ without alumina addition (11ScSZ)” material.
【0035】したがって、ScSZ材料にアルミナAl
2O3に代えてセリア(CeO2)を添加することによ
り、導電率特性の低下はなく、むしろ導電率特性が向上
する傾向にあり、また曲げ強度はほとんどアルミナ添加
品と遜色ないという結果が得られ、アルミナ添加品に代
替される材料としての特性を具有することが確認され
た。Therefore, alumina Sc is used as the ScSZ material.
By adding ceria (CeO 2 ) instead of 2 O 3 , the conductivity characteristics do not decrease, but the conductivity characteristics tend to improve, and the bending strength is almost the same as that of the alumina-added product. As a result, it was confirmed that the material had characteristics as a material that could be substituted for the alumina-added product.
【0036】次の表2は、各種供試材料の熱膨張係数の
測定試験を行なった結果を示したものである。供試材料
としては、本発明の実施例品の場合、前述のセリア(C
eO 2)添加品のほか、イットリア(Y2O3)添加
品、イッテルビア(Yb2O3)添加品、およびガドリ
ニア(Gd2O3)添加品を用いた。それぞれの配合量
は、セリア(CeO2)添加品の場合と同様、1モル%
とした。詳細は表2に示した通りである。Table 2 below shows the thermal expansion coefficients of various test materials.
It shows the result of a measurement test. Test material
In the case of the example product of the present invention, the above-mentioned ceria (C
eO 2) Additives, yttria (Y2O3) Addition
Goods, ittelvia (Yb2O3) Additives and gadgets
Near (Gd2O3) Additives were used. Each compounding amount
Is ceria (CeO)21) As in the case of the additive, 1 mol%
And Details are as shown in Table 2.
【0037】[0037]
【表2】 [Table 2]
【0038】試験方法としては、熱機械的分析装置(T
MA)を用いて、試作した各種焼結体の平均線熱膨張率
を測定するもので、この時の測定条件としては、各焼結
体を高純度窒素ガス200ml/minの雰囲気中で室
温から1323K(1050℃)まで昇温し、その後室
温まで冷却するものである。その昇温(および降温)速
度は2℃/minとし、またこの時の材料に印加する荷
重は10gとした。As a test method, a thermomechanical analyzer (T
MA) is used to measure the average coefficient of linear thermal expansion of each of the prototyped sintered bodies. The measurement conditions at this time are as follows: each sintered body is heated from room temperature in an atmosphere of high-purity nitrogen gas 200 ml / min. The temperature is raised to 1323 K (1050 ° C.) and then cooled to room temperature. The heating (and cooling) rate was 2 ° C./min, and the load applied to the material at this time was 10 g.
【0039】その結果、11ScSZは約650℃付近
にはっきりした転移点が確認されたが、本発明の実施例
品である10Sc1CeSZ、10Sc1YSZ、10
Sc1YbSZ、10Sc1GdSZはいずれも転移点
が見られず、結晶構造の熱的変化がないことが確認され
た。また平均線熱膨張率も、本実施例品の10Sc1C
eSZ、10Sc1YSZ、10Sc1YbSZ、10
Sc1GdSZはいずれも8YSZと同等の値を示して
おり、使用上問題ないことも確認された。As a result, a clear transition point was confirmed at about 650 ° C. for 11ScSZ, but 10Sc1CeSZ, 10Sc1YSZ, and 10Sc1YSZ, which are examples of the present invention, were obtained.
No transition point was observed in any of Sc1YbSZ and 10Sc1GdSZ, and it was confirmed that there was no thermal change in the crystal structure. The average coefficient of linear thermal expansion was 10 Sc1C of the product of this example.
eSZ, 10 Sc1 YSZ, 10 Sc1 YbSZ, 10
Each of Sc1GdSZ showed a value equivalent to 8YSZ, and it was also confirmed that there was no problem in use.
【0040】次に各種ScSZ焼結体の導電率測定試験
を行なったのでその結果を説明する。試験方法として
は、ScSZ焼結体の棒状試験片(20mm×3mm×
4mm)を用い、SOFC作動温度(1000℃および
800℃、空気雰囲気)における導電率を測定した。測
定は、交流インピーダンス法により行い、測定された抵
抗値と試験片の寸法から次式により導電率を求めた。 導電率σ(S/cm)=(1/抵抗値R(Ω))×試験
片長さL(cm)/試験片断面積S(cm2) また、1000℃および800℃の導電率σから、lo
gσ vs 1/Tのアレニウスプロットにより傾きを
求め、活性化エネルギーE(kJ/mol)を算出し
た。その結果を次の表3に示す。また図3はその裏付け
データをグラフに示したものである。Next, conductivity measurement tests of various ScSZ sintered bodies were performed, and the results will be described. As a test method, a rod-shaped specimen of a ScSZ sintered body (20 mm × 3 mm ×
4 mm), the conductivity at the SOFC operating temperature (1000 ° C. and 800 ° C., air atmosphere) was measured. The measurement was performed by the AC impedance method, and the electrical conductivity was determined from the measured resistance value and the dimensions of the test piece according to the following equation. Conductivity σ (S / cm) = (1 / resistance value R (Ω)) × test piece length L (cm) / test piece cross-sectional area S (cm 2 ) From the conductivity σ at 1000 ° C. and 800 ° C., lo
The slope was determined by an Arrhenius plot of gσ vs 1 / T, and the activation energy E (kJ / mol) was calculated. The results are shown in Table 3 below. FIG. 3 is a graph showing the supporting data.
【0041】[0041]
【表3】 [Table 3]
【0042】この結果は、次の通りである。 (1)本発明品も含め試作した3種類のScSZは、い
ずれも導電率が8YSZの2倍程度の高い導電率を示し
た。11ScSZ1Aおよび10Sc1YSZの導電率
はほぼ予想された数値であり、良好な焼結体が得られて
いる。10Sc1CeSZの導電率も11ScSZ1A
の導電率(1000℃で約0.26S/cm)よりも約
1割程度高い値となった。The result is as follows. (1) All of the three types of ScSZ prototypes including the product of the present invention showed a conductivity as high as about twice that of 8YSZ. The conductivity of 11ScSZ1A and 10Sc1YSZ is almost the expected value, and good sintered bodies are obtained. The conductivity of 10Sc1CeSZ is also 11ScSZ1A
(About 0.26 S / cm at 1000 ° C.) by about 10%.
【0043】(2)焼成温度が導電率に及ぼす影響は1
0Sc1YSZおよび10Sc1CeSZでは顕著では
なく、粉末原料としては使いやすい原料といえる。11
ScSZ1Aのみ1600℃焼成で顕著に導電率が低く
なったが、これは焼結密度の低下と対応している。(2) The effect of the firing temperature on the conductivity is 1
It is not remarkable in 0Sc1YSZ and 10Sc1CeSZ, and can be said to be a raw material which is easy to use as a powder raw material. 11
The conductivity of ScSZ1A was significantly reduced by firing at 1600 ° C., which corresponds to the decrease in the sintered density.
【0044】(3)活性化エネルギー(この値が低いほ
どSOFCの低温作動時に有利)の値は全般に8YSZ
よりも低く、良好な値を示した。特に10Sc1CeS
Zは60kJ/mol以下と顕著に低い値であった。活
性化エネルギーの値も11ScSZ1Aの1600℃焼
成品を除いて焼成温度による影響は認められなかった。(3) The value of the activation energy (the lower the value is, the more advantageous the low temperature operation of the SOFC is), the value is generally 8YSZ
Lower than that, showing good values. Especially 10Sc1CeS
Z was a remarkably low value of 60 kJ / mol or less. The activation energy value was not affected by the firing temperature except for the 1600 ° C. fired product of 11ScSZ1A.
【0045】次に追加実験データとして、セリア(Ce
O2 )の添加量を変えた時の導電率の変化を調べたの
でその結果を図4に示す。供試材料として、前述の11
ScSZ材料、及び10Sc1CeSZ材料のほかに、
スカンジア(Sc2O3)とセリア(CeO2 )との
配合量の合計を11モル%とし、そのうちセリア(Ce
O2 )を2.5モル%配合したもの(「8.5Sc
2.5CeSZ」材料)、及びセリア(CeO2 )を
5モル%配合したもの(「6Sc5CeSZ」材料)に
ついてのデータを示している。Next, as additional experimental data, ceria (Ce
The change in conductivity when the amount of O 2 ) was changed was examined, and the results are shown in FIG. As the test material, the aforementioned 11
In addition to the ScSZ material and the 10Sc1CeSZ material,
The total blending amount of scandia (Sc 2 O 3 ) and ceria (CeO 2 ) was 11 mol%, and ceria (Ce
O 2 ) containing 2.5 mol% (“8.5 Sc
Data is shown for a compound containing 5 mol% of ceria (CeO 2 ) (2.5 CeSZ material) and a material of “6Sc5CeSZ” material.
【0046】この図4のデータからわかるように、いず
れの供試材料とも作動温度が高くなるにつれて導電率が
低下する傾向にあるが、その中で11ScSZ材料(C
eO 2=0%)に較べて10Sc1CeSZ材料(Ce
O2=1%)は常に導電率の値が高く、8.5Sc2.
5CeSZ材料(CeO2=2.5%)と6Sc5Ce
SZ材料(CeO2=5%)は若干導電率の値が低いと
いう結果が得られている。このことからセリア(CeO
2 )の添加量は1モル%程度が最も望ましく、それ以
上に増やす必要はないということが言える。As can be seen from the data shown in FIG.
The conductivity of each of the test materials increased as the operating temperature increased.
Among them, 11ScSZ material (C
eO 2= 0%) compared to the 10Sc1CeSZ material (Ce
O2= 1%) always has a high conductivity value, 8.5Sc2.
5 CeSZ material (CeO2= 2.5%) and 6Sc5Ce
SZ material (CeO2= 5%) means that the conductivity value is slightly lower
Has been obtained. From this, ceria (CeO)
2 ) Is most preferably about 1 mol%,
It can be said that there is no need to increase it.
【0047】本発明は上記した実施例に何ら限定される
ものではなく、本発明の趣旨を逸脱しない範囲で種々の
改変が可能である。例えば、上記実施例では、結晶相安
定化の希土類酸化物として、セリア(CeO2 )、イ
ットリア(Y2O3)、イッテルビア(Yb2O3)、
ガドリニア(Gd2O3)の例を主に示したが、その他
のセリウム族(原子番号57〜62)およびイットリウ
ム族(原子番号63〜71)の希土類元素の酸化物につ
いても同様の挙動を示すことは容易に推察できる。The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, as the rare earth oxide for stabilizing the crystal phase, ceria (CeO 2 ), yttria (Y 2 O 3 ), ytterbia (Yb 2 O 3 ),
Although the example of gadolinia (Gd 2 O 3 ) is mainly shown, other cerium group (atomic numbers 57 to 62) and yttrium group (atomic numbers 63 to 71) oxides of rare earth elements exhibit similar behavior. That can easily be inferred.
【0048】そして上記実施例ではScSZ材料にCe
O2、Y2O3、Yb2O3、Gd 2O3のいずれか1
種類を添加したものについて説明したがCeO2とY2
O3の2種類、あるいは他の組み合わせの2種類または
3種類以上を添加するものであっても同様の効果が得ら
れることも容易に推察できることである。In the above embodiment, the ScSZ material is made of Ce.
O2, Y2O3, Yb2O3, Gd 2O3Any one of
We explained the type that added CeO2And Y2
O3Two types, or two types of other combinations or
Similar effects can be obtained even if three or more types are added.
It is easy to guess.
【0049】また上記実施例では、燃料電池の電解質材
料として説明したが、この電解質材料の特性に鑑みれ
ば、例えば、酸素センサなどの酸素イオン伝導を利用し
たデバイス類などの性能向上にも役立つものである。In the above embodiment, the description has been given of the electrolyte material of the fuel cell. However, in view of the characteristics of the electrolyte material, it is useful for improving the performance of devices using oxygen ion conduction, such as an oxygen sensor. It is.
【0050】[0050]
【発明の効果】本発明の高イオン導電性固体電解質材料
によれば、スカンジア安定化ジルコニア(ScSZ)に
希土類酸化物を添加することにより、さらに高い酸素イ
オン導電性が得られ、しかも結晶相が安定するためにそ
の高いイオン導電特性を恒久的に持続することができ
る。また材料強度を高く維持することもできる。According to the high ionic conductive solid electrolyte material of the present invention, by adding a rare earth oxide to scandia-stabilized zirconia (ScSZ), higher oxygen ionic conductivity can be obtained, and the crystal phase can be improved. Its high ionic conductivity can be maintained permanently for stability. Further, the material strength can be kept high.
【0051】そしてこの固体電解質材料を固体高分子型
燃料電池(SOFC)に適用することは、電池の内部抵
抗が減って電池の発電性能(出力密度もしくは発電効
率)を向上させることができるし、逆に同一レベルの発
電性能であれば、SOFCの小型化などを図ることがで
きる。またSOFCの作動温度の低減が可能となるた
め、安価な周辺材料の使用が可能となり、SOFCの低
コスト化にも役立つ。さらに製造上も結晶相安定化のた
めの希土類はスカンジウムと同時に添加できるため、粉
末原料の製造プロセスが簡略化できる利点もある。Applying this solid electrolyte material to a polymer electrolyte fuel cell (SOFC) can reduce the internal resistance of the battery and improve the power generation performance (output density or power generation efficiency) of the battery. Conversely, if the power generation performance is at the same level, the size of the SOFC can be reduced. Further, since the operating temperature of the SOFC can be reduced, inexpensive peripheral materials can be used, which contributes to the cost reduction of the SOFC. Further, since the rare earth element for stabilizing the crystal phase can be added simultaneously with scandium during production, there is an advantage that the production process of the powder raw material can be simplified.
【図1】本発明に係る高イオン導電性固体電解質材料の
製造工程を示すフローチャートである。FIG. 1 is a flowchart showing a manufacturing process of a high ionic conductive solid electrolyte material according to the present invention.
【図2】図1の製造工程により製造した固体電解質材料
を用いて燃料電池(SOFC)の電池セルを製造する工
程図である。FIG. 2 is a process chart for manufacturing a battery cell of a fuel cell (SOFC) using the solid electrolyte material manufactured by the manufacturing process of FIG.
【図3】各種固体電解質材料(10Sc1CeSZ、1
0Sc1YSZ、11ScSZ1A、8YSZ)の導電
率測定試験結果(温度依存性)をグラフに示した図であ
る。FIG. 3 shows various solid electrolyte materials (10 Sc1 CeSZ, 1
It is the figure which showed the conductivity measurement test result (temperature dependence) of 0Sc1YSZ, 11ScSZ1A, 8YSZ) in the graph.
【図4】セリア(CeO2 )添加のScSZ材料につ
いてそのセリア(CeO2 )の添加量を変えた時の導
電率測定試験結果(温度依存性)をグラフに示した図で
ある。FIG. 4 is a graph showing the results of a conductivity measurement test (temperature dependence) when changing the amount of ceria (CeO 2 ) in a ScSZ material to which ceria (CeO 2 ) is added.
Claims (2)
ジア5〜15モル%と、その他の1種又は2種以上の希
土類酸化物0.5〜5モル%とが配合固溶されると共
に、スカンジアとその他の希土類酸化物との合計配合量
が9〜15モル%の範囲に調製されていることを特徴と
する高イオン導電性固体電解質材料。1. Zirconia as a main component, in which 5 to 15 mol% of scandia and 0.5 to 5 mol% of one or more other rare earth oxides are mixed and solid-dissolved. A high ionic conductive solid electrolyte material, characterized in that the total blending amount thereof and other rare earth oxides is adjusted in the range of 9 to 15 mol%.
側面に酸素極を有する単電池セル構造を備えた固体電解
質型燃料電池であって、前記固体電解質が、ジルコニア
を主成分とし、これにスカンジア5〜15モル%と、そ
の他の1種又は2種以上の希土類酸化物0.5〜5モル
%とが配合固溶されると共に、スカンジアとその他の希
土類酸化物との合計配合量が9〜15モル%の範囲に調
製された材料により構成されていることを特徴とする固
体電解質型燃料電池。2. A solid electrolyte fuel cell having a unit cell structure having a fuel electrode on one side of a solid electrolyte and an oxygen electrode on the other side, wherein the solid electrolyte contains zirconia as a main component, 5 to 15 mol% of scandia and 0.5 to 5 mol% of one or more rare earth oxides are blended into a solid solution, and the total blend amount of scandia and the other rare earth oxides Is a material prepared in the range of 9 to 15 mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11151747A JP2000340240A (en) | 1999-05-31 | 1999-05-31 | High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11151747A JP2000340240A (en) | 1999-05-31 | 1999-05-31 | High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008192955A Division JP5311913B2 (en) | 2008-07-28 | 2008-07-28 | Method for producing high ion conductive solid electrolyte material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000340240A true JP2000340240A (en) | 2000-12-08 |
Family
ID=15525407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11151747A Pending JP2000340240A (en) | 1999-05-31 | 1999-05-31 | High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000340240A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003068324A (en) * | 2001-06-15 | 2003-03-07 | Ngk Spark Plug Co Ltd | Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same |
JP2004087490A (en) * | 2002-08-06 | 2004-03-18 | Toto Ltd | Solid oxide fuel cell |
US6787261B2 (en) * | 2000-10-23 | 2004-09-07 | Toho Gas Co., Ltd. | Solid oxide fuel cell |
JP2008258170A (en) * | 2002-09-13 | 2008-10-23 | Toto Ltd | Solid oxide fuel cell |
JP2008305804A (en) * | 2008-07-28 | 2008-12-18 | Toho Gas Co Ltd | High ion conductive solid electrolyte material and production method thereof, sintered body, solid electrolyte fuel cell |
JP2010500957A (en) * | 2006-08-17 | 2010-01-14 | ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング | Zirconium oxide and method for producing the same |
KR100955514B1 (en) | 2008-08-26 | 2010-05-03 | 한국에너지기술연구원 | Cubic Siteria Stabilized Zirconia and Solid Oxide Fuel Cells Using the Same |
JP2011079723A (en) * | 2009-10-09 | 2011-04-21 | Agc Seimi Chemical Co Ltd | Scandia-stabilized zirconia and method for producing the same |
KR101081168B1 (en) | 2009-10-15 | 2011-11-07 | 한국생산기술연구원 | Manufacturing method of nano-cescsz powder and manufacturing method of electrolyte and cell for solid oxide fuel cell having the powder |
KR101117351B1 (en) | 2009-03-31 | 2012-03-07 | 한국생산기술연구원 | Electrolyte for solid oxide fuel cell and manufacturing method of the electrolyte and cell having the electrolyte and manufacturing method of the cell |
WO2012105579A1 (en) * | 2011-01-31 | 2012-08-09 | Toto株式会社 | Solid electrolyte material and solid oxide fuel cell provided with same |
WO2012105580A1 (en) * | 2011-01-31 | 2012-08-09 | Toto株式会社 | Solid oxide fuel cell |
JP2013518389A (en) * | 2010-01-26 | 2013-05-20 | ブルーム エナジー コーポレーション | Fuel cell components, especially electrolyte materials for solid oxide fuel cells |
WO2014050124A1 (en) * | 2012-09-26 | 2014-04-03 | 株式会社日本触媒 | Electrolyte sheet for solid oxide fuel cell, electrolyte-supporting cell, single cell for solid oxide fuel cell, and solid oxide fuel cell |
EP2672556A4 (en) * | 2011-01-31 | 2015-07-08 | Toto Ltd | Solid electrolyte material and solid oxide fuel cell provided with same |
JP2015170602A (en) * | 2014-03-06 | 2015-09-28 | 株式会社ケーセラセル | Highly ion conductive zirconia electrolyte for solid oxide fuel cells, highly ion conductive zirconia electrolyte sintered compact, unit cell for solid oxide fuel cells, and method of synthesizing highly ion conductive zirconia electrolyte for solid oxide fuel cells |
JP2016150892A (en) * | 2015-02-19 | 2016-08-22 | 株式会社日本触媒 | Solid electrolyte material |
US9515344B2 (en) | 2012-11-20 | 2016-12-06 | Bloom Energy Corporation | Doped scandia stabilized zirconia electrolyte compositions |
KR101772264B1 (en) * | 2014-03-06 | 2017-08-29 | 주식회사케이세라셀 | High ionic conductive zirconia electrolyte for high efficiency solid oxide fuel cells |
KR20180002095A (en) * | 2016-06-28 | 2018-01-08 | 주식회사케이세라셀 | Scandia stabilized zirconia electrolyte for solid oxide fuel cells with improved reducing atmosphere stability |
WO2018062452A1 (en) * | 2016-09-30 | 2018-04-05 | 国立大学法人九州大学 | Cerium-oxide-stabilized zirconium-oxide-based composition, and method for producing same |
WO2019003422A1 (en) | 2017-06-30 | 2019-01-03 | 第一稀元素化学工業株式会社 | Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell |
CN110600777A (en) * | 2018-06-12 | 2019-12-20 | 阜阳师范学院 | Double-doped zirconium dioxide and alkali metal salt compound and preparation method thereof |
US10593981B2 (en) | 2007-04-13 | 2020-03-17 | Bloom Energy Corporation | Heterogeneous ceramic composite SOFC electrolyte |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457506A (en) * | 1977-10-15 | 1979-05-09 | Toyota Motor Co Ltd | Stabilized zirconia for use as oxygen ion conducting solid electrolyte |
JPH05294629A (en) * | 1992-04-17 | 1993-11-09 | Nippon Telegr & Teleph Corp <Ntt> | Oxygen ionic conductor and solid fuel cell |
JPH0696791A (en) * | 1992-09-14 | 1994-04-08 | Nippon Telegr & Teleph Corp <Ntt> | Solid electrolytic fuel cell and its manufacture |
JPH06116026A (en) * | 1992-09-29 | 1994-04-26 | Kyocera Corp | Zirconia solid electrolyte |
-
1999
- 1999-05-31 JP JP11151747A patent/JP2000340240A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457506A (en) * | 1977-10-15 | 1979-05-09 | Toyota Motor Co Ltd | Stabilized zirconia for use as oxygen ion conducting solid electrolyte |
JPH05294629A (en) * | 1992-04-17 | 1993-11-09 | Nippon Telegr & Teleph Corp <Ntt> | Oxygen ionic conductor and solid fuel cell |
JPH0696791A (en) * | 1992-09-14 | 1994-04-08 | Nippon Telegr & Teleph Corp <Ntt> | Solid electrolytic fuel cell and its manufacture |
JPH06116026A (en) * | 1992-09-29 | 1994-04-26 | Kyocera Corp | Zirconia solid electrolyte |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6787261B2 (en) * | 2000-10-23 | 2004-09-07 | Toho Gas Co., Ltd. | Solid oxide fuel cell |
JP2003068324A (en) * | 2001-06-15 | 2003-03-07 | Ngk Spark Plug Co Ltd | Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same |
JP2004087490A (en) * | 2002-08-06 | 2004-03-18 | Toto Ltd | Solid oxide fuel cell |
JP2008258170A (en) * | 2002-09-13 | 2008-10-23 | Toto Ltd | Solid oxide fuel cell |
JP2010500957A (en) * | 2006-08-17 | 2010-01-14 | ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング | Zirconium oxide and method for producing the same |
US10593981B2 (en) | 2007-04-13 | 2020-03-17 | Bloom Energy Corporation | Heterogeneous ceramic composite SOFC electrolyte |
JP2008305804A (en) * | 2008-07-28 | 2008-12-18 | Toho Gas Co Ltd | High ion conductive solid electrolyte material and production method thereof, sintered body, solid electrolyte fuel cell |
KR100955514B1 (en) | 2008-08-26 | 2010-05-03 | 한국에너지기술연구원 | Cubic Siteria Stabilized Zirconia and Solid Oxide Fuel Cells Using the Same |
KR101117351B1 (en) | 2009-03-31 | 2012-03-07 | 한국생산기술연구원 | Electrolyte for solid oxide fuel cell and manufacturing method of the electrolyte and cell having the electrolyte and manufacturing method of the cell |
JP2011079723A (en) * | 2009-10-09 | 2011-04-21 | Agc Seimi Chemical Co Ltd | Scandia-stabilized zirconia and method for producing the same |
KR101081168B1 (en) | 2009-10-15 | 2011-11-07 | 한국생산기술연구원 | Manufacturing method of nano-cescsz powder and manufacturing method of electrolyte and cell for solid oxide fuel cell having the powder |
US9799909B2 (en) | 2010-01-26 | 2017-10-24 | Bloom Energy Corporation | Phase stable doped zirconia electrolyte compositions with low degradation |
JP2013518389A (en) * | 2010-01-26 | 2013-05-20 | ブルーム エナジー コーポレーション | Fuel cell components, especially electrolyte materials for solid oxide fuel cells |
US8580456B2 (en) | 2010-01-26 | 2013-11-12 | Bloom Energy Corporation | Phase stable doped zirconia electrolyte compositions with low degradation |
US9413024B2 (en) | 2010-01-26 | 2016-08-09 | Bloom Energy Corporation | Phase stable doped zirconia electrolyte compositions with low degradation |
EP2672556A4 (en) * | 2011-01-31 | 2015-07-08 | Toto Ltd | Solid electrolyte material and solid oxide fuel cell provided with same |
WO2012105580A1 (en) * | 2011-01-31 | 2012-08-09 | Toto株式会社 | Solid oxide fuel cell |
JPWO2012105579A1 (en) * | 2011-01-31 | 2014-07-03 | Toto株式会社 | Solid electrolyte material and solid oxide fuel cell having the same |
WO2012105579A1 (en) * | 2011-01-31 | 2012-08-09 | Toto株式会社 | Solid electrolyte material and solid oxide fuel cell provided with same |
JPWO2012105580A1 (en) * | 2011-01-31 | 2014-07-03 | Toto株式会社 | Solid oxide fuel cell |
CN104685684A (en) * | 2012-09-26 | 2015-06-03 | 株式会社日本触媒 | Electrolyte sheet for solid oxide fuel cell, electrolyte-supporting cell, single cell for solid oxide fuel cell, and solid oxide fuel cell |
JP5890908B2 (en) * | 2012-09-26 | 2016-03-22 | 株式会社日本触媒 | Electrolyte sheet for solid oxide fuel cell, electrolyte supporting cell, single cell for solid oxide fuel cell, and solid oxide fuel cell |
WO2014050124A1 (en) * | 2012-09-26 | 2014-04-03 | 株式会社日本触媒 | Electrolyte sheet for solid oxide fuel cell, electrolyte-supporting cell, single cell for solid oxide fuel cell, and solid oxide fuel cell |
US10381673B2 (en) | 2012-11-20 | 2019-08-13 | Bloom Energy Corporation | Doped scandia stabilized zirconia electrolyte compositions |
US9515344B2 (en) | 2012-11-20 | 2016-12-06 | Bloom Energy Corporation | Doped scandia stabilized zirconia electrolyte compositions |
US10978726B2 (en) | 2012-11-20 | 2021-04-13 | Bloom Energy Corporation | Doped scandia stabilized zirconia electrolyte compositions |
JP2015170602A (en) * | 2014-03-06 | 2015-09-28 | 株式会社ケーセラセル | Highly ion conductive zirconia electrolyte for solid oxide fuel cells, highly ion conductive zirconia electrolyte sintered compact, unit cell for solid oxide fuel cells, and method of synthesizing highly ion conductive zirconia electrolyte for solid oxide fuel cells |
KR101772264B1 (en) * | 2014-03-06 | 2017-08-29 | 주식회사케이세라셀 | High ionic conductive zirconia electrolyte for high efficiency solid oxide fuel cells |
JP2016150892A (en) * | 2015-02-19 | 2016-08-22 | 株式会社日本触媒 | Solid electrolyte material |
KR20180002095A (en) * | 2016-06-28 | 2018-01-08 | 주식회사케이세라셀 | Scandia stabilized zirconia electrolyte for solid oxide fuel cells with improved reducing atmosphere stability |
JP2018006319A (en) * | 2016-06-28 | 2018-01-11 | ケーセラセル カンパニー リミテッド | Scandia-stabilized zirconia electrolyte for solid oxide fuel cell with reduction atmosphere stability improved |
KR101867161B1 (en) * | 2016-06-28 | 2018-06-14 | 주식회사케이세라셀 | Scandia stabilized zirconia electrolyte for solid oxide fuel cells with improved reducing atmosphere stability |
WO2018062452A1 (en) * | 2016-09-30 | 2018-04-05 | 国立大学法人九州大学 | Cerium-oxide-stabilized zirconium-oxide-based composition, and method for producing same |
WO2019003422A1 (en) | 2017-06-30 | 2019-01-03 | 第一稀元素化学工業株式会社 | Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell |
KR20200024785A (en) | 2017-06-30 | 2020-03-09 | 다이치 키겐소 카가쿠 코교 컴퍼니 리미티드 | Scandia stabilized zirconia powder for solid oxide fuel cell and method for manufacturing same, Scandia stabilized zirconia sintered body for solid oxide fuel cell and method for manufacturing same, and solid oxide fuel cell |
US11462760B2 (en) | 2017-06-30 | 2022-10-04 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell |
CN110600777A (en) * | 2018-06-12 | 2019-12-20 | 阜阳师范学院 | Double-doped zirconium dioxide and alkali metal salt compound and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000340240A (en) | High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same | |
JP5311913B2 (en) | Method for producing high ion conductive solid electrolyte material | |
JP5405591B2 (en) | Co-doped YSZ electrolyte for solid oxide fuel cell stack | |
Sammes et al. | Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials | |
JP4608047B2 (en) | Mixed ionic conductor and device using the same | |
JP4608506B2 (en) | Mixed ionic conductor and device using the same | |
US20130224628A1 (en) | Functional layer material for solid oxide fuel cell, functional layer manufactured using functional layer material, and solid oxide fuel cell including functional layer | |
KR20170027242A (en) | Ceria electrolyte for low temperature sintering and solid oxide fuel cells using the same | |
TWI667841B (en) | Doped scandia stabilized zirconia electrolyte compositions | |
CN101901922A (en) | Composite oxide, sintered body, solid electrolyte and manufacturing method thereof | |
JP5436588B2 (en) | High ion conductive solid electrolyte material and sintered body, and solid electrolyte fuel cell | |
JP3620800B2 (en) | Method for producing solid electrolyte sintered body | |
JP4889166B2 (en) | Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same | |
JPH0769720A (en) | Composite dispersion strengthened solid electrolyte material | |
JP3729194B2 (en) | Solid oxide fuel cell | |
JPH05294629A (en) | Oxygen ionic conductor and solid fuel cell | |
JP3411064B2 (en) | Method for producing solid electrolyte sintered body for solid oxide fuel cell | |
JP2000044340A (en) | Lanthanum gallate-based sintered body, method for producing the same, and fuel cell using the same as solid electrolyte | |
JP4039618B2 (en) | Solid oxide fuel cell | |
JP4184039B2 (en) | Oxygen ion conductive solid electrolyte, electrochemical device using the same, and solid oxide fuel cell | |
JP3598956B2 (en) | Gallate composite oxide solid electrolyte material and method for producing the same | |
JP2001072465A (en) | Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same | |
JP2003068324A (en) | Oxygen ion conductive solid electrolytic and electrochemical device and solid electrolytic fuel cell using same | |
JPH076774A (en) | Scandia-stabilized zirconia-based solid oxide fuel cell | |
JPH076768A (en) | Nickel-scandia-stabilized zirconia-based cermet fuel electrode in solid oxide fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071119 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080728 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080814 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20081024 |