JP2000119750A - Production of high strength steel tube for hollow stabilizer excellent in fatigue durability - Google Patents

Production of high strength steel tube for hollow stabilizer excellent in fatigue durability

Info

Publication number
JP2000119750A
JP2000119750A JP10296606A JP29660698A JP2000119750A JP 2000119750 A JP2000119750 A JP 2000119750A JP 10296606 A JP10296606 A JP 10296606A JP 29660698 A JP29660698 A JP 29660698A JP 2000119750 A JP2000119750 A JP 2000119750A
Authority
JP
Japan
Prior art keywords
weight
steel pipe
hot
transformation point
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10296606A
Other languages
Japanese (ja)
Other versions
JP4055920B2 (en
Inventor
Koji Omosako
浩次 面迫
Terushi Hiramatsu
昭史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP29660698A priority Critical patent/JP4055920B2/en
Publication of JP2000119750A publication Critical patent/JP2000119750A/en
Application granted granted Critical
Publication of JP4055920B2 publication Critical patent/JP4055920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high strength electric resistance welded tube in which the softening and hardening of a welding heat-affected part are suppressed and excellent in fatigue durability. SOLUTION: A slab contg. 0.03 to 0.10% C, 0.20 to 1.0% Si, 1.0 to 2.5% Mn, <=0.03% P, <=0.005% S, <=150 ppm (N+O), 0.02 to 0.20% Ti, 0.02 to 0.10% Nb, 0.01 to 0.1% total Al, 0 to 0.0050% B, 0 to 0.3% Cr and 0 to 0.0050% Ca is heated at 1,150 to 1,300 deg.C, is thereafter hot-rolled in the state that the total rolling ratio in finish rolling is controlled to >=90% and the finishing temp. in controlled to the Ar transformation point to the Ar3 transformation point +100 deg.C, is cooled at a cooling rate of 10 to 50 deg.C/sec and is coiled at 450 to 550 deg.C coiling temp. to form it into a hot rolled coil. In the case of producing an electric ressitance welded tube after pickling, after cooling an electric resistance weld part, continuously, by high frequency heating, the electric resistance weld part is tempered in the temp. range of the Ac1 transformation point to the Ac1 transformation point -70 deg.C. It is preferable that, at the time of the hot rolling, descaling under >=200 kgf/cm2 descaler discharging pressure is executed in the temp. range of 900 to 1,100 deg.C for at least one or more passes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車の走行安定性を
保持する中空スタビライザに使用される高強度電縫鋼管
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength electric resistance welded steel pipe used for a hollow stabilizer for maintaining the running stability of an automobile.

【0002】[0002]

【従来の技術】自動車の燃費向上に関する改善は急速に
進められており、その対策の一つとして軽量化が種々検
討されている。たとえば、コーナリング時に車体のロー
リングを緩和し、高速走行時に車体の安定性を保持する
スタビライザとして、SUP6,S45C等の棒鋼をス
タビライザ形状に加工した後、焼入れ・焼戻し処理した
中実スタビライザに替えて、S20C等の継目無し鋼
管,電縫鋼管等に焼入れ・焼戻し処理を施した軽量な中
空スタビライザが一部で使用されている。最近では、更
にコスト低減及び軽量化を図るため、熱延材を用い、焼
入れ・焼戻し処理を省略したアズロール型中空スタビラ
イザが検討されるようになってきた。アズロール型中空
スタビライザの製造法としても、調質熱処理を前提にし
た従来の中空スタビライザのように比較的強度の低い鋼
管を用いて複雑な曲げ加工を施す方法に替え、高強度鋼
管を用いて比較的単純な形状に成形加工し、他の部品を
アーク溶接等で接合する方法も採用され始めている。そ
のため、中空スタビライザとして使用される電縫鋼管に
は、電縫溶接部だけでなく、アーク溶接等による他部品
との接合部における熱影響部についても硬化又は軟化が
生じ難く、疲労耐久性に優れていることが要求される。
2. Description of the Related Art Improvements in improving the fuel efficiency of automobiles are being rapidly promoted, and various measures are being taken to reduce the weight as one of the measures. For example, as a stabilizer that eases rolling of the vehicle body during cornering and maintains the stability of the vehicle body during high-speed running, bar steel such as SUP6 and S45C is processed into a stabilizer shape, and then replaced with a solid stabilizer that is quenched and tempered. A lightweight hollow stabilizer obtained by quenching and tempering a seamless steel pipe such as S20C, an electric resistance welded steel pipe, or the like is used. Recently, in order to further reduce costs and reduce weight, an as-roll type hollow stabilizer using a hot-rolled material and omitting quenching and tempering treatments has been studied. The manufacturing method of the as-roll type hollow stabilizer is also compared with the method using a high-strength steel pipe, replacing the method of performing a complicated bending process with a relatively low-strength steel pipe like the conventional hollow stabilizer that presupposes heat treatment. It has also begun to adopt a method of forming a simple shape and joining other parts by arc welding or the like. Therefore, in the ERW steel pipe used as the hollow stabilizer, hardening or softening hardly occurs not only in the ERW weld but also in the heat-affected zone at the joint with other parts by arc welding etc., and it has excellent fatigue durability. Is required.

【0003】[0003]

【発明が解決しようとする課題】アズロール型中空スタ
ビライザ用の電縫鋼管としてこれまで種々の提案がされ
ているが、電縫溶接部に加え他部品との接合部における
熱影響部についても十分な特性を備えた電縫鋼管が得ら
れていないことが現状である。たとえば、C含有量を
0.08〜0.23重量%とし、Mn,Si,Nb等を
特定量以下に規制し、Cr,Moの1種又は2種を特定
量以下で添加した鋼を熱間圧延した後、電縫溶接し、造
管のままで、或いは歪取り焼鈍して引張強さ60〜10
0kgf/mm2 の鋼管が得られることが特開平2−1
97525号公報で紹介されている。また、特開平6−
10046号公報では、溶接時の熱影響部が軟化し難い
成分設計を採用し、疲労強度が改善された引張強さ10
0〜130kgf/mm2 の鋼管を得ている。しかし、
何れも中炭素鋼にCr:0.3〜1.0重量%又はM
o:0.3〜1.0重量%を添加した鋼材であり、コス
ト高になると共に、溶接熱影響部にベイナイト,マルテ
ンサイト等の低温変態相が生じ易い。そのため、高強度
鋼管と他部品とを溶接した場合に溶接接合部の熱影響部
に生じ易い硬化又は軟化によって、疲労特性がばらつき
やすい電縫鋼管である。
Various ERW steel pipes for an as-roll type hollow stabilizer have been proposed so far. However, in addition to ERW welds, sufficient heat-affected zones at joints with other parts are not sufficient. At present, an electric resistance welded steel pipe having characteristics has not been obtained. For example, C content is set to 0.08 to 0.23% by weight, Mn, Si, Nb and the like are regulated to a specific amount or less, and steel to which one or two types of Cr and Mo are added in a specific amount or less is heated. After rolling during rolling, ERW welding, as-tube-formed or strain-relieving annealing is applied to tensile strength of 60 to 10
It has been found that a steel pipe of 0 kgf / mm 2 can be obtained.
No. 97525. In addition, Japanese Unexamined Patent Publication No.
Japanese Patent Application Publication No. 10046 discloses a component design in which the heat-affected zone during welding is hardly softened, and has a tensile strength of 10 with improved fatigue strength.
A steel pipe of 0 to 130 kgf / mm 2 is obtained. But,
In any case, Cr: 0.3 to 1.0% by weight or M in medium carbon steel
o: A steel material containing 0.3 to 1.0% by weight, which increases the cost and easily causes a low-temperature transformation phase such as bainite and martensite in the heat affected zone. Therefore, when the high-strength steel pipe is welded to another component, the electric resistance welded steel pipe has a fatigue characteristic that tends to vary due to hardening or softening that easily occurs in the heat-affected zone of the welded joint.

【0004】[0004]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、微細フェライト
と微細パーライトの混合組織にTi,Nbを含む析出物
が微細に分散した金属組織とすることにより、他部品と
溶接した場合に溶接接合部の熱影響部に硬化や軟化が生
じ難く、690〜1100N/mm2 の引張強さを示す
電縫鋼管を低コストで製造することを目的とする。
SUMMARY OF THE INVENTION The present invention has been devised to solve such a problem, and a precipitate containing Ti and Nb is finely dispersed in a mixed structure of fine ferrite and fine pearlite. By using a metal structure, hardening or softening hardly occurs in the heat-affected zone of the welded joint when welding with other parts, and an electric resistance welded steel pipe showing a tensile strength of 690 to 1100 N / mm 2 is manufactured at low cost. The purpose is to:

【0005】本発明の製造方法は、その目的を達成する
ため、C:0.03〜0.10重量%,Si:0.20
〜1.0重量%,Mn:1.0〜2.5重量%,P:
0.03重量%以下,S:0.005重量%以下,(N
+O):150ppm以下,Ti:0.02〜0.20
重量%,Nb:0.02〜0.10重量%,トータルA
l:0.01〜0.1重量%,残部が実質的にFeの組
成をもつスラブを1150〜1300℃に加熱した後、
仕上げ圧延でのトータル圧延率:90%以上,仕上げ温
度:Ar3変態点〜Ar3変態点+100℃で熱間圧延し、
冷却速度10〜50℃/秒で冷却し、巻取り温度450
〜550℃で巻き取って熱延コイルとし、該熱延コイル
を酸洗後に電縫鋼管とする際、電縫溶接部の冷却後に連
続して高周波加熱により電縫溶接部をAc1変態点〜Ac1
変態点−70℃の温度域で焼き戻すことを特徴とする。
[0005] The production method of the present invention, in order to achieve the object, C: 0.03 to 0.10 wt%, Si: 0.20%.
To 1.0% by weight, Mn: 1.0 to 2.5% by weight, P:
0.03% by weight or less, S: 0.005% by weight or less, (N
+ O): 150 ppm or less, Ti: 0.02 to 0.20
Wt%, Nb: 0.02 to 0.10 wt%, total A
l: After heating a slab having a composition of 0.01 to 0.1% by weight, with the balance being substantially Fe, to 1150 to 1300 ° C,
Total rolling reduction at the finish rolling: 90%, finishing temperature: hot rolling at A r3 transformation point to A r3 transformation point + 100 ° C.,
Cool at a cooling rate of 10 to 50 ° C./sec.
When the hot-rolled coil is taken up at 550 ° C. to form a hot-rolled coil, and the hot-rolled coil is made into an ERW steel pipe after being pickled, the ERW weld is continuously cooled by cooling the ERW weld to the A c1 transformation point by high frequency heating. A c1
It is characterized by tempering in a temperature range of a transformation point of -70 ° C.

【0006】使用する鋼材は、更にB:0.0050重
量%以下,Cr:0.3重量%以下,Ca:0.005
0重量%以下の1種又は2種以上を含むことができる。
熱間圧延時に、900〜1100℃の温度域でデスケー
ラ吐出圧力200kgf/cm2 以上のデスケールを少
なくとも1パス以上実施すると、疲労破壊の起点となる
欠陥部のない良好な表面をもつ熱延鋼帯が得られる。電
縫鋼管は、疲労耐久性及び軽量化を両立させる上で、肉
厚をT,外径をDとして0.07〜0.15の肉厚外径
比T/Dをもつことが好ましい。
[0006] The steel materials used are B: 0.0050% by weight or less, Cr: 0.3% by weight or less, and Ca: 0.005% by weight.
One or more of 0% by weight or less can be contained.
A hot-rolled steel strip having a good surface without a defect portion which becomes a starting point of fatigue fracture when at least one pass of descaling with a descaler discharge pressure of 200 kgf / cm 2 or more is performed in a temperature range of 900 to 1100 ° C. during hot rolling. Is obtained. The electric resistance welded steel pipe preferably has a wall thickness ratio T / D of 0.07 to 0.15, where T is the wall thickness and D is the outer diameter, for achieving both fatigue durability and weight reduction.

【0007】[0007]

【作用】本発明者等は、中空スタビライザの要求特性を
満足させるため、電縫鋼管の機械的性質に及ぼす成分条
件,製造条件等を調査検討した。その結果、強度確保に
有効であるC量を可能な限り低く抑えて溶接部の延性を
確保し、Ti,Nbの炭窒化物生成及び細粒化効果を活
用して溶接熱影響部の軟化及び硬化を抑制することが有
効であることを見出した。また、強度を向上させ、電縫
溶接部やアーク溶接部の硬度差を小さくする上では微細
なフェライト+パーライト組織が効果的であることを解
明し、このような組織を得るための成分条件及び製造条
件を適正化した。
In order to satisfy the required characteristics of the hollow stabilizer, the present inventors have investigated and studied the component conditions, the manufacturing conditions, and the like that affect the mechanical properties of the ERW steel pipe. As a result, the C content effective for ensuring the strength is kept as low as possible to secure the ductility of the welded portion, and the softening of the weld heat affected zone and the effect of the carbonitride generation and grain refinement of Ti and Nb are utilized. It has been found that suppressing curing is effective. In addition, it was clarified that a fine ferrite + pearlite structure was effective in improving the strength and reducing the hardness difference between the electric resistance welded portion and the arc welded portion. Manufacturing conditions have been optimized.

【0008】以下、本発明で使用する鋼材の合金成分,
含有量,製造条件等を説明する。C:0.03〜0.10重量% 強度を確保する上で重要な合金成分である。C含有量が
少ないほど溶接部の延性が良くなるものの、鋼管の強度
が低下することから、本発明ではC含有量の下限を0.
03重量%に設定した。しかし、0.10重量%を超え
る多量のCが含まれると、ベイナイト又はマルテンサイ
ト組織となり、加工性及び疲労耐久性が劣化する傾向が
みられる。また、溶接熱影響部が軟化しやすくなる。Si:0.20〜1.0重量% 固溶強化型の合金成分であり、本発明のようにC含有量
を下げた鋼種にあっては、強度確保のために少なくとも
0.20重量%以上が必要である。しかし、1.0重量
%を超える多量のSiが含まれると、スラブ加熱時にフ
ァイアライトが生成し、熱間圧延時にデスケール性が劣
化しやすく、表面疵が疲労の起点となって疲労耐久性を
劣化させる場合がある。多量のSiは、電縫鋼管の溶接
性及び靭性にも悪影響を及ぼす。
Hereinafter, the alloy components of the steel used in the present invention,
The content, production conditions, and the like will be described. C: An important alloy component for securing 0.03 to 0.10% by weight strength. The lower the C content, the better the ductility of the weld, but the lower the strength of the steel pipe. Therefore, in the present invention, the lower limit of the C content is set to 0.1.
It was set to 03% by weight. However, when a large amount of C exceeding 0.10% by weight is contained, a bainite or martensite structure is formed, and the workability and fatigue durability tend to be deteriorated. In addition, the heat affected zone is easily softened. Si: 0.20 to 1.0% by weight of a solid solution strengthening type alloy component. In the steel type having a reduced C content as in the present invention, at least 0.20% by weight or more for ensuring strength. is necessary. However, when a large amount of Si exceeding 1.0% by weight is included, firelite is generated during slab heating, descaleability is likely to be degraded during hot rolling, and surface flaws serve as a starting point of fatigue to reduce fatigue durability. May deteriorate. A large amount of Si adversely affects the weldability and toughness of the ERW pipe.

【0009】Mn:1.0〜2.5重量% 強度及び靭性を確保する上で不可欠な合金成分であり、
少なくとも1.0重量%以上のMnが必要である。しか
し、2.5重量%を超えるMn含有は、靭性を劣化させ
るばかりでなく焼入れ性が強化され、溶接部の靭性を劣
化させ、溶接熱影響部では母材硬さより軟化することが
ある。P:0.03重量%以下 溶接時の耐割れ性や靭性に悪影響を及ぼす成分であり、
本発明ではP含有量の上限を0.03重量%に設定し
た。S:0.005重量%以下 展伸したMnSとなり、加工性及び靭性を劣化させる有
害元素である。特に、本発明のようにMnを添加した鋼
種にあっては、Mnの効果を損わないためS含有量の上
限を0.005重量%(好ましくは、0.002重量
%)に規制する。
Mn: 1.0-2.5% by weight An alloy component indispensable for securing strength and toughness,
At least 1.0% by weight or more of Mn is required. However, if the Mn content exceeds 2.5% by weight, not only the toughness is deteriorated, but also the hardenability is enhanced, the toughness of the welded portion is deteriorated, and the weld heat affected zone may soften more than the base metal hardness. P: 0.03% by weight or less A component that has an adverse effect on crack resistance and toughness during welding,
In the present invention, the upper limit of the P content is set to 0.03% by weight. S: MnS expanded to 0.005% by weight or less and is a harmful element that deteriorates workability and toughness. Particularly, in the steel type to which Mn is added as in the present invention, the upper limit of the S content is regulated to 0.005% by weight (preferably 0.002% by weight) in order not to impair the effect of Mn.

【0010】(N+O):150ppm以下 Nは、TiNを形成し、溶接時の結晶粒の粗大化を抑制
する効果がある。しかし、多量のNが含まれると、固溶
Nによる時効硬化が生じて靭性が劣化し、更にはOが高
い場合には破壊の起点となる酸化物を生成する。そこ
で、本発明においては、(N+O)を150ppm以下
に設定した。Ti:0.02〜0.20重量% TiNを生成し、溶接熱影響部の結晶粒を微細化する作
用を呈し、強度改善に有効な合金成分である。結晶粒の
微細化は、溶接熱影響部の靭性を向上させる上でも有効
である。このような効果は、0.02重量%以上のTi
添加で顕著になる。しかし、0.20重量%を超える多
量のTiが含まれると、TiNが粗大化して溶接熱影響
部が硬化するため、靭性が劣化する。
(N + O): 150 ppm or less N forms TiN and has an effect of suppressing the coarsening of crystal grains during welding. However, when a large amount of N is contained, age hardening due to solid solution N occurs to deteriorate toughness, and further, when O is high, an oxide serving as a starting point of fracture is generated. Therefore, in the present invention, (N + O) is set to 150 ppm or less. Ti: 0.02 to 0.20% by weight TiN is produced, and has an effect of making the crystal grains of the weld heat affected zone finer, and is an effective alloy component for improving the strength. Refinement of crystal grains is also effective in improving the toughness of the heat affected zone. Such an effect can be obtained by using 0.02% by weight or more of Ti.
It becomes remarkable by addition. However, when a large amount of Ti exceeding 0.20% by weight is contained, TiN is coarsened and the heat affected zone is hardened, so that the toughness is deteriorated.

【0011】Nb:0.02〜0.10重量% Nb炭窒化物の生成によって結晶粒を微細化し、熱影響
部の軟化を抑制する重要な合金成分である。結晶粒の微
細化による軟化抑制効果及び母材の強度確保のために
は、0.02重量%以上のNbが必要である。しかし、
0.10重量%を超える過剰量のNbは、鋼材のコスト
を上昇させるばかりでなく、溶接性や靭性に悪影響を及
ぼす。B:0.0050重量%以下 必要に応じて添加される合金成分であり、ごく微量の添
加で結晶粒界の歪みエネルギを低下させ、靭性を改善す
る作用を呈する。しかし、0.0050重量%を超える
Bを添加すると、溶接時にベイナイト組織になり易く、
硬化する傾向がみられる。多量のB添加は、靭性にも悪
影響を及ぼす。
Nb: 0.02 to 0.10% by weight Nb is an important alloy component that refines crystal grains by forming Nb carbonitride and suppresses softening of the heat-affected zone. Nb of 0.02% by weight or more is required for the effect of suppressing softening due to the refinement of crystal grains and ensuring the strength of the base material. But,
An excessive amount of Nb exceeding 0.10% by weight not only increases the cost of the steel material but also adversely affects weldability and toughness. B: 0.0050% by weight or less An alloy component that is added as needed. When added in a very small amount, it has the effect of reducing the strain energy at the crystal grain boundaries and improving the toughness. However, if B is added in an amount exceeding 0.0050% by weight, a bainite structure is likely to occur during welding,
There is a tendency to harden. Addition of a large amount of B also has an adverse effect on toughness.

【0012】Cr:0.3重量%以下 必要に応じて添加される合金成分であり、熱影響部の焼
戻し軟化抵抗を大きくし、炭化物を微細化する作用を呈
する。しかし、0.3重量%を超える多量のCrを添加
すると、バンド状組織になりやすく、焼入れ性が増大
し、溶接時に熱影響部の靭性が劣化する傾向がみられ
る。Ca:0.0050重量%以下 必要に応じて添加される合金成分であり、MnS等の硫
化物系介在物の形態を制御する作用を呈する。Ca添加
は、局部伸び及び靭性の向上にも有効に作用する。した
がって、高い加工性が要求される場合には、Caを添加
することが好ましい。しかし、0.0050重量%を超
えると、非金属介在物が増加して鋼材の清浄度が損わ
れ、溶接性も劣化する。トータルAl:0.01〜0.1重量% Alは、溶鋼の脱酸剤として使用される成分であり、N
を固定する作用をも呈する。このような作用は、0.0
1重量%以上のAl添加で顕著になる。しかし、脱酸生
成物を含めた鋼中のAl量がトータルで0.1重量%を
超えると、鋼材の清浄度が損われ、鋼板表面に疵が発生
しやすくなる。
[0012] Cr: 0.3 wt% or less An alloy component added as necessary, and has an effect of increasing the tempering softening resistance of the heat-affected zone and miniaturizing carbides. However, when a large amount of Cr exceeding 0.3% by weight is added, a band-like structure is apt to be formed, the hardenability is increased, and the toughness of the heat-affected zone tends to deteriorate during welding. Ca: 0.0050% by weight or less Ca is an alloy component added as necessary, and has an effect of controlling the form of sulfide-based inclusions such as MnS. The addition of Ca effectively acts on local elongation and improvement of toughness. Therefore, when high workability is required, it is preferable to add Ca. However, when the content exceeds 0.0050% by weight, nonmetallic inclusions increase, so that the cleanliness of the steel material is impaired and the weldability is deteriorated. Total Al: 0.01 to 0.1% by weight Al is a component used as a deoxidizing agent for molten steel.
It also has the effect of fixing. Such an effect is 0.0
This becomes significant when Al is added in an amount of 1% by weight or more. However, if the total amount of Al in the steel, including the deoxidized product, exceeds 0.1% by weight, the cleanliness of the steel material is impaired, and flaws are likely to be generated on the steel sheet surface.

【0013】スラブ加熱温度:1150〜1300℃ 熱間圧延に先立って、Ti,Nb等の合金成分をマトリ
ックスに十分固溶させるため、1150℃以上の温度に
スラブを加熱する。しかし、1300℃を超える高い加
熱温度では、結晶粒が粗大に成長して強度,靭性等の機
械的性質が劣化する。
Slab heating temperature: 1150-1300 ° C. Prior to hot rolling, the slab is heated to a temperature of 1150 ° C. or higher in order to sufficiently dissolve alloy components such as Ti and Nb in the matrix. However, at a high heating temperature exceeding 1300 ° C., crystal grains grow coarsely and mechanical properties such as strength and toughness deteriorate.

【0014】熱間圧延:加熱されたスラブは、熱間圧延
工程においてトータル圧延率90%以上で仕上げ圧延さ
れる。トータル圧延率90%以上を確保することによ
り、強度向上に有効な細粒組織が熱延後に得られる。熱
間圧延の仕上げ温度は、Ar3変態点〜Ar3変態点+10
0℃の範囲に設定される。仕上げ温度がAr3変態点未満
では、2相域で圧延されることになり、圧延条件が不安
定になりやすい。しかし、Ar3変態点+100℃を超え
る仕上げ温度では、熱延後のオーステナイト粒が粗大化
し、熱延コイルで細粒組織が得られず強度が低下すると
共に、溶接時に熱影響部が軟化する。熱間圧延により得
られた鋼帯は、冷却速度10〜50℃/秒で冷却され、
450〜550℃で巻き取られる。
Hot rolling : The heated slab is finish-rolled at a total rolling reduction of 90% or more in a hot rolling step. By ensuring a total rolling reduction of 90% or more, a fine grain structure effective for improving strength can be obtained after hot rolling. The finishing temperature of the hot rolling is from the Ar3 transformation point to the Ar3 transformation point +10.
It is set in the range of 0 ° C. If the finishing temperature is lower than the Ar3 transformation point, rolling is performed in the two-phase region, and rolling conditions are likely to be unstable. However, at a finishing temperature exceeding the Ar 3 transformation point + 100 ° C., austenite grains after hot rolling become coarse, a fine-grained structure cannot be obtained in a hot-rolled coil, strength is reduced, and the heat-affected zone is softened during welding. The steel strip obtained by hot rolling is cooled at a cooling rate of 10 to 50 ° C./sec.
Wound at 450-550 ° C.

【0015】熱延後の冷却速度は、金属組織を制御する
ために重要なファクタであり、10℃/秒未満の冷却速
度ではフェライト変態が進行して軟質化し、必要な強度
が得られない。逆に50℃/秒を超える冷却速度では、
熱延鋼帯の組織にベイナイト,マルテンサイト等が含ま
れやすくなる。ベイナイト,マルテンサイト等の組織
は、鋼板の材質変動を大きくし、電縫溶接や他部品との
溶接接合時に熱影響部の軟化の程度を高くする原因とな
る。熱延鋼帯は、微細フェライトと微細パーライトとの
混合組織となるように450〜550℃で巻き取られ
る。巻取り温度が450℃を下回ると、ベイナイトやマ
ルテンサイト組織になり易く、電縫溶接等の溶接熱影響
部が著しく軟化し、スタビライザとして使用する際に軟
化部分に応力集中が発生し、結果的に耐久性が劣化する
ことになる。逆に、550℃を超える巻取り温度では、
粗大なフェライト+パーライト組織となって必要な強度
が得られず、疲労耐久性を劣化させる。
[0015] The cooling rate after hot rolling is an important factor for controlling the metallographic structure. At a cooling rate of less than 10 ° C / sec, the ferrite transformation proceeds to soften and the required strength cannot be obtained. Conversely, at cooling rates exceeding 50 ° C./sec,
Bainite, martensite, etc. are likely to be included in the structure of the hot-rolled steel strip. The structure of bainite, martensite, and the like causes a large change in the material of the steel sheet and causes a high degree of softening of the heat-affected zone at the time of electric resistance welding or welding and joining with other parts. The hot-rolled steel strip is wound at 450 to 550 ° C. so as to have a mixed structure of fine ferrite and fine pearlite. When the winding temperature is lower than 450 ° C, bainite or martensite structure is easily formed, and the heat affected zone of welding such as electric resistance welding is softened remarkably, and stress concentration occurs in the softened portion when used as a stabilizer. In this case, the durability is deteriorated. Conversely, at winding temperatures above 550 ° C,
A coarse ferrite + pearlite structure is not obtained, and the required strength cannot be obtained, deteriorating fatigue durability.

【0016】熱間圧延工程では、900〜1100℃の
温度域でデスケーラ吐出圧力200kgf/cm2 以上
のデスケールを少なくとも1パス以上行うことが好まし
い。デスケーラ吐出圧力を200kgf/cm2 以上と
設定することにより、鋼帯表面からスケールが効率よく
除去され、表面性状の良好な熱延鋼帯が得られる。20
0kgf/cm2 未満のデスケーラ吐出圧力では、デス
ケールが不充分になり、表面に残存するスケールがその
後の熱延で鋼帯表面に押し込まれ、鋼管における疲労破
壊の起点となる凹凸が鋼帯表面に形成されやすい。高い
デスケーラ吐出圧力による高圧デスケールにおいても、
デスケール温度を適正に設定することによって効率の良
いデスケールが可能になる。デスケール温度が900℃
を下回ると、デスケール性が劣り、表面に残存するスケ
ールで熱延鋼帯の表面性状が劣化し、最終的に鋼管とし
た場合に疲労耐久性が劣化する。逆に1100℃を超え
るデスケール温度では、熱延における熱効率が悪く、エ
ッジ部の急激な温度低下によりエッジ割れが発生しやす
くなる。
In the hot rolling step, descaling at a descaler discharge pressure of 200 kgf / cm 2 or more is preferably performed in at least one pass in a temperature range of 900 to 1100 ° C. By setting the descaler discharge pressure to 200 kgf / cm 2 or more, scale is efficiently removed from the surface of the steel strip, and a hot-rolled steel strip having good surface properties can be obtained. 20
At a descaler discharge pressure of less than 0 kgf / cm 2 , the descaling becomes insufficient, the scale remaining on the surface is pushed into the steel strip surface by the subsequent hot rolling, and irregularities that become the starting point of fatigue fracture in the steel pipe are formed on the steel strip surface. Easy to be formed. Even in high pressure descale due to high descaler discharge pressure,
By setting the descaling temperature appropriately, efficient descaling becomes possible. Descale temperature is 900 ℃
If it is less than, the descalability is inferior, the surface properties of the hot-rolled steel strip are deteriorated by the scale remaining on the surface, and the fatigue durability is deteriorated when finally formed into a steel pipe. Conversely, at a descale temperature exceeding 1100 ° C., the thermal efficiency in hot rolling is poor, and edge cracks are likely to occur due to a sharp drop in temperature at the edge.

【0017】電縫溶接後の熱処理:熱延鋼帯は、酸洗後
に電縫溶接によって造管される。電縫鋼管は、肉厚を
T,外径をDとしたとき、疲労耐久性を向上させるため
肉厚外径比T/Dを0.07〜0.15の範囲に設定す
ることが好ましい。肉厚外径比T/Dが小さいほど、肉
厚が薄く外径の大きな電縫鋼管となる。肉厚を薄くする
ことは軽量化の要求が強い車両搭載部品として好適であ
るが、肉厚外径比T/Dが0.07を下回ると中空スタ
ビライザとしての耐久性が確保できない場合がある。逆
に0.15を超える肉厚外径比T/Dで造管すること
は、軽量化に反して棒鋼に近くなり、また厚肉小径とな
って電縫鋼管の表面に残留する引張り応力が耐久性を劣
化させる傾向が現れる。
Heat treatment after ERW : Hot-rolled steel strip is formed by ERW after pickling. When the thickness of the ERW steel pipe is T and the outer diameter is D, it is preferable to set the thickness outer diameter ratio T / D in the range of 0.07 to 0.15 in order to improve fatigue durability. The smaller the thickness outer diameter ratio T / D is, the smaller the wall thickness is and the larger the outer diameter is an ERW steel pipe. Reducing the wall thickness is suitable as a vehicle-mounted component for which there is a strong demand for weight reduction, but if the wall thickness / outside diameter ratio T / D is less than 0.07, durability as a hollow stabilizer may not be secured in some cases. Conversely, forming a pipe with a wall thickness ratio T / D exceeding 0.15 is close to that of a steel bar in spite of the weight reduction, and the tensile stress remaining on the surface of the electric resistance welded steel pipe due to the thin wall diameter becomes small. A tendency to deteriorate durability appears.

【0018】電縫溶接を経た溶接部近傍は、高温への加
熱と急速な冷却を受けているため、溶接のままでは粗大
なマルテンサイト組織になっており、耐久性が著しく低
い。そこで、電縫溶接後に一旦Ms 点以下に冷却してマ
ルテンサイト変態させた後、直ちに連続して高周波加熱
して電縫溶接部を焼き戻し、著しく硬化した電縫溶接部
近傍を回復させる。Ac1変態点―70℃以下の温度で焼
き戻すと、回復が不充分で、スタビライザへの曲げ加工
に支障をきたす。しかし、Ac1変態点を超える温度に加
熱すると、再度オーステナイト化し、焼戻し後の冷却過
程で再びマルテンサイトが生じて硬化する。
Since the vicinity of the welded portion after the electric resistance welding has been heated to a high temperature and rapidly cooled, the as-welded portion has a coarse martensitic structure and has extremely low durability. Therefore, after once by martensite transformation is cooled below M s point after electric resistance welding, tempering the electric resistance welding portion by high-frequency heating immediately in succession, to recover the electric resistance welding vicinity cured significantly. When tempered at transformation point A c1 -70 ° C. a temperature below insufficient recovery, hinder the bending of the stabilizer. However, when heated to a temperature exceeding the A c1 transformation point, austenite is formed again, and martensite is generated again in the cooling process after tempering to harden.

【0019】[0019]

【実施例】表1に掲げた各種鋼材のスラブを常法に従っ
て製造し、表2の熱延条件で熱延鋼帯にした。粗圧延後
の仕上げ圧延前に、デスケーラ吐出圧力100,16
0,250kgf/cm2 で高圧水を用いてデスケール
し、巻取り温度を400〜600℃の範囲で変化させ
た。
EXAMPLES Slabs of various steel materials listed in Table 1 were manufactured according to a conventional method, and were formed into hot-rolled steel strips under the hot-rolling conditions shown in Table 2. Before rough rolling and before finish rolling, the descaler discharge pressure should be 100, 16
Descaling was performed using high-pressure water at 0.250 kgf / cm 2 , and the winding temperature was changed in the range of 400 to 600 ° C.

【0020】 [0020]

【0021】 [0021]

【0022】各熱延鋼帯をスリットし、高周波電縫溶接
で外径21.0mm,肉厚2.6mm(肉厚外径比T/
D=0.123)の鋼管に造管し、直ちに高周波加熱し
て電縫溶接部を680℃に焼き戻した。得られた各電縫
溶接鋼管を、曲げ試験,電縫溶接時の熱影響部の軟化の
有無,硬度差(ΔHV:HVmax −HVmin ),偏平試
験,ねじり疲労試験で評価した。ねじり疲労限は、1×
107 サイクルで破断しない応力とした。引張強さ:6
90〜1100N/mm2 ,電縫溶接部の硬さ:軟化の
有無及び硬さΔHV≦40,スタビライザの加工性とし
て曲げ試験:90度2D曲げで電縫溶接部にわれが生じ
ないこと,偏平試験:8mm以下,衝撃靭性としてー6
0℃における衝撃:エネルギ1120N・mでアール2
5mmのポンチを落下させたときに折損しないこと、疲
労特性としてネジリ疲労試験による疲労限:400N/
mm2 以上を合格基準と設定した。各電縫溶接鋼管の評
価結果を表3に示す。
Each hot-rolled steel strip was slit, and the outer diameter was 21.0 mm and the wall thickness was 2.6 mm by high frequency electric resistance welding (wall thickness outer diameter ratio T /
D = 0.123) and immediately heated by high frequency to temper the ERW weld to 680 ° C. The resulting respective electric resistance welding steel pipe, bending test, the presence or absence of softening of the heat affected zone during electric resistance welding, the hardness difference (ΔHV: HV max -HV min) , was evaluated by flattening test, torsion fatigue test. The torsional fatigue limit is 1 ×
Was the stress that does not break at 10 7 cycles. Tensile strength: 6
90 to 1100 N / mm 2 , Hardness of ERW weld: presence or absence of softening and hardness ΔHV ≦ 40, Bending test as workability of stabilizer: No cracking in ERW weld at 90 ° 2D bending, flatness Test: 8mm or less, impact toughness is -6
Impact at 0 ° C: 2 at energy of 1120 Nm
No breakage when a 5 mm punch is dropped. Fatigue limit: 400 N /
mm 2 or more was set as a passing criterion. Table 3 shows the results of the evaluation of each electric resistance welded steel pipe.

【0023】 [0023]

【0024】試験番号1〜14は、何れも本発明で規定
した成分条件を満足する鋼種A〜Eを使用している。し
かし、試験番号2は、スラブの加熱温度が低く、Ti,
Nbの固溶が不充分なため、電縫溶接部の硬度差ΔHV
が大きくなり、アーク溶接時の硬度差ΔHVも大きくな
っていた。逆にスラブの加熱温度が高い試験番号4で
も、電縫溶接部の硬度差ΔHVが大きくなり、アーク溶
接時の硬度差ΔHVも大きくなっていた。試験番号7で
使用した鋼種CのAr3変態点は845℃であるが、仕上
げ温度が950℃とAr3変態点+100℃を超えるた
め、電縫溶接部の硬度差ΔHVが大きくなり、アーク溶
接時の硬度差ΔHVも大きくなっていた。
Test Nos. 1 to 14 all use steel types A to E satisfying the component conditions specified in the present invention. However, in Test No. 2, the heating temperature of the slab was low and Ti,
Since the solid solution of Nb is insufficient, the hardness difference ΔHV
And the hardness difference ΔHV during arc welding also increased. Conversely, even in Test No. 4 where the slab heating temperature was high, the hardness difference ΔHV of the electric resistance welded portion was large, and the hardness difference ΔHV at the time of arc welding was also large. A r3 transformation point of steel grade C used in Test No. 7 is a 845 ° C., since the finishing temperature exceeds 950 ° C. and A r3 transformation temperature + 100 ° C., the greater the hardness difference ΔHV ERW weld, arc welding The hardness difference ΔHV at the time was also large.

【0025】デスケーラ吐出圧力が250kgf/mm
2 と高い試験番号9は、ねじり疲労において、デスケー
ラ吐出圧力100kgf/mm2 で製造した試験番号1
0に比較してねじり疲労限が更に向上した。トータル圧
下率が低い試験番号11では、電縫溶接部の硬度差ΔH
Vが大きく、ねじり疲労限も低い値を示した。また。曲
げによって加工割れも発生し、アーク溶接時の硬度差Δ
HVも大きくなっていた。試験番号12は、巻取り温度
が高く、冷却速度が遅いため結晶粒径が大きくなり、ね
じり疲労限が低い値を示した。他方、巻取り温度が低く
冷却速度が速い試験番号13は、ベイナイト組織にな
り、電縫溶接部の硬度差ΔHVが大きくなり、アーク溶
接時の硬度差ΔHVも大きくなっていた。また、曲げに
よる加工割れも発生した。
The discharge pressure of the descaler is 250 kgf / mm
2 high Test No. 9, the torsion fatigue test numbers were prepared by the descaler discharge pressure 100 kgf / mm 2 1
As compared with 0, the torsional fatigue limit was further improved. In Test No. 11 having a low total draft, the hardness difference ΔH
V was large and the torsional fatigue limit was also low. Also. Work cracking also occurs due to bending, the hardness difference during arc welding Δ
HV was also getting bigger. In Test No. 12, the winding temperature was high and the cooling rate was low, so that the crystal grain size was large and the torsional fatigue limit was low. On the other hand, in Test No. 13 in which the winding temperature was low and the cooling rate was high, a bainite structure was formed, the hardness difference ΔHV of the electric resistance welded portion was increased, and the hardness difference ΔHV during arc welding was also increased. In addition, processing cracks due to bending also occurred.

【0026】試験番号15〜21は、本発明で規定した
成分条件を外れる鋼種F〜Kを使用した例である。試験
番号15は、Nb含有量の高い鋼種Fを使用したため、
HVmax が高くなり、電縫溶接部の硬度差ΔHVが大き
くなっている。また、アーク溶接時の硬度差ΔHVも大
きく、曲げによる加工割れも発生した。他方、Ti,N
bを添加していない鋼種Gを用いた試験番号16,17
では、電縫溶接部及びアーク溶接部の硬度差ΔHVが大
きく、疲労限も低い値を示した。
Test Nos. 15 to 21 are examples using steel grades F to K which deviate from the component conditions specified in the present invention. Test No. 15 used steel type F having a high Nb content,
HV max is increased, and the hardness difference ΔHV of the electric resistance welded portion is increased. Further, the hardness difference ΔHV at the time of arc welding was large, and a work crack due to bending occurred. On the other hand, Ti, N
Test Nos. 16 and 17 using steel type G to which b was not added
In Example 2, the hardness difference ΔHV between the electric resistance welded portion and the arc welded portion was large, and the fatigue limit was low.

【0027】S,Ti,Caを多量に含む鋼種Hを使用
した試験番号18では曲げ加工性,偏平試験,低温靭性
に劣り、C量が不足する鋼種Iを使用した試験番号19
では引張強さ及びねじり疲労限が低い値を示した。他
方、多量のCを含む鋼種Jを使用した試験番号20は、
電縫溶接部の硬度差ΔHVが大きく、曲げによる加工割
れが発生し、低温衝撃試験でも折損した。また、アーク
溶接部はHmax が高く、硬度差ΔHVが大きくなった。
多量のSi,Mn,Crを含む鋼種Kを使用した試験番
号21では、電縫溶接部の硬度差ΔHVが大きく、曲げ
による加工割れが発生した。また、低温衝撃試験でも折
損し、アーク溶接時の硬度差ΔHVも大きくなってい
た。
Test No. 18 using steel type H containing a large amount of S, Ti and Ca is test number 19 using steel type I which is inferior in bending workability, flatness test and low temperature toughness and lacks C content.
Showed low values of the tensile strength and the torsional fatigue limit. On the other hand, test number 20 using steel type J containing a large amount of C
The hardness difference ΔHV of the ERW welded portion was large, and a work crack due to bending occurred, and it was broken even in a low-temperature impact test. Further, the arc welding unit has a high H max, hardness difference ΔHV is increased.
In Test No. 21 using steel type K containing a large amount of Si, Mn, and Cr, the hardness difference ΔHV of the electric resistance welded portion was large, and a work crack due to bending occurred. In addition, it was broken in the low-temperature impact test, and the hardness difference ΔHV at the time of arc welding was large.

【0028】これに対し、本発明で規定した成分条件及
び製造条件を満足する試験番号1,3,5,6,8,
9,14は、何れも微細なフェライト+パーライト組織
となり、電縫溶接部及びアーク溶接部の硬度差ΔHVが
小さく、ねじり疲労限も400N/mm2 以上と高い値
を示した。鋼種C(本発明例)及び鋼種G(比較例)を
用いた電縫鋼管の電縫溶接部を680℃に高周波加熱し
て焼戻し、硬さを測定したところ、それぞれ図1に示す
硬度分布をもっていた。
On the other hand, Test Nos. 1, 3, 5, 6, 8, and 9 satisfying the component conditions and production conditions specified in the present invention.
Samples Nos. 9 and 14 each had a fine ferrite + pearlite structure, a small hardness difference ΔHV between the electric resistance welded portion and the arc welded portion, and a high torsional fatigue limit of 400 N / mm 2 or more. When the ERW welded portion of the ERW steel pipe using the steel type C (Example of the present invention) and the steel type G (Comparative Example) was tempered by high-frequency heating to 680 ° C. and the hardness was measured, the hardness distribution was as shown in FIG. Was.

【0029】次いで、本発明で規定した製造条件で鋼種
Cから外径,肉厚が異なる電縫溶接鋼管を製造し、電縫
溶接部を高周波焼戻し処理した。焼戻し温度は、610
〜690℃の範囲で変化させた。焼戻し処理された電縫
鋼管について、機械的性質を同様に調査した。
Next, ERW welded steel pipes having different outer diameters and wall thicknesses were manufactured from steel type C under the production conditions specified in the present invention, and the ERW welded parts were subjected to induction tempering. Tempering temperature is 610
The temperature was varied in the range of 6690 ° C. The mechanical properties of the tempered electric resistance welded steel pipe were similarly examined.

【0030】 [0030]

【0031】表4の調査結果にみられるように、焼戻し
温度が低い試験番号22では、電縫溶接部の硬度差ΔH
Vが高くなり、曲げによる加工割れが発生し、低温衝撃
試験でも折損した。逆に焼戻し温度がAr3点を超える試
験番号23では、電縫溶接部が再度部分的にオーステナ
イト化して焼入れ処理と同様な状態になったため、一部
マルテンサイト組織となり、電縫溶接部の最大硬さHV
max が高くなった。そのため、電縫溶接部の硬度差ΔH
Vが大きくなり、曲げによる加工割れが発生し、低温衝
撃試験でも折損した。焼戻し処理を施さない試験番号2
4では、電縫溶接部の硬度差ΔHVが大きく、曲げによ
る加工割れが発生し、低温衝撃試験でも折損した。
As can be seen from the investigation results in Table 4, in Test No. 22 where the tempering temperature is low, the hardness difference ΔH
V increased, and processing cracks occurred due to bending, and breakage occurred in a low-temperature impact test. Conversely, in Test No. 23, in which the tempering temperature exceeds the Ar3 point, the ERW weld was partially austenitized again and was in a state similar to that of the quenching treatment, so that part of the ERW weld became a martensitic structure, and Hardness HV
max is now higher. Therefore, the hardness difference ΔH of the electric resistance welded portion
V became large, and processing cracks occurred due to bending, and breakage occurred even in a low-temperature impact test. Test number 2 without tempering
In No. 4, the hardness difference ΔHV of the electric resistance welded portion was large, and a work crack due to bending occurred, and it was broken even in a low-temperature impact test.

【0032】これに対し、電縫溶接部を685℃に焼き
戻した試験番号25は、450N/mm2 を超える高い
疲労限を示し、疲労耐久性が良好であることが判った。
ただし、試験番号25の電縫鋼管は、表3の試験番号6
(肉厚外径比T/D:0.123)に比較して肉厚外径
比T/Dが0.063と低いことから、若干低い値のね
じり疲労限を示した。焼戻し温度を690℃に設定した
試験番号26も、400N/mm2を超える高い疲労限
を示したが、試験番号6と比較するとねじり疲労限の値
は若干低くなっていた。
On the other hand, Test No. 25 in which the electric resistance welded portion was tempered to 685 ° C. showed a high fatigue limit exceeding 450 N / mm 2 , indicating that the fatigue durability was good.
However, the ERW steel pipe with test number 25 is the same as test number 6 in Table 3.
Since the thickness / outside diameter ratio T / D was as low as 0.063 as compared with (thickness / outside diameter ratio T / D: 0.123), the torsional fatigue limit was slightly lower. Test No. 26 in which the tempering temperature was set to 690 ° C. also showed a high fatigue limit exceeding 400 N / mm 2, but the value of the torsional fatigue limit was slightly lower than that of Test No. 6.

【0033】また、鋼種Cから作られた試験番号6の電
縫鋼管(本発明例)及び鋼種Gから作られた試験番号1
7の電縫鋼管(比較例)に電流250A,電圧25V,
溶接速度50cm/分,ワイヤMGS80(径1.2m
m)の溶接条件で他部品として同じ鋼管をアーク溶接し
た。そして、アーク溶接後の電縫鋼管の硬さを測定し
た。その結果、図2に示すように比較例の電縫鋼管では
溶接部と母材部との硬度差が大きくなっていたのに対
し、本発明例の電縫鋼管では硬度差ΔHVが28の範囲
に収まっていた。
An ERW steel pipe of test number 6 made of steel type C (example of the present invention) and test number 1 made of steel type G
The current of 250A, the voltage of 25V,
Welding speed 50cm / min, wire MGS80 (diameter 1.2m)
Under the welding conditions of m), the same steel pipe as another part was arc-welded. Then, the hardness of the ERW steel pipe after the arc welding was measured. As a result, as shown in FIG. 2, the hardness difference between the welded portion and the base metal portion was large in the ERW steel tube of the comparative example, whereas the hardness difference ΔHV was in the range of 28 in the ERW steel tube of the present invention. It was in.

【0034】[0034]

【発明の効果】以上に説明したように、本発明は、低C
化して加工性を確保すると共に、Ti,Nbの炭窒化物
生成及び細粒化効果を活用して溶接熱影響部の軟化及び
効果を抑制し、成分条件及び製造条件を適正化すること
により、電縫溶接鋼管の疲労耐久性を改善している。こ
の電縫鋼管は、高価なMo,V等の合金成分の添加を必
要とせず、しかも従来のS45C,SUP6等に比較し
て熱処理も不要であるため、低コストで疲労耐久性に優
れた中空スタビライザとして使用される。また、他部品
と溶接した場合に溶接部の硬さ変動が少なく、均一化す
ることによって疲労破壊寿命が延長する。
As described above, the present invention has a low C content.
In addition to securing the workability by reducing the effect of carbonitride generation and grain refinement of Ti and Nb, the softening and effect of the weld heat affected zone are suppressed, and the component conditions and manufacturing conditions are optimized. Improves the fatigue durability of ERW welded steel pipes. This electric resistance welded steel pipe does not require the addition of expensive alloy components such as Mo and V, and does not require heat treatment as compared with conventional S45C, SUP6, etc., so that the hollow pipe having low cost and excellent fatigue durability is used. Used as a stabilizer. In addition, when welding with other parts, the hardness variation of the welded portion is small, and the uniformity extends the fatigue fracture life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 680℃に焼き戻した電縫溶接部を中心とす
る電縫鋼管の硬度分布
FIG. 1 Hardness distribution of ERW steel pipe centered on ERW welded parts tempered to 680 ° C.

【図2】 アーク溶接部を中心とした電縫鋼管の硬度分
Fig. 2 Hardness distribution of ERW steel pipe centered on arc welded part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA02 AA04 AA08 AA11 AA16 AA17 AA21 AA22 AA26 AA27 AA29 AA31 AA35 BA03 CA02 CA03 CB02 CC03 CC04 CD03 CE01 CF02  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4K032 AA01 AA02 AA04 AA08 AA11 AA16 AA17 AA21 AA22 AA26 AA27 AA29 AA31 AA35 BA03 CA02 CA03 CB02 CC03 CC04 CD03 CE01 CF02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.03〜0.10重量%,Si:
0.20〜1.0重量%,Mn:1.0〜2.5重量
%,P:0.03重量%以下,S:0.005重量%以
下,(N+O):150ppm以下,Ti:0.02〜
0.20重量%,Nb:0.02〜0.10重量%,ト
ータルAl:0.01〜0.1重量%,残部が実質的に
Feの組成をもつスラブを1150〜1300℃に加熱
した後、仕上げ圧延でのトータル圧延率:90%以上,
仕上げ温度:Ar3変態点〜Ar3変態点+100℃の温度
域で熱間圧延し、冷却速度10〜50℃/秒で冷却し、
巻取り温度450〜550℃で巻き取って熱延コイルと
し、該熱延コイルを酸洗後に電縫鋼管とする際、電縫溶
接部の冷却後に連続して高周波加熱により電縫溶接部を
c1変態点〜Ac1変態点−70℃の温度域で焼き戻すこ
とを特徴とする疲労耐久性に優れた中空スタビライザ用
高強度鋼管の製造方法。
1. C: 0.03 to 0.10% by weight, Si:
0.20 to 1.0% by weight, Mn: 1.0 to 2.5% by weight, P: 0.03% by weight or less, S: 0.005% by weight or less, (N + O): 150ppm or less, Ti: 0 .02-
A slab having a composition of 0.20 wt%, Nb: 0.02 to 0.10 wt%, total Al: 0.01 to 0.1 wt%, and the balance substantially Fe was heated to 1150 to 1300 ° C. Later, the total rolling rate in finish rolling: 90% or more,
Finishing temperature: hot-rolled in a temperature range of A r3 transformation point to A r3 transformation point + 100 ° C., then cooled at a cooling rate of 10 to 50 ° C. / sec,
When the hot-rolled coil is taken up at a temperature of 450 to 550 ° C. to form a hot-rolled coil, and the hot-rolled coil is pickled to form an ERW steel pipe, the ERW weld is continuously cooled by high-frequency heating to form an ARW weld. A method for producing a high-strength steel pipe for a hollow stabilizer excellent in fatigue durability, characterized by tempering in a temperature range of c1 transformation point to A c1 transformation point -70 ° C.
【請求項2】 更にB:0.0050重量%以下,C
r:0.3重量%以下,Ca:0.0050重量%以下
の1種又は2種以上を含むスラブを使用する請求項1記
載の疲労耐久性に優れた中空スタビライザ用高強度鋼管
の製造方法。
2. B: 0.0050% by weight or less, C:
2. The method for producing a high-strength steel pipe for a hollow stabilizer excellent in fatigue durability according to claim 1, wherein a slab containing one or more of r: 0.3% by weight or less and Ca: 0.0050% by weight or less is used. .
【請求項3】 熱間圧延時に、900〜1100℃の温
度域でデスケーラ吐出圧力200kgf/cm2 以上の
デスケールを少なくとも1パス以上行うことを特徴とす
る請求項1又は2記載の疲労耐久性に優れた中空スタビ
ライザ用高強度鋼管の製造方法。
3. The fatigue durability according to claim 1, wherein at the time of hot rolling, at least one pass of descaling at a discharge pressure of 200 kgf / cm 2 or more is performed in a temperature range of 900 to 1100 ° C. Manufacturing method of high strength steel pipe for hollow stabilizer.
【請求項4】 電縫鋼管の肉厚外径比T/Dが0.07
〜0.15である請求項1〜3記載の何れかに記載の疲
労耐久性に優れた中空スタビライザ用高強度鋼管の製造
方法。
4. An ERW steel pipe having a thickness outer diameter ratio T / D of 0.07.
The method for producing a high-strength steel pipe for a hollow stabilizer excellent in fatigue durability according to any one of claims 1 to 3, which is 0.15 to 0.15.
JP29660698A 1998-10-19 1998-10-19 Manufacturing method of high strength steel pipe for hollow stabilizer with excellent fatigue durability Expired - Lifetime JP4055920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29660698A JP4055920B2 (en) 1998-10-19 1998-10-19 Manufacturing method of high strength steel pipe for hollow stabilizer with excellent fatigue durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29660698A JP4055920B2 (en) 1998-10-19 1998-10-19 Manufacturing method of high strength steel pipe for hollow stabilizer with excellent fatigue durability

Publications (2)

Publication Number Publication Date
JP2000119750A true JP2000119750A (en) 2000-04-25
JP4055920B2 JP4055920B2 (en) 2008-03-05

Family

ID=17835740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29660698A Expired - Lifetime JP4055920B2 (en) 1998-10-19 1998-10-19 Manufacturing method of high strength steel pipe for hollow stabilizer with excellent fatigue durability

Country Status (1)

Country Link
JP (1) JP4055920B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070767A1 (en) * 2001-03-07 2002-09-12 Nippon Steel Corporation Electric welded steel tube for hollow stabilizer
JP2009127119A (en) * 2007-11-28 2009-06-11 Nissan Motor Co Ltd Resistance-welded steel plate
GB2433746B (en) * 2005-12-27 2009-07-01 Kobe Steel Ltd Steel sheet having excellent weldability
JP2010090442A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp High workability and high strength steel pipe having excellent chemical treatment property and method for producing the same
JP2010089127A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp Working method of member excellent in chemical conversion property

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070767A1 (en) * 2001-03-07 2002-09-12 Nippon Steel Corporation Electric welded steel tube for hollow stabilizer
US7048811B2 (en) 2001-03-07 2006-05-23 Nippon Steel Corporation Electric resistance-welded steel pipe for hollow stabilizer
GB2433746B (en) * 2005-12-27 2009-07-01 Kobe Steel Ltd Steel sheet having excellent weldability
US9085816B2 (en) 2005-12-27 2015-07-21 Kobe Steel, Ltd. Steel sheet having excellent weldability
JP2009127119A (en) * 2007-11-28 2009-06-11 Nissan Motor Co Ltd Resistance-welded steel plate
JP2010090442A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp High workability and high strength steel pipe having excellent chemical treatment property and method for producing the same
JP2010089127A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp Working method of member excellent in chemical conversion property

Also Published As

Publication number Publication date
JP4055920B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
EP1371743B1 (en) Electric welded steel tube for hollow stabilizer
JP2018506642A (en) Heat-treated steel, ultra-high-strength molded article with excellent durability and manufacturing method thereof
JP6747623B1 (en) ERW steel pipe
EP2952601B1 (en) Electric-resistance-welded steel pipe
JP2004011009A (en) Electric resistance welded steel tube for hollow stabilizer
JP2003013138A (en) Method for manufacturing steel sheet for high-strength line pipe
JPH07216500A (en) High strength steel material excellent in corrosion resistance and its production
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP2010111931A (en) High-tensile welded steel pipe for automotive member, and method for producing the same
JP4272284B2 (en) ERW welded steel pipe for hollow stabilizers with excellent fatigue durability
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
JP4859618B2 (en) Manufacturing method of hollow stabilizer with excellent delayed fracture resistance
JP2000160245A (en) Production of high strength steel excellent in hic resistance
JP6796472B2 (en) Hollow member and its manufacturing method
JPH08325641A (en) Production of high strength and high toughness steel tube excellent in workability
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JP2002047531A (en) High tensile strength steel for welded structure having excellent fatigue characteristic and its production method
JP2009235499A (en) Method for manufacturing hollow stabilizer
JP4055920B2 (en) Manufacturing method of high strength steel pipe for hollow stabilizer with excellent fatigue durability
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
CN113811625B (en) Resistance welded steel pipe for hollow stabilizer
US20220186331A1 (en) Electric resistance-welded steel tube for hollow stabilizer, hollow stabilizer, and manufacturing methods of same
JP2001064725A (en) Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JP2001064728A (en) Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term