JP2000109306A - Production of boron nitride nanotube - Google Patents

Production of boron nitride nanotube

Info

Publication number
JP2000109306A
JP2000109306A JP10292984A JP29298498A JP2000109306A JP 2000109306 A JP2000109306 A JP 2000109306A JP 10292984 A JP10292984 A JP 10292984A JP 29298498 A JP29298498 A JP 29298498A JP 2000109306 A JP2000109306 A JP 2000109306A
Authority
JP
Japan
Prior art keywords
boron nitride
boron oxide
boron
crucible
nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10292984A
Other languages
Japanese (ja)
Other versions
JP2972882B1 (en
Inventor
Yoshio Bando
義雄 板東
Han Weichin
ハン ウェイチン
Tadao Sato
忠夫 佐藤
Keiji Kurashima
敬次 倉嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP29298498A priority Critical patent/JP2972882B1/en
Application granted granted Critical
Publication of JP2972882B1 publication Critical patent/JP2972882B1/en
Publication of JP2000109306A publication Critical patent/JP2000109306A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To mass-produce boron nitride nanotubes. SOLUTION: Carbon nanotubes are allowed to react with boron oxide and nitrogen at a high temperature of 1,200-2,100 deg.C to form the objective boron nitride nanotubes. The boron oxide is B2O3, H3BO3 or a material forming boron oxide at the high temperature and the gas is preferably nitrogen or ammonia.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ホウ素(B
N)ナノチューブの合成方法に関する。さらに詳しく
は、本発明は、半導体材料、エミッター材料、耐熱性充
填材料、高強度材料、触媒等として使用できる窒化ホウ
素ナノチューブを大量に製造する方法に関する。
The present invention relates to a method for producing boron nitride (B
N) A method for synthesizing nanotubes. More specifically, the present invention relates to a method for mass-producing boron nitride nanotubes that can be used as semiconductor materials, emitter materials, heat-resistant filler materials, high-strength materials, catalysts, and the like.

【0002】[0002]

【従来の技術とその課題】カーボンのナノチューブ、す
なわち炭素原子が筒状に並んだナノメータの大きさのチ
ューブ状炭素物質は、1991年に飯島澄男博士により
発見された。このカーボンのナノチューブは、アーク放
電法、レーザー加熱法、CVD法等により合成されてい
る。近年、窒化ホウ素(BN)のナノチューブも窒化ホ
ウ素を出発原料とし、アーク放電法や高圧下でのレーザ
ー加熱法、プラズマ解離蒸発法等により合成できること
が知られている。しかし、これらの従来法では、窒化ホ
ウ素ナノチューブの収率が悪く、少量しか合成できなか
った。
2. Description of the Related Art Carbon nanotubes, ie, tubular carbonaceous materials having a nanometer size in which carbon atoms are arranged in a cylinder, were discovered in 1991 by Dr. Sumio Iijima. The carbon nanotubes are synthesized by an arc discharge method, a laser heating method, a CVD method, or the like. In recent years, it has been known that boron nitride (BN) nanotubes can also be synthesized using boron nitride as a starting material, by an arc discharge method, a laser heating method under high pressure, a plasma dissociation evaporation method, or the like. However, in these conventional methods, the yield of boron nitride nanotubes was poor, and only a small amount could be synthesized.

【0003】[0003]

【発明が解決しようとする課題】窒化ホウ素は、半導体
材料、エミッター材料、耐熱性充填材料、高強度材料、
触媒等の分野において、従来にない特性を有する材料と
して利用されることが期待されているが、これまで、窒
化ホウ素ナノチューブは少量しか合成できなかったた
め、半導体特性や強度などの物理的性質の測定も十分に
できなかった。本発明は、従来のように窒化ホウ素を出
発原料とはせず、カーボンナノチューブ、ホウ素酸化物
および窒素を出発原料として用いるもので、化学反応に
よりカーボンナノチューブの形態を残しながら窒化ホウ
素ナノチューブを大量に製造することを目的としてい
る。
SUMMARY OF THE INVENTION Boron nitride is a semiconductor material, an emitter material, a heat-resistant filling material, a high-strength material,
In the field of catalysts, etc., it is expected to be used as a material with unprecedented properties.However, since boron nitride nanotubes could only be synthesized in small quantities, measurement of physical properties such as semiconductor properties and strength Couldn't do enough. The present invention does not use boron nitride as a starting material as in the past, but uses carbon nanotubes, boron oxide and nitrogen as starting materials, and produces a large amount of boron nitride nanotubes while leaving the form of carbon nanotubes by a chemical reaction. It is intended to be manufactured.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決するものとして、カーボンナノチューブを出発物質
とし、これにホウ素酸化物および窒素を高温下で化学反
応させることにより、カーボンナノチューブを元の形態
を残したまま窒化ホウ素に変換することを特徴とする窒
化ホウ素ナノチューブの大量製造方法を提供する。上記
ホウ素酸化物としてホウ酸、酸化ホウ素(B2 3 )、
または高温下でホウ素酸化物を発生する物質を用いるこ
とができ、高温下で化学反応させるための加熱手段とし
ては高周波加熱炉を用いることが好ましい。反応温度
は、1200℃から2100℃が好適であり、特に13
00℃から1800℃がより好ましい。
The present invention solves the above-mentioned problems by using carbon nanotubes as a starting material and chemically reacting boron oxide and nitrogen at a high temperature with the carbon nanotubes. The present invention provides a method for mass-producing boron nitride nanotubes, characterized in that boron nitride nanotubes are converted to boron nitride while maintaining the above-mentioned form. Boric acid, boron oxide (B 2 O 3 ) as the boron oxide,
Alternatively, a substance that generates boron oxide at a high temperature can be used, and a high-frequency heating furnace is preferably used as a heating unit for causing a chemical reaction at a high temperature. The reaction temperature is preferably from 1200 ° C to 2100 ° C, particularly 13 ° C.
00 ° C to 1800 ° C is more preferable.

【0005】[0005]

【発明の実施の形態】図1は、この発明の方法を黒鉛る
つぼを使用して実施するために用いる高周波誘導加熱炉
の模式図である。また、図2は、この発明の方法を窒化
ホウ素焼結体製るつぼを使用して実施するために用いる
高周波誘導加熱炉の模式図である。まず、図1に基づい
て、本発明の方法を説明する。高周波誘導加熱炉1の断
熱材2で被覆した石英外筒3の内部中央に設置した筒状
の黒鉛発熱体4をワークコイル5で加熱する。黒鉛るつ
ぼ6にB2 3 (B)とカーボンナノチューブ(C)と
を重ねて入れ、筒状の黒鉛発熱体4内部の黒鉛スペーサ
7上に配置する。筒状の黒鉛発熱体4の下部には、高周
波加熱炉1の外部よりチッ素ガスを導入する入口8を接
続し、石英外筒3の下部にはチッ素ガスの排出用出口9
を設ける。石英外筒3の上部にもチッ素ガスを導入する
入口10を設けてもよい。反応部の温度は、筒状の黒鉛
発熱体4の蓋の開口部を通る光をガラスプリズム11で
屈折させて光高温計12を用いて測定する。
FIG. 1 is a schematic view of a high-frequency induction heating furnace used to carry out the method of the present invention using a graphite crucible. FIG. 2 is a schematic diagram of a high-frequency induction heating furnace used to carry out the method of the present invention using a crucible made of a boron nitride sintered body. First, the method of the present invention will be described with reference to FIG. A cylindrical graphite heating element 4 installed in the center of a quartz outer cylinder 3 covered with a heat insulating material 2 of a high-frequency induction heating furnace 1 is heated by a work coil 5. B 2 O 3 (B) and carbon nanotubes (C) are placed in the graphite crucible 6 in an overlapping manner and placed on the graphite spacer 7 inside the tubular graphite heating element 4. An inlet 8 for introducing nitrogen gas from the outside of the high-frequency heating furnace 1 is connected to a lower portion of the tubular graphite heating element 4, and an outlet 9 for discharging nitrogen gas is provided at a lower portion of the quartz outer tube 3.
Is provided. An inlet 10 for introducing nitrogen gas may also be provided in the upper part of the quartz outer cylinder 3. The temperature of the reaction part is measured using an optical pyrometer 12 after refracting light passing through the opening of the lid of the tubular graphite heating element 4 with a glass prism 11.

【0006】図2は、図1の黒鉛るつぼに代えて窒化ホ
ウ素焼結体製るつぼ(以下「BNるつぼ」という)を使
用する実施の形態を示す。この場合、BNるつぼ6−1
にB2 3 (B)を入れ、このBNるつぼ6−1より一
回り小さめのBNるつぼ6−2の中にカーボンナノチュ
ーブ(C)を入れてBNるつぼ6−1中のスペーサ上に
配置する。BNるつぼ6−1の上部の蓋には測温用の開
口とチッ素ガスをBNるつぼ6−1内に流入させる***
13を設ける。
FIG. 2 shows an embodiment in which a crucible made of a boron nitride sintered body (hereinafter referred to as “BN crucible”) is used instead of the graphite crucible of FIG. In this case, the BN crucible 6-1
To B 2 O 3 (B) is added, and the carbon nanotubes (C) are put in a BN crucible 6-2 slightly smaller than the BN crucible 6-1 and placed on the spacers in the BN crucible 6-1. The lid on the upper part of the BN crucible 6-1 is provided with an opening for temperature measurement and a small hole 13 through which nitrogen gas flows into the BN crucible 6-1.

【0007】原料のB2 3 とカーボンナノチューブの
配置は、図1では、簡便な方法としてB2 3 (B)の
上にカーボンナノチューブ(C)を層状に重ねている
が、ホウ素酸化物(B2 3 、B2 2 等)が拡散また
は輸送により、カーボンナノチューブ(C)上に到達す
る構造であればどのような配置でもよく、図2のように
両原料を非接触の配置としてもよい。上記のB2 3
しては、加熱によりホウ素酸化物を生成する物質であれ
ば他の物質でもよい。例えば、ホウ酸、メラミンボレー
ト等の有機ホウ酸化合物、ホウ酸と有機物の混合物等の
物質の固体、液体、さらにはホウ素、酸素を含む気体で
もよい。これらの物質は、るつぼ内に固定状に保持せず
に、カーボンナノチューブと接触して流れながら通過す
るようにしてもよい。
The arrangement of the raw material B 2 O 3 and the carbon nanotubes is shown in FIG. 1 as a simple method in which carbon nanotubes (C) are layered on B 2 O 3 (B) in a layered manner. (B 2 O 3 , B 2 O 2, etc.) may be arranged in any manner as long as it reaches the carbon nanotubes (C) by diffusion or transport. As shown in FIG. It may be. As the above-mentioned B 2 O 3 , other substances may be used as long as they generate a boron oxide by heating. For example, organic boric acid compounds such as boric acid and melamine borate, solids and liquids of substances such as a mixture of boric acid and an organic substance, and a gas containing boron and oxygen may be used. These substances may be allowed to pass while flowing in contact with the carbon nanotubes without being held in the crucible in a fixed state.

【0008】また、窒素源は、窒素を含む中性または還
元性のガスであればよく、窒素、アンモニア等が手軽
で、そのまま、または混合、希釈して用いられる。安価
で安全であることから窒素ガスが最も好ましい。用いる
るつぼは、原料と反応して障害にならないものならよ
く、安価で加工性がよくまた還元性を有することから黒
鉛るつぼが好ましい。BNるつぼも加工性や耐食性の点
で優れている。
The nitrogen source may be any neutral or reducing gas containing nitrogen. Nitrogen, ammonia and the like can be easily used as they are, or mixed or diluted. Nitrogen gas is most preferred because it is inexpensive and safe. The crucible to be used is not particularly limited as long as it does not disturb the reaction with the raw materials, and is preferably a graphite crucible because it is inexpensive, has good workability and has reducibility. The BN crucible is also excellent in workability and corrosion resistance.

【0009】上記に説明したような装置を用いて、例え
ば、窒素気流中で1500℃で30分間加熱すると、B
2 3 は、加熱により、ホウ素酸化物(B2 2 等)と
して気化または表面拡散によりカーボンナノチューブに
到達し、ナノチューブの炭素により還元を受けると同時
に窒素と反応してBNを生成する。この反応により、原
料のカーボンナノチューブの形態を残したまま、るつぼ
内に窒化ホウ素ナノチューブが得られる。
When the above-described apparatus is heated at 1500 ° C. for 30 minutes in a nitrogen stream, for example, B
2 O 3 is by heating, to reach the carbon nanotube by vaporization or surface diffusion as boron oxide (B 2 O 2, etc.), to generate a BN react with nitrogen at the same time receive a return by a carbon nanotube. By this reaction, boron nitride nanotubes are obtained in the crucible while leaving the form of the raw material carbon nanotubes.

【0010】本発明の方法において、BNの生成には1
200℃以上が必要であり、加熱温度の下限は、好まし
くは1300℃以上、さらに好ましくは1499℃以上
である。また、ホウ素酸化物の発生は、原料の種類、原
料の表面積、および装置構成に依存するが、1200℃
以上が実用的であり、好ましくは1300℃以上であ
る。温度が高すぎるとBNの結晶化が進んで板状晶を生
成するためナノチューブの形態が維持できないので、上
限は2100℃以下、好ましくは1900℃以下であ
る。また雰囲気に酸素が多いほどBNの結晶化が進んで
板状晶を生成する傾向が大きいので、酸素の多い環境で
は1800℃以下、好ましくは1600℃以下とする。
酸化ホウ素をカーボンナノチューブと接触させて用いる
場合は、高温ではホウ素酸化物の蒸発速度および反応速
度が速すぎてカーボンナノチューブが飛散するので、1
500℃程度に設定するのが最も好ましい。
In the method of the present invention, the generation of BN is 1
The temperature must be 200 ° C. or higher, and the lower limit of the heating temperature is preferably 1300 ° C. or higher, more preferably 1499 ° C. or higher. The generation of boron oxide depends on the type of the raw material, the surface area of the raw material, and the device configuration.
The above is practical, and preferably 1300 ° C. or higher. If the temperature is too high, the crystallization of BN proceeds and plate-like crystals are formed, so that the form of the nanotube cannot be maintained. Therefore, the upper limit is 2100 ° C. or lower, preferably 1900 ° C. or lower. In addition, the more oxygen in the atmosphere, the greater the tendency of BN to crystallize and form plate-like crystals. Therefore, the temperature is set to 1800 ° C. or lower, preferably 1600 ° C. or lower in an oxygen-rich environment.
When boron oxide is used in contact with carbon nanotubes, the evaporation rate and reaction rate of boron oxide are too high at high temperatures, and the carbon nanotubes are scattered.
It is most preferable to set the temperature to about 500 ° C.

【0011】本発明の方法で得られる窒化ホウ素ナノチ
ューブの太さ(実施例の場合、平均で10nm程度)
は、出発物質のカーボンナノチューブの平均太さ(実施
例の場合、平均で10nm程度)とほぼ一致し、太さの
分布も同程度である。長さ方向の形態は、原料のカーボ
ンナノチューブでは曲線的であるのに対し、生成物は窒
化ホウ素の性質を反映して直線的部分で構成されてい
る。生成物にカーボンナノチューブが残存する場合は、
空気中で加熱するなど、化学処理により除去できる。
The thickness of the boron nitride nanotube obtained by the method of the present invention (about 10 nm on average in the example)
Is almost the same as the average thickness of the carbon nanotubes as the starting material (about 10 nm in average in the example), and the distribution of the thickness is almost the same. The lengthwise morphology is curved for the raw carbon nanotubes, whereas the product is composed of linear portions reflecting the properties of boron nitride. If carbon nanotubes remain in the product,
It can be removed by chemical treatment such as heating in air.

【0012】[0012]

【実施例】以下、実施例を示してさらに詳しく窒化ホウ
素ナノチューブの製造法について説明する。 実施例1 図1に示す高周波加熱炉1を用い、平均直径約10nm
のカーボンナノチューブ(C)を出発物質に用いた。内
径2cm、深さ2cmの黒鉛るつぼ6の底に酸化ホウ素
(B)0.5g、その上にカーボンナノチューブ(C)
15mgを層状に重ねて置いた。これを筒状の黒鉛発熱
体4に入れ、N2 ガス入り口8からチッ素ガスを0.5
リットル/minで導入し、筒状の黒鉛発熱体4内部に
流し、ワークコイル5に通電して1500℃、30分間
加熱した後、自然冷却した。温度の測定は黒鉛発熱体4
の蓋にあけた開口部を通してカーボンナノチューブ
(C)上を光高温計12で行った。
EXAMPLES Hereinafter, the method for producing boron nitride nanotubes will be described in more detail with reference to examples. Example 1 Using the high-frequency heating furnace 1 shown in FIG.
Was used as a starting material. 0.5 g of boron oxide (B) on the bottom of a graphite crucible 6 having an inner diameter of 2 cm and a depth of 2 cm, and carbon nanotubes (C) on the bottom
15 mg were placed in layers. This was put into a tubular graphite heating element 4, and 0.5 g of nitrogen gas was injected through an N 2 gas inlet 8.
It was introduced at a rate of 1 liter / min, flowed into the tubular graphite heating element 4, and energized to the work coil 5, heated at 1500 ° C. for 30 minutes, and then cooled naturally. Temperature measurement is graphite heating element 4
The optical pyrometer 12 was performed on the carbon nanotube (C) through the opening part opened in the lid of FIG.

【0013】出発物質のカーボンナノチューブの電子顕
微鏡写真を図1に示す。回収した試料を観察すると、カ
ーボンナノチューブの位置に当たる物質は外観はもとの
形態を保ちながら、色は黒から灰色に変化していた。粉
末法X線回折から、回収した試料は層状構造を持つBN
であった。電子顕微鏡観察から、図4(低倍率写真)と
図5(高倍率写真)に示すように、ナノチューブの形態
を有し、平均径および太さ分布は出発物のカーボンナノ
チューブとほぼ同じであった。また、長さ方向の形状は
出発物質が曲線的であるのに対し、生成物は直線的であ
った。図6に示す電子エネルギー損失スペクトル分析に
よれば、ナノチューブの組成がB(ホウ素)と窒素
(N)からでき、その組成がB:N=1:1であること
を確認した。
FIG. 1 shows an electron micrograph of a carbon nanotube as a starting material. Observation of the collected sample showed that the color of the material corresponding to the position of the carbon nanotube changed from black to gray while maintaining its original appearance. From the powder method X-ray diffraction, the recovered sample was BN having a layered structure.
Met. From electron microscopic observation, as shown in FIG. 4 (low magnification photograph) and FIG. 5 (high magnification photograph), it had a form of nanotube, and the average diameter and thickness distribution were almost the same as those of the starting carbon nanotube. . Also, the longitudinal shape was such that the starting material was curvilinear, while the product was linear. According to the electron energy loss spectrum analysis shown in FIG. 6, it was confirmed that the composition of the nanotube was composed of B (boron) and nitrogen (N), and the composition was B: N = 1: 1.

【0014】実施例2 図2に示す高周波誘導加熱炉を用い、実施例1と同様に
カーボンナノチューブ(C)15mgを出発物質とし、
これを内径1cm、高さlcmのBNるつぼ6−2に入
れ、さらに底に酸化ホウ素(B)1gを充填した内径2
cm、深さ3cmのBNるつぼ6−1中に置き、蓋をし
た。実施例1と同様にチッ素ガスを0.5リットル/m
inで導入し、筒状の黒鉛発熱体4内部に流し、ワーク
コイル5に通電して1500℃、30分間加熱した後、
自然冷却した。なお、蓋には窒素酸化物の供給を適当に
するために***を設け、チッ素ガスの流通を調節した。
回収した試料は、実施例1と同様な窒化ホウ素ナノチュ
ーブであった。
Example 2 Using the high-frequency induction heating furnace shown in FIG. 2, 15 mg of carbon nanotube (C) was used as a starting material in the same manner as in Example 1,
This was placed in a BN crucible 6-2 having an inner diameter of 1 cm and a height of 1 cm, and further filled with 1 g of boron oxide (B) at the bottom.
cm and a depth of 3 cm in a BN crucible 6-1 and capped. 0.5 l / m2 of nitrogen gas as in Example 1.
in, flowed into the tubular graphite heating element 4, energized the work coil 5 and heated at 1500 ° C. for 30 minutes.
Naturally cooled. In addition, a small hole was provided in the lid to appropriately supply nitrogen oxide, and the flow of nitrogen gas was adjusted.
The collected sample was the same boron nitride nanotube as in Example 1.

【0015】[0015]

【発明の効果】窒化ホウ素ナノチューブは、半導体材
料、エミッター材料、耐熱性充填材料、高強度材料、触
媒等の分野において、従来にない特性を有する新材料と
しての応用が期待されているが、本発明により、カーボ
ンナノチューブを出発原料として、安価な簡単な方法で
窒化ホウ素ナノチューブを製造することができる。カー
ボンナノチューブは、既に大量生産法が確立されている
ので、これを出発物質として用いれば、約90%以上の
収率で窒化ホウ素のナノチューブを大量に製造すること
ができる。
The boron nitride nanotube is expected to be applied as a new material having unprecedented properties in the fields of semiconductor materials, emitter materials, heat-resistant filling materials, high-strength materials, and catalysts. According to the present invention, a boron nitride nanotube can be produced by a simple and inexpensive method using a carbon nanotube as a starting material. Since a mass production method has already been established for carbon nanotubes, if this is used as a starting material, boron nitride nanotubes can be mass-produced with a yield of about 90% or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法の実施例に用いる高周波誘導
加熱炉の模式図(黒鉛るつぼ使用)である。
FIG. 1 is a schematic diagram (using a graphite crucible) of a high-frequency induction heating furnace used in an embodiment of the production method of the present invention.

【図2】本発明の製造方法の別の実施例に用いる高周波
誘導加熱炉の模式図(BNるつぼ使用)である。
FIG. 2 is a schematic view (using a BN crucible) of a high-frequency induction heating furnace used in another embodiment of the manufacturing method of the present invention.

【図3】本発明の製造方法の実施例に用いた出発原料で
あるカーボンナノチューブの電子顕微鏡写真である。
FIG. 3 is an electron micrograph of a carbon nanotube as a starting material used in an example of the production method of the present invention.

【図4】実施例1によって合成した窒化ホウ素ナノチュ
ーブの低倍率の電子顕微鏡写真である。
FIG. 4 is a low magnification electron micrograph of a boron nitride nanotube synthesized according to Example 1.

【図5】実施例1によって合成した窒化ホウ素ナノチュ
ーブの高倍率の電子顕微鏡写真である。
FIG. 5 is a high magnification electron micrograph of the boron nitride nanotube synthesized according to Example 1.

【図6】実施例1によって合成した窒化ホウ素ナノチュ
ーブの電子エネルギー損失スペクトルである。
FIG. 6 is an electron energy loss spectrum of the boron nitride nanotube synthesized according to Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉嶋 敬次 茨城県つくば市並木1丁目1番地 科学技 術庁無機材質研究所内 ──────────────────────────────────────────────────の Continued from the front page (72) Keiji Kurashima, Inventor 1-1-1 Namiki, Tsukuba, Ibaraki Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 カーボンナノチューブを原料とし、これ
にホウ素酸化物および窒素を1200℃から2100℃
の高温下で反応させて窒化ホウ素ナノチューブを生成さ
せることを特徴とする窒化ホウ素ナノチューブの製造方
法。
1. A carbon nanotube as a raw material, to which boron oxide and nitrogen are added at 1200 ° C. to 2100 ° C.
Producing boron nitride nanotubes by reacting at a high temperature.
【請求項2】 反応に用いるホウ素酸化物は、酸化ホウ
素(B2 3 )、ホウ酸(H3 BO3 )、または高温で
ホウ素酸化物を生成する物質とし、反応に用いるガス
は、窒素またはアンモニアとすることを特徴とする請求
項1記載の窒化ホウ素ナノチューブの製造方法。
2. The boron oxide used in the reaction is boron oxide (B 2 O 3 ), boric acid (H 3 BO 3 ), or a substance that generates boron oxide at a high temperature, and the gas used in the reaction is nitrogen. 2. The method for producing boron nitride nanotubes according to claim 1, wherein ammonia is used.
【請求項3】 酸化ホウ素粉末とカーボンナノチューブ
とを一つのるつぼ、または別々のるつぼの中に入れて、
高周波誘導加熱炉の中に置き、窒素ガスを酸化ホウ素粉
末とカーボンナノチューブに接触するように流しながら
加熱することを特徴とする請求項1記載の窒化ホウ素ナ
ノチューブの製造方法。
3. Putting the boron oxide powder and the carbon nanotubes in one crucible or in separate crucibles,
2. The method for producing boron nitride nanotubes according to claim 1, wherein the heating is carried out while being placed in a high-frequency induction heating furnace and flowing nitrogen gas so as to contact the boron oxide powder and the carbon nanotubes.
JP29298498A 1998-09-30 1998-09-30 Method for producing boron nitride nanotubes Expired - Lifetime JP2972882B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29298498A JP2972882B1 (en) 1998-09-30 1998-09-30 Method for producing boron nitride nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29298498A JP2972882B1 (en) 1998-09-30 1998-09-30 Method for producing boron nitride nanotubes

Publications (2)

Publication Number Publication Date
JP2972882B1 JP2972882B1 (en) 1999-11-08
JP2000109306A true JP2000109306A (en) 2000-04-18

Family

ID=17788974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29298498A Expired - Lifetime JP2972882B1 (en) 1998-09-30 1998-09-30 Method for producing boron nitride nanotubes

Country Status (1)

Country Link
JP (1) JP2972882B1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031170A (en) * 2005-07-22 2007-02-08 National Institute For Materials Science Boron nitride-based porous body and its manufacturing method
JP2007146038A (en) * 2005-11-29 2007-06-14 Teijin Ltd Resin composition and method for producing the same
JP2007197555A (en) * 2006-01-26 2007-08-09 Teijin Ltd Heat-resistant resin composition and method for producing the same
JP2007197554A (en) * 2006-01-26 2007-08-09 Teijin Ltd Stereoregular polyacrylonitrile-based resin composition and method for producing the same
JP2007197595A (en) * 2006-01-27 2007-08-09 Teijin Ltd Polyethersulfone-based resin composition with high thermal stability and method for producing the same
WO2007091737A1 (en) 2006-02-10 2007-08-16 Teijin Limited Resin composition and method for producing same
JP2007211156A (en) * 2006-02-10 2007-08-23 Teijin Ltd Resin composition improved in heat-resistance and mechanical property and its preparation method
JP2007231155A (en) * 2006-03-01 2007-09-13 Teijin Ltd Heat-resistant resin composition and its manufacturing method
JP2007254654A (en) * 2006-03-24 2007-10-04 Teijin Ltd Transparent heatproof resin composition and method for manufacturing the same
JP2007321070A (en) * 2006-06-01 2007-12-13 Teijin Ltd Thermoplastic resin composite composition and its manufacturing method
WO2008108484A1 (en) 2007-03-05 2008-09-12 Teijin Limited Boron nitride fiber paper and method for producing the same
JP2008266101A (en) * 2007-04-25 2008-11-06 National Institute For Materials Science Boron nitride nanotube and method for manufacturing the same
JP2009221623A (en) * 2008-03-14 2009-10-01 Denso Corp Fiber aggregate and fabricating method of the same
WO2011021366A1 (en) * 2009-08-20 2011-02-24 株式会社カネカ Process for production of spheroidized boron nitride
US8414855B2 (en) 2009-02-03 2013-04-09 National Institute For Materials Science Spherical boron nitride nanoparticles and synthetic method thereof
US20140197366A1 (en) * 2013-01-11 2014-07-17 The Regents Of The University Of California Boron nitride converted carbon fiber
KR101422315B1 (en) 2007-05-25 2014-07-22 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Resin composition
CN104233454A (en) * 2014-06-17 2014-12-24 中山大学 Method for effectively synthesizing monocrystal hexagonal boron nitride structure by substitution reaction
WO2022202827A1 (en) * 2021-03-25 2022-09-29 デンカ株式会社 Boron nitride particles and method for producing same, and resin composition

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031170A (en) * 2005-07-22 2007-02-08 National Institute For Materials Science Boron nitride-based porous body and its manufacturing method
JP2007146038A (en) * 2005-11-29 2007-06-14 Teijin Ltd Resin composition and method for producing the same
JP2007197555A (en) * 2006-01-26 2007-08-09 Teijin Ltd Heat-resistant resin composition and method for producing the same
JP2007197554A (en) * 2006-01-26 2007-08-09 Teijin Ltd Stereoregular polyacrylonitrile-based resin composition and method for producing the same
JP2007197595A (en) * 2006-01-27 2007-08-09 Teijin Ltd Polyethersulfone-based resin composition with high thermal stability and method for producing the same
WO2007091737A1 (en) 2006-02-10 2007-08-16 Teijin Limited Resin composition and method for producing same
JP2007211156A (en) * 2006-02-10 2007-08-23 Teijin Ltd Resin composition improved in heat-resistance and mechanical property and its preparation method
JP2007231155A (en) * 2006-03-01 2007-09-13 Teijin Ltd Heat-resistant resin composition and its manufacturing method
JP2007254654A (en) * 2006-03-24 2007-10-04 Teijin Ltd Transparent heatproof resin composition and method for manufacturing the same
JP2007321070A (en) * 2006-06-01 2007-12-13 Teijin Ltd Thermoplastic resin composite composition and its manufacturing method
WO2008108484A1 (en) 2007-03-05 2008-09-12 Teijin Limited Boron nitride fiber paper and method for producing the same
JPWO2008108484A1 (en) * 2007-03-05 2010-06-17 帝人株式会社 Boron nitride fiber paper and method for producing the same
US8025766B2 (en) 2007-03-05 2011-09-27 Teijin Limited Boron nitride-based fiber paper and manufacturing process thereof
JP5099117B2 (en) * 2007-03-05 2012-12-12 帝人株式会社 Method for producing boron nitride fiber paper
JP2008266101A (en) * 2007-04-25 2008-11-06 National Institute For Materials Science Boron nitride nanotube and method for manufacturing the same
KR101422315B1 (en) 2007-05-25 2014-07-22 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Resin composition
JP4577385B2 (en) * 2008-03-14 2010-11-10 株式会社デンソー Conductor and manufacturing method thereof
US8178006B2 (en) 2008-03-14 2012-05-15 Denso Corporation Fiber aggregate and fabricating method of the same
JP2009221623A (en) * 2008-03-14 2009-10-01 Denso Corp Fiber aggregate and fabricating method of the same
US8414855B2 (en) 2009-02-03 2013-04-09 National Institute For Materials Science Spherical boron nitride nanoparticles and synthetic method thereof
WO2011021366A1 (en) * 2009-08-20 2011-02-24 株式会社カネカ Process for production of spheroidized boron nitride
US8617503B2 (en) 2009-08-20 2013-12-31 Kaneka Corporation Process for production of spheroidized boron nitride
JP5673539B2 (en) * 2009-08-20 2015-02-18 株式会社カネカ Method for producing spheroidized boron nitride
US20140197366A1 (en) * 2013-01-11 2014-07-17 The Regents Of The University Of California Boron nitride converted carbon fiber
US9305677B2 (en) * 2013-01-11 2016-04-05 The Regents Of The University Of California Boron nitride converted carbon fiber
CN104233454A (en) * 2014-06-17 2014-12-24 中山大学 Method for effectively synthesizing monocrystal hexagonal boron nitride structure by substitution reaction
WO2022202827A1 (en) * 2021-03-25 2022-09-29 デンカ株式会社 Boron nitride particles and method for producing same, and resin composition
JPWO2022202827A1 (en) * 2021-03-25 2022-09-29
JP7289020B2 (en) 2021-03-25 2023-06-08 デンカ株式会社 Boron nitride particles, method for producing the same, and resin composition

Also Published As

Publication number Publication date
JP2972882B1 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
JP2972882B1 (en) Method for producing boron nitride nanotubes
Han et al. Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates
Ahmad et al. Synthesis of boron nitride nanotubes via chemical vapour deposition: a comprehensive review
Xu et al. Advances in synthesis and applications of boron nitride nanotubes: A review
Laplaze et al. Carbon nanotubes: dynamics of synthesis processes
Zhong et al. Large-scale fabrication of boron nitride nanotubes via a facile chemical vapor reaction route and their cathodoluminescence properties
CN101370734A (en) Carbon nanotubes functionalized with fullerenes
Hu et al. Ultra-long SiC nanowires synthesized by a simple method
Gomathi et al. Nanostructures of the binary nitrides, BN, TiN, and NbN, prepared by the urea-route
KR100658113B1 (en) A production process of Fe nano powder with silica coating by Chemical Vapor Condensation
Chen et al. Synthesis of blue-green photoluminescent β-SiC nanowires via a simple catalyst-free CVD technique
JP4817103B2 (en) Method for producing boron nitride nanotubes
Luo et al. Synthesis of long indium nitride nanowires with uniform diameters in large quantities
Han et al. Pyrolytically grown arrays of highly aligned B x C y N z nanotubes
US9200378B2 (en) Methods of making nanowires
Li et al. Synthesis and properties of aligned ZnO microtube arrays
JP2000281323A (en) Production of carbon nanotube containing boron
Moriyoshi et al. B C N nanotubes prepared by a plasma evaporation method
JP2004269987A (en) Method of producing metal nanowire
Zhi et al. Boron carbonitride nanotubes
JP3496050B2 (en) Method for producing hollow particles of fullerene-like boron nitride
Xie et al. Preparation of high purity carbon nanospheres by the chemical reaction of calcium carbide and oxalic acid
Meng et al. Synthesis of one-dimensional nanostructures—β-SiC nanorods with and without amorphous SiO 2 wrapping layers
Yang et al. Polygonal Single‐Crystal Aluminum Borate Microtubes
Shen et al. Facile synthesis of α‐Si3N4 nanoneedles and their photoluminescence properties

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term