JP2000011939A - Charged particle beam apparatus and inspection method for semiconductor device - Google Patents

Charged particle beam apparatus and inspection method for semiconductor device

Info

Publication number
JP2000011939A
JP2000011939A JP10172507A JP17250798A JP2000011939A JP 2000011939 A JP2000011939 A JP 2000011939A JP 10172507 A JP10172507 A JP 10172507A JP 17250798 A JP17250798 A JP 17250798A JP 2000011939 A JP2000011939 A JP 2000011939A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
objective lens
sample
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10172507A
Other languages
Japanese (ja)
Inventor
Yuji Kasai
祐二 葛西
Hiroyuki Shinada
博之 品田
Hiroko Iwabuchi
裕子 岩淵
Yoichi Ose
洋一 小瀬
Atsuko Takato
敦子 高藤
Yasutsugu Usami
康継 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10172507A priority Critical patent/JP2000011939A/en
Publication of JP2000011939A publication Critical patent/JP2000011939A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently detect secondary charged particles with a small amount of deflection to obtain a stable and high contrast image of good quality by making secondary charged particles deflect between an objective lens and a sample collide with a solid piece provided between the objective lens and the sample to detect the generated second secondary charged particles between the objective lens and the sample. SOLUTION: A primary electron beam 36 extracted from an electron source 2 of an electron gn 1 is accelerated and converged on a sample 13 on a sample stage 12 by an convergent lens 8 and an objective lens 9 to be radiated and scanned. At this time, secondary charged particles 33 generated from the sample 3 become parallel beams incident on an EXB deflector 18 disposed between the sample 13 and the objective lens 9 to be deflected and applied to a solid piece 19 disposed between the objective lens 9 and the EXB deflector 18. Second secondary charged particles 20 generated from the solid piece 19 are detected by a charged particle detector 21, converted into an electrical signal, amplified by an amplifier 25, digitized by an A/D converter and processed as an image signal which is displayed on a monitor 32.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は荷電粒子で試料を照
射して得られる試料特有の情報信号に基づいて、試料の
走査像を得る荷電粒子線装置、及び半導体装置の検査方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam apparatus for obtaining a scanned image of a sample based on an information signal unique to the sample obtained by irradiating the sample with charged particles, and a method for inspecting a semiconductor device.

【0002】[0002]

【従来の技術】荷電粒子線のうち、特に電子線を用いた
試料観察装置として走査型電子顕微鏡が知られている。
2. Description of the Related Art A scanning electron microscope is known as a sample observation device using an electron beam among charged particle beams.

【0003】この走査型電子顕微鏡により絶縁物を含む
試料を観察する場合、電子線を照射された試料が帯電し
て観察が困難となる現象が発生する場合がある。この問
題を解決するために、1keV以下の比較的低いエネル
ギーの電子線を用いることが一般に行われている(例え
ば、「電子・イオンビームハンドブック第2版」、日刊
工業新聞社、622頁、21・2・5節参照)。ただ
し、高分解能または大電流が必要な場合、電子線のエネ
ルギーが小さいと電子レンズの色収差や空間電荷効果の
影響で所望の分解能が得られないという問題が生じる。
これを解決するために、試料の寸前まで電子線を比較的
高いエネルギーに維持し、試料に負の電位を印加するこ
とで試料寸前で電子線を減速させる装置が報告されてい
る(例えば、特開平5−258703 号公報,特開平6−13998
5 号公報)。これにより、試料に対しては低いエネルギ
ーの電子線を用いることで帯電を抑制し、かつ色収差や
空間電荷効果の影響を問題ないレベルまで低減すること
ができる。
When observing a sample containing an insulator using this scanning electron microscope, a phenomenon may occur in which the sample irradiated with an electron beam becomes charged and observation becomes difficult. In order to solve this problem, it is common practice to use an electron beam having a relatively low energy of 1 keV or less (for example, “Electron / Ion Beam Handbook 2nd Edition”, Nikkan Kogyo Shimbun, p. 622, 21).・ See section 2.5). However, when high resolution or a large current is required, if the energy of the electron beam is small, a problem arises in that a desired resolution cannot be obtained due to the influence of chromatic aberration of the electron lens and a space charge effect.
In order to solve this problem, a device has been reported in which the electron beam is maintained at a relatively high energy just before the sample, and the electron beam is decelerated just before the sample by applying a negative potential to the sample (for example, a special device). JP-A-5-258703, JP-A-6-13998
No. 5). This makes it possible to suppress charging by using a low energy electron beam for the sample, and to reduce the effects of chromatic aberration and space charge effects to a level that does not cause any problem.

【0004】また、上記特開平5-258703号公報には、試
料から発生した二次荷電粒子を検出する方法が記載され
ている。これによると、試料に印加した電圧(すなわ
ち、リターディング電圧)により加速された二次荷電粒
子を試料の直上に置かれた対物レンズの中央で通過させ
てウイーンフィルタで偏向させ、対物レンズの上方に置
かれた半導体検出器に直接入射させて検出する方法が述
べられている。
Further, Japanese Patent Application Laid-Open No. 5-258703 describes a method for detecting secondary charged particles generated from a sample. According to this, secondary charged particles accelerated by a voltage applied to a sample (that is, a retarding voltage) pass through the center of an objective lens placed directly above the sample, are deflected by a Wien filter, and are deflected by a Wien filter. A method is described in which the light is directly incident on a semiconductor detector placed in the semiconductor device for detection.

【0005】上記従来技術では、リターディング電圧に
より発生するリターディング電界によって加速された二
次荷電粒子を効率良く検出するには、二次荷電粒子を検
出器方向に偏向する必要があり、一次荷電粒子線に対し
ては電界と磁界による偏向量が互いに打ち消しあい、二
次荷電粒子に対しては両者の重ねあわせで電子を偏向さ
せるE×B偏向器(あるいはウイーンフィルタとも呼ば
れる)を設ける必要がある。しかし、E×B偏向器で二
次荷電粒子を検出器方向へ偏向するには、偏向量とその
電界強度の関係が重要になる。偏向量を大きくする場
合、強電界が必要となるが、E×B偏向器では偏向電極
の間隔以上に電子を偏向することは不可能であり、しか
も偏向電極間隔を大きくすればするほど電界強度は弱ま
るといった現象が発生する。したがって二次荷電粒子を
大きく偏向するには、偏向電極間隔を広げることなく偏
向電界と磁界を大きくする必要がある。この作用はリタ
ーディング電圧が大きくなるほど顕著になる。その結
果、E×B偏向器による一次荷電粒子線の収差が増大
し、ビーム径が大きくなり画像分解能が劣化するという
不具合が生じる。
In the above prior art, in order to efficiently detect the secondary charged particles accelerated by the retarding electric field generated by the retarding voltage, it is necessary to deflect the secondary charged particles in the direction of the detector. It is necessary to provide an E × B deflector (also called a Wien filter) for deflecting electrons by superposition of secondary electrons on the particle beam because the amounts of deflection by the electric field and magnetic field cancel each other. is there. However, in order to deflect the secondary charged particles in the direction of the detector by the E × B deflector, the relationship between the amount of deflection and the electric field intensity becomes important. When the deflection amount is increased, a strong electric field is required. However, it is impossible for an E × B deflector to deflect electrons beyond the distance between the deflection electrodes, and the electric field intensity increases as the distance between the deflection electrodes increases. Phenomenon occurs. Therefore, in order to largely deflect the secondary charged particles, it is necessary to increase the deflection electric field and the magnetic field without increasing the interval between the deflection electrodes. This effect becomes more significant as the retarding voltage increases. As a result, the aberration of the primary charged particle beam caused by the E × B deflector increases, the beam diameter increases, and the image resolution deteriorates.

【0006】一方、二次荷電粒子を少ない偏向量で検出
器の方向に導くためには、半導体検出器を試料の脇の方
向から、試料と電子銃とを結ぶ方向の側に移動させる方
法,試料の上方に検出面の広いマルチ・チャンネル・プ
レート・タイプの検出器を設置する方法が考えられる。
このような構成は公知であるが、試料の直上には対物レ
ンズがあって検出器が設置できる空間は少ない。前述の
特開平5−258703 号公報に記載の実施例では、半導体検
出器を対物レンズの上方に設置している。この場合、半
導体検出器を対物レンズの上方に設置しているので、試
料から検出器までの距離が長くなり、装置内外の振動の
影響を受け易くなるので、観察の精度が低下してしまう
という問題がある。
On the other hand, in order to guide the secondary charged particles toward the detector with a small amount of deflection, a method of moving the semiconductor detector from the side of the sample to the side connecting the sample and the electron gun, A method of installing a multi-channel plate type detector having a wide detection surface above the sample can be considered.
Although such a configuration is publicly known, an objective lens is provided immediately above the sample, and there is little space in which a detector can be installed. In the embodiment described in JP-A-5-258703, the semiconductor detector is installed above the objective lens. In this case, since the semiconductor detector is placed above the objective lens, the distance from the sample to the detector becomes longer, and the device is easily affected by vibrations inside and outside the device, so that the accuracy of observation is reduced. There's a problem.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高速に加速
された二次荷電粒子を少ない偏向量で偏向させて検出器
に導き、効率よく検出できて安定かつ高コントラストの
良質,高精度の画像を取得することができる荷電粒子線
装置、及び半導体装置の検査方法を提供することを目的
とするものである。
SUMMARY OF THE INVENTION According to the present invention, a secondary charged particle accelerated at a high speed is deflected with a small amount of deflection and guided to a detector. It is an object of the present invention to provide a charged particle beam device capable of acquiring an image and a method for inspecting a semiconductor device.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、荷電粒子源と、前記荷電粒子源から放出
された一次荷電粒子線を試料に照射し集束する対物レン
ズと、前記一次荷電粒子線を試料上で走査する第一の偏
向器と、前記一次荷電粒子線を減速させるとともに前記
一次荷電粒子線の照射によって前記試料から発生する二
次荷電粒子を加速させる減速手段と、前記二次荷電粒子
が有する前記試料の特徴情報に基づいて画像を形成する
画像手段を備えた荷電粒子線装置において、前記対物レ
ンズと前記試料との間で前記二次荷電粒子を偏向する第
二の偏向器と、前記対物レンズと前記試料との間に設け
られた固体片に偏向された前記二次荷電粒子が衝突して
発生する第二の二次荷電粒子を、前記対物レンズと前記
試料との間で検出する検出器とを備えたことを特徴とす
る。
In order to solve the above problems, the present invention provides a charged particle source, an objective lens for irradiating a sample with a primary charged particle beam emitted from the charged particle source, and A first deflector that scans the primary charged particle beam on the sample, and a deceleration unit that decelerates the primary charged particle beam and accelerates secondary charged particles generated from the sample by irradiation of the primary charged particle beam, In a charged particle beam apparatus including an image unit that forms an image based on characteristic information of the sample included in the secondary charged particles, a second unit that deflects the secondary charged particles between the objective lens and the sample Deflector, the second secondary charged particles generated by the collision of the secondary charged particles deflected to a solid piece provided between the objective lens and the sample, the objective lens and the sample Detected between Characterized by comprising a that detector.

【0009】また、本発明は、荷電粒子源から放出され
た一次荷電粒子線を対物レンズによって半導体装置に照
射,集束し、前記一次荷電粒子線を前記半導体装置上で
偏向,走査し、減速手段によって前記一次荷電粒子線を
減速させるとともに前記一次荷電粒子線の照射によって
前記半導体装置から発生する二次荷電粒子を加速させ、
前記二次荷電粒子が有する前記半導体装置の特徴情報に
基づいて画像を形成する半導体装置の検査方法におい
て、前記対物レンズと前記半導体装置との間で前記二次
荷電粒子を偏向し、前記対物レンズと前記半導体装置と
の間に設けられた固体片に偏向された前記二次荷電粒子
が衝突して発生する第二の二次荷電粒子を、前記対物レ
ンズと前記半導体装置との間で検出することを特徴とす
る。
The present invention is also directed to a method for irradiating and focusing a primary charged particle beam emitted from a charged particle source on a semiconductor device by an objective lens, deflecting and scanning the primary charged particle beam on the semiconductor device, and decelerating means. By decelerating the primary charged particle beam and accelerating the secondary charged particles generated from the semiconductor device by irradiation of the primary charged particle beam,
In a semiconductor device inspection method for forming an image based on characteristic information of the semiconductor device included in the secondary charged particles, the secondary charged particles are deflected between the objective lens and the semiconductor device, and the objective lens A second secondary charged particle generated by collision of the secondary charged particles deflected to a solid piece provided between the semiconductor device and the semiconductor device, between the objective lens and the semiconductor device It is characterized by the following.

【0010】以上のような装置構成、及び方法により、
試料から発生した二次荷電粒子の偏向量は、直接検出器
で検出する方法に比べて、少ない偏向量で固体片に照射
でき、この固体片から発生した第二の二次荷電粒子を検
出器に導くことによって、効率よく検出することができ
る。
With the above-described apparatus configuration and method,
The amount of deflection of the secondary charged particles generated from the sample can be applied to the solid piece with a smaller deflection amount compared to the method of directly detecting with a detector, and the second secondary charged particles generated from this solid piece can be detected by the detector. Can be detected efficiently.

【0011】[0011]

【発明の実施の形態】図1は本発明の第一の実施例であ
って、荷電粒子線装置の主要部の概略構成を示す縦断面
図である。電子銃1は電子源2,引出電極3および加速
電極4から構成されている。電子源2と引出電極3の間
には引出電圧V1が引出電源5によって印加され、これ
により電子源2からは一次電子ビーム36が引出され
る。加速電極4はアース電位に維持され、加速電極4と
電子源2との間には加速電圧Vaccが加速電源6によって
印加される。したがって、一次電子ビーム36はこの加
速電圧Vaccによって加速される。加速された一次電子ビ
ーム36はレンズ電源7で制御された収束レンズ8およ
び対物レンズ9により、ステージ駆動装置(図示せず)
及び位置モニタ用測長装置11により水平移動可能にさ
れた試料ステージ12上の半導体ウェハ等の試料13に
収束され、照射される。図示していないが、以上の構成
が電子ビームを照射するのに適するように真空を保った
容器中に収納される。
FIG. 1 shows a first embodiment of the present invention and is a longitudinal sectional view showing a schematic configuration of a main part of a charged particle beam apparatus. The electron gun 1 includes an electron source 2, an extraction electrode 3 and an acceleration electrode 4. An extraction voltage V1 is applied between the electron source 2 and the extraction electrode 3 by an extraction power supply 5, whereby a primary electron beam 36 is extracted from the electron source 2. The acceleration electrode 4 is maintained at the ground potential, and an acceleration voltage Vacc is applied between the acceleration electrode 4 and the electron source 2 by an acceleration power supply 6. Therefore, the primary electron beam 36 is accelerated by the acceleration voltage Vacc. The accelerated primary electron beam 36 is conveyed by a converging lens 8 and an objective lens 9 controlled by a lens power supply 7 to a stage driving device (not shown).
The laser beam is converged and irradiated on a sample 13 such as a semiconductor wafer on a sample stage 12 which can be moved horizontally by a length measuring device 11 for position monitoring. Although not shown, the above configuration is housed in a container maintained in a vacuum so as to be suitable for electron beam irradiation.

【0012】試料13には、一次電子ビーム36を減速
させるリターディング電圧として負の電圧が可変減速電
源14によって印加され、更に試料13と対物レンズ9
との間に設けられた電極34に試料13に対して正の方
向の電圧が印加される。したがって一次電子ビーム36
はリターディング電圧によって減速される。通常、電極
34はアース電位とされ、リターディング電圧は可変減
速電源14を調整することにより任意に変えることがで
きる。
A negative voltage is applied to the sample 13 by a variable deceleration power source 14 as a retarding voltage for decelerating the primary electron beam 36.
A voltage in a positive direction with respect to the sample 13 is applied to the electrode 34 provided between the first and second electrodes. Therefore, the primary electron beam 36
Is decelerated by the retarding voltage. Usually, the electrode 34 is set to the ground potential, and the retarding voltage can be arbitrarily changed by adjusting the variable speed reduction power supply 14.

【0013】偏向器16は、一次電子ビーム36を二次
元的に偏向し、これによって試料上で一次電子ビーム3
6が二次元的に走査される。
The deflector 16 deflects the primary electron beam 36 two-dimensionally, whereby the primary electron beam 3
6 is scanned two-dimensionally.

【0014】収束された一次電子ビーム36が試料13
を照射,走査すると、試料13から二次荷電粒子33が
発生する。試料13に印加されるリターディング電圧
は、発生した二次荷電粒子33に対しては加速電圧とし
て作用し、ほぼ平行ビームとなって試料13と対物レン
ズ9の間に配置されたE×B偏向器18に入射する。
The focused primary electron beam 36 is applied to the sample 13
Is irradiated and scanned, secondary charged particles 33 are generated from the sample 13. The retarding voltage applied to the sample 13 acts as an accelerating voltage on the generated secondary charged particles 33, and becomes an almost parallel beam to form an E × B deflection disposed between the sample 13 and the objective lens 9. Incident on the vessel 18.

【0015】E×B偏向器18は二次荷電粒子33を偏
向するための偏向電界を発生する偏向電界発生器と、一
次電子ビーム36に対して偏向作用を打消すための偏向
磁界を発生する偏向磁界発生器から構成される。このE
×B偏向器18で二次荷電粒子33を偏向する量は検出
効率の低下を防ぐため、加速された二次荷電粒子33の
もつエネルギーに関係なく一定にする必要があるため、
リターディング電圧に連動してE×B偏向器18で発生
する偏向電界と偏向磁界を可変することができる。
The E × B deflector 18 generates a deflection electric field generator for generating a deflection electric field for deflecting the secondary charged particles 33 and a deflection magnetic field for canceling the deflection action on the primary electron beam 36. It consists of a deflection magnetic field generator. This E
Since the amount by which the secondary charged particles 33 are deflected by the × B deflector 18 needs to be constant irrespective of the energy of the accelerated secondary charged particles 33 in order to prevent a decrease in detection efficiency,
The deflection electric field and the deflection magnetic field generated by the E × B deflector 18 can be changed in conjunction with the retarding voltage.

【0016】E×B偏向器18で偏向された二次荷電粒
子33は固体片19に照射される。固体片19は導電性
で、かつ二次荷電粒子発生効率の良い物質で構成され
る。固体片19は対物レンズ9とE×B偏向器18の間
に配置され、固体片19から発生した第二の二次荷電粒
子20は荷電粒子検出器21によって検出され、電気信
号に変換される。
The secondary charged particles 33 deflected by the E × B deflector 18 irradiate the solid piece 19. The solid piece 19 is made of a substance that is conductive and has high secondary charged particle generation efficiency. The solid piece 19 is disposed between the objective lens 9 and the E × B deflector 18, and the second secondary charged particles 20 generated from the solid piece 19 are detected by the charged particle detector 21 and converted into an electric signal. .

【0017】荷電粒子検出器21によって検出された第
二の二次荷電粒子20の電気信号は、増幅器25により
増幅されA/D変換器26によりディジタル化される。
ディジタル化された信号は画像信号として処理され、モ
ニタ32に表示される。
The electric signal of the second secondary charged particles 20 detected by the charged particle detector 21 is amplified by an amplifier 25 and digitized by an A / D converter 26.
The digitized signal is processed as an image signal and displayed on the monitor 32.

【0018】図2に固体片19の構成の概要を示す。試
料13から発生した二次荷電粒子33はE×B偏向器1
8で偏向され固体片19に照射される。固体片19の二
次荷電粒子33が照射される面19bは、電子ビーム光
軸36aを避けるとともに、Z軸方向に向かうにしたが
って広がりを増す二次荷電粒子33を捕捉できる大きさ
で、かつ荷電粒子検出器21の検出面21bの法線21
aに対してあらかじめ傾けて配置される。
FIG. 2 shows an outline of the configuration of the solid piece 19. The secondary charged particles 33 generated from the sample 13 are
The light is deflected at 8 and irradiates the solid piece 19. The surface 19b of the solid piece 19 to which the secondary charged particles 33 are irradiated is large enough to capture the secondary charged particles 33 which expands in the Z-axis direction while avoiding the electron beam optical axis 36a, and is charged. Normal line 21 of detection surface 21b of particle detector 21
a.

【0019】図3はZ軸方向から見た固体片19と荷電
粒子検出器21の位置関係を示す図である。ここで前記
固体片19の二次荷電粒子33が照射される面19bの
法線のZ軸に対して直角方向の成分19aは、荷電粒子
検出器21の検出面21bの法線21aと同じ方向にせ
ず角度θを持たせている。この理由を以下説明する。図
4は対物レンズの磁場発生方向を示す等磁場線図であ
る。図4に示すように対物レンズ9の磁場はレンズの下
側、つまり荷電粒子検出器21や固体片19、および試
料13が位置する方向に発生し、第二の二次荷電粒子2
0は対物レンズ9の磁場により紙面に垂直な方向に力を
受けて回転する。このような対物レンズ9の磁場の影響
を避け、荷電粒子検出器21に第二の二次荷電粒子20
を導くためには、荷電粒子検出器21に印加する電圧を
大きくし吸引電界を強くする方法が考えられる。しか
し、吸引電界を強くすると、一次電子ビーム36の軌道
にまで影響を及ぼし、収差が生じてしまう。したがって
図3に示すように、第二の二次荷電粒子20が対物レン
ズ9の磁場方向により回転する方向を考慮して、あらか
じめ固体片19の二次荷電粒子33が照射される面19
bの法線のZ軸に対して垂直方向の成分19aと、荷電
粒子検出器21の検出面21bの法線21aとのなす角
度θを設定して配置する。電子は磁界中を進行する時、
磁場により方向性を持って曲げられるため、試料13か
ら発生した二次荷電粒子33が固体片19に衝突するこ
とにより発生した第二の二次荷電粒子20は、図4に示
す対物レンズ9の磁場により一定方向に曲げられ進行す
る。この曲げられた二次荷電粒子20は、図3中の荷電
粒子検出器21が形成する等電位線で示した吸引電界に
よって引き寄せられ、図3に示すような軌道を描き、荷
電粒子検出器21で検出される。第二の二次荷電粒子2
0を効率良く検出するには、対物レンズ9の磁場強度と
固体片19からの第二の二次荷電粒子20の出射角度と
のバランスが良好となる必要がある。
FIG. 3 is a diagram showing the positional relationship between the solid piece 19 and the charged particle detector 21 as viewed from the Z-axis direction. Here, the component 19a in the direction perpendicular to the Z axis of the normal to the surface 19b of the solid piece 19 irradiated with the secondary charged particles 33 is in the same direction as the normal 21a to the detection surface 21b of the charged particle detector 21. Instead of the angle θ. The reason will be described below. FIG. 4 is an isomagnetic field diagram showing the direction in which the magnetic field of the objective lens is generated. As shown in FIG. 4, the magnetic field of the objective lens 9 is generated below the lens, that is, in the direction in which the charged particle detector 21, the solid piece 19, and the sample 13 are located.
Numeral 0 rotates by receiving a force in a direction perpendicular to the paper surface by the magnetic field of the objective lens 9. By avoiding such an influence of the magnetic field of the objective lens 9, the charged particle detector 21 supplies the second secondary charged particles 20.
In order to derive (1), a method of increasing the voltage applied to the charged particle detector 21 to increase the attractive electric field can be considered. However, if the attraction electric field is strengthened, it affects the trajectory of the primary electron beam 36 and causes aberration. Therefore, as shown in FIG. 3, the surface 19 of the solid piece 19 to which the secondary charged particles 33 are irradiated is considered in advance in consideration of the direction in which the second secondary charged particles 20 rotate according to the magnetic field direction of the objective lens 9.
An angle θ between a component 19 a in the direction perpendicular to the Z axis of the normal line of b and the normal line 21 a of the detection surface 21 b of the charged particle detector 21 is set and arranged. When electrons travel in a magnetic field,
Since the secondary charged particles 33 generated from the sample 13 collide with the solid piece 19 because the secondary charged particles 20 are bent with a direction by the magnetic field, the second secondary charged particles 20 generated by the objective lens 9 shown in FIG. It is bent in a certain direction by the magnetic field and proceeds. The bent secondary charged particles 20 are attracted by the attraction electric field shown by the equipotential lines formed by the charged particle detector 21 in FIG. 3, draw a trajectory as shown in FIG. It is detected by. Second secondary charged particle 2
In order to detect 0 efficiently, the balance between the magnetic field strength of the objective lens 9 and the emission angle of the second secondary charged particles 20 from the solid piece 19 needs to be good.

【0020】両者の関係をシミュレーションおよび実験
により求めた結果を図5に示す。図5は磁場強度と固体
片19の位置との関係を示す相関図である。縦軸の固体
片取付角度θは、図3に示した荷電粒子検出器21の検
出面21bの法線21aと固体片19の二次荷電粒子3
3が照射される面19bの法線のZ軸に対して垂直方向
の成分19aとの角度であり、横軸は図4に示した対物
レンズ9の磁場強度である。図中の斜線部は荷電粒子の
検出効率が良好(70%以上)となる範囲を示す。検討
に際して用いた構成の仕様は、対物レンズ9の焦点距離
を80mm、対物レンズ9の中心から固体片19の中心ま
での距離を35mmとした。この構成においては、固体片
19の近傍の磁場強度は最大で150Gauss 程度であ
る。固体片取付角度θは、シミュレーションの結果で
は、90°以上の角度になると第二の二次荷電粒子20
を効率良く検出することができなくなる。実際に発明者
が行った実験においても固体片取付角度θを90°以上
の角度にすると第二の二次荷電粒子20を効率良く検出
することが困難であった。
FIG. 5 shows the result of the relationship between the two obtained by simulation and experiment. FIG. 5 is a correlation diagram showing the relationship between the magnetic field strength and the position of the solid piece 19. The solid piece mounting angle θ on the vertical axis is the normal 21 a of the detection surface 21 b of the charged particle detector 21 shown in FIG.
Reference numeral 3 denotes an angle with a component 19a in a direction perpendicular to the Z axis of the normal to the irradiated surface 19b, and the horizontal axis denotes the magnetic field strength of the objective lens 9 shown in FIG. The hatched portion in the figure indicates a range where the charged particle detection efficiency is good (70% or more). The specifications of the configuration used in the study were such that the focal length of the objective lens 9 was 80 mm, and the distance from the center of the objective lens 9 to the center of the solid piece 19 was 35 mm. In this configuration, the magnetic field intensity near the solid piece 19 is about 150 Gauss at the maximum. As a result of the simulation, when the solid piece attachment angle θ becomes an angle of 90 ° or more, the second secondary charged particles 20
Cannot be detected efficiently. In experiments actually performed by the inventor, it was difficult to efficiently detect the second secondary charged particles 20 when the solid piece attachment angle θ was set to 90 ° or more.

【0021】以上の実施例では、固体片19の二次荷電
粒子33が照射される面19bは平面と仮定したが、第
二の二次荷電粒子20の発生効率を上げるような凹凸を
固体片19の二次荷電粒子33が照射される面19bに
設けても良い。
In the above embodiment, the surface 19b of the solid piece 19 on which the secondary charged particles 33 are irradiated is assumed to be a flat surface. It may be provided on the surface 19b to which the 19 secondary charged particles 33 are irradiated.

【0022】図6は本発明の第二の実施例であって、固
体片19に負の電圧を印加した構成を示す説明図であ
る。負電圧電源19bにより固体片19に負電圧を印加
することで、荷電粒子検出器21の正の吸引電圧とバラ
ンスのとれた電界を形成する。また固体片19に印加さ
れた負電圧は、固体片19から発生した第二の二次荷電
粒子20に対して加速電圧となり高エネルギーとなるた
め、対物レンズ9の磁界で曲げられることがない。した
がって、第一の実施例に示したような固体片取付角度θ
を設定する必要はなく、固体片19の二次荷電粒子33
が照射される面19bを荷電粒子検出器21の検出面2
1bに対向させて、第二の二次荷電粒子20を検出する
ことができる。
FIG. 6 is a diagram showing a second embodiment of the present invention, in which a negative voltage is applied to the solid piece 19. As shown in FIG. By applying a negative voltage to the solid piece 19 by the negative voltage power supply 19b, an electric field balanced with the positive suction voltage of the charged particle detector 21 is formed. Further, the negative voltage applied to the solid piece 19 becomes an accelerating voltage for the second secondary charged particles 20 generated from the solid piece 19 and has high energy, so that the negative voltage is not bent by the magnetic field of the objective lens 9. Therefore, the solid piece mounting angle θ as shown in the first embodiment
It is not necessary to set the secondary charged particles 33 of the solid piece 19.
Is irradiated on the surface 19b of the charged particle detector 21
1b, the second secondary charged particles 20 can be detected.

【0023】図7は本発明の第三の実施例であって、対
物レンズ9と固体片19の構成を示す縦断面図である。
図7において、固体片19は対物レンズ9の磁場強度に
連動して固体片取付角度θを変えることができる。レン
ズ電源7に接続された制御装置101により、レンズ電
源7の出力に連動して固体片19を駆動装置102によ
って変更でき、第二の二次荷電粒子20の出射方向を変
えることが可能になり、対物レンズ9の磁場強度が変化
しても検出効率の低下を最小限にすることができる。
FIG. 7 shows a third embodiment of the present invention, and is a longitudinal sectional view showing the configuration of the objective lens 9 and the solid piece 19.
In FIG. 7, the solid piece 19 can change the solid piece mounting angle θ in conjunction with the magnetic field strength of the objective lens 9. By the control device 101 connected to the lens power source 7, the solid piece 19 can be changed by the driving device 102 in conjunction with the output of the lens power source 7, and the emission direction of the second secondary charged particles 20 can be changed. In addition, even if the magnetic field strength of the objective lens 9 changes, a decrease in detection efficiency can be minimized.

【0024】図8は本発明の第四の実施例であって、対
物レンズ9と固体片19とE×B偏向器18の構成を示
す縦断面図である。本構成では、固体片19を図1中に
示した電子銃1の方に向かうにしたがって一定の角度で
広がりを増す逆円錐形状とするとともに、対物レンズ9
の磁場強度に連動して二次荷電粒子33を偏向するE×
B偏向器18の電極の位置を変えられるようにして、二
次荷電粒子33を偏向する方向を変えるようにした。E
×B偏向器18の電極は、レンズ電源7に接続された制
御装置101により、レンズ電源7の出力に連動してE
×B偏向器18の電極が駆動装置102によって変えら
れる。二次荷電粒子33の偏向される方向が変えられる
ため、固体片19は逆円錐形状としてどの面でも二次荷
電粒子33が照射されるようにしている。
FIG. 8 shows a fourth embodiment of the present invention, and is a longitudinal sectional view showing the configuration of the objective lens 9, the solid piece 19 and the E × B deflector 18. In this configuration, the solid piece 19 has an inverted conical shape that expands at a certain angle toward the electron gun 1 shown in FIG.
Ex that deflects the secondary charged particles 33 in conjunction with the magnetic field strength of
The position of the electrode of the B deflector 18 can be changed, and the direction in which the secondary charged particles 33 are deflected is changed. E
The electrodes of the × B deflector 18 are linked to the output of the lens power supply 7 by the control device 101 connected to the lens power supply 7.
The electrodes of the xB deflector 18 are changed by the driving device 102. Since the direction in which the secondary charged particles 33 are deflected can be changed, the solid piece 19 has an inverted conical shape so that the secondary charged particles 33 are irradiated on any surface.

【0025】二次荷電粒子33を偏向する方向を変える
他の例を図9と図10に示す。図9および図10はE×
B偏向器18のコイルの巻き方の概略構成である。E×
B偏向器18の構成のうち、偏向電極18aと偏向コイ
ル18bを図9または図10のように4極,8極といっ
た直交する電界と磁界を形成できる複数の偏向電界発生
器と偏向磁界発生器を設け、レンズ電源7に接続された
制御装置101により、レンズ電源7の出力に連動して
E×B偏向器18の偏向電界と偏向磁界が制御されて、
二次荷電粒子33が偏向される方向を可変できるように
している。
FIGS. 9 and 10 show another example in which the direction in which the secondary charged particles 33 are deflected is changed. FIG. 9 and FIG.
3 is a schematic configuration of a method of winding a coil of a B deflector 18. Ex
In the configuration of the B deflector 18, a plurality of deflection electric field generators and deflection magnetic field generators capable of forming orthogonal electric and magnetic fields such as four poles and eight poles as shown in FIG. 9 or FIG. Is provided, and the control device 101 connected to the lens power supply 7 controls the deflection electric field and the deflection magnetic field of the E × B deflector 18 in conjunction with the output of the lens power supply 7,
The direction in which the secondary charged particles 33 are deflected can be changed.

【0026】図11は本発明の第五の実施例を示し、対
物レンズ9と固体片19の構成を示す縦断面図である。
本実施例の構成は、図8に示した本発明の第四の実施例
と同様に固体片19は逆円錐形状をしているが、対物レ
ンズ9の磁場強度に連動して荷電粒子検出器21の位置
が変化するものである。レンズ電源7に接続された制御
装置101により、レンズ電源7の出力に連動して荷電
粒子検出器21の位置を駆動装置102によって上下左
右方向に変えられるようにしている。その結果、第二の
二次荷電粒子20を荷電粒子検出器21で効率良く検出
することができる。
FIG. 11 shows a fifth embodiment of the present invention, and is a longitudinal sectional view showing the configuration of the objective lens 9 and the solid piece 19.
The configuration of the present embodiment is similar to the fourth embodiment of the present invention shown in FIG. 8 except that the solid piece 19 has an inverted conical shape, but the charged particle detector is linked to the magnetic field strength of the objective lens 9. The position of 21 changes. The position of the charged particle detector 21 can be changed in the vertical and horizontal directions by the driving device 102 in conjunction with the output of the lens power source 7 by the control device 101 connected to the lens power source 7. As a result, the second secondary charged particles 20 can be efficiently detected by the charged particle detector 21.

【0027】図12は本発明の第六の実施例であり、半
導体パターン検査装置の主要部の概略構成を示す縦断面
図である。
FIG. 12 shows a sixth embodiment of the present invention, and is a longitudinal sectional view showing a schematic configuration of a main part of a semiconductor pattern inspection apparatus.

【0028】本装置は図1に示した本発明の第一の実施
例の荷電粒子線装置に画像処理装置103を具備させ
て、半導体装置の製造工程で発生する半導体パターンの
欠陥を検査する半導体パターン検査装置としたものであ
る。画像処理装置103は、荷電粒子検出器21で検出
した試料13の情報を記憶する記憶部やその情報を画像
データに変換し、この画像を基準画像と比較する機能を
有している。
This apparatus is provided with an image processing apparatus 103 in the charged particle beam apparatus according to the first embodiment of the present invention shown in FIG. 1, and inspects a semiconductor pattern for defects generated in a semiconductor device manufacturing process. This is a pattern inspection device. The image processing device 103 has a storage unit that stores information of the sample 13 detected by the charged particle detector 21 and a function of converting the information into image data and comparing the image with a reference image.

【0029】一次電子ビーム36を例えば100MHz
等の高速で偏向,走査し、半導体ウェハ等の試料13に
照射すると、試料13から二次荷電粒子33が発生す
る。この二次荷電粒子33をE×B偏向器18で偏向
し、固体片19に照射する。固体片19から発生した第
二の二次荷電粒子20は荷電粒子検出器21の吸引電界
に引き寄せられ検出される。荷電粒子検出器21には、
例えば半導体検出器を用いると高速検出が可能となる。
検出した電気信号は画像信号に変換され、画像処理装置
103へ送られる。画像処理装置103では、画像と基
準画像とを比較したり同様のパターンの画像同士を比較
して、両方の画像に差があった場合それを欠陥として検
出し、この欠陥はモニタ32に表示される。
The primary electron beam 36 is, for example, 100 MHz
When the sample 13 such as a semiconductor wafer is deflected and scanned at a high speed such as a semiconductor wafer, secondary charged particles 33 are generated from the sample 13. The secondary charged particles 33 are deflected by the E × B deflector 18 and irradiated on the solid piece 19. The second secondary charged particles 20 generated from the solid piece 19 are attracted to the attraction electric field of the charged particle detector 21 and detected. The charged particle detector 21 includes:
For example, when a semiconductor detector is used, high-speed detection becomes possible.
The detected electric signal is converted into an image signal and sent to the image processing device 103. The image processing device 103 compares the image with the reference image or compares images with similar patterns, and detects a difference between both images as a defect, and displays the defect on the monitor 32. You.

【0030】以上述べたように、本発明の構成によれ
ば、高速に加速された二次荷電粒子を少ない偏向量で荷
電粒子検出器の方向に偏向させることができるので、二
次荷電粒子を効率良く検出し、安定かつ高コントラスト
で良質・高精度の画像を取得することが可能になる。
As described above, according to the configuration of the present invention, the secondary charged particles accelerated at high speed can be deflected in the direction of the charged particle detector with a small amount of deflection. It is possible to efficiently detect and obtain a stable, high-contrast, high-quality, high-precision image.

【0031】[0031]

【発明の効果】以上述べたように、本発明によれば、少
ない偏向量で二次荷電粒子を検出し、観察精度を低下さ
せることなく、安定かつ高コントラストの良質な画像を
取得することが可能になる。
As described above, according to the present invention, secondary charged particles can be detected with a small amount of deflection, and a stable, high-contrast, high-quality image can be obtained without lowering observation accuracy. Will be possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例を示し、荷電粒子線装置
の主要部の概略構成を示す縦断面図。
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention and showing a schematic configuration of a main part of a charged particle beam apparatus.

【図2】固体片の構成の概要を示す縦断面図。FIG. 2 is a longitudinal sectional view showing the outline of the configuration of a solid piece.

【図3】固体片と検出器の位置関係を示す説明図。FIG. 3 is an explanatory diagram showing a positional relationship between a solid piece and a detector.

【図4】対物レンズの磁場発生方向を示す等磁場線図。FIG. 4 is an isomagnetic field diagram showing a magnetic field generation direction of the objective lens.

【図5】磁場強度と固体片位置との関係を示す相関図。FIG. 5 is a correlation diagram showing a relationship between a magnetic field intensity and a position of a solid piece.

【図6】本発明の第二の実施例を示し、固体片の構成の
概要を示す説明図。
FIG. 6 is an explanatory view showing the second embodiment of the present invention and showing an outline of the configuration of a solid piece.

【図7】本発明の第三の実施例を示し、対物レンズと固
体片の構成を示す縦断面図。
FIG. 7 shows a third embodiment of the present invention, and is a longitudinal sectional view showing the configuration of an objective lens and a solid piece.

【図8】本発明の第四の実施例を示し、対物レンズと固
体片とE×B偏向器の構成を示す縦断面図。
FIG. 8 is a longitudinal sectional view showing a fourth embodiment of the present invention and showing the configuration of an objective lens, a solid piece, and an E × B deflector.

【図9】E×B偏向器のコイルの巻き方の概略構成を示
す説明図。
FIG. 9 is an explanatory diagram showing a schematic configuration of a method of winding a coil of an E × B deflector.

【図10】E×B偏向器のコイルの巻き方の概略構成を
示す説明図。
FIG. 10 is an explanatory diagram showing a schematic configuration of how to wind a coil of an E × B deflector.

【図11】本発明の第五の実施例を示し、対物レンズと
固体片の構成を示す縦断面図。
FIG. 11 is a longitudinal sectional view showing a fifth embodiment of the present invention and showing the configuration of an objective lens and a solid piece.

【図12】本発明の第六の実施例を示し、半導体パター
ン検査装置の主要部の概略構成を示す縦断面図。
FIG. 12 is a longitudinal sectional view showing a sixth embodiment of the present invention and showing a schematic configuration of a main part of a semiconductor pattern inspection apparatus.

【符号の説明】[Explanation of symbols]

1…電子銃、2…電子源、3…引出電極、4…加速電
極、5…引出電源、6…加速電源、7…レンズ電源、8
…収束レンズ、9…対物レンズ、11…位置モニタ用測
長装置、12…試料ステージ、13…試料、14…可変
減速電源、16…偏向器、18…E×B偏向器、18a
…偏向電極、18b…偏向コイル、19…固体片、19
a…逆円錐状固体片、19b…負電圧電源、20…第二
の二次荷電粒子、21…荷電粒子検出器、25…増幅
器、26…A/D変換器、32…モニタ、33…二次荷
電粒子、34…電極、36…一次電子ビーム、36a…
電子ビーム光軸、101…制御装置、102…駆動装
置、103…画像処理装置。
DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Electron source, 3 ... Extraction electrode, 4 ... Acceleration electrode, 5 ... Extraction power supply, 6 ... Acceleration power supply, 7 ... Lens power supply, 8
... converging lens, 9 ... objective lens, 11 ... length measuring device for position monitoring, 12 ... sample stage, 13 ... sample, 14 ... variable deceleration power supply, 16 ... deflector, 18 ... EXB deflector, 18a
... deflection electrode, 18b ... deflection coil, 19 ... solid piece, 19
a: inverted conical solid piece, 19b: negative voltage power supply, 20: second secondary charged particle, 21: charged particle detector, 25: amplifier, 26: A / D converter, 32: monitor, 33: two Next charged particle, 34 ... electrode, 36 ... primary electron beam, 36a ...
Electron beam optical axis, 101: control device, 102: drive device, 103: image processing device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩淵 裕子 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器事業部内 (72)発明者 小瀬 洋一 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器事業部内 (72)発明者 高藤 敦子 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 宇佐見 康継 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器事業部内 Fターム(参考) 5C033 JJ02 NN01 NP01 NP08 UU02 UU04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuko Iwabuchi 882-mo, Oji-shi, Hitachinaka-shi, Ibaraki Pref. Inside the Measuring Instruments Division, Hitachi, Ltd. (72) Inventor Atsuko Takafuji 1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo Inside Hitachi Central Research Laboratory Co., Ltd. 5C033 JJ02 NN01 NP01 NP08 UU02 UU04

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】荷電粒子源と、前記荷電粒子源から放出さ
れた一次荷電粒子線を試料に照射し集束する対物レンズ
と、前記一次荷電粒子線を試料上で走査する第一の偏向
器と、前記一次荷電粒子線を減速させるとともに前記一
次荷電粒子線の照射によって前記試料から発生する二次
荷電粒子を加速させる減速手段と、前記二次荷電粒子が
有する前記試料の特徴情報に基づいて画像を形成する画
像手段を備えた荷電粒子線装置において、 前記対物レンズと前記試料との間で前記二次荷電粒子を
偏向する第二の偏向器と、前記対物レンズと前記試料と
の間に設けられた固体片と、偏向された前記二次荷電粒
子が前記固体片に衝突して発生する第二の二次荷電粒子
を前記対物レンズと前記試料との間で検出する検出器と
を備えたことを特徴とする荷電粒子線装置。
1. A charged particle source, an objective lens for irradiating and focusing a primary charged particle beam emitted from the charged particle source on a sample, and a first deflector for scanning the primary charged particle beam on the sample. A deceleration means for decelerating the primary charged particle beam and accelerating a secondary charged particle generated from the sample by irradiation of the primary charged particle beam, and an image based on characteristic information of the sample which the secondary charged particle has A charged particle beam apparatus provided with image means for forming a second deflector for deflecting the secondary charged particles between the objective lens and the sample; and a second deflector provided between the objective lens and the sample. And a detector for detecting a second secondary charged particle generated by the deflected secondary charged particles colliding with the solid piece between the objective lens and the sample. Charging characterized by Particle beam device.
【請求項2】請求項1に記載の荷電粒子線装置におい
て、前記対物レンズが形成する磁場の強度に基づいて前
記固体片の前記二次荷電粒子が衝突する面の方向が変化
することを特徴とする荷電粒子線装置。
2. The charged particle beam apparatus according to claim 1, wherein the direction of the surface of the solid piece on which the secondary charged particles collide changes based on the strength of the magnetic field formed by the objective lens. Charged particle beam device.
【請求項3】請求項2に記載の荷電粒子線装置におい
て、前記固体片の前記二次荷電粒子が衝突する面の法線
の前記一次荷電粒子線の方向に対して直角方向成分と、
前記荷電粒子検出器の検出面の法線とのなす角度θが0
度以上90度以下の範囲内であることを特徴とする荷電
粒子線装置。
3. The charged particle beam apparatus according to claim 2, wherein a component perpendicular to a direction of the primary charged particle beam of a normal of a surface of the solid piece on which the secondary charged particles collide is;
The angle θ between the normal of the detection surface of the charged particle detector and the normal is 0.
A charged particle beam device characterized by being in the range of not less than 90 degrees and not more than 90 degrees.
【請求項4】請求項1乃至3に記載の荷電粒子線装置に
おいて、前記固体片に負電圧を加えることを特徴とする
荷電粒子線装置。
4. A charged particle beam apparatus according to claim 1, wherein a negative voltage is applied to said solid piece.
【請求項5】請求項1乃至4に記載の荷電粒子線装置に
おいて、前記固体片の前記二次荷電粒子が衝突する面に
凹凸を設けたことを特徴とする荷電粒子線装置。
5. The charged particle beam apparatus according to claim 1, wherein a surface of the solid piece on which the secondary charged particles collide is provided with irregularities.
【請求項6】請求項1に記載の荷電粒子線装置におい
て、前記対物レンズの磁場の強度に基づいて前記固体片
の前記二次荷電粒子が衝突する面の方向を変化させるこ
とを特徴とする荷電粒子線装置。
6. The charged particle beam apparatus according to claim 1, wherein the direction of the surface of the solid piece on which the secondary charged particles collide is changed based on the strength of the magnetic field of the objective lens. Charged particle beam device.
【請求項7】請求項1に記載の荷電粒子線装置におい
て、前記第二の偏向器は前記対物レンズの磁場の強度に
基づいて前記二次荷電粒子を偏向する方向を変化させる
ことを特徴とする荷電粒子線装置。
7. The charged particle beam apparatus according to claim 1, wherein the second deflector changes a direction in which the secondary charged particles are deflected based on a magnetic field intensity of the objective lens. Charged particle beam equipment.
【請求項8】請求項1乃至7に記載の荷電粒子線装置に
おいて、前記対物レンズの磁場の強度に基づいて前記検
出器の検出面の位置が変化することを特徴とする荷電粒
子線装置。
8. The charged particle beam apparatus according to claim 1, wherein the position of the detection surface of the detector changes based on the intensity of the magnetic field of the objective lens.
【請求項9】請求項1乃至8に記載の荷電粒子線装置に
おいて、前記検出器で検出した電気信号を画像信号とし
て記憶し、その記憶された画像信号を用いて画像比較を
行い前記試料の欠陥を検出する画像処理装置を有するこ
とを特徴とする荷電粒子線装置。
9. The charged particle beam apparatus according to claim 1, wherein the electric signal detected by the detector is stored as an image signal, and an image comparison is performed using the stored image signal to perform the image comparison. A charged particle beam device comprising an image processing device for detecting a defect.
【請求項10】荷電粒子源から放出された一次荷電粒子
線を対物レンズによって半導体装置に照射し、 前記一次荷電粒子線を前記半導体装置上で走査し、 減速手段によって前記一次荷電粒子線を減速させるとと
もに前記一次荷電粒子線の照射によって前記半導体装置
から発生する二次荷電粒子を加速させ、 前記二次荷電粒子が有する前記半導体装置の特徴情報に
基づいて画像を形成する半導体装置の検査方法におい
て、 前記対物レンズと前記半導体装置との間で前記二次荷電
粒子を偏向し、 前記対物レンズと前記半導体装置との間に設けられた固
体片に偏向された前記二次荷電粒子が衝突して発生する
第二の二次荷電粒子を、前記対物レンズと前記半導体装
置との間で検出することを特徴とする半導体装置の検査
方法。
10. A semiconductor device is irradiated with a primary charged particle beam emitted from a charged particle source by an objective lens, the primary charged particle beam is scanned on the semiconductor device, and the primary charged particle beam is decelerated by a speed reduction means. And accelerating secondary charged particles generated from the semiconductor device by irradiating the primary charged particle beam, and forming an image based on characteristic information of the semiconductor device included in the secondary charged particles. The secondary charged particles are deflected between the objective lens and the semiconductor device, and the deflected secondary charged particles collide with a solid piece provided between the objective lens and the semiconductor device. A method for inspecting a semiconductor device, comprising: detecting a generated second secondary charged particle between the objective lens and the semiconductor device.
【請求項11】請求項10に記載の半導体装置の検査方
法において、前記対物レンズの磁場の強度に基づいて、
前記固体片の位置を変化させることを特徴とする半導体
装置の検査方法。
11. The method for inspecting a semiconductor device according to claim 10, wherein:
A method for inspecting a semiconductor device, wherein a position of the solid piece is changed.
【請求項12】請求項10に記載の半導体装置の検査方
法において、前記対物レンズの磁場の強度に基づいて、
前記検出器の位置を変化させることを特徴とする半導体
装置の検査方法。
12. The method for inspecting a semiconductor device according to claim 10, wherein:
A method for inspecting a semiconductor device, comprising: changing a position of the detector.
【請求項13】請求項10乃至12に記載の半導体装置
の検査方法において、前記検出器で検出した電気信号を
画像信号として記憶し、その記憶された画像信号を用い
て画像比較を行い、前記半導体装置の欠陥を検出するこ
とを特徴とする半導体装置の検査方法。
13. The method for inspecting a semiconductor device according to claim 10, wherein the electric signal detected by the detector is stored as an image signal, and an image comparison is performed using the stored image signal. A method for inspecting a semiconductor device, comprising detecting a defect in the semiconductor device.
JP10172507A 1998-06-19 1998-06-19 Charged particle beam apparatus and inspection method for semiconductor device Pending JP2000011939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10172507A JP2000011939A (en) 1998-06-19 1998-06-19 Charged particle beam apparatus and inspection method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10172507A JP2000011939A (en) 1998-06-19 1998-06-19 Charged particle beam apparatus and inspection method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2000011939A true JP2000011939A (en) 2000-01-14

Family

ID=15943256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10172507A Pending JP2000011939A (en) 1998-06-19 1998-06-19 Charged particle beam apparatus and inspection method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2000011939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040461A (en) * 2008-08-08 2010-02-18 Hitachi High-Technologies Corp Scanning electron microscope
JP2012003909A (en) * 2010-06-16 2012-01-05 Hitachi High-Technologies Corp Charged particle beam device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040461A (en) * 2008-08-08 2010-02-18 Hitachi High-Technologies Corp Scanning electron microscope
JP2012003909A (en) * 2010-06-16 2012-01-05 Hitachi High-Technologies Corp Charged particle beam device

Similar Documents

Publication Publication Date Title
US11562881B2 (en) Charged particle beam system
JP3291880B2 (en) Scanning electron microscope
US6043491A (en) Scanning electron microscope
US6667476B2 (en) Scanning electron microscope
JP4236742B2 (en) Scanning electron microscope
JP3786875B2 (en) Objective lens for charged particle beam devices
CN111837214A (en) Scanning electron microscope objective lens system and sample detection method
JPH1151886A (en) Method and equipment for inspection using electron beam
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
CN108807118B (en) Scanning electron microscope system and sample detection method
JP3372138B2 (en) Scanning electron microscope
JP4613405B2 (en) Scanning electron microscope
US3717761A (en) Scanning electron microscope
US20020109089A1 (en) SEM provided with an adjustable final electrode in the electrostatic objective
JP5749028B2 (en) Scanning electron microscope
JP6312387B2 (en) Particle beam device and method of operating particle beam device
JPH10302705A (en) Scanning electron microscope
JPH08138611A (en) Charged particle beam device
JP2000299078A (en) Scanning electron microscope
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
US6710340B2 (en) Scanning electron microscope and method of detecting electrons therein
JP2002110079A (en) Electron beam device
US7394069B1 (en) Large-field scanning of charged particles
JP2010182596A (en) Charged particle beam apparatus
JP2002025492A (en) Method and apparatus for imaging sample using low profile electron detector for charged particle beam imaging system containing electrostatic mirror