FR2958329A1 - Method for structural design of cooling circuit utilized for cooling internal combustion engine attenuating sound frequencies in vehicle, involves minimizing amplitude of sound wave at exit of cooling circuit by adjusting cooling circuit - Google Patents

Method for structural design of cooling circuit utilized for cooling internal combustion engine attenuating sound frequencies in vehicle, involves minimizing amplitude of sound wave at exit of cooling circuit by adjusting cooling circuit Download PDF

Info

Publication number
FR2958329A1
FR2958329A1 FR1052560A FR1052560A FR2958329A1 FR 2958329 A1 FR2958329 A1 FR 2958329A1 FR 1052560 A FR1052560 A FR 1052560A FR 1052560 A FR1052560 A FR 1052560A FR 2958329 A1 FR2958329 A1 FR 2958329A1
Authority
FR
France
Prior art keywords
cooling circuit
noise
circuit
wave
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR1052560A
Other languages
French (fr)
Inventor
Wilfrid Raguenet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Priority to FR1052560A priority Critical patent/FR2958329A1/en
Publication of FR2958329A1 publication Critical patent/FR2958329A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/027Throttle passages
    • F16L55/02709Throttle passages in the form of perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/027Throttle passages
    • F16L55/02763Throttle passages using an element with multiple tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/033Noise absorbers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The method involves minimizing amplitude of a sound wave at an exit of a structure of a cooling circuit (4) excited by a predefined incidental sound wave i.e. plane wave, by adjusting the structure of the cooling circuit. Sound frequencies lie between 500 hertz and 700 hertz. The amplitude of the sound wave corresponds to pressure or flow of the sound wave. An adjusted parameter of the structure of the cooling circuit is adjusted to geometry of an elbow of the cooling circuit.

Description

PROCEDE DE CONCEPTION DE LA STRUCTURE D'UN CIRCUIT DE REFROIDISSEMENT [0001 La présente invention concerne un procédé de conception de la structure d'un circuit de refroidissement. [0002] Une pseudo-sirène modulée ou « pseudo-goose noise » est un bruit qui croît en fonction de la vitesse de rotation d'un organe qui le génère. Un tel bruit est en outre modulé en phase et/ou en amplitude. [0003] Notamment, le bruit de sirène modulée est un phénomène de bruit présent sur tous les moteurs thermiques présentant de l'acyclisme au niveau du vilebrequin et des arbres à cames (couples résistants). L'acyclisme du moteur s'explique par une variation de vitesse à l'échappement du piston traduisant le fait qu'un mouvement vertical (mouvement bielle/piston) est transformé en mouvement de rotation (mouvement du vilebrequin). [0004] Un tel bruit est d'autant plus marqué que le bruit global du moteur a tendance à diminuer. Ainsi, sur certains véhicules, le bruit de pseudo-sirène modulée est plus particulièrement perceptible dans l'habitacle du véhicule lorsque le moteur est chaud et qu'il fonctionne entre 750 et 950 tr/min. Le bruit est tel que sans modification de l'architecture de l'entraînement de distribution, le véhicule n'est vendable que sous dérogation. [0005] Il est donc souhaitable d'atténuer au mieux les perturbations sonores engendrées par le bruit de pseudo-sirène modulée. [0006] Des solutions sont connues de l'art antérieur dans le domaine de la réduction du bruit. C'est ainsi le cas des documents JP-A-2007155217, WO-A-04111520 et US- A-2004055816. Cependant, aucune des solutions précédentes ne concerne à la fois le dispositif de refroidissement du moteur et les fréquences sonores qui sont gênantes pour les personnes se trouvant dans l'habitacle du véhicule. [000n Il existe donc un besoin pour un procédé permettant de réduire le bruit de pseudo-sirène modulée dans un véhicule. [0008] Pour cela, l'invention propose un procédé de conception de la structure d'un circuit de refroidissement d'un moteur atténuant les fréquences sonore caractérisé en ce que le procédé comporte une étape de minimisation de l'amplitude de l'onde sonore en sortie de la structure du circuit excitée par une onde sonore incidente prédéfinie par ajustement de la structure du circuit. [0009] Selon les modes de réalisation, le procédé peut comporter une ou plusieurs des caractéristiques suivantes : les fréquences sonores sont comprises entre 300 Hz et 1000 Hz, de préférence entre 500 Hz et 700 Hz. • l'amplitude d'une onde correspond à la pression ou au débit de l'onde. • l'onde incidente prédéfinie est une onde plane. • l'onde sonore en sortie de la structure du circuit est calculée à l'aide d'une méthode matricielle, la méthode matricielle modélisant chaque élément du circuit comme un dipôle ou un quadripôle dont les coefficients de la matrice associée au dipôle ou au quadripôle dépendent des caractéristiques géométriques de chacun des éléments. • l'étape de minimisation est mise en oeuvre pour plusieurs ondes sonores incidentes prédéfinies. • le circuit de refroidissement comporte des conduits, un paramètre ajusté de la structure étant la longueur des conduits du circuit de refroidissement. • le circuit de refroidissement comporte des conduits, un paramètre ajusté de la structure étant le diamètre des conduits du circuit de refroidissement. le circuit de refroidissement comporte un coude, un paramètre ajusté de la structure étant la géométrie du coude du circuit de refroidissement. • le circuit de refroidissement comporte une vanne, un paramètre ajusté de la structure étant la géométrie de la vanne. • le circuit de refroidissement comporte une dérivation, un paramètre ajusté de la structure étant la géométrie de la dérivation. [0010 D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit des modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en références aux dessins qui montrent : • figure 1, des vues d'un exemple de moteur muni de son circuit de refroidissement; figure 2, un graphe représentant des spectres de puissance du bruit ambiant ; • figure 3, un graphe représentant le spectre de l'enveloppe du bruit ambiant dans une plage étendue de fréquences ; • figure 4, un schéma de dispositif d'expérience avec un oscillogramme ; • figure 5, une représentation schématique d'un exemple de circuit de refroidissement ; • figure 6, des courbes d'autospectre de débit pour un exemple de dispositif d'isolation • figure 7, une représentation des fluctuations de pression pour un exemple de dispositif d'isolation ; figure 8, des courbes d'autospectre de pression pour un exemple de dispositif d'isolation • figure 9, une vue schématique d'un exemple de grille • figure 10, une vue d'un exemple de mise en place d'un dispositif d'isolation dans une durite • figure 11, une autre vue d'un exemple de mise en place d'un dispositif d'isolation dans une durite ; • figures 12 à 15, des vues schématiques d'un exemple de dispositif d'isolation ; • figures 16, 18, 20, 22 et 26, un graphe représentant des spectres de puissance du bruit ambiant selon certaines conditions ; • figures 17, 19, 21, 23 et 27, un graphe représentant le spectre de l'enveloppe du bruit correspondant aux environnements dans les conditions des figures 16, 18, 20, 22 et 26 ; • figures 24, 25 et 28, des vues agrandies des figures 21, 23 et 27. [0011] Il est proposé d'améliorer l'acoustique d'un moteur 2 thermique en analysant la propagation d'une vibration. Cette vibration sonore est un bruit parasite, en l'occurrence une pseudo-sirène modulée. En effet, la perception d'un tel bruit gêne le passager se trouvant à l'intérieur du véhicule. Une telle étude permet de mieux comprendre les différents éléments intervenant dans la propagation du bruit. Il devient alors possible d'envisager plusieurs moyens pour réduire le bruit parasite mesuré. Il sera ainsi proposé une solution indirecte « passive » pour supprimer la perception du bruit sans en ajouter d'autres. [0012] Avant d'étudier la propagation du bruit dans le véhicule, il convient de présenter les différents éléments intervenant dans le cadre de cette propagation. [0013] La figure 1 représente une vue en perspective d'un moteur 2 thermique à combustion interne d'un véhicule. Le moteur 2 est muni d'un circuit 4 de refroidissement. La figure 1 comporte également une vue en perspective éclatée du circuit 4 de refroidissement relié à un aérotherme 6. [0014] Le moteur 2 comprend une partie inférieure qui est le carter cylindre et une partie supérieure avec la culasse et son système de distribution 12. Le système de distribution 12 représenté est une courroie 14 de distribution. La courroie 14 de transmission pourrait être remplacée par une chaîne de transmission. [0015] Le moteur 2 entraîne en rotation la courroie 14 de transmission sur laquelle s'engrènent différents organes rotatifs. La courroie 14 permet ainsi d'effectuer une liaison entre l'arbre à cames et le vilebrequin. Le pignon 16 du vilebrequin et la poulie 18 de l'arbre à cames sont en effet entraînés par la courroie 14. Le système de distribution 12 comporte en outre un galet tendeur et un galet enrouleur 22 qui évite le battement de brin de la courroie 14. Un brin de la courroie 14 est une partie de la courroie 14 qui relie deux éléments. [0016] De plus, la courroie 14 s'engrène avec un pignon 24 d'une pompe 26. La pompe 26 pompe un liquide caloporteur pour le faire circuler dans un circuit 4 de refroidissement du moteur 2. Le circuit 4 est donc un circuit hydraulique raccordé à un aérotherme 6 qui permet de chauffer l'intérieur de l'habitable du véhicule à l'aide du liquide caloporteur réchauffé par le moteur 2. Le liquide caloporteur est généralement de l'eau glycolée de sorte que la pompe 26 est également connue sous le terme de « pompe à eau ». [0017] Selon l'exemple des figures 1, le circuit 4 de refroidissement comprend plus précisément un coude 28 en sortie de la pompe 26 à eau relié à un tuyau 30 lui-même relié à une première durit 32 menant à l'aérotherme 6. L'eau qui circule dans cette partie du circuit 4 est une eau relativement froide pour refroidir le moteur 2. [0018] Un boîtier 34 de sortie d'eau fait également partie du circuit 4 de refroidissement et est relié via une deuxième durit 36 à l'aérotherme 6. L'eau qui circule alors dans la deuxième durit 36 est une eau plutôt chaude qui permettra de chauffer l'habitacle. [0019] Un échange de chaleur a ainsi lieu au niveau de l'aérotherme 6. L'aérotherme 6 se trouvant au niveau de l'habitacle du véhicule et étant relié aux durits 32 et 36 via un réseau hydraulique 38 faisant partie du circuit 4 de refroidissement, il sert à la fois à refroidir le liquide de refroidissement et à chauffer l'intérieur de l'habitacle. De ce point de vue, le circuit 4 de refroidissement du moteur 2 peut être aussi considéré comme le circuit 4 de chauffage. Cette eau ainsi refroidie après passage dans l'aérotherme 6, repasse depuis la première durit 32 vers le moteur 2 selon le chemin précédemment décrit du fait du pompage de la pompe 26 à eau. [0020] La source du bruit de pseudo-sirène modulée se trouve dans la modulation produite par les ordres de premiers rangs du moteur 2. Un ordre du premier rang du moteur 2 est une fréquence f; définie par la relation suivante : f; = iNfc où : ^ i est un multiple de 1 /Nb_tc inférieur ou égale à (Nb_cy,/ Nb_tc), où Nb_tc est le nombre de tours complets du vilebrequin du moteur 2 par cycle du moteur 2 et Nb_cy, est le nombre de cylindres du moteur 2, • N est égal à 1 ; et • fc est la fréquence de rotation du vilebrequin, c'est-à-dire le nombre de tours du vilebrequin ou de l'arbre par seconde. [0021] Selon l'exemple de la figure 1, le moteur 2 est un moteur quatre temps à quatre cylindres. Ainsi, un cycle complet de ce moteur 2 se fait en deux tours de vilebrequin ou de l'arbre. Les ordres du premier rang du moteur 2 sont donc les fréquences suivantes : f1 = 0,5fc, f2 = fc, f3 = 1,5fc et f4 = 2fc, où fc est la fréquence de rotation de l'arbre. Dans la suite de cette description, ces ordres sont appelés, respectivement, « ordre 0,5 », « ordre 1 », « ordre 1,5 » et « ordre 2 ». [0022] L'étude de la propagation des différents ordres précédents dans le système de distribution 12 puis dans le circuit 4 de refroidissement a été rendue possible par l'utilisation de plusieurs outils de mesures. Notamment, l'importance d'un bruit de pseudo-sirène modulée dans l'habitacle peut être évaluée grâce à un outil appelé (bruit. Un tel outil permet de quantifier la prestation acoustique attendue lorsque le dispositif est intégré dans le véhicule. 'bruit est ainsi un indicateur de bruit. [0023] Le bruit ambiant et la fréquence fc de rotation du vilebrequin sont mesurés à l'aide de capteurs. Plus précisément, la mesure du bruit ambiant est réalisée pendant une période_t pendant laquelle la fréquence de rotation du vilebrequin est constante. On obtient le graphe représentant des spectres de puissance du bruit ambiant de la figure 2. [0024] Ensuite, ces mesures sont échantillonnées par un échantillonneur. Par exemple, la fréquence d'échantillonnage est de 4096 Hz avec une résolution de 1 Hz. On procède également à un fenêtrage du signal acoustique mesuré. Ce fenêtrage est par exemple réalisé à partir d'une fenêtre d'observation de Nanning. [0025] Une fois les différentes mesures échantillonnées et fenêtrées, celles-ci sont acquises et traitées par une unité. Ainsi, cette unité détermine à partir des mesures réalisées la puissance P560-600 de la pseudo-sirène modulée dans la plage réduite par rapport à la puissance P510-600 du bruit mesurée dans la plage étendue. [0026] Pour cela, l'unité calcule les puissances P560-600 et P510-600 à partir des mesures réalisées lors de la mesure du bruit ambiant. Ensuite, l'unité calcule un coefficient l d'amplification. Le coefficient l est par exemple calculé à l'aide de la relation suivante • l = P560-600/P510-600. [0027] Ce coefficient l permet de mesurer l'émergence d'un bruit fort dans la bande réduite par rapport au niveau de bruit dans la bande étendue. [0028] Ensuite, l'unité détermine l'amplitude d'au moins une fréquence de modulation multiple entier d'un des ordres du premier rang du moteur 2 dans la plage étendue [510Hz ; 600Hz]. Par exemple, pour cela, le bruit mesuré est d'abord filtré à l'aide d'un filtre passe-bande pour sélectionner uniquement les fréquences comprises entre 510 et 600 Hz. Ensuite, une transformée de Hilbert est utilisé pour construire le spectre de l'enveloppe du signal filtré. [0029] Par exemple, pour cela, on applique une transformée de Fourrier au signal filtré. Ensuite, la transformée de Fourrier obtenue est transformée en utilisant l'opérateur ûj sgn(f) où : • j est le nombre imaginaire, f est une fréquence, et • sgn(f) est égale à 1 si la fréquence f est positive ou est égale à zéro si la fréquence f est nulle ou est égale à -1 si la fréquence f est négative. [0030] La figure 3 représente un graphe d'un exemple de spectre d'enveloppe 40 obtenu. [0031] Ensuite, dans le spectre 40, on relève l'amplitude des fréquences de modulation correspondant à des harmoniques des ordres de premier rang du moteur 2. Pour cela, on utilise la fréquence de rotation fc mesurée. Par exemple, pour un régime moteur 2 de 750 tours par minute, la fréquence fc est égale à 12,5 Hz. Par conséquent, les fréquences f1 à f4 des ordres du premier rang du moteur 2 sont égales, respectivement, à 6,25 Hz, 12,5 Hz, 18,75 Hz et 25 Hz. On relève alors dans le spectre 40 l'amplitude d'au moins une de ces fréquences ainsi que l'amplitude de ses harmoniques. Dans le cas particulier décrit ici, seules les amplitudes des fréquences correspondant aux ordres 0,5 et 1,5 ainsi que les premiers harmoniques de ces fréquences sont relevés. Par exemple, on relève les amplitudes à Eo,5, E1, E1,5 et E3 à, respectivement, 6,25 Hz, 12,5 Hz, 18,75 Hz et 37,5 Hz. [0032] Sur la figure 3, les pics dont l'amplitude est relevée sont mis en évidence par 15 des bandes verticales hachurées. [0033] Ensuite, les amplitudes A0,5 et A1,5 des harmoniques des fréquences de modulation f1 et f3 sont calculées. Pour tenir compte du caractère impulsionnel de la modulation, on tient également compte dans le calcul de l'amplitude des premières harmoniques des fréquences f1 et f3. 20 [0034] Par exemple, l'amplitude A0,5 est calculée à l'aide de la relation suivante : A0,5 = 0,5 E0,5 + 0,25 E1 + 0,25 E1,5. De façon similaire, l'amplitude A1,5 est calculée à l'aide de la relation suivante: A1,5= 0,75 E1 + 0,25 E3. 25 [0035] Ensuite, un terme 12 représentatif des amplitudes mesurées et homogène avec une puissance est calculé. Par exemple, le terme 12 est calculé à l'aide de la relation suivante : 12 =1/cxAo 52 +,3,41,52 , où a et 13 sont des coefficients de pondération dont la somme est égale à 1. [0036] Ici, une mesure plus précise de la pseudo-sirène modulée est obtenue en donnant plus d'importance à l'ordre 1,5 qu'à l'ordre 0,5. A cet effet, les valeurs des coefficients a et R sont par exemple choisies, respectivement, égales à 0,25 et 0,75. [0037] Enfin, la mesure I de la pseudo-sirène modulée est construite à partir des termes 11 et 12. Plus précisément, la mesure I est construite de manière à être proportionnelle à la fois aux termes 11 et 12. Par exemple, la mesure 1 est obtenue à l'aide de la relation suivante : 1 = 11 x 12. [0038] lI est ensuite possible de construire un indicateur (bruit de la présence d'une pseudo-sirène modulée directement perceptible par fouie humaine. Ici, la valeur de l'indicateur (bruit est calculée à l'aide de la relation suivante : (bruit = 10 Log(l/ls) où Is est un seuil prédéterminé d'audibilité de la pseudo-sirène modulée en deçà duquel elle n'est pas directement perceptible par l'ouïe humaine. [0039] Par exemple, le seuil Is est égal à une mesure de la pseudo-sirène modulée 15 obtenue dans des conditions de fonctionnement du moteur 2 où la pseudo-sirène modulée n'est pas directement audible par fouie humaine. [0040] L'indicateur (bruit permet de prédire la sensation de bruit ressenti par les utilisateurs et en particulier de prédire si la pseudo-sirène modulée est directement audible par fouie humaine et avec quelle intensité. 20 [0041] Les outils précédemment présentés permettent d'étudier la propagation des différents ordres du moteur 2 (ordre 0,5, ordre 1, ordre 1,5 et ordre 2) dans le système de distribution 12 puis dans le circuit 4 de refroidissement. En suivant le chemin de propagation du bruit de pseudo-sirène modulée depuis le moteur 2 jusqu'à l'habitacle du véhicule, il est constaté que la transmission se fait en plusieurs temps. 25 [0042] Dans un premier temps, il est possible de mettre en évidence expérimentalement que la transmission du bruit de pseudo-sirène modulée se fait d'abord au niveau de la courroie 14 de distribution qui porte les fréquences de modulation correspondant aux harmoniques de premiers rangs du moteur 2. Dans une configuration d'essai dans laquelle le bruit de pseudo-sirène modulée est marqué, le spectre d'enveloppe est calculé à partir d'une mesure vibratoire faite au vibromètre laser sur le brin reliant la pompe 26 à eau et le galet tendeur 20. L'analyse de ce spectre montre l'importance des fréquences de modulation : 6,25 Hz, 12,5 Hz, 18,75 Hz et 25Hz. Ces fréquences correspondent, au régime de ralenti, aux harmoniques de premiers rangs du moteur 2 : ordre 0,5, ordre 1, ordre 1,5 et ordre 2. La courroie 14 de distribution porte donc les fréquences de modulation correspondant aux harmoniques de premiers rangs du moteur 2, à savoir les fréquences correspondant aux ordres 0,5, ordre 1, ordre 1,5 et ordre 2. [0043] Dans un second temps, la courroie 14 de distribution transmet ces fréquences de modulation au pignon de la pompe 26 à eau. Ainsi, le spectre d'enveloppe calculé à partir de mesures de déplacement (hors plan) du pignon 24 de pompe à eau met en évidence, dans le cas où le bruit de pseudo-sirène modulée est marqué, l'émergence des fréquences 6,25Hz, 12,5Hz, 18,75Hz et 37,5Hz. Les fréquences disparaissent dans une configuration dans laquelle le bruit de pseudo-sirène modulée est absent. Ceci montre que la courroie 14 de distribution transmet au pignon de la pompe 26 à eau les fréquences de modulation correspondant aux ordres 0,5, ordre 1, ordre 1,5, ordre 2 et ordre 3. [0044] Dans un troisième temps, le pignon 24 de pompe à eau transmet les fréquences de modulations à son tour au fluide caloporteur sur la bande de fréquences caractéristique d'une pseudo-sirène modulée. Expérimentalement, pour représenter en fonctionnement le champ de déformation du pignon de la pompe 26, on utilise la vision stéréoscopique. Il s'agit d'un procédé optique qui s'appuie sur le principe de triangulation pour déterminer les coordonnées spatiales d'un objet à partir d'une paire d'images. Les déformations maximales sur le pignon 24 de pompe dans la configuration sans pseudo-sirène modulée se situent aux environs de l'engrènement de la courroie 14 sur le pignon. Dans la configuration avec pseudo-sirène modulée, l'engrènement n'apparaît pas comme une zone de fortes déformations. Les mouvements qui occasionnent des déformations importantes ressemblent davantage à des mouvements de balancier. Sans aucun doute, ces mouvements de balancier sont ensuite imprimés au fluide caloporteur par l'intermédiaire de la turbine de la pompe 26 qui est solidaire du pignon. Des fluctuations de pression synchrones aux mouvements du pignon 24 de pompe dans le fluide caloporteur se retrouvent alors. C'est en effet ce que montrent les résultats des mesures de pression dynamique faites dans le circuit 4 de refroidissement. Ceci prouve que le pignon de la pompe 26 transmet au fluide caloporteur les fréquences de modulation correspondant aux harmoniques de premiers rangs du moteur 2. [0045] Dans un quatrième temps, la partie du circuit 4 de refroidissement comprenant le coude 28 et le tuyau 30 possède des amplifications dans la bande de fréquences comprises entre 500-600Hz, indépendamment de toute résonance de structure. Cela peut se démontrer expérimentalement en comparant des spectres de pression dynamiques issus de mesures au niveau du coude 28 et du tube en présence et en l'absence de bruit de pseudo-sirène modulée. Lorsque le bruit de pseudo-sirène modulée est marqué, une zone d'amplification entre 400 et 700Hz est ainsi mise en évidence. Une telle amplification pourrait provenir d'un mode de structure mais ce n'est pas le cas comme peuvent le montrer des résultats vibratoires obtenus sous excitation artificielle. Sur la bande de fréquence considérée, la réponse vibratoire de la structure du circuit 4 à une excitation au marteau de choc est une absence d'amplification sur le coude 28 et le tuyau 30. Ainsi, l'amplification constatée a sans doute pour origine un mode de conduit. Le mode de conduit est la conséquence d'un phénomène d'interférences produit par des ondes sonore stationnaires, les ondes stationnaire étant issues de réflexions sur les parois du conduit. [0046] Dans un cinquième temps, la partie du circuit 4 placée après le boîtier 34 de sortie d'eau présente des modes de conduit en présence d'ondes stationnaires dans la plage d'excitation du bruit de pseudo-sirène modulée uniquement lorsque le moteur 2 est chaud. Cette partie du circuit 4 hydraulique peut être assimilée au circuit 4 de chauffage puisque c'est cette partie qui permet de chauffer l'habitacle. Dans la suite pour simplifier, on considère que cette partie du circuit 4 se réduit à un conduit mais le raisonnement serait similaire pour une structure plus complexe. [0047] D'abord, il apparaît que la propagation des ondes acoustiques dans le circuit 4 se fait uniquement sous la forme d'onde plane. En considérant l'équation de propagation d'une onde sonore et la relation de dispersion qui en découle, la propagation sous forme d'onde plane (soit les dimensions transversales du circuit 4 petites devant la longueur d'onde) définit une fréquence de coupure fc. Cette fréquence fc s'exprime mathématiquement sous la forme suivante : The present invention relates to a method for designing the structure of a cooling circuit. A pseudo-siren modulated or "pseudo-goose noise" is a noise that grows depending on the speed of rotation of an organ that generates it. Such noise is further modulated in phase and / or amplitude. In particular, the modulated siren noise is a noise phenomenon present on all engines having thermal acyclism at the crankshaft and camshafts (resistant couples). The motor acyclism is explained by a variation in piston exhaust velocity, reflecting the fact that a vertical movement (piston / piston movement) is transformed into rotational movement (movement of the crankshaft). Such noise is even more marked that the overall noise of the motor tends to decrease. Thus, on certain vehicles, the modulated pseudo-siren noise is more particularly noticeable in the passenger compartment of the vehicle when the engine is hot and operates between 750 and 950 rpm. The noise is such that without modification of the architecture of the distribution drive, the vehicle is salable only under derogation. It is therefore desirable to minimize the noise disturbances generated by the modulated pseudo-siren noise. [0006] Solutions are known from the prior art in the field of noise reduction. This is the case of JP-A-2007155217, WO-A-04111520 and US-A-2004055816. However, none of the above solutions concerns both the engine cooling device and the sound frequencies that are troublesome for people in the passenger compartment of the vehicle. There is therefore a need for a method for reducing the modulated pseudo-siren noise in a vehicle. For this, the invention provides a method of designing the structure of a cooling circuit of a motor attenuating the sound frequencies characterized in that the method comprises a step of minimizing the amplitude of the wave. sound output of the structure of the circuit excited by an incident sound wave predefined by adjusting the structure of the circuit. According to the embodiments, the method may comprise one or more of the following characteristics: the sound frequencies are between 300 Hz and 1000 Hz, preferably between 500 Hz and 700 Hz. • the amplitude of a wave corresponds to at the pressure or the flow of the wave. • The predefined incident wave is a plane wave. The sound wave at the output of the circuit structure is calculated using a matrix method, the matrix method modeling each element of the circuit as a dipole or a quadrupole whose coefficients of the matrix associated with the dipole or quadrupole depend on the geometric characteristics of each element. The minimization step is implemented for a plurality of predefined incident sound waves. The cooling circuit comprises ducts, an adjusted parameter of the structure being the length of the ducts of the cooling circuit. The cooling circuit comprises ducts, an adjusted parameter of the structure being the diameter of the ducts of the cooling circuit. the cooling circuit comprises a bend, an adjusted parameter of the structure being the geometry of the bend of the cooling circuit. • The cooling circuit comprises a valve, a parameter fitted to the structure being the geometry of the valve. The cooling circuit comprises a bypass, an adjusted parameter of the structure being the geometry of the branch. Other features and advantages of the invention will appear on reading the following detailed description of the embodiments of the invention, given by way of example only and with reference to the drawings which show: FIG. views of an example engine with its cooling system; FIG. 2, a graph representing power spectra of the ambient noise; • Figure 3, a graph showing the spectrum of the envelope of ambient noise in a wide range of frequencies; FIG. 4, an experimental device diagram with an oscillogram; • Figure 5, a schematic representation of an example of a cooling circuit; FIG. 6, flow autospectrum curves for an example of an isolation device; FIG. 7, a representation of the pressure fluctuations for an example of an isolation device; FIG. 8, pressure autospectral curves for an example of an isolation device; FIG. 9, a schematic view of an example of a grid; FIG. 10, a view of an example of implementation of a device of FIG. Figure 11 is another view of an example of placing an insulation device in a hose; • Figures 12 to 15, schematic views of an example of an isolation device; • Figures 16, 18, 20, 22 and 26, a graph representing power spectra of the ambient noise under certain conditions; FIGS. 17, 19, 21, 23 and 27, a graph representing the spectrum of the noise envelope corresponding to the environments under the conditions of FIGS. 16, 18, 20, 22 and 26; FIGS. 24, 25 and 28, enlarged views of FIGS. 21, 23 and 27. [0011] It is proposed to improve the acoustics of a thermal engine 2 by analyzing the propagation of a vibration. This sound vibration is a parasitic noise, in this case a modulated pseudo-siren. Indeed, the perception of such noise annoys the passenger inside the vehicle. Such a study makes it possible to better understand the various elements involved in the propagation of noise. It then becomes possible to envisage several means for reducing the measured noise. It will be proposed an indirect solution "passive" to eliminate the perception of noise without adding others. Before studying the propagation of noise in the vehicle, it is appropriate to present the various elements involved in the context of this propagation. Figure 1 shows a perspective view of a combustion engine 2 internal combustion of a vehicle. The engine 2 is provided with a cooling circuit 4. FIG. 1 also includes an exploded perspective view of the cooling circuit 4 connected to a heater 6. [0014] The engine 2 comprises a lower part which is the cylinder block and an upper part with the cylinder head and its distribution system 12. The dispensing system 12 shown is a timing belt 14. The transmission belt 14 could be replaced by a transmission chain. The motor 2 rotates the transmission belt 14 on which different rotary members are meshing. The belt 14 thus makes it possible to make a connection between the camshaft and the crankshaft. The pinion 16 of the crankshaft and the pulley 18 of the camshaft are indeed driven by the belt 14. The dispensing system 12 further comprises a tensioner roller and a retractor roller 22 which prevents the strand beat of the belt 14 One strand of the belt 14 is a part of the belt 14 which connects two elements. In addition, the belt 14 meshes with a pinion 24 of a pump 26. The pump 26 pumps a heat transfer liquid to circulate in a cooling circuit 4 of the engine 2. The circuit 4 is a circuit hydraulic connected to a heater 6 which allows to heat the interior of the vehicle of the vehicle with the heat transfer liquid heated by the engine 2. The heat transfer liquid is usually glycol water so that the pump 26 is also known as the "water pump". According to the example of Figures 1, the cooling circuit 4 more specifically comprises a bend 28 at the outlet of the water pump 26 connected to a pipe 30 itself connected to a first hose 32 leading to the heater 6 The water flowing in this part of the circuit 4 is relatively cool water to cool the engine 2. [0018] A water outlet housing 34 is also part of the cooling circuit 4 and is connected via a second hose 36 6. The water flowing in the second hose 36 is a rather hot water that will heat the cabin. Heat exchange takes place at the heater 6. The heater 6 is located at the vehicle interior and is connected to the hoses 32 and 36 via a hydraulic network 38 forming part of the circuit 4 it serves both to cool the coolant and to heat the interior of the passenger compartment. From this point of view, the cooling circuit 4 of the engine 2 can also be considered as the heating circuit 4. This water thus cooled after passage through the heater 6, returns from the first hose 32 to the engine 2 along the path previously described because of the pumping of the water pump 26. The source of the modulated pseudo-siren noise is in the modulation produced by the orders of first ranks of the engine 2. A first order order of the engine 2 is a frequency f; defined by the following relation: f; = iNfc where: ^ i is a multiple of 1 / Nb_tc less than or equal to (Nb_cy, / Nb_tc), where Nb_tc is the number of complete turns of the crankshaft of the engine 2 per cycle of the engine 2 and Nb_cy, is the number of cylinders of the motor 2, • N is equal to 1; and • fc is the rotation frequency of the crankshaft, that is to say the number of crankshaft or shaft revolutions per second. According to the example of Figure 1, the engine 2 is a four-stroke four-cylinder engine. Thus, a complete cycle of this engine 2 is done in two turns of crankshaft or shaft. The orders of the first row of the engine 2 are therefore the following frequencies: f1 = 0.5fc, f2 = fc, f3 = 1.5fc and f4 = 2fc, where fc is the rotation frequency of the shaft. In the rest of this description, these orders are called, respectively, "order 0.5", "order 1", "order 1.5" and "order 2". The study of the propagation of the different orders in the distribution system 12 and then in the cooling circuit 4 has been made possible by the use of several measuring tools. In particular, the importance of a modulated pseudo-siren noise in the passenger compartment can be evaluated by means of a tool called (noise) Such a tool makes it possible to quantify the acoustic performance expected when the device is integrated into the vehicle. Thus, the ambient noise and the frequency of rotation of the crankshaft are measured by means of sensors, more specifically the measurement of the ambient noise is made during a period during which the frequency of rotation of the crankshaft is measured. The crankshaft is constant, the graph representing the power spectra of the ambient noise of Figure 2 is obtained. [2424] Next, these measurements are sampled by a sampler, for example, the sampling frequency is 4096 Hz with a resolution of 1 Hz. A windowing of the measured acoustic signal is also carried out, this windowing being carried out, for example, from a Nanning observation window. is the different sampled and windowed measurements, these are acquired and processed by a unit. Thus, this unit determines from the realized measurements the power P560-600 of the pseudo-siren modulated in the reduced range compared to the power P510-600 of the noise measured in the extended range. For this, the unit calculates the powers P560-600 and P510-600 from the measurements made during the measurement of the ambient noise. Then the unit calculates an amplification coefficient. The coefficient l is for example calculated using the following relation • l = P560-600 / P510-600. This coefficient 1 makes it possible to measure the emergence of a loud noise in the reduced band compared to the level of noise in the extended band. Next, the unit determines the amplitude of at least one integer multiple modulation frequency of one of the orders of the first row of the engine 2 in the extended range [510Hz; 600Hz]. For example, for this, the measured noise is first filtered using a bandpass filter to select only the frequencies between 510 and 600 Hz. Then, a Hilbert transform is used to build the spectrum of the envelope of the filtered signal. For example, for this, a Fourier transform is applied to the filtered signal. Then, the Fourier transform obtained is transformed using the operator ûj sgn (f) where: • j is the imaginary number, f is a frequency, and • sgn (f) is equal to 1 if the frequency f is positive or is equal to zero if the frequency f is zero or is equal to -1 if the frequency f is negative. FIG. 3 represents a graph of an example of envelope spectrum 40 obtained. Then, in the spectrum 40, the amplitude of the modulation frequencies corresponding to harmonics of the first order orders of the motor 2 is recorded. For this, the measured rotation frequency fc is used. For example, for an engine speed 2 of 750 revolutions per minute, the frequency fc is equal to 12.5 Hz. Therefore, the frequencies f1 to f4 of the orders of the first rank of the engine 2 are equal, respectively, to 6.25 Hz, 12.5 Hz, 18.75 Hz and 25 Hz. In the spectrum 40 is then noted the amplitude of at least one of these frequencies as well as the amplitude of its harmonics. In the particular case described here, only the amplitudes of the frequencies corresponding to the orders 0.5 and 1.5 as well as the first harmonics of these frequencies are recorded. For example, the amplitudes at E0, 5, E1, E1.5 and E3 are reported at 6.25 Hz, 12.5 Hz, 18.75 Hz and 37.5 Hz respectively. [0032] In FIG. the peaks whose amplitude is detected are highlighted by vertical hatched bands. Next, the amplitudes A0.5 and A1.5 of the harmonics of the modulation frequencies f1 and f3 are calculated. To take into account the pulse character of the modulation, the calculation of the amplitude of the first harmonics of the frequencies f1 and f3 is also taken into account. For example, the amplitude A0.5 is calculated using the following relationship: A0.5 = 0.5 E0.5 + 0.25 E1 + 0.25 E1.5. Similarly, the amplitude A1.5 is calculated using the following relationship: A1.5 = 0.75 E1 + 0.25 E3. Then, a term 12 representative of the amplitudes measured and homogeneous with a power is calculated. For example, the term 12 is calculated using the following relation: 12 = 1 / cxAo 52 +, 3,41,52, where a and 13 are weighting coefficients whose sum is equal to 1. [0036 Here, a more accurate measurement of the modulated pseudo-siren is obtained by giving more importance to the order 1.5 than to the order 0.5. For this purpose, the values of the coefficients a and R are for example chosen, respectively, equal to 0.25 and 0.75. Finally, the measure I of the modulated pseudo-siren is constructed from the terms 11 and 12. More precisely, the measure I is constructed so as to be proportional to both the terms 11 and 12. For example, the measure 1 is obtained using the following relation: 1 = 11 × 12. [0038] It is then possible to construct an indicator (noise of the presence of a pseudo-siren modulated directly perceptible by human fern. the value of the indicator (noise is calculated using the following relation: (noise = 10 Log (l / ls) where Is is a predetermined threshold of audibility of the modulated pseudo-siren below which it does not is not directly perceptible by human hearing For example, the threshold Is is equal to a measurement of the modulated pseudo-siren obtained under operating conditions of the motor 2 where the modulated pseudo-siren is not directly audible by human fury. [0040] The indicator (noise makes it possible to predict the has a sensation of noise felt by the users and in particular to predict if the modulated pseudo-siren is directly audible by human fouie and with what intensity. [0041] The previously presented tools make it possible to study the propagation of the various orders of the engine 2 (order 0.5, order 1, order 1.5 and order 2) in the distribution system 12 and then in the cooling circuit 4 . By following the path of propagation of the pseudo-siren noise modulated from the engine 2 to the passenger compartment of the vehicle, it is found that the transmission is done in several times. [0042] In a first step, it is possible to demonstrate experimentally that the transmission of the modulated pseudo-siren noise is first done at the level of the distribution belt 14 which carries the modulation frequencies corresponding to the overtone harmonics. first ranks of the engine 2. In a test configuration in which the modulated pseudo-siren noise is marked, the envelope spectrum is calculated from a vibratory measurement made to the laser vibrometer on the strand connecting the pump 26 to The analysis of this spectrum shows the importance of the modulation frequencies: 6.25 Hz, 12.5 Hz, 18.75 Hz and 25 Hz. These frequencies correspond, at the idle speed, to the first-order harmonics of the engine 2: order 0.5, order 1, order 1.5 and order 2. The distribution belt 14 thus carries the modulation frequencies corresponding to the first harmonics. ranks of the engine 2, namely the frequencies corresponding to orders 0.5, order 1, order 1.5 and order 2. [0043] In a second step, the timing belt 14 transmits these modulation frequencies to the pump gear. 26 to water. Thus, the envelope spectrum calculated from displacement measurements (out-of-plane) of the water pump pinion 24 shows, in the case where the modulated pseudo-siren noise is marked, the emergence of the frequencies 6, 25Hz, 12.5Hz, 18.75Hz and 37.5Hz. The frequencies disappear in a configuration in which the modulated pseudo-siren noise is absent. This shows that the distribution belt 14 transmits to the pinion of the water pump 26 the modulation frequencies corresponding to the orders 0.5, order 1, order 1.5, order 2 and order 3. [0044] In a third step, the water pump gear 24 transmits the modulation frequencies in turn to the heat transfer fluid in the frequency band characteristic of a modulated pseudo-siren. Experimentally, to represent in operation the deformation field of the pinion of the pump 26, the stereoscopic vision is used. It is an optical process that relies on the principle of triangulation to determine the spatial coordinates of an object from a pair of images. The maximum deformations on the pump pinion 24 in the non-pseudo-siren modulated configuration are in the vicinity of the engagement of the belt 14 on the pinion. In the configuration with modulated pseudo-siren, the meshing does not appear as a zone of strong deformations. Movements that cause significant deformations are more like pendulum movements. Without any doubt, these rocker movements are then printed with the heat transfer fluid through the turbine of the pump 26 which is integral with the pinion. Synchronous pressure fluctuations to the movements of the pump pinion 24 in the heat transfer fluid are then found. This is indeed what the results of the dynamic pressure measurements made in the cooling circuit 4 show. This proves that the pinion of the pump 26 transmits to the heat transfer fluid the modulation frequencies corresponding to the first row harmonics of the engine 2. [0045] In a fourth step, the part of the cooling circuit 4 comprising the elbow 28 and the pipe 30 has amplifications in the frequency band between 500-600Hz, regardless of any structure resonance. This can be demonstrated experimentally by comparing dynamic pressure spectra from measurements at the elbow 28 and the tube in the presence and absence of modulated pseudo-siren noise. When the modulated pseudo-siren noise is marked, an amplification zone between 400 and 700 Hz is thus highlighted. Such amplification could come from a mode of structure but this is not the case as can be shown vibratory results obtained under artificial excitation. In the frequency band considered, the vibratory response of the structure of the circuit 4 to a shock hammer excitation is an absence of amplification on the elbow 28 and the pipe 30. Thus, the amplification observed probably has for origin a conduit mode. The duct mode is the consequence of an interference phenomenon produced by stationary sound waves, the standing waves being derived from reflections on the walls of the duct. In a fifth step, the part of the circuit 4 placed after the water outlet housing 34 has path modes in the presence of standing waves in the excitation range of the modulated pseudo-siren noise only when the Engine 2 is hot. This part of the hydraulic circuit 4 can be likened to the heating circuit 4 since it is this part that heats the passenger compartment. In the following to simplify, it is considered that this part of the circuit 4 is reduced to a conduit but the reasoning would be similar for a more complex structure. First, it appears that the propagation of acoustic waves in the circuit 4 is only in the form of plane wave. Considering the propagation equation of a sound wave and the resulting dispersion relation, propagation in the form of a plane wave (ie the transverse dimensions of the circuit 4 small in front of the wavelength) defines a cutoff frequency fc. This frequency fc is expressed mathematically in the following form:

fc=0,6- fc = 0.6-

où c est la célérité de l'onde dans le fluide et D le diamètre du circuit 4. [0048] La célérité de l'onde dans le fluide peut être déterminée à partir de l'expérience décrite sur la figure 4. Un émetteur 42 et un récepteur 46 d'ultrasons sont fixés sur deux couvercles vissés aux deux extrémités d'un tube 48 étanche, rempli de liquide de refroidissement. La distance d entre l'émetteur et le récepteur est fixée et vaut 0,6 m.L'intervalle de temps At qui sépare les tensions émises et reçues correspondant à la même salve d'impulsions ultrasonores est mesuré par un oscilloscope dont les voie A (émetteur) et voie B (récepteur) sont représentées sur un oscillogramme schématique. La célérité est égale au rapport entre d et At. L'évolution de la célérité en fonction de la température est obtenue en plaçant le montage de la figure 4 dans une étuve dans laquelle la température est contrôlée. On en déduit que la célérité de l'onde dans le fluide varie entre 1000 m/s à chaud et 1600 m/s à froid. Ainsi la fréquence fc est comprise dans l'intervalle [18,2 kHz ; 27,2 kHz]. De telles fréquences de coupures ne correspondent pas aux fréquences du bruit de pseudosirène modulée qui sont inférieures à 1000 Hz. De ce fait, la propagation des ondes acoustiques dans le circuit 4 de chauffage ne se fait que suivant le mode 0, traduisant dans le circuit 4 l'unique présence d'ondes planes. [0049] Cela entraîne ensuite plusieurs conséquences. Le front d'onde est perpendiculaire à l'axe de propagation. En outre, l'amplitude de la pression acoustique est indépendante de la distance entre la source sonore et le point d'écoute. De plus, les ondes acoustiques de pression et de vitesse sont en phase et sont reliées par la relation P = pcU [0050] Où P est la pression, p la masse volumique, c la célérité et U la vitesse particulaire. [0051] De plus, savoir que ce sont de telles ondes qui sont à l'origine du bruit permet de déterminer quel est le régime du moteur 2 pour lequel les bruits de pseudo-sirène modulée vont se produire. Il suffit par exemple pour cela de comparer les représentations temporelles du signal de pression acoustique au niveau du tube et au niveau du coude 28. Lorsque le moteur 2 est chaud, les ondes sont en opposition de phase entre le coude 28 et le tuyau 30. Ceci traduit l'existence simultanée d'ondes réfléchies à la même fréquence que les ondes incidentes. De plus, il est constaté que ce sont des ondes pour lesquelles la distribution spatiale d'amplitude est constante. Ce n'est pas le cas lorsque le moteur 2 fonctionne à froid (température à 20° environ) parce que les ondes de pression sont en phase et la distribution spatiale des amplitudes évolue avec le point de mesure. C'est donc le moteur 2 à chaud qui produit le bruit de pseudo-sirène modulée. [0052] Le phénomène ondulatoire constaté lorsque le moteur 2 chaud (liquide de refroidissement à 90°C ou plus) est caractéristique d'ondes stationnaires. Un calcul simple d'ordre de grandeur permet de confirmer cette conclusion. En effet, dans un tel cas de figure, il existe une résonance (mode de conduit) pour les fréquences qui possèdent une longueur d'onde proportionnelle à 4 fois la longueur du circuit 4. Ainsi, on a: f= (2n+1) c/(41) où f est la fréquence, n est un nombre entier (0,1,2...), c célérité qui dépend de la température et I la longueur du conduit. [0053] Les applications numériques amènent les résultats suivants : pour T = 20°C, une fréquence de f = 900Hz est calculée et pour T = 90°C, une fréquence de f = 568Hz est calculée. On en déduit à nouveau que le circuit 4 hydraulique présente des modes de conduit (c'est-à-dire des ondes stationnaires) dans la plage d'excitation du bruit de pseudo-sirène modulée uniquement lorsque le moteur 2 est chaud (liquide de refroidissement à 90°C ou plus. [0054] Ce qui a été décrit dans le cas particulier d'un moteur 2 à quatre cylindres peut s'appliquer à tout type de cylindrée. Le moteur 2 peut être un moteur suralimenté ou non. Il peut également s'agir d'un moteur à essence, d'un moteur Diesel ou d'un moteur hydride. Il peut aussi s'agir d'un moteur à deux, trois ou quatre temps ou plus. [0055] En résumé, il apparaît que la propagation du bruit de pseudo-sirène modulée se fait par l'intermédiaire de la courroie 14 de distribution lorsque le moteur 2 est suffisamment chaud. Celle-ci rayonne ce bruit dans la zone d'engrènement entre la courroie 14, la pompe 26 à eau et le galet tendeur 20 sur une bande de fréquences correspondant aux chocs entre les dents de la courroie 14 et les dents du pignon 24 de la pompe à eau lors de l'engrènement. Le bruit de pseudo-sirène modulée est ensuite transmis au fluide caloporteur du circuit 4 de refroidissement par le pignon 24 de la pompe à eau. Enfin, amplifiée par les modes du circuit 4 hydraulique, le bruit se propage ensuite au véhicule par le liquide de refroidissement pour être perçu dans l'habitacle au travers du rayonnement de l'aérotherme 6. [0056] Une solution pour réduire le bruit de pseudo-sirène modulée est donc de limiter les chocs à l'engrènement courroie 14 et pompe 26 à eau afin d'atténuer la transmission des harmoniques de premiers rangs du moteur 2 à la courroie 14 de distribution. Pour cela, il est possible de définir une courroie 14 dédiée avec profil et hauteur de dent spécifique et une tension de pose réduite. Cependant, une telle méthode de modification de l'entraînement de distribution est extrêmement longue, délicate à concevoir et à valider, coûteux et non généralisable. En outre, les modifications possibles du fait de l'architecture imposée du moteur 2 limitent fortement les possibilités de réduction du bruit. Cette solution ne peut s'appliquer que dans des cas bien spécifiques. [0057] La méthode précédemment proposée reposait sur une modification d'un élément de type actif, soit un générateur de bruit. Au contraire, il sera proposé dans la suite de cette demande des solutions modifiant ou utilisant des éléments passifs. De tels éléments sont passifs au sens où en l'absence d'excitation extérieure, ils ne créent pas de vibration notamment parce qu'ils ne bougent pas. Ceci n'empêche cependant pas que les éléments passifs excités par des éléments actifs ont un impact sur la propagation des vibrations provoquées par les éléments actifs. En contrôlant cet impact, il va être possible de réduire l'amplitude des variations. Pour ce faire plusieurs méthodes peuvent être utilisées. Chacun des dispositifs ou méthodes proposés s'adressera à des fréquences sonores différentes soit des fréquences comprises entre 20 Hz et 20 kHz. Ces fréquences sont notamment différentes des fréquences ultrasonores pour lesquelles la fréquence est supérieure à 20 kHz. Plus particulièrement, les fréquences atténuées seront comprises entre 300 Hz et 1000 Hz et encore plus préférentiellement entre 500 Hz et 700 Hz. De telles fréquences sont en effet caractéristiques du bruit de pseudo-sirène modulée dans un véhicule. [0058] II est proposé d'abord un procédé de conception de la structure du circuit 4 de refroidissement de moteur 2 atténuant les fréquences sonores. Le circuit 4 de refroidissement est constitué par un ensemble d'éléments simples interagissant entre eux au sein du circuit 4. Un tel procédé comporte une étape de minimisation de l'amplitude de l'onde sonore en sortie de la structure du circuit 4 excitée par une onde sonore initiale (ou onde incidente) prédéfinie par ajustement de la structure du circuit. where c is the velocity of the wave in the fluid and D the diameter of the circuit 4. The velocity of the wave in the fluid can be determined from the experiment described in FIG. and an ultrasonic receiver 46 are attached to two covers screwed to both ends of a sealed tube 48, filled with coolant. The distance d between the transmitter and the receiver is fixed and is 0.6 m. The interval of time At which separates the transmitted and received voltages corresponding to the same burst of ultrasonic pulses is measured by an oscilloscope whose channels A (transmitter) and B (receiver) are represented on a schematic waveform. The celerity is equal to the ratio between d and At. The evolution of celerity as a function of temperature is obtained by placing the assembly of FIG. 4 in an oven in which the temperature is controlled. It can be deduced that the velocity of the wave in the fluid varies between 1000 m / s hot and 1600 m / s cold. Thus the frequency fc is in the range [18.2 kHz; 27.2 kHz]. Such cutoff frequencies do not correspond to the frequencies of the modulated pseudosirene noise which are less than 1000 Hz. Therefore, the propagation of the acoustic waves in the heating circuit 4 is done only according to the mode 0, translating into the circuit 4 the unique presence of plane waves. This then leads to several consequences. The wavefront is perpendicular to the axis of propagation. In addition, the amplitude of the sound pressure is independent of the distance between the sound source and the listening point. In addition, the acoustic pressure and velocity waves are in phase and are connected by the relation P = pcU [0050] where P is the pressure, p is the density, c is the velocity and U is the particle velocity. In addition, know that it is such waves that are at the origin of the noise to determine what is the speed of the engine 2 for which modulated pseudo-siren sounds will occur. For example, it suffices to compare the temporal representations of the acoustic pressure signal at the tube and at the elbow 28. When the motor 2 is hot, the waves are in phase opposition between the elbow 28 and the pipe 30. This reflects the simultaneous existence of waves reflected at the same frequency as the incident waves. In addition, it is found that they are waves for which the amplitude spatial distribution is constant. This is not the case when the engine 2 is cold (temperature around 20 °) because the pressure waves are in phase and the spatial distribution of the amplitudes changes with the measuring point. It is therefore the hot engine 2 that produces the modulated pseudo-siren noise. The wave phenomenon found when the engine 2 hot (coolant 90 ° C or more) is characteristic of standing waves. A simple order of magnitude calculation confirms this conclusion. Indeed, in such a case, there is a resonance (mode of conduit) for the frequencies which have a wavelength proportional to 4 times the length of the circuit 4. Thus, we have: f = (2n + 1 ) c / (41) where f is the frequency, n is an integer (0,1,2 ...), c is a temperature dependent celerity, and I is the length of the duct. The numerical applications give the following results: for T = 20 ° C, a frequency of f = 900 Hz is calculated and for T = 90 ° C, a frequency of f = 568 Hz is calculated. It is again deduced that the hydraulic circuit 4 has duct modes (ie standing waves) in the excitation range of the pseudo-siren noise modulated only when the engine 2 is hot (fluid of cooling at 90 ° C. or higher [0054] What has been described in the particular case of a four-cylinder engine 2 can be applied to any type of engine displacement, the engine 2 may be a supercharged engine or not. may also be a gasoline engine, a diesel engine or a hybrid engine.It may also be a motor two, three or four times or more. [0055] In summary, it appears that the propagation of the modulated pseudo-siren noise is done via the timing belt 14 when the engine 2 is sufficiently hot, which radiates this noise in the zone of engagement between the belt 14, the water pump 26 and the tensioner roller 20 on a frequency band corresponding to the shocks between the teeth of the belt 14 and the teeth of the pinion 24 of the water pump during meshing. The modulated pseudo-siren noise is then transmitted to the coolant of the cooling circuit 4 by the pinion 24 of the water pump. Finally, amplified by the modes of the hydraulic circuit 4, the noise is then propagated to the vehicle by the coolant to be perceived in the passenger compartment through the radiation of the heater 6. A solution for reducing the noise of Modulated pseudo-siren is therefore to limit shocks to the meshing belt 14 and water pump 26 in order to attenuate the transmission of the first-order harmonics of the engine 2 to the belt 14 of distribution. For this, it is possible to define a dedicated belt 14 with specific profile and tooth height and a reduced laying tension. However, such a method of modifying the distribution drive is extremely long, difficult to design and validate, expensive and not generalizable. In addition, the possible modifications due to the imposed architecture of the motor 2 strongly limit the possibilities of noise reduction. This solution can only be applied in very specific cases. The previously proposed method was based on a modification of an active type element, a noise generator. On the contrary, it will be proposed in the remainder of this application solutions modifying or using passive elements. Such elements are passive in the sense that in the absence of external excitation, they do not create vibration, in particular because they do not move. This does not prevent, however, that the passive elements excited by active elements have an impact on the propagation of vibrations caused by the active elements. By controlling this impact, it will be possible to reduce the amplitude of the variations. To do this several methods can be used. Each of the devices or methods proposed will address different sound frequencies or frequencies between 20 Hz and 20 kHz. These frequencies are notably different from the ultrasonic frequencies for which the frequency is greater than 20 kHz. More particularly, the attenuated frequencies will be between 300 Hz and 1000 Hz and even more preferably between 500 Hz and 700 Hz. Such frequencies are in fact characteristic of the pseudo-siren noise modulated in a vehicle. It is first proposed a design method of the structure of the motor cooling circuit 4 2 attenuating the sound frequencies. The cooling circuit 4 is constituted by a set of simple elements interacting with each other within the circuit 4. Such a method comprises a step of minimizing the amplitude of the sound wave at the output of the structure of the circuit 4 excited by an initial sound wave (or incident wave) predefined by adjusting the structure of the circuit.

L'amplitude de l'onde peut correspondre à la pression acoustique ou au débit acoustique de l'onde. [0059] II est ainsi possible d'adapter et d'optimiser les différents éléments du circuit 4 pour obtenir un circuit hydraulique anti-résonant. Cela permet de réduire le bruit de pseudo-sirène modulée. Une telle solution présente en outre l'avantage d'avoir peu d'impact sur l'architecture du moteur 2 puisque seule la structure du circuit 4 de refroidissement est modifiée. [0060] L'onde initiale prédéfinie peut être une onde plane. Cela permet de simplifier la minimisation tout en gardant une représentation conforme à la réalité physique. En effet, il a été vu précédemment que le bruit de pseudo-sirène modulée se propage sous la forme d'une onde plane. [0061] Dans ce cas d'une onde initiale définie comme une onde plane, la propagation dans le circuit 4 de refroidissement est uniquement faite suivant le mode plan et les conditions de linéarité pression amont pression aval sont remplies. La propagation sonore dans chaque élément du circuit 4 peut alors être simplement formulée par la méthode des matrices de transfert. Une telle méthode utilise des matrices (2x2) qui relient les pressions et les débits acoustiques en entrée et en sortie de chaque élément du circuit 4 de refroidissement. Plus précisément, les dipôles décrivent les impédances de terminaison du circuit 4 (vecteur pression-débit) et les quadripôles décrivent chaque singularité (coude 28, tuyau 30, jonction,...). Ainsi, dans le procédé, l'amplitude de l'onde de sortie peut être calculée à partir de l'amplitude de l'onde d'entrée par une méthode matricielle reliant les pressions et les débits acoustiques en entrée et en sortie de chaque élément du circuit hydraulique. Un tel calcul présente l'avantage d'être facile à mettre en oeuvre. [0062] La figure 5 illustre un exemple schématique de cette modélisation du circuit 4 en éléments simples soit une succession de dipôles et de quadripôles. Depuis la source 48 au dernier dipôle 62, il y a cinq quadripôles 50, 52, 54, 56 et 58 et un dipôle 60. Cela se traduit par l'équation matricielle suivante : = [M 62 I [M 60 I [M 58 I [M 56 I [M 54 I [M 52 I [M 50 ] où Ps est la pression de sortie, qs le débit de sortie, PE est la pression d'entrée et qE le débit d'entrée et M; est la matrice de transfert de taille 2x2 représentative du comportement de l'élément i. La connaissance de ces matrices de transferts permet donc le calcul de la réponse du circuit 4 en tout point. [0063] L'étape de minimisation peut également être menée pour plusieurs ondes initiales prédéfinies. Cela permet d'optimiser la structure pour plusieurs longueurs d'onde différentes et ainsi d'atténuer plusieurs fréquences entendues par l'utilisateur dans l'habitacle. [0064] Les ajustements apportés à la structure peuvent porter sur plusieurs paramètres distincts. Il est ainsi envisageable de modifier la longueur des conduits. On entend ici par conduit tout tube présent dans le circuit 4 de refroidissement, à savoir par exemple le tuyau 30, les durites 32 et 36. L'ajustement peut également porter sur le diamètre des conduits. Il peut ainsi être prévu de brusques changements de diamètres que ce soit par élargissement ou par diminution. Il se créé dès lors des zones de turbulence sur les parois venant atténuer la propagation des ondes sonores dans le circuit 4 de refroidissement. Il est aussi possible d'optimiser la forme du coude 28. La forme du coude 28 peut notamment être modifiée afin de générer une réunion d'écoulements, par exemple entre un écoulement principal et un écoulement secondaire. Ceci permet d'empêcher la propagation des ondes planes. Il est aussi envisageable d'optimiser les formes des vannes, des clapets, des dérivations (aussi désignées sous le terme anglais de « by-pass »), des opercules ou des diaphragmes. Ps qs PE qE [0065] L'ajustement proposé peut également être réalisé en utilisant la mesure I et l'indicateur 'bruit présentés précédemment. Les différents éléments du circuit peuvent ainsi être testés et sélectionnés pour limiter ou éliminer l'apparition de bruit de pseudosirène modulée. [0066] II a ainsi été décrit un procédé permettant de rendre le circuit 4 de refroidissement anti-résonant. [0067] Le circuit 4 de refroidissement se comportant comme un ensemble de dipôles et de quadripôles, il est également possible de modifier les ondes stationnaires transmis par le circuit par la mise en place d'un dispositif hydraulique constituant une singularité permettant d'atténuer les bruits au sein de l'habitacle du véhicule. Dans la suite, des procédés de définition concernant un tel dispositif seront présentés. A titre d'exemple, ces procédés seront appliqués à un dispositif comportant une grille, étant entendu qu'ils peuvent s'appliquer à tout type de dispositif d'atténuation. [0068] Dans le but d'optimiser les performances d'un tel dispositif hydraulique, il est également proposé un procédé d'optimisation d'un dispositif d'isolation d'un circuit 4 de refroidissement d'un moteur 2 pour les fréquences sonores. Le procédé comprend une étape de calcul de l'onde incidente sonore arrivant sur le dispositif d'isolation et de calcul de l'onde de sortie (ou onde réfractée) par le dispositif d'isolation, le dispositif étant optimisé en minimisant l'amplitude de l'onde de sortie. L'amplitude de l'onde peut correspondre à la pression acoustique ou au débit acoustique de l'onde. [0069] Cela permet d'obtenir un dispositif d'isolation adapté à diminuer l'amplitude des ondes sonores, et en particulier celles correspondant au bruit de « pseudo-goose noise ». [0070] L'étape de minimisation peut également être menée pour plusieurs ondes initiales. Cela permet d'optimiser la structure pour plusieurs longueurs d'onde différentes et ainsi d'atténuer plusieurs fréquences entendues par l'utilisateur dans l'habitacle. [0071] L'onde initiale prédéfinie peut être une onde plane. Cela permet de simplifier la minimisation tout en gardant une représentation conforme à la réalité physique. En effet, il a été vu précédemment que le bruit de pseudo-sirène modulée se propage sous la forme d'une onde plane. [0072] L'onde incidente peut être calculée par une méthode matricielle telle que décrite précédemment en utilisant des matrices (2x2) reliant les pressions et les débits acoustiques en entrée et en sortie de chaque élément du circuit 4 de refroidissement. Un tel calcul présente l'avantage d'être facile à mettre en oeuvre. [0073] Le procédé de définition peut comporter en outre une étape de minimisation de la valeur maximale de l'autospectre de débit du dispositif d'isolation par modification des paramètres du dispositif d'isolation. Un autospectre d'une quantité est par définition la transformée de Fourier de la fonction d'autocorrélation de cette quantité. Cela permet d'obtenir un dispositif d'isolation perturbant peu l'écoulement tout en atténuant le bruit [0074] L'évolution de l'autospectre peut être calculée de préférence sous une forme sans dimension en normalisant le débit par le nombre de Mach et en normalisant la fréquence par le nombre de Strouhal St. Cela permet de simplifier le calcul. [0075] Plusieurs courbes (courbes 80, 82, 84 et 86) d'autospectre de débit sont ainsi représentées sur la figure 6. Ces courbes sont issues de la bibliographie. A titre d'exemple, les dispositifs pour lesquels ces courbes sont représentées sont des grilles circulaires de diamètre D percées d'ouvertures de diamètre d. On appelle dans la suite rapport_diamètre le rapport entre le diamètre d et le diamètre D. D peut être approximé au diamètre de la conduite dans lequel le dispositif peut être mise en place. Chaque ouverture est séparée d'une distance p, p étant la distance entre le bord de chaque ouverture. Les quantités rapport_diamètre et la distance p sont des paramètres caractéristiques d'un tel système. D'autres paramètres peuvent être envisagés pour la grille comme le nombre d'ouvertures ou la forme. La figure 9 illustre les différentes quantités précédemment mentionnées. La courbe 80 est obtenue pour un rapport_diamètre de 0,05 et une valeur de p de 2,9 ; la courbe 82 pour un rapport_diamètre de 0,05 et une valeur de p de 2 ; la courbe 84 pour un rapport_diamètre de 0,037 et une valeur de p de 2 et la courbe 86 pour un rapport_diamètre de 0,02 et une valeur de p de 2,9. [0076] II est possible de constater que pour un tel dispositif, la valeur maximale des courbes 80, 82, 84 et 86 des autospectres adimensionnels de débits est faible, inférieur à 10-3 pour la courbe 80 et à 10-4 pour les courbes 82, 84 et 86. Avec de telles valeurs, le dispositif ne se comporte pas comme une source de débit ce qui favorise l'atténuation des ondes. Une grille est d'ailleurs la seule singularité simple (on entend pas singularité simple une singularité qui correspond à un quadripôle) qui présente cette caractéristique. [0077] Le procédé peut en outre comprendre une étape de mesure du débit initial du fluide, c'est-à-dire le débit présent dans le fluide en l'absence du dispositif et une étape de mesure du débit en présence du dispositif. Le nombre de trous est alors ajusté pour réduire au mieux les perturbations acoustiques véhiculées par le fluide caloporteur et limiter la perte de charge. Cela permet d'assurer que la présence du dispositif n'entraîne pas une diminution du débit. [0078] Le procédé peut comprendre une étape de minimisation de la valeur maximale de l'écart-type des fluctuations de pression de paroi à l'aval du dispositif d'isolation par modification des paramètres du dispositif d'isolation. Cela permet d'obtenir un dispositif d'isolation perturbant peu l'écoulement tout en atténuant le bruit [0079] Dans le cas du dispositif comportant la grille précédemment présentée, l'évolution des fluctuations de pression peut être calculée de préférence sous une forme sans dimension en normalisant l'écart-type appelé a par la perte de charge Ap en fonction de la longueur I à l'aval de la grille normalisée par le diamètre D de la grille. Cela permet de simplifier la minimisation. [0080] Plusieurs courbes d'écart-type des fluctuations de pressions sont ainsi représentées sur la figure 7. Ces courbes sont issues de la bibliographie. Les dispositifs pour lesquels ces courbes sont représentées sont les dispositifs à grille précédemment considérés. Plus précisément, la courbe 88 est obtenue pour un rapport_diamètre de 0,05 et une valeur de p de 2; la courbe 90 pour un rapport_diamètre de 0,037 et une valeur de p de 2 ; la courbe 92 pour un rapport_diamètre de 0,05 et une valeur de p de 2,9 et la courbe 94 pour un rapport_diamètre de 0,02 et une valeur de p de 2,9. [0081] Par comparaison de l'évolution des différentes courbes de la figure 7, par exemple des courbes 88 et 90 d'une part et des courbes 92 et 94 d'autre part, on constate que pour les grilles à plus gros orifices, le paramètre a normalisé par la perte de charge Èp s'élève entre 0,4 et 0,7 alors que pour des grilles avec des orifices plus petits, le paramètre a normalisé par la perte de charge Èp est de l'ordre de 0,1. On en déduit que l'intensité des fluctuations de pression est nettement diminuée pour des grilles plus finement percées. Cela permet d'éviter par la présence du dispositif génère la création de sources acoustiques intenses de pression. [0082] L'observation des différentes courbes de la figure 7 permet de mettre en évidence qu'un autre paramètre joue un rôle important. C'est la position de la grille. En effet, comme une grille est un élément qui créée des fluctuations de pression locales importantes et rapidement incohérentes avec la distance, l'emplacement du dispositif d'isolation dans le circuit 4 de refroidissement a beaucoup d'importance. [0083] II est ainsi proposé un procédé de définition de la mise en place d'un dispositif d'isolation d'un circuit 4 de refroidissement d'un moteur 2 pour les fréquences sonores dans le circuit 4 de refroidissement. Le procédé comprend une étape de calcul de l'onde incidente sonore arrivant sur le dispositif d'isolation et de calcul de l'onde réfractée par le dispositif d'isolation, la position du dispositif dans le circuit 4 étant déterminée en minimisant l'amplitude de l'onde réfractée. L'amplitude de l'onde peut correspondre à la pression acoustique ou au débit acoustique de l'onde. Le procédé permet de localiser la zone efficace pour la mise en place du dispositif dans le circuit 4 de refroidissement. On entend par zone efficace une zone dans laquelle, lorsque le dispositif est positionné, le bruit est fortement diminué. [0084] L'étape de minimisation peut également être menée pour plusieurs ondes initiales. Cela permet d'optimiser la structure pour plusieurs longueurs d'onde différentes et ainsi d'atténuer plusieurs fréquences entendues par l'utilisateur dans l'habitacle. [0085] L'onde incidente peut être calculée par une méthode matricielle telle que décrite précédemment en utilisant des matrices (2x2) reliant les pressions et les débits acoustiques en entrée et en sortie de chaque élément du circuit 4 de refroidissement. Un tel calcul présente l'avantage d'être facile à mettre en oeuvre. [0086] Dans le cas où l'onde incidente sonore arrivant sur le dispositif d'isolation est une onde stationnaire, cette onde stationnaire possède des noeuds et des ventres. La position préférée du dispositif correspondra à un ventre dans la propagation de l'onde stationnaire sonore. C'est en effet dans les ventres que l'amplitude de l'onde est maximale et donc à ces endroits que l'atténuation de l'onde sonore peut être la plus importante. [0087] La minimisation peut être complétée par une étude de la variation de l'écart-type de pression en fonction de la position. C'est ce que représente la figure 6 précédemment commentée. Cela permet de confirmer les calculs précédents. [0088] La minimisation peut en outre être accompagnée d'une étude de la variation de l'autospectre de pression pour plusieurs positionnements de la grille. L'évolution de cette grandeur est donnée sous une forme sans dimension en normalisant la pression par la perte de charge, la vitesse de l'écoulement dans les ouvertures et le diamètre des trous et en normalisant la fréquence par le nombre de Strouhal St. Cela permet de simplifier le calcul. [0089] Plusieurs courbes d'autospectre de pression sont ainsi représentées sur la figure 7. Ces courbes sont issues de la bibliographie. Les dispositifs pour lesquels ces courbes sont représentées sont les dispositifs à grille précédemment considérés. Pour une position telle que le paramètre I/D vaut 0,8, les courbes 96, 98, 100 et 102 sont en trait continu alors que les courbes 104 et 106 sont en traits pleins si le paramètre I/D vaut 0,3. De plus, les courbes 96 et 104 sont obtenues pour un rapport_diamètre de 0,05 et une valeur de p de 2; la courbe 98 pour un rapport_diamètre de 0,037 et une valeur de p de 2 ; les courbes 100 et 106 pour un rapport_diamètre de 0,05 et une valeur de p de 2,9 et la courbe 102 pour un rapport_diamètre de 0,02 et une valeur de p de 2,9. [0090] On déduit de l'observation de ces différentes courbes que le nombre de Strouhal de coupure est élevé pour un rapport I/D faible (de l'ordre de 0,1), le phénomène turbulent a pour dimension caractéristique le diamètre des ouvertures. Comme sur l'ensemble de la zone perturbée, le nombre de Strouhal se situe plus bas (à quelques 10-2) que le nombre de Strouhal de coupure, la longueur de corrélation du phénomène turbulent est de l'ordre de D, diamètre de la grille. Ainsi, il est intéressant de placer le dispositif à une distance D de l'extrémité d'un conduit. [0091] La position choisie peut aussi prendre en compte la facilité de montage. A titre d'exemple, il est ainsi plus facile de mettre en place le dispositif dans la durite 36 par rapport à le mettre dans la durite 32. Les figures de la figure 10 et 11 illustrent un exemple de mise en place dans la durite 2. Avant montage dans le véhicule, la durite a été sectionnée à l'endroit voulu et un dispositif 64 d'isolation a été inséré dans la section. Le dispositif 64 tient parce que son diamètre est légèrement supérieur à celui de la durite 36 et que la durite 36 est réalisée dans un matériau élastique. Après, juste à des fins expérimentales, la durite 36 est rendue étanche à l'aide de colliers. [0092] Ainsi, le dispositif 64 selon tous les modes de réalisation présentés ultérieurement sera implanté en amont du coude 28 de raccordement durit/tube aérotherme 6 à une distance égale à D puisqu'il s'agit d'une position combinant efficacité de réduction acoustique et facilité de montage. [0093] Afin d'obtenir l'atténuation des ondes, il résulte des études précédentes qu'un dispositif 64 d'isolation d'un circuit 4 de refroidissement d'un moteur 2 pour les fréquences sonores comportant une grille 66 avec des ouvertures est une source passive qui est extrêmement efficace sans perturbation sur une distance trop longue. [0094] Un tel dispositif 64 d'isolation est donc un silencieux hydraulique pour moteur 2 thermique. Lorsqu'il est placé dans le circuit 4 de refroidissement d'un moteur 2 thermique, il atténue l'amplitude des ondes acoustiques, produites par l'acyclisme vilebrequin et les couples résistants de l'arbre à cames et transmises au fluide caloporteur. Le bruit de pseudo-sirène modulée devient ainsi inaudible à l'intérieur de l'habitacle. En outre, le niveau de pression acoustique dans l'habitacle est réduit de plusieurs décibels dans la bande 100-1000Hz. De plus, un tel dispositif 64 est facile à mettre en place et à industrialiser du fait de son faible coût. [0095] La figure 6 présente une vue d'un exemple de dispositif 64 d'isolation d'un circuit 4 de refroidissement d'un moteur 2 pour les fréquences sonores. Le dispositif 64 comprend une grille 66 circulaire comportant des ouvertures. La grille 66 est ainsi un disque de faible épaisseur percé. Le dispositif 64 d'isolation est un dispositif 64 passif. [0096] La grille 66 permet d'atténuer l'amplitude des ondes acoustiques présentes dans le fluide caloporteur et de supprimer les ondes se propageant dans le conduit. [0097] Le nombre, le diamètre et l'emplacement des ouvertures sont définis en fonction des fréquences de modulation et des fréquences porteuses à atténuer. La grille 66 du dispositif 64 est ainsi adaptée et précisément dimensionnée pour correspondre à des bruits basse fréquence d'origine mécanique. En particulier, la grille 66 filtre le bruit de pseudo-sirène modulée. [0098] Plusieurs modes de réalisation peuvent ainsi être envisagés. A titre d'exemples, les figures 12 à 15 illustrent des vues schématiques de quatre modes de réalisation particuliers. [0099] La grille 66 a une épaisseur e et un premier diamètre Dl. Il est avantageux que l'épaisseur e de la grille 66 soit supérieure au dixième du premier diamètre D1. En termes mathématiques, cela s'exprime par la relation suivante : e> D1/10 (1) [00100] Une telle condition assure que la célérité du son dans le fluide est proche de la célérité du son apparent du fluide. La célérité du son apparent du fluide est la célérité du son lorsque le fluide est présent dans une conduite. Ainsi, il est possible de négliger toutes les interactions entre le fluide et la structure. [00101] A titre d'illustration, selon l'exemple de la figure 12, la grille 66 a un diamètre de 21 mm et une épaisseur de 2,5 mm. Pour de telles valeurs, la condition (1) est remplie. De ce fait, pour une telle grille 66, les interactions entre le fluide et la structure sont négligeables. Les grilles 66 des exemples des figures 12 à 15 vérifient également la condition (1). [00102] La grille 66 peut comprendre quatre ouvertures 68 circulaires d'un deuxième diamètre D2 et sept ouvertures 70 circulaires d'un troisième diamètre D3. Les diamètres D2 et D3 des ouvertures 68, 70 sont suffisamment grands pour éviter la formation d'un bouchon causé par l'accumulation des impuretés présentes et véhiculées par le circuit 4 de refroidissement. [00103] Le deuxième diamètre D2 peut en outre être supérieur au troisième diamètre D3. Des trous de diamètres différents s'adressent à des longueurs d'ondes différentes. Cela permet ainsi d'améliorer l'effet de filtrage des ondes sonores. C'est le cas des modes de réalisation selon les exemples 12 à 15. [00104] A titre d'exemple, le deuxième diamètre D2 peut être égal à deux fois le troisième diamètre D3. Selon les exemples des modes de réalisation des figures 12 à 15, le deuxième diamètre vaut 4 mm et le troisième diamètre s'élève à 2 mm. [00105] Les centres des quatre ouvertures 68 peuvent être agencés de manière à former les quatre coins d'un carré. Les quatre ouvertures 68 sont donc équidistants les uns des autres. [00106] Selon l'exemple de la figure 12, les quatre ouvertures 68 sont placées en périphérie du disque. [00107] En outre, les sept ouvertures 70 de diamètre 2 mm forment une croix placée entre les ouvertures de 4 mm. La distance entre deux ouvertures 70 est différente suivant la branche de la croix. Sur la branche la plus longue, la distance entre deux ouvertures 70 est deux fois plus faible que sur l'autre branche. En outre, le centre de la croix peut correspondre au centre du carré. [oolos] La capacité du dispositif 64 à atténuer une pseudo-sirène modulée dans l'habitacle peut être évaluée grâce à l'outil appelé (bruit et présenté plus haut. Cet outil permet de quantifier la prestation acoustique attendue lorsque le dispositif 64 est intégré dans le véhicule. Le calcul de 'bruit se fait par utilisation des spectres de pression acoustique et d'enveloppe qui sont représentés aux figures 16 à 21. [00109] L'absence de pseudo-sirène modulée se traduit par des valeurs de (bruit comprises entre 0 et 3 dB. 0dB correspond au seuil d'audibilité d'une pseudo-sirène modulée dans l'habitacle de véhicule. C'est le niveau de référence. The amplitude of the wave can correspond to the acoustic pressure or the acoustic flow rate of the wave. It is thus possible to adapt and optimize the various elements of the circuit 4 to obtain an anti-resonant hydraulic circuit. This reduces the modulated pseudo-siren noise. Such a solution also has the advantage of having little impact on the architecture of the engine 2 since only the structure of the cooling circuit 4 is modified. The predefined initial wave may be a plane wave. This simplifies minimization while keeping a representation consistent with physical reality. Indeed, it has been seen previously that the modulated pseudo-siren noise propagates in the form of a plane wave. In this case of an initial wave defined as a plane wave, the propagation in the cooling circuit 4 is only made according to the plane mode and the conditions of linear pressure upstream downstream pressure are met. The sound propagation in each element of the circuit 4 can then be simply formulated by the method of the transfer matrices. Such a method uses matrices (2x2) which connect the pressures and the acoustic flow rates at the inlet and at the outlet of each element of the cooling circuit 4. More precisely, the dipoles describe the termination impedances of the circuit 4 (pressure-flow vector) and the quadrupoles describe each singularity (elbow 28, pipe 30, junction, etc.). Thus, in the method, the amplitude of the output wave can be calculated from the amplitude of the input wave by a matrix method connecting the pressures and the acoustic flow rates at the input and at the output of each element. of the hydraulic circuit. Such a calculation has the advantage of being easy to implement. FIG. 5 illustrates a schematic example of this modeling of the circuit 4 in simple elements, namely a succession of dipoles and quadrupoles. From the source 48 to the last dipole 62, there are five quadrupoles 50, 52, 54, 56 and 58 and a dipole 60. This results in the following matrix equation: [M 62 I [M 60 I [M 58 I [M 56 I [M 54 I [M 52 I [M 50] where Ps is the output pressure, qs is the output flow, PE is the inlet pressure and qE is the inlet flow and M; is the 2x2 size transfer matrix representative of the behavior of the element i. The knowledge of these transfer matrices therefore allows the calculation of the response of the circuit 4 at any point. The minimization step can also be carried out for several predefined initial waves. This optimizes the structure for several different wavelengths and thus attenuate several frequencies heard by the user in the cabin. The adjustments made to the structure may relate to several different parameters. It is thus possible to modify the length of the ducts. Here means by conduit any tube present in the cooling circuit 4, namely for example the pipe 30, the hoses 32 and 36. The adjustment can also relate to the diameter of the ducts. It can thus be expected to sudden changes in diameter by either enlargement or decrease. This creates zones of turbulence on the walls that attenuate the propagation of sound waves in the cooling circuit 4. It is also possible to optimize the shape of the elbow 28. The shape of the elbow 28 can in particular be modified to generate a meeting of flows, for example between a main flow and a secondary flow. This prevents the propagation of plane waves. It is also conceivable to optimize the shapes of the valves, valves, bypasses (also known as "by-pass"), covers or diaphragms. [0065] The proposed adjustment can also be achieved using measurement I and the noise indicator presented above. The various elements of the circuit can thus be tested and selected to limit or eliminate the appearance of modulated pseudosirene noise. It has thus been described a method for rendering the circuit 4 of anti-resonant cooling. The cooling circuit 4 behaves as a set of dipoles and quadrupoles, it is also possible to modify the stationary waves transmitted by the circuit by the introduction of a hydraulic device constituting a singularity to mitigate the noises within the passenger compartment of the vehicle. In the following, methods of definition concerning such a device will be presented. By way of example, these methods will be applied to a device comprising a grid, it being understood that they can be applied to any type of attenuation device. In order to optimize the performance of such a hydraulic device, it is also proposed a method for optimizing an isolation device of a cooling circuit 2 of a motor 2 for the sound frequencies . The method comprises a step of calculating the sound incident wave arriving on the isolation device and calculating the output wave (or refracted wave) by the isolation device, the device being optimized by minimizing the amplitude. of the output wave. The amplitude of the wave can correspond to the acoustic pressure or the acoustic flow rate of the wave. This provides an isolation device adapted to reduce the amplitude of the sound waves, and in particular those corresponding to the noise of "pseudo-goose noise." The minimization step may also be conducted for several initial waves. This optimizes the structure for several different wavelengths and thus attenuate several frequencies heard by the user in the cabin. The predefined initial wave may be a plane wave. This simplifies minimization while keeping a representation consistent with physical reality. Indeed, it has been seen previously that the modulated pseudo-siren noise propagates in the form of a plane wave. The incident wave can be calculated by a matrix method as described above using matrices (2x2) connecting the pressures and the acoustic flow rates at the inlet and at the outlet of each element of the cooling circuit 4. Such a calculation has the advantage of being easy to implement. The definition method may further comprise a step of minimizing the maximum value of the flow rate autospectrum of the isolation device by modifying the parameters of the isolation device. An autospectrum of a quantity is by definition the Fourier transform of the autocorrelation function of that quantity. This makes it possible to obtain an insulation device that disturbs the flow a little while attenuating the noise. The evolution of the autospectrum can preferably be calculated in dimensionless form by normalizing the flow rate by the Mach number and by normalizing the frequency by the number of Strouhal St. This simplifies the calculation. Several curves (curves 80, 82, 84 and 86) flow autospectrum are thus shown in Figure 6. These curves are from the bibliography. By way of example, the devices for which these curves are represented are circular grids of diameter D pierced with openings of diameter d. The ratio between the diameter d and the diameter D is hereinafter referred to as the diameter ratio. D can be approximated to the diameter of the pipe in which the device can be put in place. Each opening is separated by a distance p, where p is the distance between the edge of each opening. The quantities report_diameter and the distance p are characteristic parameters of such a system. Other parameters can be considered for the grid as the number of openings or the shape. Figure 9 illustrates the different amounts previously mentioned. Curve 80 is obtained for a diameter ratio of 0.05 and a p-value of 2.9; curve 82 for a diameter ratio of 0.05 and a p-value of 2; curve 84 for a diameter ratio of 0.037 and a p-value of 2 and curve 86 for a diameter ratio of 0.02 and a p-value of 2.9. It can be seen that for such a device, the maximum value of the curves 80, 82, 84 and 86 of the adimensional autospectrums of flow rates is small, less than 10-3 for the curve 80 and at 10-4 for the curves 82, 84 and 86. With such values, the device does not behave as a flow source which promotes the attenuation of the waves. A grid is also the only singularity (we do not mean singularity a singularity that corresponds to a quadrupole) that has this characteristic. The method may further comprise a step of measuring the initial flow rate of the fluid, that is to say the flow rate present in the fluid in the absence of the device and a step of measuring the flow rate in the presence of the device. The number of holes is then adjusted to minimize the acoustic disturbances carried by the heat transfer fluid and limit the pressure drop. This ensures that the presence of the device does not result in a decrease in flow. The method may comprise a step of minimizing the maximum value of the standard deviation of the wall pressure fluctuations downstream of the isolation device by modifying the parameters of the isolation device. This makes it possible to obtain an insulation device that disturbs the flow slightly while attenuating the noise. In the case of the device comprising the grid previously presented, the evolution of the pressure fluctuations can preferably be calculated in a form without dimension by standardizing the standard deviation called a by the pressure drop Ap as a function of the length I downstream of the grid normalized by the diameter D of the grid. This simplifies the minimization. Several standard deviation curves of the pressure fluctuations are thus represented in FIG. 7. These curves come from the bibliography. The devices for which these curves are shown are the grid devices previously considered. More precisely, the curve 88 is obtained for a diameter ratio of 0.05 and a p-value of 2; curve 90 for a diameter ratio of 0.037 and a p-value of 2; curve 92 for a diameter ratio of 0.05 and a p-value of 2.9 and curve 94 for a diameter ratio of 0.02 and a p-value of 2.9. By comparison of the evolution of the different curves of FIG. 7, for example curves 88 and 90 on the one hand and curves 92 and 94 on the other hand, it can be seen that for the grids with larger apertures, the parameter normalized by the pressure drop ρp is between 0.4 and 0.7 whereas for grids with smaller orifices, the parameter normalized by the pressure drop Èp is of the order of 0, 1. From this it can be deduced that the intensity of the pressure fluctuations is significantly reduced for more finely pierced grids. This avoids by the presence of the device generates the creation of intense acoustic sources of pressure. The observation of the different curves of Figure 7 makes it possible to demonstrate that another parameter plays an important role. This is the position of the grid. Indeed, as a grid is an element that creates significant local pressure fluctuations and quickly inconsistent with the distance, the location of the isolation device in the cooling circuit 4 has a lot of importance. It is thus proposed a method of defining the establishment of an isolation device of a cooling circuit 4 of a motor 2 for the sound frequencies in the cooling circuit 4. The method comprises a step of calculating the sound incident wave arriving on the insulation device and calculating the wave refracted by the isolation device, the position of the device in the circuit 4 being determined by minimizing the amplitude. of the refracted wave. The amplitude of the wave can correspond to the acoustic pressure or the acoustic flow rate of the wave. The method makes it possible to locate the effective zone for setting up the device in the cooling circuit 4. Effective zone means an area in which, when the device is positioned, the noise is greatly reduced. The minimization step may also be conducted for several initial waves. This optimizes the structure for several different wavelengths and thus attenuate several frequencies heard by the user in the cabin. The incident wave can be calculated by a matrix method as described above using matrices (2x2) connecting the pressures and the acoustic flow rates at the inlet and at the outlet of each element of the cooling circuit 4. Such a calculation has the advantage of being easy to implement. In the case where the incident sound wave arriving on the isolation device is a standing wave, this standing wave has nodes and bellies. The preferred position of the device will correspond to a belly in the propagation of the sound standing wave. It is indeed in the bellies that the amplitude of the wave is maximal and therefore in these places that the attenuation of the sound wave can be the most important. The minimization can be completed by a study of the variation of the pressure standard deviation as a function of the position. This is what Figure 6 previously commented. This confirms the previous calculations. The minimization can also be accompanied by a study of the variation of the pressure autospectrum for several positions of the grid. The evolution of this magnitude is given in dimensionless form by normalizing the pressure by the pressure drop, the rate of flow in the openings and the diameter of the holes and normalizing the frequency by the number of Strouhal St. This simplifies the calculation. Several autospectral pressure curves are thus represented in FIG. 7. These curves are taken from the bibliography. The devices for which these curves are shown are the grid devices previously considered. For a position such that the I / D parameter is 0.8, the curves 96, 98, 100 and 102 are in continuous line while the curves 104 and 106 are in solid lines if the I / D parameter is 0.3. In addition, the curves 96 and 104 are obtained for a diameter ratio of 0.05 and a p-value of 2; curve 98 for a diameter ratio of 0.037 and a p-value of 2; curves 100 and 106 for a diameter ratio of 0.05 and a p-value of 2.9 and curve 102 for a diameter ratio of 0.02 and a p-value of 2.9. It is deduced from the observation of these different curves that the number of cutoff Strouhal is high for a low I / D ratio (of the order of 0.1), the turbulent phenomenon has for characteristic dimension the diameter of openings. As on the whole of the disturbed zone, the number of Strouhal is lower (at some 10-2) than the number of Strouhal of cutoff, the length of correlation of the turbulent phenomenon is of the order of D, diameter of Grid. Thus, it is advantageous to place the device at a distance D from the end of a duct. The chosen position can also take into account the ease of assembly. By way of example, it is thus easier to place the device in the hose 36 with respect to putting it in the hose 32. The figures of FIGS. 10 and 11 illustrate an example of installation in the hose 2 Before mounting in the vehicle, the hose was cut to the desired location and an isolation device 64 was inserted into the section. The device 64 holds because its diameter is slightly greater than that of the hose 36 and the hose 36 is made of an elastic material. After, just for experimental purposes, the hose 36 is sealed with collars. Thus, the device 64 according to all the embodiments presented later will be implanted upstream of the elbow 28 of hose connection / air heater tube 6 at a distance equal to D since it is a position combining reduction efficiency. acoustic and ease of assembly. In order to obtain attenuation of the waves, it follows from the previous studies that a device 64 for isolating a cooling circuit 4 of a motor 2 for the sound frequencies comprising a gate 66 with openings is a passive source that is extremely efficient without disruption over too long a distance. Such an isolation device 64 is therefore a hydraulic silencer for 2 thermal engine. When placed in the cooling circuit 4 of a thermal engine 2, it attenuates the amplitude of the acoustic waves, produced by the crankshaft acyclism and the resistant torques of the camshaft and transmitted to the coolant. The modulated pseudo-siren noise becomes inaudible inside the passenger compartment. In addition, the cabin sound pressure level is reduced by several decibels in the 100-1000Hz band. In addition, such a device 64 is easy to set up and industrialize because of its low cost. FIG. 6 shows a view of an example of a device 64 for isolating a cooling circuit 4 of a motor 2 for the sound frequencies. The device 64 comprises a circular grid 66 having openings. The gate 66 is thus a thin disc pierced. The isolation device 64 is a passive device 64. The gate 66 serves to attenuate the amplitude of the acoustic waves present in the coolant and to suppress the waves propagating in the conduit. The number, the diameter and the location of the openings are defined according to the modulation frequencies and the carrier frequencies to be attenuated. The gate 66 of the device 64 is thus adapted and accurately sized to correspond to low frequency noise of mechanical origin. In particular, the gate 66 filters the modulated pseudo-siren noise. Several embodiments can thus be envisaged. By way of example, Figures 12 to 15 illustrate schematic views of four particular embodiments. The gate 66 has a thickness e and a first diameter D1. It is advantageous for the thickness e of the grid 66 to be greater than one tenth of the first diameter D1. In mathematical terms, this is expressed by the following relation: e> D1 / 10 (1) [00100] Such a condition ensures that the speed of sound in the fluid is close to the celerity of the apparent sound of the fluid. The celerity of the apparent sound of the fluid is the speed of sound when the fluid is present in a pipe. Thus, it is possible to neglect all the interactions between the fluid and the structure. As an illustration, according to the example of Figure 12, the grid 66 has a diameter of 21 mm and a thickness of 2.5 mm. For such values, condition (1) is satisfied. As a result, for such a grid 66, the interactions between the fluid and the structure are negligible. The grids 66 of the examples of FIGS. 12 to 15 also satisfy the condition (1). The gate 66 may comprise four circular openings 68 of a second diameter D2 and seven circular openings 70 of a third diameter D3. The diameters D2 and D3 of the openings 68, 70 are sufficiently large to prevent the formation of a plug caused by the accumulation of impurities present and conveyed by the cooling circuit 4. [00103] The second diameter D2 may also be greater than the third diameter D3. Holes of different diameters are aimed at different wavelengths. This thus improves the filtering effect of the sound waves. This is the case of the embodiments according to Examples 12 to 15. By way of example, the second diameter D2 may be twice the third diameter D3. According to the examples of the embodiments of Figures 12 to 15, the second diameter is 4 mm and the third diameter is 2 mm. The centers of the four openings 68 may be arranged to form the four corners of a square. The four openings 68 are therefore equidistant from each other. According to the example of Figure 12, the four openings 68 are placed at the periphery of the disc. In addition, the seven openings 70 of diameter 2 mm form a cross placed between the openings of 4 mm. The distance between two openings 70 is different depending on the branch of the cross. On the longest branch, the distance between two openings 70 is twice as small as on the other branch. In addition, the center of the cross may correspond to the center of the square. [oolos] The ability of the device 64 to attenuate a modulated pseudo-siren in the passenger compartment can be evaluated by means of the tool called (noise and presented above) This tool makes it possible to quantify the acoustic performance expected when the device 64 is integrated. The calculation of noise is made using the sound pressure and envelope spectra shown in Figures 16 to 21. [00109] The absence of a modulated pseudo-siren results in noise values. 0dB corresponds to the audibility threshold of a modulated pseudo-siren in the vehicle cabin, which is the reference level.

Montage (bruit (dB) Conséquence Véhicule état origine 13 Bruit fort (Inacceptable) Véhicule muni d'un shunt 1,7 Absence de bruit (0 défaut) Véhicule muni d'un dis- -6,1 Absence de bruit (0 défaut) positif 64 selon la figure 12 Tableau 1 : Performances acoustiques pour différents montages [00110] Lorsque le véhicule dans son état d'origine est considéré, une valeur de 'bruit de 13 dB est mesurée ce qui correspond à un bruit important dans l'habitacle du véhicule. Cela ne peut être toléré. [00111] Un test appelé « véhicule muni d'un shunt » est également effectué dans lequel le circuit 4 de refroidissement ne comporte pas de liquide de refroidissement. Pour cela, les durits 32 et 36 sont remplacées par une durit qui supprime l'alimentation de l'aérotherme 6 en fluide caloporteur. [00112] Lorsque le véhicule est muni du shunt, il est mesuré dans ce cas une valeur de 'bruit de 1,7 dB. Dans une telle configuration, la propagation des ondes acoustiques dans le fluide caloporteur en direction de l'habitacle du véhicule est stoppée. La valeur de 'bruit mesurée correspond tout naturellement à une sensation « Absence de bruit », sensation confirmée par des écoutes subjectives. [00113] Pour un test en présence du dispositif 64 selon l'exemple de la figure 6, une valeur de (bruit de -6,1 dB est mesurée. Cela correspond à un bruit qui n'est pas audible pour l'oreille humaine. On peut considérer alors que le bruit de pseudo-sirène modulée disparaît aussi totalement à l'intérieur du véhicule. Il est notable que les performances obtenues avec le dispositif 64 selon le mode de réalisation de la figure 12 sont meilleures que celle obtenue dans la configuration « véhicule muni d'un shunt ». Cette valeur largement inférieure de 'bruit s'explique par le fait que le dispositif 64 de la figure 12 ne supprime pas la voie de transfert par le fluide. Ceci permet d'éviter le renforcement des deux autres voies de transfert que sont la voie solidienne et aérienne. La voie aérienne correspond à la propagation du son dans l'air et le voie solidienne au fait que le moteur est fixé au véhicule. [00114] Les différences entre les performances des trois tests s'observent également par comparaison des figures 16 à 21. Les figures 16 et 17 illustrent respectivement des spectres de pression acoustique et de d'enveloppe pour le véhicule dans son état d'origine. Les figures 18 et 19 montrent respectivement des spectres de pression acoustique et de d'enveloppe pour la configuration de « véhicule muni d'un shunt ». Mounting (noise (dB) Consequence Vehicle condition origin 13 Noise strong (Unacceptable) Vehicle with a shunt 1.7 Noise (0 defect) Vehicle with a disc -6.1 Absence of noise (0 default) positive 64 according to Figure 12 Table 1: Acoustic performance for different mountings [00110] When the vehicle in its original state is considered, a noise value of 13 dB is measured which corresponds to a significant noise in the passenger compartment This can not be tolerated [00111] A test called "vehicle with a shunt" is also performed in which the cooling circuit 4 does not contain any coolant, for which the hoses 32 and 36 are replaced by a hose that eliminates the supply of the heat-exchange unit heater 6. When the vehicle is equipped with the shunt, a noise value of 1.7 dB is measured in this configuration. , the propagation of acoustic waves in the coolant in the direction of the vehicle interior is stopped. The value of measured noise corresponds quite naturally to a sensation "Absence of noise", sensation confirmed by subjective listening. For a test in the presence of the device 64 according to the example of Figure 6, a value of (noise of -6.1 dB is measured.This corresponds to a noise that is not audible to the human ear It can then be considered that the modulated pseudo-siren noise also disappears completely inside the vehicle It is notable that the performances obtained with the device 64 according to the embodiment of FIG. 12 are better than that obtained in FIG. Shunted vehicle configuration This much lower value of noise is explained by the fact that the device 64 of Fig. 12 does not suppress the transfer pathway by the fluid. two other transfer routes that are the solidarity and air route.The airway is the propagation of sound in the air and the path integral to the fact that the engine is attached to the vehicle. [00114] The differences between the performance of the three tests FIGS. 16 and 17 respectively show sound pressure and envelope spectra for the vehicle in its original state. Figures 18 and 19 show sound pressure and envelope spectra respectively for the configuration of "shunted vehicle".

Les figures 20 et 21 illustrent respectivement des spectres de pression acoustique et de d'enveloppe pour le véhicule muni du dispositif 64 de la figure 12. A des fins de comparaisons, les échelles sont identiques quelle que soit la représentation. [00115] Par comparaison des différentes figures, il est possible de constater que les performances du dispositif 64 selon l'exemple de la figure 12 dépassent largement la suppression du rayonnement du bruit de pseudo-sirène modulée dans l'habitacle. En effet, une réduction importante du niveau de pression acoustique dans l'habitacle entre 100 - 1000Hz est observée. Le niveau de pression acoustique de référence dans cette gamme de fréquence est 2.10-5 Pa soit 3,8 dB. [00116] Le dispositif 64 selon le mode de réalisation de la figure 12 permet ainsi la réduction du niveau de pression acoustique entre 500 et 600Hz et la disparition de toutes les fréquences de modulation issue du moteur 4. [00117] La grille 66 selon le mode de réalisation de la figure 13 se distingue de la grille 66 selon la figure 2 par une disposition différente des ouvertures 68 et 70. Le nombre et le diamètre des deux familles d'ouvertures (diamètres de D2 = 4 mm et D3 = 2mm) restent inchangés. En comparaison de la grille 66 selon la figure 12, le carré formé par les quatre trous 68 de diamètre 4mm est davantage ramassé sur le centre du disque. Six des sept ouvertures 70 de diamètre 2mm sont disposées en périphérie du carré. La septième ouverture 70 est placée au centre de la grille 66. [00118] Comme pour le dispositif 64 de la figure 12, la capacité à atténuer les ondes acoustiques provoquant du bruit de pseudo-sirène modulée dans l'habitacle est évaluée au travers de l'outil 'bruit. Les résultats pour chaque configuration sont présentés ci-dessous : Montage (bruit (dB) Conséquence Véhicule état origine 13 Bruit fort (Inacceptable) Véhicule muni d'un shunt 1,7 Absence de bruit (0 défaut) Véhicule muni d'un dis- -3,9 Absence de bruit (0 défaut) positif 64 selon la figure 13 Tableau 2 : Performances acoustiques pour différents montages [00119] Les tests concernant le véhicule à l'état d'origine et le véhicule muni d'un shunt sont identiques à ceux effectués pour le véhicule muni d'un dispositif 64 selon l'exemple de la figure 12. [00120] Pour le dispositif 64 selon l'exemple de la figure 13, la valeur de (bruit est une valeur négative. Le niveau de pseudo pseudo-sirène modulée dans l'habitacle est ainsi très inférieur au seuil d'audibilité. Les performances sont ainsi bien améliorées par rapport au véhicule muni d'un shunt. [00121] Les différences entre les performances des trois tests s'observent également par comparaison des figures 16 à 19 d'une part et des figures 22 et 23 d'autre part. FIGS. 20 and 21 respectively illustrate sound pressure and envelope spectra for the vehicle equipped with the device 64 of FIG. 12. For the purposes of comparison, the scales are identical regardless of the representation. By comparison of the different figures, it is possible to see that the performance of the device 64 according to the example of FIG. 12 greatly exceeds the suppression of the modulated pseudo-siren noise radiation in the passenger compartment. Indeed, a significant reduction in the sound pressure level in the passenger compartment between 100 - 1000Hz is observed. The reference sound pressure level in this frequency range is 2.10-5 Pa or 3.8 dB. The device 64 according to the embodiment of FIG. 12 thus allows the reduction of the sound pressure level between 500 and 600 Hz and the disappearance of all the modulation frequencies resulting from the motor 4. The gate 66 according to FIG. embodiment of FIG. 13 is distinguished from the grid 66 according to FIG. 2 by a different arrangement of the openings 68 and 70. The number and the diameter of the two families of openings (diameters of D2 = 4 mm and D3 = 2 mm) remain unchanged. In comparison with the grid 66 according to FIG. 12, the square formed by the four holes 68 of diameter 4 mm is further collected on the center of the disc. Six of the seven openings 70 of diameter 2 mm are arranged at the periphery of the square. The seventh opening 70 is placed in the center of the grid 66. [00118] As for the device 64 of FIG. 12, the ability to attenuate the acoustic waves causing modulated pseudo-siren noise in the passenger compartment is evaluated through the tool 'noise. The results for each configuration are shown below: Mounting (noise (dB) Consequence Vehicle state of origin 13 Noise loud (Unacceptable) Vehicle with a shunt 1.7 No noise (0 default) Vehicle equipped with a warning device -3.9 Absence of noise (0 default) positive 64 according to Figure 13 Table 2: Acoustic performance for different assemblies [00119] The tests concerning the vehicle in the original state and the vehicle equipped with a shunt are identical to those made for the vehicle provided with a device 64 according to the example of Figure 12. [00120] For the device 64 according to the example of Figure 13, the value of (noise is a negative value. pseudo-siren modulated in the passenger compartment is well below the audibility threshold, the performances are thus much improved compared to the vehicle equipped with a shunt. [00121] The differences between the performances of the three tests are also observed by comparison of FIGS. to 19 on the one hand and figures 22 and 23 on the other.

Les figures 22 et 23 illustrent respectivement des spectres de pression acoustique et de d'enveloppe pour le véhicule muni du dispositif 64 de la figure 13. [00122] Par comparaison des différentes figures, il est possible de constater que le dispositif 64 selon l'exemple de la figure 13 permet également d'obtenir une réduction du niveau de la pression acoustique de plusieurs décibels dans l'habitacle. [00123] La comparaison des spectres d'enveloppe des figures 21 et 23 montre que la géométrie de la grille 66 a un impact sur l'amplitude des fréquences de modulation émergentes. Afin de faciliter cette comparaison, les figures 24 et 25 correspondent aux figures 21 et 23 avec une échelle différente mettant mieux en évidence les fréquences résiduelles. [00124] Ainsi, le dispositif 64 de la figure 12 atténue plus que le dispositif 64 de la figure 13 les fréquences de modulation correspondant aux ordres 0,5 et 1,5. Le dispositif 64 de la figure 13 atténue plus que le dispositif 64 de la figure 12 les fréquences de modulation correspondant aux ordres 1 et 2. Les amplitudes des fréquences de modulation correspondant aux ordres 2,5 et 3 sont inchangées. [00125] La grille 66 selon le mode de réalisation de la figure 14 se distingue de la grille 66 selon la figure 12 par une disposition différente des ouvertures 68 et 70. Le nombre et le diamètre des deux familles d'ouvertures (diamètres de D2 = 4 mm et D3 = 2mm) restent inchangés. Les ouvertures 68 et 70 sont réparties selon trois droites parallèles. Deux ouvertures 68 des quatre ouvertures 68 sont selon un diamètre avec une des sept ouvertures 70. Trois des sept ouvertures 70 et une des quatre ouvertures 68 sont situés selon une corde parallèle au diamètre. En outre, selon l'exemple de la figure 14, les quatre ouvertures 68 sont agencées de manière à former un Y. En outre l'agencement des ouvertures 68 et 70 est tel que la grille présente une symétrie axiale par rapport au diamètre. Sur chacune des cordes parallèles au diamètre, les trois ouvertures 70 de petit diamètre se suivent, l'ouverture 68 de plus grand diamètre étant placé à une extrémité. [00126] La grille 66 circulaire peut comporter un grillage 72. C'est par exemple le mode de réalisation de la figure 15. La grille 66 du dispositif 64 de la figure 15 se présente sous la forme d'un grillage 12 fin et régulier sur toute sa surface. Chaque maille peut être assimilée à un trou circulaire de diamètre 1 mm environ. [00127] Comme pour le dispositif 64 de la figure 12, la capacité à atténuer les ondes acoustiques provoquant du bruit de pseudo-sirène modulée dans l'habitacle est évaluée au travers de l'outil 'bruit. Les résultats pour chaque configuration sont présentés ci-dessous : Montage (bruit (dB) Conséquence Véhicule état origine 13 Bruit fort (Inacceptable) Véhicule muni d'un shunt 1,7 Absence de bruit (0 défaut) Véhicule muni d'un dispositif 0,5 Absence de bruit (0 défaut) 64 selon l'exemple 15 Tableau 3 : Performances acoustiques pour différents montages [00128] Les tests concernant le véhicule à l'état d'origine et le véhicule muni d'un shunt sont identiques à ceux effectués pour le véhicule muni d'un dispositif 64 selon l'exemple de la figure 12. [00129] Pour le dispositif 64 selon l'exemple de la figure 15, la valeur de (bruit est inférieure à 3dB. Le niveau de pseudo-sirène modulée dans l'habitacle est ainsi très supportable et à peine audible. Les performances sont ainsi bien améliorées par rapport au véhicule muni d'un shunt. [00130] Les différences entre les performances des trois tests s'observent également par comparaison des figures 16 à 19 d'une part et des figures 26 et 27 d'autre part. Les figures 26 et 27 illustrent respectivement des spectres de pression acoustique et de d'enveloppe pour le véhicule muni du dispositif 64 de la figure 15. [00131] Par comparaison des différentes figures, il est possible de constater que le dispositif 64 selon l'exemple de la figure 15 permet également d'obtenir une réduction du niveau de la pression acoustique de plusieurs décibels dans l'habitacle. [00132] La comparaison des spectres d'enveloppe des figures 21 et 27 montre que la géométrie de la grille 66 a un impact sur l'amplitude des fréquences de modulation émergentes. Afin de faciliter cette comparaison, la figure 28 correspond à la figure 27 avec une échelle différente mettant mieux en évidence les fréquences résiduelles. [00133] Ainsi, le dispositif 64 de la figure 12 atténue plus que le dispositif 64 de la figure 15 les fréquences de modulation correspondant aux ordres 1, 1,5, 2 et 3. Le dispositif 64 de la figure 15 atténue plus que le dispositif 64 de la figure 12 les fréquences de modulation correspondant aux ordres 0,5, 2,5 et 3,5. [00134] La comparaison entre les spectres d'enveloppe des figures 24 et 27 montrent des performances du dispositif 64 selon la figure 15 en retrait pour les ordres 1, 1,5, 2 et 3 par rapport à celles du dispositif 64 selon l'exemple de la figure 13. En outre, le dispositif 64 de la figure 15 atténue plus que le dispositif 64 de la figure 13 les fréquences de modulation correspondant aux ordres 0,5, 2,5 et 3,5. [00135] Comme le grillage 72 couvre la globalité de la grille 66 selon le mode de réalisation de la figure 9, la finesse des mailles peut constituer un obstacle aux impuretés présentes et véhiculées par le fluide caloporteur. Ainsi, il est aussi possible de combiner les modes de réalisations précédents et il peut être envisagé que les ouvertures des exemples de dispositifs 64 selon les figures 12, 13 et 14 comportent un grillage 72 du type utilisé sur l'intégralité de la surface de la grille 66 selon le mode de réalisation de la figurel 5. De telles grilles 66 seraient moins sujettes au problème des impuretés. [00136] Suivant la nature des ondes à atténuer, les performances dépendant de la géométrie de la grille 66, il peut être plus ou moins avantageux de réaliser un des dispositifs 64 précédemment présentées avec sa grille 66 correspondante. [00137] La grille 66 peut être réalisée avec un matériau inoxydable. Cela permet de conférer à l'ensemble du dispositif 64 une meilleure durée de vie. Chacune des grilles 66 selon les modes de réalisation des exemples 12 à 15 sont réalisées à partir d'un matériau inoxydable. [00138] Le dispositif 64 peut comprendre en outre un tube 74 de support. Le tube définit un passage de fluide, la grille étant en travers de ce passage. Un tel tube 74 sert uniquement de support pour faciliter le montage du dispositif 64, et notamment dans la durite 36 du circuit 4 de refroidissement comme proposé précédemment. FIGS. 22 and 23 respectively illustrate sound pressure and envelope spectra for the vehicle equipped with the device 64 of FIG. 13. By comparing the different figures, it can be seen that the device 64 according to FIG. example of Figure 13 also achieves a reduction in the sound pressure level of several decibels in the passenger compartment. The comparison of the envelope spectra of FIGS. 21 and 23 shows that the geometry of the gate 66 has an impact on the amplitude of the emerging modulation frequencies. In order to facilitate this comparison, FIGS. 24 and 25 correspond to FIGS. 21 and 23 with a different scale better showing the residual frequencies. Thus, the device 64 of Figure 12 attenuates more than the device 64 of Figure 13 the modulation frequencies corresponding to orders 0.5 and 1.5. The device 64 of FIG. 13 attenuates more than the device 64 of FIG. 12 the modulation frequencies corresponding to the commands 1 and 2. The amplitudes of the modulation frequencies corresponding to the commands 2.5 and 3 are unchanged. The grid 66 according to the embodiment of Figure 14 differs from the grid 66 according to Figure 12 by a different arrangement of the openings 68 and 70. The number and diameter of the two families of openings (diameters of D2 = 4 mm and D3 = 2mm) remain unchanged. The openings 68 and 70 are distributed along three parallel lines. Two openings 68 of the four openings 68 are in a diameter with one of the seven openings 70. Three of the seven openings 70 and one of the four openings 68 are located along a rope parallel to the diameter. In addition, according to the example of Figure 14, the four openings 68 are arranged to form a Y. In addition the arrangement of the openings 68 and 70 is such that the grid has an axial symmetry with respect to the diameter. On each of the ropes parallel to the diameter, the three openings 70 of small diameter follow each other, the opening 68 of larger diameter being placed at one end. The circular grid 66 may comprise a grid 72. This is for example the embodiment of FIG. 15. The grid 66 of the device 64 of FIG. 15 is in the form of a fine and regular grid 12. on all its surface. Each mesh can be likened to a circular hole of about 1 mm diameter. As for the device 64 of Figure 12, the ability to attenuate the acoustic waves causing modulated pseudo-siren noise in the passenger compartment is evaluated through the noise tool. The results for each configuration are shown below: Mounting (noise (dB) Consequence Vehicle state of origin 13 Noise loud (Unacceptable) Vehicle with a shunt 1.7 No noise (0 default) Vehicle equipped with a device 0 No noise (0 defect) 64 according to example 15 Table 3: Acoustic performance for different assemblies [00128] The tests concerning the vehicle in its original state and the vehicle fitted with a shunt are identical to those for the vehicle provided with a device 64 according to the example of Figure 12. For the device 64 according to the example of Figure 15, the value of (noise is less than 3dB. modulated siren in the passenger compartment is thus very tolerable and barely audible, the performances are thus much improved compared to the vehicle equipped with a shunt. [00130] The differences between the performances of the three tests are also observed by comparison of the figures. 16 to 19 of a pa rt and figures 26 and 27 on the other hand. FIGS. 26 and 27 respectively illustrate acoustic pressure and envelope spectra for the vehicle equipped with the device 64 of FIG. 15. By comparison of the various figures, it can be seen that the device 64 according to FIG. example of Figure 15 also achieves a reduction in the sound pressure level of several decibels in the passenger compartment. The comparison of the envelope spectra of FIGS. 21 and 27 shows that the geometry of the gate 66 has an impact on the amplitude of the emerging modulation frequencies. In order to facilitate this comparison, FIG. 28 corresponds to FIG. 27 with a different scale showing better the residual frequencies. Thus, the device 64 of Figure 12 attenuates more than the device 64 of Figure 15 the modulation frequencies corresponding to the orders 1, 1.5, 2 and 3. The device 64 of Figure 15 attenuates more than the Device 64 of Figure 12 the modulation frequencies corresponding to orders 0.5, 2.5 and 3.5. The comparison between the envelope spectra of FIGS. 24 and 27 shows the performances of the device 64 according to FIG. 15 in recess for the orders 1, 1.5, 2 and 3 with respect to those of the device 64 according to FIG. As shown in FIG. 13, the device 64 of FIG. 15 attenuates more than the device 64 of FIG. 13 the modulation frequencies corresponding to the commands 0.5, 2.5 and 3.5. As the mesh 72 covers the entire grid 66 according to the embodiment of Figure 9, the fineness of the mesh can be an obstacle to impurities present and carried by the heat transfer fluid. Thus, it is also possible to combine the preceding embodiments and it can be envisaged that the openings of the examples of devices 64 according to FIGS. 12, 13 and 14 comprise a grid 72 of the type used on the entire surface of the Grid 66 according to the embodiment of FIG. 5. Such grilles 66 would be less subject to the problem of impurities. Depending on the nature of the waves to be attenuated, the performance depending on the geometry of the gate 66, it may be more or less advantageous to achieve one of the devices 64 previously presented with its corresponding grid 66. The grid 66 can be made with a stainless material. This allows to give the entire device 64 a longer life. Each of the grids 66 according to the embodiments of Examples 12 to 15 are made from a stainless material. The device 64 may further comprise a support tube 74. The tube defines a fluid passage, the gate being across this passage. Such a tube 74 serves only as a support to facilitate the mounting of the device 64, and in particular in the hose 36 of the cooling circuit 4 as previously proposed.

Claims (11)

REVENDICATIONS1. Un procédé de conception de la structure d'un circuit (4) de refroidissement d'un moteur atténuant les fréquences sonore caractérisé en ce que le procédé comporte une étape de minimisation de l'amplitude de l'onde sonore en sortie de la structure du circuit excitée par une onde sonore incidente prédéfinie par ajustement de la structure du circuit. REVENDICATIONS1. A method for designing the structure of a cooling circuit (4) for a motor attenuating the sound frequencies, characterized in that the method comprises a step of minimizing the amplitude of the sound wave at the output of the structure of the circuit excited by an incident sound wave predefined by adjusting the structure of the circuit. 2. Le procédé selon la revendication 1, caractérisé en ce que les fréquences sonores sont comprises entre 300 Hz et 1000 Hz, de préférence entre 500 Hz et 700 Hz. 2. The method according to claim 1, characterized in that the sound frequencies are between 300 Hz and 1000 Hz, preferably between 500 Hz and 700 Hz. 3. Le procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'amplitude d'une onde correspond à la pression ou au débit de l'onde. 3. The method according to one of claims 1 or 2, characterized in that the amplitude of a wave corresponds to the pressure or the flow rate of the wave. 4. Le procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'onde incidente prédéfinie est une onde plane. 4. The method according to one of claims 1 to 3, characterized in that the predefined incident wave is a plane wave. 5. Le procédé selon la revendication 4, caractérisé en ce que l'onde sonore en sortie de la structure du circuit est calculée à l'aide d'une méthode matricielle, la méthode matricielle modélisant chaque élément du circuit comme un dipôle ou un quadripôle dont les coefficients de la matrice associée au dipôle ou au quadripôle dépendent des caractéristiques géométriques de chacun des éléments. 5. The method according to claim 4, characterized in that the sound wave at the output of the circuit structure is calculated using a matrix method, the matrix method modeling each element of the circuit as a dipole or a quadrupole whose coefficients of the matrix associated with the dipole or the quadrupole depend on the geometrical characteristics of each of the elements. 6. Le procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'étape de minimisation est mise en oeuvre pour plusieurs ondes sonores incidentes prédéfinies. 6. The method according to one of claims 1 to 5, characterized in that the minimization step is implemented for several predefined incident sound waves. 7. Le procédé selon l'une des revendications 1 à 6, caractérisé en ce que le circuit (4) de refroidissement comporte des conduits, un paramètre ajusté de la structure étant la longueur des conduits du circuit (4) de refroidissement. 7. The method according to one of claims 1 to 6, characterized in that the cooling circuit (4) comprises ducts, an adjusted parameter of the structure being the length of the ducts of the cooling circuit (4). 8. Le procédé selon l'une des revendications 1 à 7, caractérisé en ce que le circuit (4) de refroidissement comporte des conduits, un paramètre ajusté de la structure étant le diamètre des conduits du circuit (4) de refroidissement. 8. The method according to one of claims 1 to 7, characterized in that the cooling circuit (4) comprises ducts, an adjusted parameter of the structure being the diameter of the ducts of the cooling circuit (4). 9. Le procédé selon l'une des revendications 1 à 8, caractérisé en ce que le circuit (4) de refroidissement comporte un coude (28), un paramètre ajusté de la structure étant la géométrie du coude (28) du circuit de refroidissement. 9. The method according to one of claims 1 to 8, characterized in that the cooling circuit (4) comprises a bend (28), an adjusted parameter of the structure being the geometry of the bend (28) of the cooling circuit. . 10. Le procédé selon l'une des revendications 1 à 9, caractérisé en ce que le circuit (4) 5 de refroidissement comporte une vanne, un paramètre ajusté de la structure étant la géométrie de la vanne. 10. The method according to one of claims 1 to 9, characterized in that the circuit (4) 5 cooling comprises a valve, an adjusted parameter of the structure being the geometry of the valve. 11. Le procédé selon l'une des revendications 1 à 10, caractérisé en ce que le circuit (4) de refroidissement comporte une dérivation, un paramètre ajusté de la structure étant la géométrie de la dérivation. 10 11. The method according to one of claims 1 to 10, characterized in that the cooling circuit (4) comprises a shunt, an adjusted parameter of the structure being the geometry of the shunt. 10
FR1052560A 2010-04-06 2010-04-06 Method for structural design of cooling circuit utilized for cooling internal combustion engine attenuating sound frequencies in vehicle, involves minimizing amplitude of sound wave at exit of cooling circuit by adjusting cooling circuit Withdrawn FR2958329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1052560A FR2958329A1 (en) 2010-04-06 2010-04-06 Method for structural design of cooling circuit utilized for cooling internal combustion engine attenuating sound frequencies in vehicle, involves minimizing amplitude of sound wave at exit of cooling circuit by adjusting cooling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1052560A FR2958329A1 (en) 2010-04-06 2010-04-06 Method for structural design of cooling circuit utilized for cooling internal combustion engine attenuating sound frequencies in vehicle, involves minimizing amplitude of sound wave at exit of cooling circuit by adjusting cooling circuit

Publications (1)

Publication Number Publication Date
FR2958329A1 true FR2958329A1 (en) 2011-10-07

Family

ID=43382621

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1052560A Withdrawn FR2958329A1 (en) 2010-04-06 2010-04-06 Method for structural design of cooling circuit utilized for cooling internal combustion engine attenuating sound frequencies in vehicle, involves minimizing amplitude of sound wave at exit of cooling circuit by adjusting cooling circuit

Country Status (1)

Country Link
FR (1) FR2958329A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2004323A (en) * 1977-09-13 1979-03-28 Lombardini Fab It Motori Spa Improvements in sound insulation of air-cooled internal combustion engines
DE19943918A1 (en) * 1999-09-14 2001-03-22 Koetter Erwin W Acoustic damper for a fluid/gas flow through a pipe has a carrier plate across the flow direction with absorbent and reflecting layer(s) to suppress generated ultrasonic waves without affecting the flow
US20010025739A1 (en) * 2000-03-09 2001-10-04 Woods Woodrow E. Muffler for marine engine
US20020015640A1 (en) * 2000-07-31 2002-02-07 Toshihiko Nishiyama Noise reduction mechanism of fan device and molding method of porous damping material therefor
EP1635049A1 (en) * 2003-06-16 2006-03-15 Kobelco Construction Machinery Co., Ltd. Construction machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2004323A (en) * 1977-09-13 1979-03-28 Lombardini Fab It Motori Spa Improvements in sound insulation of air-cooled internal combustion engines
DE19943918A1 (en) * 1999-09-14 2001-03-22 Koetter Erwin W Acoustic damper for a fluid/gas flow through a pipe has a carrier plate across the flow direction with absorbent and reflecting layer(s) to suppress generated ultrasonic waves without affecting the flow
US20010025739A1 (en) * 2000-03-09 2001-10-04 Woods Woodrow E. Muffler for marine engine
US20020015640A1 (en) * 2000-07-31 2002-02-07 Toshihiko Nishiyama Noise reduction mechanism of fan device and molding method of porous damping material therefor
EP1635049A1 (en) * 2003-06-16 2006-03-15 Kobelco Construction Machinery Co., Ltd. Construction machine

Similar Documents

Publication Publication Date Title
EP0649494B1 (en) Inlet or exhaust line for reciprocating machine
EP0237454B1 (en) Processes and devices for attenuating noise from an external origin arriving at the ear drum, and for improving the intelligibility of electro-acoustic communications
EP3290897B1 (en) Turbomachine test bench with active noise control
EP2375029B1 (en) Cooling circuit with an insulating device
FR2704969A1 (en) Active double wall acoustic attenuation device
FR2726681A1 (en) ACTIVE DOUBLE WALL ACOUSTIC MITIGATION DEVICE
FR2868970A1 (en) ACOUSTIC DEVICE, LIQUID GAUGE PROBE EQUIPPED WITH SUCH A DEVICE, AND LIQUID GAUGE SYSTEM PROVIDED WITH SUCH A PROBE
FR2739214A1 (en) METHOD AND DEVICE FOR ACTIVE HYBRID MITIGATION OF VIBRATION, ESPECIALLY MECHANICAL, SOUND OR SIMILAR VIBRATION
FR2740599A1 (en) ACTIVE ACOUSTIC MITIGATION DEVICE INTENDED TO BE ARRANGED WITHIN A DUCT, PARTICULARLY FOR SOUNDPROOFING A VENTILATION AND / OR AIR CONDITIONING NETWORK
FR2958330A1 (en) Method for defining insulation device in cooling circuit of vehicle for attenuating sound frequencies, involves calculating outlet wave by insulation device, and defining conformation of insulation device by minimizing wave amplitude
CA2748383A1 (en) Acoustic wave transducer and sonar antenna with improved directivity
FR2543342A1 (en) Anechoic noise-attenuating device for liquid ducting as well as method and circuit using it to measure the energy emitted by hydraulic equipment
FR2958329A1 (en) Method for structural design of cooling circuit utilized for cooling internal combustion engine attenuating sound frequencies in vehicle, involves minimizing amplitude of sound wave at exit of cooling circuit by adjusting cooling circuit
FR2958331A1 (en) Installation defining method for insulation device of sound frequencies in cooling circuit of internal combustion engine of vehicle, involves determining position of insulation device in circuit according to minimal amplitude of outlet wave
FR2976074A1 (en) METHOD OF ESTIMATING THE INTENSITY OF THE CLICKS OF AN INTERNAL COMBUSTION ENGINE BY INVERTING A WAVE EQUATION
FR3023645A1 (en) DEVICE AND METHOD FOR MITIGATING SOUND
WO2016075373A1 (en) Claw-pole rotor for rotary electric machine
EP3878189A1 (en) Acoustic device generating improved sound
EP3760924B1 (en) Smoke-producing device with silencer in a smoke evacuation conduit
FR3038346A1 (en) NOISE REDUCTION DEVICE FOR AIR FILTER OF INTERNAL COMBUSTION ENGINE INTAKE LINE
FR3074556A1 (en) CONDUIT COMPRISING AT LEAST ONE ANECHOIC TERMINATION COMPRISING A LOW FREQUENCY ACOUSTIC ABSORPTION MEANS AND A MEDIUM AND HIGH FREQUENCY ACOUSTIC ABSORPTION MEANS
WO2001038700A1 (en) Active device for reducing engine noise comprising at least two exhaust outlets
EP0454601B1 (en) Process for damping acoustic waves in a circuit of circulating fluid
WO2024115861A1 (en) Method, device and program for measuring erosive cavitation of a hydraulic machine
FR2975181A1 (en) Method for testing acoustic behavior of casing that covers distribution face or facade of heat engine of motor vehicle, involves comparing characteristic acoustic pressure spectra in order to determine acoustic behavior of casing

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20121228