EP3856513A1 - Hoch belastbares thermisches isolationsmaterial mit guter umformbarkeit und ausgezeichneter körperschalldämpfung - Google Patents

Hoch belastbares thermisches isolationsmaterial mit guter umformbarkeit und ausgezeichneter körperschalldämpfung

Info

Publication number
EP3856513A1
EP3856513A1 EP19773796.8A EP19773796A EP3856513A1 EP 3856513 A1 EP3856513 A1 EP 3856513A1 EP 19773796 A EP19773796 A EP 19773796A EP 3856513 A1 EP3856513 A1 EP 3856513A1
Authority
EP
European Patent Office
Prior art keywords
insulating material
material according
core layer
cover layers
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19773796.8A
Other languages
English (en)
French (fr)
Inventor
Peter Klauke
Oliver Kleinschmidt
Tobias LEWE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3856513A1 publication Critical patent/EP3856513A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0869Insulating elements, e.g. for sound insulation for protecting heat sensitive parts, e.g. electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls

Definitions

  • the invention relates to a thermal insulation material according to the preamble of claim 1 and its use.
  • Heat is a form of energy that is released in many processes and applications. Such processes take place in motor vehicles, for example, within narrow spatial limits. This leads to temperature increases in bodies that are involved. At the same time, heat-sensitive parts, components or objects must be protected against heat radiation.
  • heat shields made of composite materials such as, for example, sheet metal and / or foil, knitted aluminum, mineral fibers, fabric membranes and / or nonwovens are often used for this purpose, as described, for example, in DE 102014014831A or DE 102017007879A.
  • Such a shield should therefore be attachable in many places, whereby it should fit into the existing arrangement of the components and into the existing processes. Such a shield should also be retrofittable.
  • a secure shield should be made of a self-supporting material that will retain its shape unless it is forced to deform using force.
  • the thermal insulation must not contribute to the deterioration of the acoustic performance in the form of structure-borne noise. Because of the narrow spatial conditions, the shielding must ensure the greatest possible temperature difference between the side facing the heat source and the side facing away from the heat source.
  • a thermal insulation material consisting of two metallic cover layers and a non-metallic core layer arranged between the cover layers, characterized in that the core layer is viscoelastic and is formed from a silicone-containing material and the cover layers from an aluminum-based one Coated steel flat product are formed.
  • a material that contains or essentially consists of polysiloxanes is used as the silicone-containing material.
  • a silicone adhesive is used. This contains an alternative, in particular before curing, at least one silicone resin and optionally at least one siloxane rubber and optionally at least one reaction adduct of at least one siloxane rubber and at least one silicone resin.
  • a coated steel flat product accordingly consists of a steel substrate, which can be, for example, a steel strip or a steel sheet or a blank produced from a steel sheet, such as a circuit board, and a coating present on at least one side of the steel substrate.
  • a steel substrate which can be, for example, a steel strip or a steel sheet or a blank produced from a steel sheet, such as a circuit board, and a coating present on at least one side of the steel substrate.
  • both sides of the steel substrate, and hence the cover layers are coated.
  • An aluminum-based coating consists of pure aluminum or an aluminum alloy.
  • the coating can be applied to the steel substrate in a conventional manner, for example by means of a hot-dip coating process. Other application methods that make it possible to apply a coating are also conceivable.
  • a suitable coating for example a corrosion protection coating, is typically at most 50 ⁇ m thick on each side, preferably 0.1 to 50 ⁇ m thick, particularly preferably 1 to 30 ⁇ m thick, in particular 10 to 30 ⁇ m thick per side.
  • One embodiment relates to an insulating material that is damping of structure-borne noise.
  • the damping is expressed via the so-called loss factor, which is determined according to standard EN ISO 6721.
  • the insulating material according to the invention shows a high loss factor over a wide temperature range, in particular a loss factor of 0.01-1.0 measured at 500 Hz at temperatures between -20 ° C and 130 ° C.
  • the insulating material preferably has a loss factor of 0.04-0.5, measured at 500 Hz, at temperatures from -20 ° C. to 80 ° C., particularly preferably a loss factor of 0.07-0.3, in particular 0. 1-0.2 at temperatures from 5 ° to 65 ° C.
  • One embodiment relates to an insulating material that can be deep-drawn or deep-drawn.
  • deep-drawing means that the viscoelastic core layer flows with the cover layers during deep-drawing and that no delamination occurs in the process.
  • the insulating material can also be drawn or stretched. This means that during the Erichsen test at room temperature and / or at higher temperatures (e.g. 100 ° C) up to the failure limit of the top layers, no abnormalities, damage and / or macroscopic failure points in the core layer can be adjusted.
  • Another embodiment relates to an insulating material that is not flammable and / or heat-resistant.
  • a substance is non-combustible if it likes the strict criteria of.
  • a substance is heat-resistant in the sense of the invention if it fulfills all requirements at high temperatures.
  • the insulation material shows no change in the relevant properties a temperature range from -80 ° C to 250 ° C, especially with brief temperature increases of up to 30 minutes up to 300 ° C and also with shock loads of up to 800 ° C.
  • the core layer is non-flammable and can withstand high thermal loads with a permanent load of up to 400 ° C and a shock load of up to 800 ° C.
  • the insulating material according to the invention is halogen-free and, owing to its heat resistance, does not release any smoke or toxic fumes even at high temperatures in accordance with IMO 2010 FTP Code book annex 1, Part 2. In addition, there is no unpleasant odor, even under constant load.
  • the insulating material has cover layers with coatings which consist of a silicon-containing aluminum alloy.
  • Suitable aluminum alloys typically consist of 3 to 15% by weight of Si, preferably 7 to 12% by weight of Si, particularly preferably 9
  • transition metals other than Fe 0.4% by weight of transition metals other than Fe, 0.05-2% by weight of alkaline earth metals, preferably 0.1
  • alkaline earth metals particularly preferably 0.15-0.4% by weight of alkaline earth metals, and the remainder consisting of aluminum and unavoidable impurities.
  • transition metals a distinction is made here between iron and other transition metals, because iron can be present in higher contents than other transition metals. Iron, other transition metals and also elements from the group of alkaline earth metals lead to a dense, thin and opaque oxide layer that reduces the penetration of diffusible hydrogen.
  • the following alkaline earth or transition metals have proven to be particularly suitable: Mg, Ca, Sr, Ba, Zr and Ti.
  • the metallic cover layers of the insulating material have a thickness of 0.2 to 1.0 mm, in particular 0.2 to 0.75 mm, preferably 0.25 to 0.5 mm and particularly preferably 0, 3 mm.
  • the core layer has a thickness of 0.025 to 1.50 mm, in particular 0.02 to 0.5 mm, preferably 0.025 to 0.250 mm, in particular 0.05 to 0.1 mm.
  • the invention further relates to an insulating material with a core layer which has deoxidative elements and / or deoxidative alloys which are dispersed in the core layer.
  • the core layer is present as a heterogeneous mixture in which the silicone-containing material is present as a dispersion medium for the deoxidative elements and / or deoxidative alloys which are present as particles and are dispersed therein as a disperse phase.
  • the deoxidative elements and / or deoxidative alloys are dispersed in the silicone-containing core layer in a proportion of between 0.1 and a maximum of 5% by weight, based on the core layer.
  • the proportion of the respective deoxidative elements and / or alloys is limited to a maximum of 5% by weight, in particular to a maximum of 3% by weight and preferably to a maximum of 1.5% by weight.
  • the silicone-containing material is briefly temperature-resistant up to 800 ° C. At higher temperatures, as is usually the case with MIG and MAG welding, the silicon in the silicon-containing material decomposes in an oxygen-containing atmosphere due to its high affinity for oxygen in silicon dioxide. The reaction of the silicon with the oxygen significantly reduces the outgassing of the molten metal and the pore formation in the area of the connecting seam.
  • the silicon dioxide formed is deposited in the form of a silicate on the joint surface (weld seam surface) and can be removed mechanically if necessary.
  • the proportion of deoxidative elements and / or deoxidative alloys is at least 0.1% by weight, in particular at least 0.2% by weight and preferably at least 0.25% by weight.
  • Suitable deoxidative elements are, for example, Ca, Mg, Al, Ti, Si, Mn, Cr, Ce, La, Nb, Ta, V and / or Zn in the form of particles, in particular powder and / or flakes.
  • ferrosilicon (FeSi), ferrocalcium silicon (FeCa-Si), ferromanganese (FeMn) can be added to the silicon-containing core layer as deoxidative alloys; a combination of 2 or more of the above substances should also be used in the core layer.
  • a further embodiment relates to an insulating material which has airgel, in particular aerogels in the form of particles, which in an alternative can, however, still form a closed layer.
  • An airgel is defined as an open-line, mesoporous, solid foam that consists of a network of interconnected nanostructures.
  • the term airgel does not refer to a specific material composition, but to a geometric arrangement in which a substance can be present. It is therefore a highly porous, dry solid with a pore volume of 95 -99.8%, which form a network of colloidal particles with pore sizes ⁇ 1 to 100 nm.
  • Silica, carbon, metal oxide or organic polymers are used as substances. Further description and definition of the term airgel can be found in DE 19537821 (paras.
  • the aerogels described above can be used in the insulating material according to the invention, preferably an airgel made from amorphous silica, in particular as granules.
  • the airgel is dispersed in the core layer.
  • the core layer has dispersed airgel particles in addition to the dispersed deoxidative elements and / or alloys described above.
  • the aerogel is present as a layer in the insulating material, as described for example in DE 19537821.
  • the airgel layer is disposed between the top layer and the core layer or on one or both sides of the side of the top layer (s) facing away from the core layer.
  • the airgel is preferably dispersed in the core layer or applied as a layer on the side of the insulating material or the cover layer which faces away from the heat source and the core layer.
  • the core layer contains fire-retardant additives and / or chemicals.
  • the invention further relates to a three-dimensionally shaped insulating material as described above.
  • the three-dimensionality in the sense of the invention does not result from the length, width and height of the insulating material, which is based on steel freight products, but from a deformation due to the action of force. Deformation within the meaning of the invention is carried out by a method known to the person skilled in the art, preferably it is selected from the methods selected from the group comprising or consisting of deep drawing, stretch drawing, folding, bending, roller rolling, profile rolling and compression molding, in particular Deep drawing.
  • the three-dimensional shape of a deformed insulating material according to the invention thus essentially results from the fact that at least one is considered macroscopically Point of the surface of the insulating material is not in the same plane with the remaining points.
  • the insulating material according to the invention is furthermore distinguished by a good specific heat capacity, in particular in a high, wide temperature range.
  • the specific heat capacity Cp at 100 ° C is between 0.6 and 1.0; preferably between 0.7 and 0.8; at 250 ° C between 0.75 and 1.0; preferably between 0.8 and 0.85; at 400 ° C between 0.8 and 1.1; preferably 0.9 and 1.0 each J / g / K.
  • the insulating material according to the invention is further characterized by a low thermal conductivity, in particular in a high and wide temperature range.
  • this low specific thermal conductivity at 100 ° C is between 6.0 and 8.0; preferably 7.0 and 7.5; at 250 ° C between 1.5 and 5.0, preferably 2.0 and 3.0; at 400 ° C between 1.5 and 4.0; preferably between 2.0 and 2.5 in each case W / m / K.
  • the insulating material according to the invention exhibits a high, falling temperature gradient between the side which faces the heat source and the side which faces away from the heat source.
  • the temperature difference between the side facing the heat source and the side facing away from the heat source is at least 50 ° C at a temperature of the side facing the heat source of 200 ° C. and at least 250 ° at 500 ° C. on the side facing the heat source C and at 800 ° C on the side facing the heat source at least 350 ° C.
  • the silicone-containing core layer is introduced in the form of a film, preferably as an adhesive film, between the metallic cover layers in an alternative.
  • the cover layers are preferably laminated with the film at room temperature in a laminating station.
  • the core layer is applied in liquid form to one or to both cover layers.
  • the coating is carried out by any known process known to the person skilled in the art, preferably it is selected from the processes selected from the group comprising or consisting of roller, knife and nozzle application, coil coating, casting, spin coating, trickling and blowing, preferably roller, Doctor blade and nozzle application as well as coil coating.
  • the coated top layer is then combined with a further, optionally also coated top layer to form a sandwich composite, and the core layer is hardened or partially hardened.
  • the insulating material can also have three-dimensional deformations, bores and / or functional elements, in particular for fastening.
  • the present invention also relates to a method for thermal shielding of a heat-radiating body, comprising or consisting of the following steps:
  • thermal shielding there is also acoustic shielding.
  • Another object of the present invention is a use of the insulating material according to the invention as a shield, cover, cladding or component, in particular in engines, exhaust systems, passenger cars, commercial vehicles, trucks, special vehicles, buses, buses, track-bound vehicles, ships, inter alia as cabin walls and / or ship cladding, and / or in architectural buildings, that is to say in the building industry, in particular as an outer facade, roof element and / or internal fire protection and / or acoustic walls, structures or ceilings.
  • the insulating material is preferably used as a heat protection shield, particularly preferably for shielding particle filters or battery boxes in vehicles. Special requirements must be met, in particular when shielding particle filters. In the event of a crash, the risk of fire increases because there can be direct contact between the shield and the particle filter.
  • a heat protection shield made of the insulating material according to the invention fulfills all requirements without damage, in particular in continuous operation. Furthermore, the outer surfaces of the insulating material have corrosion protection due to the coating, as well as one Protection against oils, greases, liquid fuels and / or cleaning agents, such as those used in commercial vehicles and buildings.
  • the insulating material according to the invention is suitable for these uses, in particular due to the combination of its features such as formability, resistance to flashing, fire protection, structure-borne noise reduction and thermal insulation.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung betrifft ein thermisches Isolationsmaterial bestehend aus zwei metallischen Decklagen und einer zwischen den Decklagen angeordneten nichtmetallischen Kernschicht, dadurch gekennzeichnet, dass die Kernschicht viskoelastisch ist und aus einem silikonhaltigen Werkstoff gebildet ist und die Decklagen aus einem eine aluminiumbasierte Beschichtung aufweisenden Stahlflachproduktes gebildet sind, sowie dessen Verwendung.

Description

Hoch belastbares thermisches Isolationsmaterial mit guter Umformbarkeit und ausgezeichneter Körperschalldämpfung
Die Erfindung betrifft ein thermisches Isolationsmaterial nach dem Oberbegriff des Anspruchs 1 sowie dessen Verwendung.
Wärme ist eine Energieform die in vielen Prozessen und Anwendungen freigesetzt wird. Solche Prozesse finden beispielsweise in engen räumlichen Grenzen in Kraftfahrzeugen statt. Dadurch kommt es zu Temperaturerhöhungen in Körpern, die daran beteiligt sind. Gleichzeitig müssen hitzeempfindliche Bauteile, Komponenten oder Gegenstände vor der Wärmestrahlung geschützt werden. Hierzu werden im Stand der Technik häufig Hitzeschutzschilde aus Verbundwerkstoffen wie zum Beispiel Metallblech und/oder -folie, Aluminiumgewirke, mineralische Fasern, Gewebe- membran und/oder Vlies eingesetzt, wie zum Beispiel in der DE 102014014831A oder DE 102017007879A beschrieben.
Maßnahmen zur Verbesserung der Abgasqualität bei Kfz. und Nfz. erfordern u.a. den Einbau von Partikelfiltern zur Verhinderung der Emitierung von Feinststaub. Der Betrieb dieser Partikelfilter generiert insbesondere während der Regenerationsphase sehr hohe Objekttemperaturen. Da die Filter relativ groß und die Einbauverhältnisse beengt sind, ist eine wirksame thermische Abschir- mung der Partikelfilter gegenüber anderen Bauteilen erforderlich, um den sicheren Betrieb der Antriebsanlage unter allen Bedingungen zu ermöglichen. Im Falle eines Crashes darf der Parti- kelfilter keine Brände verursachen. Um der beengten Einbausituation Rechnung zu tragen, ist eine gute Umformbarkeit der Abschirmung erforderlich, damit sich die thermische Isolation an die beengten Raumverhältnisse anpassen lässt. Insbesondere sollte die Abschirmung komple- mentär zu dem wärmeabstrahlenden oder zu dem vor Wärmestrahlung zu schützenden Körper formbar und daran anbringbar sein. Eine solche Abschirmung sollte mithin an vielen Stellen an- bringbar sein, wobei sie sich in die vorhandene Anordnung der Bauteile und in die vorhandenen Prozesse einfügen sollte. Außerdem sollte eine solche Abschirmung auch nachträglich einbaubar sein. Eine sichere Abschirmung sollte aus einem selbsttragenden Material bestehen, dass seine Form beibehält, sofern sie nicht unter Anwendung von Kräften zwangsweise verformt wird.
Darüber hinaus darf von der thermischen Isolation kein Beitrag zur Verschlechterung der akusti- schen Performance in Form von Körperschall ausgehen. Aufgrund der engen räumlichen Verhältnisse muss die Abschirmung einen möglichst großen Temperaturunterschied zwischen der der Wärmequelle zugewandten Seite und der der Wärme- quelle abgewandten Seite gewährleisten.
Eine vergleichbare Aufgabenstellung liegt bei den Abdeckungen von Batteriekästen vor, wie sie zunehmend bei E-Fahrzeugen eingesetzt werden. Diese Abdeckungen müssen thermisch gut isolieren, sollen Brände verhindern oder eindämmen, müssen gut verformbar sein und dürfen akustisch nicht auffällig werden.
Diese Aufgaben werden gelöst durch ein thermisches Isoliermaterial, bestehend aus zwei metalli schen Decklagen und einer zwischen den Decklagen angeordneten nichtmetallischen Kern- schicht, dadurch gekennzeichnet, dass die Kernschicht viskoelastisch ist und aus einem silikon- haltigen Werkstoff gebildet wird und die Decklagen aus einem eine aluminiumbasierte Beschich- tung aufweisenden Stahlflachprodukt gebildet sind.
Als silikonhaltiger Werkstoff wird ein Werkstoff eingesetzt, der Polysiloxane aufweist oder im We- sentlichen daraus besteht. In einer Ausführung der Erfindung wird ein Silikonklebstoff verwendet. Dieser enthält eine Alternative, insbesondere vor dem Aushärten, mindestens ein Silikonharz und gegebenenfalls mindestens ein Siloxangummi sowie gegebenenfalls mindestens ein Reaktions- addukt aus mindestens einem Siloxangummi und mindestens einem Silikonharz.
Wenn vorliegend von Stahlflachprodukten die Rede ist, so ist darunter beispielsweise ein Stahl band oder ein Stahlblech oder ein aus einem Stahlblech erzeugter Zuschnitt, wie beispielsweise eine Platine, zu verstehen. Unter Platinen werden Blechtafeln verstanden, die in der Regel kom- plexere Umrisse als die Stahlbänder oder Stahlbleche, aus denen sie hervorgehen, aufweisen.
Wenn vorliegend von einem eine aluminiumbasierte Beschichtung aufweisenden Stahlflachpro- dukt die Rede ist, so ist damit ein mindestens auf einer Seite eine aluminiumbasierte Beschich- tung aufweisendes Stahlflachprodukt gemeint. Ein beschichtetes Stahlflachprodukt besteht dem- nach aus einem Stahlsubstrat, welches beispielsweise ein Stahlband oder ein Stahlblech oder ein aus einem Stahlblech erzeugter Zuschnitt, wie beispielsweise eine Platine, sein kann und ei- ner mindestens auf einer Seite des Stahlsubstrats vorhandenen Beschichtung. In einer Alternati ve sind beide Seiten des Stahlsubstrats, mithin der Decklagen, beschichtet. Eine aluminiumbasierte Beschichtung besteht aus reinem Aluminium oder aus einer Aluminium- legierung.
Die Beschichtung kann auf konventionelle Weise, beispielsweise mittels eines Schmelztauchbe- schichtungsprozesses, auf das Stahlsubstrat aufgebracht sein. Weitere Applikationsmethoden, die das Aufträgen einer Beschichtung ermöglichen, sind ebenfalls denkbar. Eine geeignete Be- schichtung, zum Beispiel ein Korrosionsschutzüberzug, ist typischerweise höchstens 50 pm pro Seite dick, bevorzugt 0, 1 bis 50 pm, besonders bevorzugt 1 bis 30 pm, insbesondere 10 bis 30 pm je Seite dick.
Eine Ausführung betrifft ein Isoliermaterial, das körperschalldämpfend ist. Die Dämpfung wird im Sinne der Erfindung über den sogenannten Verlustfaktor ausgedrückt, der nach Norm EN ISO 6721 bestimmt wird. Das erfindungsgemäße Isoliermaterial zeigt einen hohen Verlustfaktor über einem breiten Temperaturbereich, insbesondere einen Verlustfaktor von 0,01-1,0 gemessen bei 500 Hz bei Temperaturen zwischen -20 °C und 130 °C. Bevorzugt weist das Isoliermaterial einen Verlustfaktor von 0,04-0,5, gemessen bei 500 Hz, bei Temperaturen von -20 °C bis 80 °C, be- sonders bevorzugt ein Verlustfaktor von 0,07-0,3, insbesondere 0, 1-0,2 bei Temperaturen von 5° bis 65 °C, auf.
Eine Ausführung betrifft ein Isoliermaterial, das tiefziehbar bzw. tiefziehfähig ist. Im Sinne der Erfindung bedeutet tiefziehfähig, dass die viskoelastische Kernschicht beim Tiefziehen mit den Decklagen fließt und dabei keine Delamination auftritt.
In einer Alternative ist das Isoliermaterial auch streckziehfähig bzw. streckziehbar. Das bedeutet, dass bei der Erichsenprüfung bei Raumtemperatur und/oder bei höheren Temperaturen (zum Beispiel 100 °C) bis zur Versagensgrenze der Decklagen keine Auffälligkeiten, Beschädigungen, und/oder makroskopische Versagensstellen in der Kernschicht verstellbar sind.
Eine weitere Ausführung betrifft ein Isoliermaterial, das nicht brennbar und/oder hitzebeständig ist. Im Sinne der Erfindung ist ein Stoff nicht brennbar, falls er die strengen Kriterien der gern. IMO 2010 FTP Code book, annex 1, Part 1 erfüllt.
Ein Stoff ist hitzebeständig im Sinne der Erfindung, falls er bei hohen Temperaturen alle Anforde- rungen erfüllt. Das Isoliermaterial zeigt keine Veränderung der relevanten Eigenschaften über einen Temperaturbereich von -80 °C bis 250 °C, insbesondere bei kurzzeitigen Temperaturerhö- hungen von bis zu 30 Minuten auf bis zu 300 °C und auch bei Schockbelastung von bis zu 800 °C. Die Kernschicht ist nicht brennbar und thermisch hochbelastbar mit einer Dauerbelastbarkeit von bis zu 400 °C und einer Schockbelastung von bis zu 800 °C.
Das erfindungsgemäße Isoliermaterial ist halogenfrei und setzt aufgrund der Hitzebeständigkeit auch bei hohen Temperaturen keinen Rauch und keine toxischen Abgase frei gemäß IMO 2010 FTP Code book annex 1, Part 2. Außerdem erfolgt auch keine unangenehme Geruchsbildung, auch nicht unter Dauerbelastung.
In einer Ausführung weist das Isoliermaterial Decklagen mit Beschichtungen auf, die aus einer Silizium enthaltenden Aluminiumlegierung bestehen. Geeignete Aluminiumlegierungen bestehen dabei typischerweise aus 3 - 15 Gew.-% Si, bevorzugt 7 - 12 Gew.-% Si, besonders bevorzugt 9
- 10 Gew.-% Si sowie optional einem oder mehreren Elementen, ausgewählt aus der Gruppe bestehend aus Eisen, anderen Übergangsmetallen als Eisen, Erdalkalimetallen oder Mischungen davon, in folgenden Gehalten: 2 - 3,5 Gew.-% Fe, 0,05 - 2 Gew.-% anderer Übergangsmetalle als Fe, bevorzugt 0, 1 - 0,5 Gew.-% anderer Übergangsmetalle als Fe, besonders bevorzugt 0, 15
- 0,4 Gew.-% anderer Übergangsmetalle als Fe, 0,05 - 2 Gew.-% Erdalkalimetalle, bevorzugt 0, 1
- 0,5 Gew.-% Erdalkalimetalle, besonders bevorzugt 0, 15 - 0,4 Gew.-% Erdalkalimetalle, und als Rest aus Aluminium und unvermeidbaren Verunreinigungen. Bei den Übergangsmetallen wird vorliegend zwischen Eisen und anderen Übergangsmetallen unterschieden, weil Eisen in höheren Gehalten vorhanden sein kann als andere Übergangsmetalle. Eisen, andere Übergangsmetalle und auch Elemente der Gruppe der Erdalkalimetalle führen zu einer dichten, dünnen und decken- den Oxidschicht, die das Eindringen von diffusiblem Wasserstoff reduziert. Als besonders geeig- net haben sich dabei die folgenden Erdalkali- bzw. Übergangsmetalle erwiesen: Mg, Ca, Sr, Ba, Zr und Ti.
Die metallischen Decklagen des Isoliermaterials weisen in einer Ausführung eine Dicke von 0,2 bis 1,0 mm, insbesondere von 0,2 bis 0,75 mm, vorzugsweise von 0,25 bis 0,5 mm und beson- ders bevorzugt von 0,3 mm auf.
Die Kernschicht weist in einer Ausführung eine Dicke von 0,025 bis 1,50 mm, insbesondere 0,02 bis 0,5 mm, bevorzugt 0,025 bis 0,250 mm, insbesondere 0,05 bis 0, 1 mm auf. Die Erfindung betrifft in einer Ausführung ferner ein Isoliermaterial mit einer Kernschicht, die des- oxidative Elemente und/oder desoxidativen Legierungen aufweist, die in der Kernschicht disper giert sind. D. h., die Kernschicht liegt als heterogenes Gemisch vor, in welchem der silikonhaltige Werkstoff als Dispersionsmedium für die als Partikel vorliegenden desoxidativen Elemente und/oder desoxidativen Legierungen vorliegt, die als disperse Phase darin fein verteilt sind. Die desoxidativen Elemente und/oder desoxidativen Legierungen sind mit einem Anteil zwischen 0, 1 und maximal 5 Gew.-% bezogen auf die Kernschicht in der silikonhaltigen Kernschicht disper giert. Um eine ausreichende Haftung zwischen den metallischen Decklagen sicherzustellen, ist der Anteil der jeweiligen desoxidativen Elemente und/oder Legierungen auf maximal 5 Gew.-%, insbesondere auf maximal 3 Gew.-% und vorzugsweise auf maximal 1 ,5 Gew.-% begrenzt.
Der silikonhaltige Werkstoff ist kurzzeitig bis 800°C temperaturbeständig. Bei höheren Tempera- turen, wie sie üblicherweise beim MIG- und MAG-Schweißen gegeben sind, zerfällt das Silizium im silikonhaltigen Werkstoff in sauerstoffhaltiger Atmosphäre wegen seiner hohen Affinität zum Sauerstoff in Siliziumdioxid. Durch die Reaktion des Siliziums mit dem Sauerstoff werden das Ausgasen der Metallschmelze und die Porenbildung im Bereich der Verbindungsnaht deutlich reduziert. Das gebildete Siliziumdioxid lagert sich in Form eines Silikates an der Verbindungsnah- toberfläche (Schweißnahtoberfläche) ab und kann bei Bedarf mechanisch entfernt werden. Durch die desoxidativen Elemente und/oder desoxidativen Legierungen in die silikonhaltige Kernschicht wird während des gesamten Verbindungsprozesses (Schmelzschweißprozess) Sauerstoff abge- bunden u. entweder über die Schweißschmelze in die Schlacke überführt oder aber im Zuge ei- ner sog. Fällungsoxidation in Form fein verteilter, nicht metallischer Einschlüsse (NME) in der Schmelze abgeschieden werden, wodurch eine porenfreie Erstarrung ermöglicht wird.
Um die Sauerstoffabbindung während des Fügeprozesses zu begünstigen, beträgt der Anteil der desoxidativen Elemente und /oder desoxidativen Legierungen mindestens 0, 1 Gew.-%, insbe- sondere mindestens 0,2 Gew.-% und vorzugsweise mindestens 0,25 Gew.-%. Als desoxidative Elemente eignen sich beispielsweise Ca, Mg, AI, Ti, Si, Mn, Cr, Ce, La, Nb, Ta, V und/oder Zn in Form von Partikeln, insbesondere Pulver und/oder Flakes. Als desoxidative Legierungen können beispielsweise Ferrosilizium (FeSi), Ferrocalciumsilizium (FeCa-Si), Ferromangan (FeMn) der sili- konhaltigen Kernschicht zugegeben werden; auch eine Kombination von 2 oder mehreren der oben genannten Stoffe ist in der Kernschicht zu verwenden. Eine weitere Ausführung betrifft ein Isoliermaterial welches Aerogel aufweist, insbesondere Aero- gel in Form von Partikeln, die allerdings in einer Alternative noch eine geschlossene Schicht bil- den können. Ein Aerogel ist als ein offenzeiliger, mesoporöser, solider Schaum definiert, der aus einem Netzwerk von miteinander verbundenen Nanostrukturen besteht. Der Begriff Aerogel be- zieht sich nicht auf eine bestimmte stoffliche Zusammensetzung, sondern auf eine geometrische Anordnung, in welcher eine Substanz vorliegen kann. Es handelt sich mithin um hochporöse, trockene Festkörper mit Porenvolumen von 95 -99,8%, die ein Netzwerk kolloidaler Teilchen mit Porengröße < 1 bis 100 nm bilden. Als Stoffe werden Silica, Carbon, Metall-Oxid oder organische Polymere eingesetzt. Weitere Beschreibung und Definition des Begriffs Aerogel ist in der DE 19537821 (Abs. 1-5, 24) und DE 19834265 (Abs. 1-4, 6, sowie Aerogel hergestellt durch ein Verfahren gemäß Abs. 8) zu finden. Die oben beschriebenen Aerogele können in dem erfin- dungsgemäßen Isoliermaterial eingesetzt werden, bevorzugt wird ein Aerogel aus amorpher Kie- selsäure, insbesondere als Granulat verwendet.
In einer Alternative ist das Aerogel in der Kernschicht dispergiert. In einer weiteren Alternative weist die Kernschicht dispergierte Aerogel-Partikel neben den oben beschriebenen, dispergierten desoxidativen Elementen und/oder Legierungen auf. In einer weiteren Alternative liegt das Aero- gel als Schicht, wie zum Beispiel in der DE 19537821 beschrieben, in dem Isoliermaterial vor. Die Aerogel-Schicht ist zwischen Decklage und Kernschicht abgelegt angeordnet oder auf einer oder beiden Seiten der von der Kernschicht abgewandten Seite der Decklage(n). Bevorzugt ist das Aerogel in der Kernschicht dispergiert oder als Schicht auf der Seite des Isoliermaterials bzw. der Decklage aufgetragen, die der Wärmequelle und der Kernschicht abgewandt ist.
In einer Ausführung enthält die Kernschicht brandhemmende Additive und/oder Chemikalien.
Die Erfindung betrifft in einer Ausführung ferner ein dreidimensional geformtes, wie oben be- schriebenes Isoliermaterial. Dabei ergibt sich die Dreidimensionalität im Sinne der Erfindung nicht aus der Länge, Breite und Höhe des Isoliermaterials, welches auf Stahlfrachtprodukten basiert, sondern auf einer Verformung aufgrund von Krafteinwirkung. Eine Verformung im Sinne der Erfindung erfolgt durch ein dem Fachmann beliebiges, bekanntes Verfahren, bevorzugt ist es ausgewählt aus den Verfahren ausgewählt aus der Gruppe enthaltend oder bestehend aus Tief- ziehen, Streckziehen, Abkanten, Biegen, Rollwalzen, Profilwalzen und Formpressen, insbesonde- re Tiefziehen. Im Wesentlichen ergibt sich mithin die dreidimensionale Form eines verformten, erfindungsgemäßen Isoliermaterials dadurch, dass makroskopisch betrachtet mindestens ein Punkt der Oberfläche des Isoliermaterials nicht in derselben Ebene mit den restlichen Punkten liegt.
Das erfindungsgemäße Isoliermaterial zeichnet sich ferner durch eine gute spezifische Wärmeka- pazität insbesondere in einem hohen, breiten Temperaturbereich aus. Im Einzelnen liegt die spe- zifische Wärmekapazität Cp bei 100 °C zwischen 0,6 und 1,0; bevorzugt zwischen 0,7 und 0,8; bei 250 °C zwischen 0,75 und 1,0; bevorzugt zwischen 0,8 und 0,85; bei 400 °C zwischen 0,8 und 1, 1; bevorzugt 0,9 und 1,0 jeweils J/g/K.
Das erfindungsgemäße Isoliermaterial zeichnet sich ferner durch eine niedrige Wärmeleitfähig- keit, insbesondere in einem hohen und breiten Temperaturbereich, aus. Im Einzelnen liegt diese niedrige spezifische Wärmeleitfähigkeit bei 100 °C zwischen 6,0 und 8,0; bevorzugt 7,0 und 7,5; bei 250 °C zwischen 1,5 und 5,0, bevorzugt 2,0 und 3,0; bei 400 °C zwischen 1,5 und 4,0; be- vorzugt zwischen 2,0 und 2,5 jeweils W/m/K.
Ferner zeigt das erfindungsgemäße Isoliermaterial einen hohen, abfallenden Temperaturgradien- ten zwischen der Seite, die der Wärmequelle zugewandt ist und der Seite, die von der Wärme- quelle abgewandt ist. So beträgt die Temperaturdifferenz zwischen der der Wärmequelle zuge- wandten Seite und der der Wärmequelle abgewandten Seite bei einer Temperatur der der Wär- mequelle zugewandten Seite von 200 °C mindestens 50 °C, bei 500 °C auf der der Wärmequelle zugewandten Seite mindestens 250 °C und bei 800 °C auf der der Wärmequelle zugewandten Seite mindestens 350 °C.
Zur Herstellung des erfindungsgemäßen Isoliermaterials wird in einer Alternative die silikonhalti ge Kernschicht in Form einer Folie, vorzugsweise als Klebefolie, zwischen die metallischen Deck- lagen eingebracht werden. Bevorzugt werden dabei in einer Kaschierstation die Decklagen mit der Folie bei Raumtemperatur laminiert. In einer weiteren Alternative wird die Kernschicht in flüs siger Form auf eine oder auf beide Decklagen aufgetragen. Die Beschichtung erfolgt durch ein dem Fachmann beliebiges, bekanntes Verfahren, bevorzugt ist es ausgewählt aus den Verfahren ausgewählt aus der Gruppe enthaltend oder bestehend aus Walzen-, Rakel- und Düsenapplikati on, Coilcoating, Giessen, Aufschleudern, Aufrieseln und Aufblasen, bevorzugt Walzen-, Rakel- und Düsenapplikation sowie Coilcoating. Anschließend wird die beschichtete Decklage mit einer weiteren, gegebenenfalls ebenfalls beschichteten Decklage zu einem Sandwichverbund zusam- mengeführt und die Kernschicht wird gehärtet oder teilgehärtet. Das Isoliermaterial kann ferner dreidimensionale Verformungen, Bohrungen und/oder funktionale Elemente, insbesondere zur Befestigung, aufweisen.
Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur thermischen Abschirmung eines wärmeabstrahlenden Körpers, umfassend oder bestehend aus folgenden Schritten:
1-1 Bereitstellen eines Isoliermaterials wie oben beschrieben;
1-2 gegebenenfalls Zuschneiden und/oder dreidimensionales Verformen des Isoliermaterials in beliebiger Reihenfolge;
2-1 Befestigen des Isoliermaterials zwischen mindestens einer hitzeerzeugenden Quelle, also des wärmeabstrahlenden Körpers, und einem zu schützenden Element oder Bauteil. Ein zu schützen- des Element kann Teil eines Bauteils oder einer Baugruppe sein.
In einer Alternative erfolgt neben einer thermischen Abschirmung auch eine akustische Abschir- mung.
Weiterer Gegenstand der vorliegenden Erfindung ist eine Verwendung des erfindungsgemäßen Isoliermaterials als Abschirmung, Abdeckung, Verkleidung oder Bauteil, insbesondere in Moto- ren, Abgasanlagen, Personenkraftwagen, Nutzfahrzeugen, Lastkraftwagen, Sonderfahrzeugen, Bussen, Omnibussen, gleisgebundenen Fahrzeugen, Schiffen, unter anderem als Kabinenwände und/oder Schiffsverkleidungen, und/oder in architektonischen Bauten, also im Bauwesen, insbe- sondere als Außenfassade, Dachelement und/oder gebäudeinnenliegende Brandschutz- und/oder Akustikwände, - aufbauten oder -decken.
Bevorzugt wird das Isoliermaterial als Hitzeschutzschild eingesetzt, besonders bevorzugt zur Ab- schirmung von Partikelfiltern oder Batteriekästen in Fahrzeugen. Insbesondere bei der Abschir- mung von Partikelfilter sind besondere Erfordernisse zu erfüllen. Im Crash-Fall erhöht sich die Brandgefahr, da es zum unmittelbaren Kontakt zwischen Abschirmung und Partikelfilter kommen kann. Ein Hitzeschutzschild aus dem erfindungsgemäßen Isoliermaterial erfüllt alle Erfordernisse ohne Beschädigung, insbesondere im Dauerbetrieb. Des Weiteren weisen die außen liegenden Oberflächen des Isoliermaterials durch die Beschichtung einen Korrosionsschutz auf, sowie einen Schutz gegen Öle, Fette, flüssige Brennstoffe und/oder Reinigungsmittel, wie sie bei Nutzfahrzeu- gen und Bauten eingesetzt werden.
Im Sinne der Erfindung können auch Kombinationen der oben beschriebenen Ausführungen und Alternativen eingesetzt werden.
Das erfindungsgemäße Isoliermaterial eignet sich für diese Verwendungen insbesondere auf- grund der Kombination seiner Merkmale wie der Formbarkeit, Flitzebeständigkeit, Brandschutz, Körperschalldämpfung sowie Wärmeisolation.

Claims

1/2 Patentansprüche
1. Thermisches Isoliermaterial bestehend aus zwei metallischen Decklagen und einer zwischen den Decklagen angeordneten nichtmetallischen Kernschicht,
dadurch gekennzeichnet, dass
die Kernschicht viskoelastisch ist und aus einem silikonhaltigen Werkstoff gebildet ist und die Decklagen aus einem eine aluminiumbasierte Beschichtung aufweisenden Stahlflachprodukt gebildet sind.
2. Isoliermaterial nach Anspruch 1,
dadurch gekennzeichnet, dass es körperschalldämpfend ist.
3. Isoliermaterial nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass es tiefziehfähig ist.
4. Isoliermaterial nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass es nicht brennbar und / oder hitzebeständig ist.
5. Isoliermaterial nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass die Beschichtung des Stahlflachprodukts aus einer Silizium ent- haltenden Aluminiumlegierung besteht.
6. Isoliermaterial nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass die metallischen Decklagen eine Dicke von 0,2 bis 1,0 mm, insbe- sondere von 0,2 bis 0,75 mm, vorzugsweise von 0,25 bis 0,5 mm und besonders bevorzugt von 0,3 mm aufweisen.
7. Isoliermaterial nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass die Kernschicht eine Dicke von 0,025 bis 1,50 mm, insbesondere 0,02 bis 0,5 mm, bevorzugt 0,025 bis 0, 10 mm aufweist.
8. Isoliermaterial nach einem der vorgenannten Ansprüche, 2/2 dadurch gekennzeichnet, dass die Kernschicht desoxidative Elemente und / oder desoxidative Legierungen aufweist, die in der Kernschicht dispergiert sind.
9. Isoliermaterial nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass das Isoliermaterial Aerogel-Partikel in der Kernschicht und / oder als zusätzliche Beschichtung der Decklagen aufweist.
10. Isoliermaterial nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass das Isoliermaterial dreidimensional geformt ist.
11. Verfahren zur thermischen Abschirmung eines wärmeabstrahlenden Körpers umfassend oder bestehend aus folgenden Schritten:
1-1 Bereitstellen eines Isoliermaterials nach einem der Ansprüche 1 - 10;
1-2 gegebenenfalls Zuschneiden und / oder dreidimensionales Verformen des Isolierma- terials in beliebiger Reihenfolge;
2-1 Befestigen des Isoliermaterials zwischen mindestens einer hitzeerzeugenden Quelle und einem zu schützenden Element oder Bauteil.
12. Verwendung eines Isoliermaterials nach einem der Ansprüche 1 - 10 als Abschirmung, Ab- deckung, Verkleidung oder Bauteil, insbesondere in Motoren, Personenkraftwagen, Nutzfahrzeu- gen, Lastkraftwagen, Sonderfahrzeugen, Bussen, Omnibussen, gleisgebundenen Fahrzeugen, Schiffen oder und im Bauwesen.
13. Verwendung nach Anspruch 12 als Hitzeschutzschild.
14. Verwendung nach Anspruch 12 oder 13 als Hitzeschutzschild zur Abschirmung von Partikel filtern oder Batteriekästen in Fahrzeugen.
EP19773796.8A 2018-09-27 2019-09-20 Hoch belastbares thermisches isolationsmaterial mit guter umformbarkeit und ausgezeichneter körperschalldämpfung Pending EP3856513A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018216616.1A DE102018216616A1 (de) 2018-09-27 2018-09-27 Hoch belastbares thermisches Isolationsmaterial mit guter Umformbarkeit und ausgezeichneter Körperschalldämpfung
PCT/EP2019/075347 WO2020064551A1 (de) 2018-09-27 2019-09-20 Hoch belastbares thermisches isolationsmaterial mit guter umformbarkeit und ausgezeichneter körperschalldämpfung

Publications (1)

Publication Number Publication Date
EP3856513A1 true EP3856513A1 (de) 2021-08-04

Family

ID=68062934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19773796.8A Pending EP3856513A1 (de) 2018-09-27 2019-09-20 Hoch belastbares thermisches isolationsmaterial mit guter umformbarkeit und ausgezeichneter körperschalldämpfung

Country Status (3)

Country Link
EP (1) EP3856513A1 (de)
DE (1) DE102018216616A1 (de)
WO (1) WO2020064551A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022122137A1 (de) * 2022-09-01 2024-03-07 Thyssenkrupp Steel Europe Ag Batteriekastendeckel aus thermisch isolierendem Stahlsandwichmaterial

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9106809D0 (en) * 1991-04-02 1991-05-22 Dow Corning Sa Silicone foams
US5590524A (en) * 1992-05-14 1997-01-07 Soundwich, Inc. Damped heat shield
DE19537821A1 (de) 1995-10-11 1997-04-17 Hoechst Ag Aerogelbeschichtete Folie
DE19700628C2 (de) * 1997-01-10 2003-03-20 Reinz Dichtungs Gmbh Verfahren zur Herstellung eines Hitzeschildes und ein mit dem Verfahren hergestelltes Hitzeschild
DE19834265A1 (de) 1998-07-30 2000-02-17 Thomas Gesner Verfahren zur Herstellung von Aerogelen und Anlage zur Herstellung von Aerogelschichten auf Substraten oder aus Aerogelen bestehenden Produkten
US20040214008A1 (en) * 2003-04-25 2004-10-28 Dobrusky Scott R. Flexible magnetic damping laminate with thermosetting adhesive layer
DE102014014831A1 (de) 2014-10-07 2016-04-07 Daimler Ag Hitzeschutzschild für einen wärmeabstrahlenden Körper
DE102017007879A1 (de) 2017-08-21 2018-02-08 Daimler Ag Hitzeschutzschild

Also Published As

Publication number Publication date
WO2020064551A1 (de) 2020-04-02
DE102018216616A1 (de) 2020-04-02

Similar Documents

Publication Publication Date Title
CN107771114B (zh) 可焊层合结构体和焊接方法
US20090169917A1 (en) Aluminium composite sheet material
DE102009013322A1 (de) Stoßfängeranordnung
JP2003502167A (ja) 合成アルミニウムパネル
EP1251988A1 (de) Verbundkörper aus zwischen metallschichten eingeschlossenem treibmittel enthaltendes metallpulver
KR20060029602A (ko) 발포시트제품용 프리폼 및 이로부터 제조된 발포제품
EP3461635A1 (de) Aluminiumverbundblechmaterial
EP4056364A1 (de) Plattierte aluminiumlegierungsprodukte und verfahren zur herstellung davon
WO2020064551A1 (de) Hoch belastbares thermisches isolationsmaterial mit guter umformbarkeit und ausgezeichneter körperschalldämpfung
EP2867421A1 (de) Wandelement
WO2019215020A1 (de) Hybrides stahl-kunststoffhalbzeug mit abschirmeigenschaften
DE102014007066B3 (de) Bauelement und schmelzgeschweißte Konstruktion
EP1165848A1 (de) STRUKTURBAUTEIL AUS EINER ALUMINIUMLEGIERUNG VOM TYP AlMgSi
JP2013159806A (ja) アルミニウム合金板、これを用いた接合体および自動車用部材
EP2860323B1 (de) Bauelement
JP6850976B2 (ja) マグネシウム合金のプレス材とその製造方法、補強材、内装材、鉄道車両の構体及び交通輸送手段の構体
DE60015202T2 (de) Verfahren zur Aluminisierung von Stahl zum Erzeugen einer dünnen Grenzflächenschicht
DE102010018252A1 (de) Aluminium-Verbundblechprodukt
WO2020225126A1 (de) Dämpfungselement
DE60301723T2 (de) Verfahren zur Herstellung von metallischen Bauteilen
DE102022122137A1 (de) Batteriekastendeckel aus thermisch isolierendem Stahlsandwichmaterial
KR102611681B1 (ko) 선박 내장재 판재용 굴패각 조성물 및 이를 포함하는 선박 내장재 판재
WO2016058740A1 (de) Verbundwerkstoff
EP2078538A1 (de) Feuerschutz-Abschlussplatte
WO2018096055A1 (de) Beschichtung für ein trägermaterial, kernteil zum herstellen eines verbundteils, verbundteil und verfahren zum herstellen eines verbundteils

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220405